合肥工业大学电磁场与电磁波第4章答案

合集下载

电磁场与电磁波第四章习题及参考答案

电磁场与电磁波第四章习题及参考答案

第四章 习题4-1、 电量为nC 500的点电荷,在磁场)(ˆ2.1T zB =中运动,经过点)5,4,3(速度为 s m y x/ˆ2000ˆ500+ 。

求电荷在该点所受的磁场力。

解:根据洛仑兹力公式B v q F⨯=N x y z y x 4491012ˆ103ˆ2.1ˆ)ˆ2000ˆ500(10500---⨯+⨯-=⨯+⨯⨯= N y x4103)ˆˆ4(-⨯-= 4-2、真空中边长为a 的正方形导线回路,电流为I ,求回路中心的磁场。

解:设垂直于纸面向下的方向为z 方向。

长为a 的线电流I 在平分线上距离为a/2的点上的磁感应强度为aIzB πμ2ˆ01= 因而,边长为a 的正方形导线回路在中心点上的磁感应强度为aIz B B πμ24ˆ401==题4-2图 题4-3图4-3、真空中边长为a 的正三角形导线回路,电流为I ,求回路中心的磁场.解:设垂直于纸面向下的方向为z 方向。

由例4-1知,长为a 的线电流I 在平分线上距离为b 的点上的磁感应强度为2201)2(ˆa b a bIz B +=πμ所以220)2(3ˆa b a bIz B +=πμ ,其中)6(2πtg a b =4-4、真空中导线绕成的回路形状如图所示,电流为I 。

求半圆中心处的磁场。

(c)题4-4 图解:设垂直于纸面向内的方向为z 方向。

由例4-2知,半径为a 的半圆中心处的磁场为aIz B 4ˆ01μ= (1)因为在载流长直导线的延长线上磁场为零,因此aIz B 4ˆ0μ= (2)由例4-1知,本题半无限长的载流长直导线在距离为a 处的磁场为aIz B πμ4ˆ02= 因此本题磁场为半圆环的磁场与两半无限长的直导线的磁场之和)2(4ˆ0+-=ππμaIz B (3)本题磁场为电流方向相反的两不同半径的半圆环的磁场之和,即)11(4ˆ0ba I zB -=μ 4-5、 在真空中将一个半径为a 的导线圆环沿直径对折,使这两半圆成一直角。

《电磁场与电磁波》习题参考答案

《电磁场与电磁波》习题参考答案

《电磁场与电磁波》知识点及参考答案第1章 矢量分析1、如果矢量场F 的散度处处为0,即0F∇⋅≡,则矢量场是无散场,由旋涡源所产生,通过任何闭合曲面S 的通量等于0。

2、如果矢量场F 的旋度处处为0,即0F ∇⨯≡,则矢量场是无旋场,由散度源所产生,沿任何闭合路径C 的环流等于0。

3、矢量分析中的两个重要定理分别是散度定理(高斯定理)和斯托克斯定理, 它们的表达式分别是:散度(高斯)定理:SVFdV F dS ∇⋅=⋅⎰⎰和斯托克斯定理:sCF dS F dl∇⨯⋅=⋅⎰⎰。

4、在有限空间V 中,矢量场的性质由其散度、旋度和V 边界上所满足的条件唯一的确定。

( √ )5、描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。

( √ )6、标量场的梯度运算和矢量场的旋度运算都是矢量。

( √ )7、梯度的方向是等值面的切线方向。

(× )8、标量场梯度的旋度恒等于0。

( √ ) 9、习题1.12, 1.16。

第2章 电磁场的基本规律(电场部分)1、静止电荷所产生的电场,称之为静电场;电场强度的方向与正电荷在电场中受力的方向相同。

2、在国际单位制中,电场强度的单位是V/m(伏特/米)。

3、静电系统在真空中的基本方程的积分形式是:V V sD d S d V Q ρ⋅==⎰⎰和0lE dl ⋅=⎰。

4、静电系统在真空中的基本方程的微分形式是:V D ρ∇⋅=和0E∇⨯=。

5、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。

6、在两种媒质分界面的两侧,电场→E 的切向分量E 1t -E 2t =0;而磁场→B 的法向分量B 1n -B 2n =0。

7、在介电常数为e 的均匀各向同性介质中,电位函数为 2211522x y z ϕ=+-,则电场强度E=5x y zxe ye e --+。

8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体表面为等位面;在导体表面只有电场的法向分量。

电磁场与电磁波课后复习题与答案四章复习题解答

电磁场与电磁波课后复习题与答案四章复习题解答

四章习题解答4.1 如题4.1图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为0U ,求槽的电位函数。

解 根据题意,电位(,)x y ϕ满足的边界条件为① (0,)(,)0y a y ϕϕ== ② (,0)0x ϕ=③ 0(,)x b U ϕ=根据条件①和②,电位(,)x y ϕ的通解应取为1(,)sinh()sin()n n n y n xx y A a aππϕ∞==∑ 由条件③,有01sinh()sin()n n n b n x U A a aππ∞==∑ 两边同乘以sin()n xaπ,并从0到a 对x 积分,得到 002sin()d sinh()an U n xA x a n b a aππ==⎰ 02(1cos )sinh()U n n n b a πππ-=04,1,3,5,sinh()02,4,6,U n n n b a n ππ⎧=⎪⎨⎪=⎩L L , 故得到槽的电位分布 01,3,5,41(,)sinh()sin()sinh()n U n y n xx y n n b a a aππϕππ==∑L 4.2 两平行无限大导体平面,距离为b ,其间有一极薄的导体片由d y =到b y =)(∞<<-∞x 。

上板和薄片保持电位0U ,下板保持零电位,求板间电位的解。

设在薄片平面上,从0=y 到d y =,电位线性变化,0(0,)y U y d ϕ=。

a题4.1图解 应用叠加原理,设板间的电位为(,)x y ϕ=12(,)(,)x y x y ϕϕ+其中,1(,)x y ϕ为不存在薄片的平行无限大导体平面间(电压为0U )的电位,即10(,)x y U y b ϕ=;2(,)x y ϕ是两个电位为零的平行导体板间有导体薄片时的电位,其边界条件为:① 22(,0)(,)0x x b ϕϕ== ② 2(,)0()x y x ϕ=→∞③ 002100(0)(0,)(0,)(0,)()U U y y d by y y U U y y d y b db ϕϕϕ⎧-≤≤⎪⎪=-=⎨⎪-≤≤⎪⎩根据条件①和②,可设2(,)x y ϕ的通解为 21(,)sin()e n x b n n n y x y A b ππϕ∞-==∑ 由条件③有 00100(0)sin()()n n U U y y d n y bA U U b y y d y b db π∞=⎧-≤≤⎪⎪=⎨⎪-≤≤⎪⎩∑两边同乘以sin()n yb π,并从0到b 对y 积分,得到 0002211(1)sin()d ()sin()d d bn d U U y n y n y A y y y b b b b d b b ππ=-+-=⎰⎰022sin()()U b n d n d bππ 故得到 (,)x y ϕ=0022121sin()sin()e n x bn U bU n d n y y b d n b b ππππ∞-=+∑ 4.3 求在上题的解中,除开0U y b 一项外,其他所有项对电场总储能的贡献。

电磁场与电磁波习题答案资料讲解

电磁场与电磁波习题答案资料讲解

电磁场与电磁波习题答案第四章习题解答★【4.1】如题4.1图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为0U ,求槽内的电位函数。

解 根据题意,电位(,)x y ϕ满足的边界条件为① (0,)(,)0y a y ϕϕ==;② (,0)0x ϕ=; ③ 0(,)x b U ϕ= 根据条件①和②,电位(,)x y ϕ的通解应取为1(,)sinh()sin()n n n y n xx y A a a ππϕ∞==∑ 由条件③,有 01sinh()sin()n n n b n xU A a a ππ∞==∑两边同乘以sin()n xa π,并从0到a 对x 积分,得到002sin()d sinh()an U n x A x a n b a a ππ==⎰ 02(1cos )sinh()U n n n b a πππ-=04,1,3,5,sinh()02,4,6,U n n n b a n ππ⎧=⎪⎨⎪=⎩,故得到槽内的电位分布 01,3,5,41(,)sinh()sin()sinh()n U n y n xx y n n b a a aππϕππ==∑4.2 两平行无限大导体平面,距离为b ,其间有一极薄的导体片由d y =到b y =)(∞<<-∞x 。

上板和薄片保持电位0U ,下板保持零电位,求板间电位的解。

设在薄片平面上,从0=y 到d y =,电位线性变化,0(0,)y U y d ϕ=。

解 应用叠加原理,设板间的电位为(,)x y ϕ=12(,)(,)x y x y ϕϕ+其中,1(,)x y ϕ为不存在薄片的平行无限大导体平面间(电压为0U )的电位,即10(,)x y U y b ϕ=;2(,)x y ϕ是两个电位为零的平行导体板间有导体薄片时的电位,其边界条件为:22(,0)(,)0x x b ϕϕ==① 2(,)0()x y x ϕ=→∞②③ 002100(0)(0,)(0,)(0,)()U U y y d by y y U U y y d y b db ϕϕϕ⎧-≤≤⎪⎪=-=⎨⎪-≤≤⎪⎩; 根据条件①和②,可设2(,)x y ϕ的通解为21(,)sin()en x bn n n yx y A b ππϕ∞-==∑;由条件③有 00100(0)sin()()n n U U y y d n y b A U U b y yd y b db π∞=⎧-≤≤⎪⎪=⎨⎪-≤≤⎪⎩∑两边同乘以sin()n ybπ,并从0到b 对y 积分,得到 0002211(1)sin()d ()sin()d d bn d U U y n y n y A y y y b b b b d b b ππ=-+-=⎰⎰022sin()()U b n d n d bππ 故得到 (,)x y ϕ=0022121sin()sin()e n x b n U bU n d n y y b d nb b ππππ∞-=+∑ 4.4 如题4.4图所示的导体槽,底面保持电位0U ,其余两面电位为零,求槽内的电位的解。

合工大电磁场与电磁波习题答案

合工大电磁场与电磁波习题答案
解:(1) ∇ ⋅ A = 3x2 + 3y2 + 3z2 , ∇ ⋅ A M (1,0,−1) = 6 ;
(2) ∇ ⋅ A = 4 − 2x + 2z , ∇ ⋅ A M (1,1,3) = 8 ;
( ) (3) A = xyzr = xyz xex + yey + zez = x2 yzex + xy2 zey + xyz2ez
= f ' (r) r ×r
r =0
(3) ∇ × ⎡⎣ f (r )C ⎤⎦ = ∇f (r )× C
= f ' (r )∇r ×C = f ' (r) r×C
r
(4) ∇i⎡⎣r × f (r )C ⎤⎦ = f (r )C ⋅[∇ × r] − ri⎡⎣∇ ×( f (r )C )⎤⎦
=
−r − sinθ cosϕey − cosθ ez
∂ = −e∂ r
( ) ∂ er =
ϕ

ϕ
sinθ cosϕex + sinθ sin ϕey + cosθ ez
= − sinθ sinϕex + sinθ cosϕey
( ) = sinθ − sinϕex + cosϕey
f
(r)
=
C r3
( ) 1-13 求 矢 量 场 A = xyz ex + ey + ez 在 点 M (1, 3, 2) 的 旋 度 以 及 在 这 点 沿 方 向
n = ex + 2ey + 2ez 的环量面密度。
e∂x e∂y e∂z
解: ∇ × A M = ∂ x
∂ y
∂ z

电磁场与电磁波(第四版)课后答案 第四章习题

电磁场与电磁波(第四版)课后答案  第四章习题

1

∂A ρ ∇ • E = ∇ • −∇Φ − = ∂t ε
ห้องสมุดไป่ตู้
∇ 2Φ +
∂ ρ ∇• A = − ∂t ε
2

∇• A = 0
∂2 A ∂Φ 2 ∇ A − µε 2 = − µ J + µε∇ ∂t ∂t
代入1和2式,得
ρ ∇ Φ=− ε
2
4.9在自由空间中的电磁场为
∂A E = −∇Φ − ∂t
代入
∂D ∇× H = J + ∂t ∇•D = ρ
∂E ∂ ∂A ∇× H = ∇×∇× A = J +ε = J + ε −∇Φ − ∂t ∂t ∂t µ 1

∂Φ ∂2 A ∇ ( ∇ • A ) − ∇ 2 A = µ J − µε − µε 2 ∂t ∂t
s
= 2650 × 0.25 cos 2 (ωt ) − cos 2 (ωt − 0.42 ) = −270.2sin ( 2ωt − 0.42 )W
4.10已知某电磁场的复矢量为
r r ε0 H ( z ) = ey E0 cos ( k0 z )
r r E ( z ) = ex jE0 sin ( k0 z ) V / m
r r E ( z , t ) = ex1000cos (ωt − kz ) V / m r r H ( z , t ) = ey 2.65cos (ωt − kz ) A / m
式中
k = ω µ0ε 0 = 0.42 rad / m
试求(1)瞬时坡印廷矢量 (2)平均坡印廷矢量 (3)任一时刻流入长为1m横截面积为0.25平方米的 平行六面体中的净功率。 解:(1)瞬时坡印廷矢量 r r r r S = E × H = ez 2650 cos 2 (ωt − kz ) W / m 2 (2)平均坡印廷矢量

电磁场与电磁波课后习题答案第四章

4.3若半径为a 、电流为I 的无线长圆柱导体置于空气中,已知导体的磁导率为0μ,求导体内、外的磁场强度H 和磁通密度B 。

解:(1)导体内:0≤ρ<a由安培环路定理,⎰•ll d H='I'I =22.I a πρπ=22I a ρ 所以,21.22I H a ρπρ=,122I H a ρπ=,122I H e a ϕρπ→→=,011022I B H e a ϕμρμπ→→→==(2)导体外:a ≤ρ<+∞⎰•l l d H =I, 所以2.2H I πρ=,22I H e ϕπρ→→=,022I B e ϕμπρ→→=4.5 在下面的矢量中,哪些可能是磁通密度B ?如果是,与它相应的电流密度J 为多少? (1)F a ρρ→→=解:1..()F F ρρρρ→∂∇=∂=1.2ρρ=2≠0所以F →不是磁通密度 (2)F →=-x a →y+y a →x 解:∇.F →=y x ∂-∂+xy ∂∂=0 所以F 是磁通密度 B →∇⨯=0μJ →=|x y ze e e x y zy x 0→→→∂∂∂∂∂∂-=2z e → 所以 J →=02μz e →(3)F →=x a →x —y a →y∇.F →=0F →是磁通密度B →∇⨯=0μJ →=|x y ze e e x y zx y→→→∂∂∂∂∂∂-=0所以J →=0 (4)F →=a ϕ→-r∇.F →=0所以F →是磁通密度B →∇⨯=r 2a a a r sin r sin rr 20r sin 0ϕθθθθϕθ→→→∂∂∂∂∂∂-=r a →-θcot +2a θ→=0μJ →所以J →=0cot θμ-r a →+02μa θ→ 4.6已知某电流在空间产生的磁矢位是A →=x a →2x y+y a →x 2y +z a →(2y —2z ) 求磁感应强度B →解:B →=A →∇⨯=|x y z2e e e x y z222x y xy y z →→→∂∂∂∂∂∂-=2y x e →+z e →(2y —2z )4.13已知钢在某种磁饱和情况下的磁导率为1μ=20000μ,当钢中的磁通密度为B 1=0.5×102T ,1θ= 75°时,试求此时的磁力线由钢进入自由空间一侧后,磁通密度2B 的大小与2B 与法线的夹角2θ。

合工大电磁场与电磁波答案教材

第 6 章习题答案6-1 在 r 1、 r 4 、 0 的媒质中,有一个均匀平面波,电场强度是E(z,t) E m sin( t kz )3若已知 f 150 MHz ,波在任意点的平均功率流密度为 0.265 μ w/m 2,试求:( 1)该电磁波的波数 k ?相速 v p ?波长 ?波阻抗 ?( 2) t 0 , z 0 的电场 E (0,0) ?(3)时间经过 0.1μs 之后电场 E (0,0) 值在什么地方?时间在 t 0时刻之前 0.1μs ,电(4)场 E (0,0) 值在什么地方?3E(0,0) E m sin 8.66 10 3(V/m)33) 往右移 z v p t 15 m 4) 在 O 点左边 15 m 处6-2 一个在自由空间传播的均匀平面波,电场强度的复振幅是E 10 4ej20 ze x 10 4e 2e y 伏 / 米 试求: ( 1)电磁波的传播方向?(2)电磁波的相速 v p ?波长 ?频率 f ? ( 3)磁场强度 H ?(4)沿传播方向单位面积流过的平均功率是多少? 解:( 1)解:( 1) k 2 fr 2 (rad/m)c v p c/ r 1.5 108(m/s)2m2 0.265 10 62)∵ S av∴ E m1(m)电磁波沿z方向传播。

( 2)自由空间电磁波的相速v p c 3 108 m/sk 20 c 20 c∴ f 10c 3 109Hz217 j(20 z ) j20 z 3)H 1e z E 2.65 10 7(e 2e x e j20 ze y )(A/m)*1 * E E *11 24)S avRe(E H *) E E e z 2.65 10 11e z (W/m 2)6-3 证明在均匀线性无界无源的理想介质中,不可能存在 E E 0e jkzez 的均匀平面电 磁波。

证 ∵Εj kE 0e 0,即不满足 Maxwell 方程∴ 不可能存在 E E 0e jkze z 的均匀平面电磁波。

电磁场与电磁波课后习题及答案四章习题解答

四章习题解答4.1如题4.1图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的 盖板,槽的电位为零,上边盖板的电位为 U o ,求槽内的电位函数。

解根据题意,电位 (0, y) (x,0) (x,b)电位y b ( x )。

上板和薄片保持电位 U °,下板保持零电位,求板间电位的解。

设在薄片平面上,从y 0到y d ,电位线性变化,(0, y) U 0y d 。

解 应用叠加原理,设板间的电位为(x,y )1(x, y) 2(x, y)其中,1 (x, y)为不存在薄片的平行无限大导体平面间(电压为(x, y) n 1aa两边同乘以 题4.1图由条件③,有sin(nA nU oAsinh(— b)sin( n x)aa2U on sinh( n ba)(1 x―),并从 a cos n 0到a 对x 积分,得到an xsin( -- )dxasinh( n b a) 0 a4U 02U o ) n sinh(n ,n b a)1,3,5,L2,4,6,L sin h(^^)s135,L nsinh(n b a) aa4.2两平行无限大导体平面,距离为b ,其间有故得到槽内的电位分布(x,y)型 n y a 极薄的导体片由y d 到 (x, y)满足的边界条件为 (a, y) 0 0U 。

(x, y)的通解应取为 ① ② ③ 根据条件①和②, ②2(x,y) 0 (x )U°)的电位,即1(x,y) U0yb ;2(x,y)是两个电位为零的平行导体板间有导体薄片时的电位,其边界条件为:①2(x,0) 2(x,b) 0根据条件①和②, 由条件③有 U o③ 2(0, y) (0,y) 可设 2(x, y )的通解为 2(x,y ) U o n y A sin(- 1 b U T yU E y(0 (d 1(o, y) Un y )e A V )eA n Sin( 1d) b) by(0 (dy d) y b)n y两边同乘以sin(- b 2U o d b o ),并从 o 到b 对y 积分,得到b )ysin( / 、U o 2bU o El L 厂求在上题的解中,除开 2W e 故得到 4.3 C f 厂定出边缘电容。

电磁场与电磁波(第4版)习题第4章

word 版本.第4章 时变电磁场部分习题解答4.1 证明:在无源的真空中,以下矢量函数满足波动方程222210c t∂∇-=∂EE ,其中2001c με=,0E 为常数。

(1)0cos()x E t z cωω=-E e ;(2)0sin()cos()x E z t cωω=E e ;(3)0cos()y E t z cωω=+E e解 (1)222002cos()cos()x x E t z E t z c z cωωωω∂∇=∇-=-=∂E e e20()cos()x E t z c cωωω--e2220022cos()cos()x x E t z E t z t t c cωωωωω∂∂=-=--∂∂E e e 故22220022211()cos()[cos()]0x x E t z E t z c t c c c cωωωωωω∂∇-=-----=∂E E e e即矢量函数0cos()x E t z c ωω=-E e 满足波动方程222210c t ∂∇-=∂E E 。

(2)222002[sin()cos()][sin()cos()]x x E z t E z t c z cωωωω∂∇=∇==∂E e e20()sin()cos()x E z t c cωωω-e2220022[sin()cos()][sin()cos()]x x E z t E z t t t c cωωωωω∂∂==-∂∂E e e 故22220022211()sin()cos()[sin()cos()]0x x E z t E z t c t c c c cωωωωωω∂∇-=---=∂E E e e即矢量函数0sin()cos()x E z t c ωω=E e 满足波动方程222210c t∂∇-=∂E E 。

(3)222002cos()cos()y y E t z E t z c z cωωωω∂∇=∇+=+=∂E e e20()cos()y E t z c cωωω-+e2220022cos()cos()y x E t z E t z t t c cωωωωω∂∂=+=-+∂∂E e e 故22220022211()cos()[cos()]0y y E t z E t z c t c c c cωωωωωω∂∇-=-+--+=∂E E e e4-4即矢量函数0cos()y E t z c ωω=+E e 满足波动方程222210c t∂∇-=∂EE 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章习题解答
★【】如题图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为,求槽内的电位函数。

解 根据题意,电位满足的边界条件为
① ;② ; ③ 根据条件①和②,电位的通解应取为 由条件③,有
两边同乘以,并从0到对积分,得到
故得到槽内的电位分布
两平行无限大导体平面,距离为,其间有一极薄的导体片由到。

上板和薄片保持电位,下板保持零电位,求板间电位的解。

设在薄片平面上,从到,电位线性变化,。

解 应用叠加原理,设板间的电位为
其中,为不存在薄片的平行无限大导体平面间(电压为)的电位,即;是两个电位为零的平行导体板间有导体薄片时的电位,其边界条件为:
① ② ③ ; 根据条件①和②,可设的通解为 ;由条件③有
两边同乘以,并从0到对积分,得到
故得到 如题图所示的导体槽,底面保持电位,其余两面电位为零,求槽内的电位的解。

解 根据题意,电位满足的边界条件为
① ②

根据条件①和②,电位的通解应取为 ;由条件③,有
两边同乘以,并从0到对积分,得到
;故得到
★【】一长、宽、高分别为、、的长方体表面保持零电位,体积内填充密度为
的电荷。

求体积内的电位。

解 在体积内,电位满足泊松方程
(1)
长方体表面上,电位满足边界条件。

由此设电位的通解为
,代入泊松方程(1),可得
由此可得 或 ; (2) 由式(2),得 ; 故
★【】如题图所示的一对无限大接地平行导体板,板间有一与轴平行的线电荷,其位置为。

求板间的电位函数。

解 由于在处有一与轴平行的线电荷,以为界将场空间分割为和两个区域,则这两个区域中的电位和都满足拉普拉斯方程。

而在的分界面上,可利用函数将线电荷表示成电荷面密度。

电位的边界条件为
① ,
② ,
③ ,
由条件①和②,可设电位函数的通解为
由条件③,有
(1)
(2)
由式(1),可得 (3);将式(2)两边同乘以,并从到对积分,有
题图 题 图
题 图 题图
(4)
由式(3)和(4)解得

如题图所示的矩形导体槽的电位为零,槽中有一与槽平行的线电荷。

求槽内的电位函数。

解 由于在处有一与轴平行的线电荷,以为界将场空间分割为和两个区域,则这两个区域中的电位和都满足拉普拉斯方程。

而在的分界面上,可利用函数将线电荷表示成电荷面密度,电位的边界条件为 ① ,,② , ③
由条件①和②,可设电位函数的通解为
由条件③,有
(1)
(2)
由式(1),可得 (3) 将式(2)两边同乘以,并从到对积分,有
(4)
由式(3)和(4)解得
故 ,

若以为界将场空间分割为和两个区域,则可类似地得到
* 如题图所示,在均匀电场中垂直于电场方向放置一根无限长导体圆柱,圆柱的半径为。

求导体圆柱外的电位和电场以及导体表面的感应电荷密度。

解 在外电场作用下,导体表面产生感应电荷,圆柱外的电位是外电场的电位与感应电荷的电位的叠加。

由于导体圆柱为无限长,所以电位与变量无关。

在圆柱面坐标系中,外电场的电位为(常数的值由参考点确定),而感应电荷的电位应与一样按变化,而且在无限远处为0。

由于导体是等位体,所以满足的边界条件为
① ② 由此可设 由条件①,有
于是得到 , 故圆柱外的电位为
若选择导体圆柱表面为电位参考点,即,则。

导体圆柱外的电场则为
导体圆柱表面的电荷面密度为
* 如题图所示,一无限长介质圆柱的半径为、介电常数为,在距离轴线处,有一与圆柱平行的线电荷,计算空间各部分的电位。

解 在线电荷作用下,介质圆柱产生极化,介质圆柱内外的电位均为线电荷的电位与极化电荷的电位的叠加,即。

线电荷的电位为 (1)
而极化电荷的电位满足拉普拉斯方程,且是的偶函数。

介质圆柱内外的电位和满足的边界条件为分别为
① 为有限值;②
③ 时, 由条件①和②可知,和的通解为
(2) (3)
将式(1)~(3)带入条件③,可得到
(4)
(5)
当时,将展开为级数,有 (6)
带入式(5)
,得 (7)
由式(4)和(7),有
题图
题图
题 图
题图
由此解得 , ; 故得到圆柱内、外的电位分别为
(8) (9)
讨论:利用式(6),可将式(8)和(9)中得第二项分别写成为
其中。

因此可将和分别写成为
由所得结果可知,介质圆柱内的电位与位于(0)的线电荷的电位相同,而介质圆柱外的电位相当于三根线电荷所产生,它们分别为:位于(0)的线电荷;位于的线电荷;位于的线电荷。

* 在均匀外电场中放入半径为的导体球,设(1)导体充电至;
(2)导体上充有电荷。

试分别计算两种情况下球外的电位分布。

解 (1)这里导体充电至应理解为未加外电场时导体球相对于无限远处的电位为,此时导体球面上的电荷密度,总电荷。

将导体球
放入均匀外电场中后,在的作用下,产生感应电荷,使球面上的电荷密度发生变化,但总电荷仍保持不变,导体球仍为等位体。

设,其中,是均匀外电场的电位,是导体球上的电荷产生的电位。

电位满足的边界条件为
① 时,;② 时, ,
其中为常数,若适当选择的参考点,可使。

由条件①,可设 代入条件②,可得到 ,, 若使,可得到
(2)导体上充电荷时,令,有
利用(1)的结果,得到
如题图所示,无限大的介质中外加均匀电场,在介质中有一个半径为的球形空腔。

求空腔内、外的电场和空腔表面的极化电荷密度(介质的介电常数为)。

解 在电场的作用下,介质产生极化,空腔表面形成极化电荷,空腔内、外的电场为外加电场与极化电荷的电场的叠加。

设空腔内、外的电位分别为和,则边界条件为
① 时,;② 时,为有限值; ③ 时, ,
由条件①和②,可设 ,
带入条件③,有

由此解得 ,
所以 空腔内、外的电场为 ,
空腔表面的极化电荷面密度为
一个半径为的介质球带有均匀极化强度。

(1)证明:球内的电场是均匀的,等于; (2)证明:球外的电场与一个位于球心的偶极子产生的电场相同,。

解 (1)当介质极化后,在介质中会形成极化电荷分布,本题中所求的电场即为极化电荷所产生的场。

由于
是均匀极化,介质球体内不存在极化电荷,仅在介质球面上有极化电荷面密度,球内、外的电位满足拉普拉斯方程,可用分离变量法求解。

建立如题图所示的坐标系,则介质球面上的极化电荷面密度为
介质球内、外的电位和满足的边界条件为① 为有限值;② ;
③ ;
因此,可设球内、外电位的通解为,
由条件③,有 , 解得 , 于是得到球内的电位 , 故球内的电场为
(2)介质球外的电位为
,其中为介质球的体积 。

故介质球外的电场为 可见介质球外的电场与一个位于球心的偶极子产生的电场相同。

一个半径为的细导线圆环,环与平面重合,中心在原点上,环上总电荷量为,如题图所示。

证明:空间任意点电位为
解 以细导线圆环所在的球面把场区分为两部分,分别写出两个场域的通解,并利用函数将细导线圆环上的线电荷表示成球面上的电荷面密度
再根据边界条件确定系数。

设球面内、外的电位分别为和,则边界条件为:
① 为有限值; ② ③ ,
根据条件①和②,可得和的通解为 (1),
(2) 代入条件③,有 (3)(4)
将式(4)两端同乘以,并从0到对进行积分,得
(5)
其中 由式(3)和(5),解得 , ,代入式(1)和(2),即得到
★【】如题图所示,一个点电荷放在的接地导体角域内的点处。

求:(1)所有镜像电荷的位置和大小;(2)点处的电位。

解 (1)这是一个多重镜像的问题,共有5个像电荷,分布在以点电荷到角域顶点的距离为半径的圆周上,并且关于导体平面对称,其电荷量的大小等于,且正负电荷交错分布,其大小和位置分别为
(2)点处电位
题 图
题 图。

相关文档
最新文档