磁场练习题(含参考答案)
61磁现象与磁场同步练习(Word版含解析)

粤教版(2019)必修三 6.1 磁现象与磁场一、单选题1.下列关于磁场的磁感线的说法中正确的是()A.磁感线的疏密程度表示磁场的强弱B.磁感线是真实存在的C.磁感线是非闭合的曲线D.两条磁感线可以相交2.如图所示,将一根刨光的圆木柱固定在一个木制的圆盘底座C上,将两个内径略大于圆木柱直径、质量均为m的磁环A、B套在圆木柱上,且同名磁极相对,结果磁环A悬浮后静止。
已知重力加速度为g。
这时磁环B对底座C的压力F N的大小为()A.F N=mg B.F N=2mgC.F N>2mg D.mg<F N<2mg3.在物理学发展历程中,一些科学研究成果极大地推动了人类文明的进程。
下列叙述中不符合史实的是()A.欧姆通过实验研究了导体两端电压与电流的定量关系,并总结出欧姆定律B.法拉第发现了磁能生电的现象,并发明了人类的第一台直流发电机C.密里根通过油滴实验,第一次比较精确的测定了元电荷e的数值D.奥斯特根据环形电流的磁场和小磁针的磁场的相似性,提出了分子电流假说4.下列关于磁场的说法,正确的是()A.磁场和电场一样,是客观存在的特殊物质B.磁体与磁体之间是直接发生作用的C.磁场是为了解释磁极间相互作用而人为规定的D.磁场只能由磁体产生,电流不能产生磁场5.关于磁场和磁感线的描述,下列说法正确的是()A.沿磁感线方向,磁场逐渐减弱B.磁感线的疏密程度反映磁场的强弱C.磁感线总是从N极出发,到S极终止D.磁场的方向就是通电导体在磁场中某点受到磁场作用力的方向6.关于磁感线的描述,正确的是()A.沿磁感线的方向,磁场逐渐减弱B.磁铁周围的磁感线有可能相交C.磁感线疏密程度可以表示磁场强弱D.磁铁周围小铁屑有规则的排列,说明磁感线是真实存在的7.关于磁场、磁感线和电场线,下列说法正确的是()A.磁感线是闭合曲线,而电场线不是闭合曲线B.磁感线和电场线都是相互平行的C.地磁场的磁感线起于地理北极附近,终止于地理南极附近D.磁感线和电场线都是真实存在的8.英国物理学家法拉第提出了“电场”和“磁场”的概念,并引入电场线和磁感线来描述电场和磁场,为经典电磁学理论的建立奠定了基础。
高考物理考点《磁场、磁感线、磁场的叠加》真题练习含答案

高考物理考点《磁场、磁感线、磁场的叠加》真题练习含答案1.[2024·浙江省湖州市月考]奥斯特通过实验证实了电流的周围存在着磁场.如图所示,闭合开关S后,位于螺线管右侧的小磁针和位于螺线管正上方的小磁针N极指向将分别是()A.向右,向左B.向左,向左C.向左,向右D.向右,向右答案:A解析:将通电螺线管等效成一条形磁铁,根据右手螺旋定则可知螺线管右侧为N极,左侧为S极,则位于螺线管右侧的小磁针N极指向右,位于螺线管正上方的小磁针N极指向左,A正确.2.安培曾经提出分子环形电流的假说来解释为什么磁体具有磁性,他认为在物质微粒的内部存在着一种环形的分子电流,分子电流会形成磁场,使分子相当于一个小磁体(如图甲所示).以下说法正确的是()A.这一假说能够说明磁可以生电B.这一假说能够说明磁现象产生的电本质C.用该假设解释地球的磁性,引起地磁场的环形电流方向如图乙所示D.用该假设解释地球的磁性,引起地磁场的环形电流方向如图丙所示答案:B解析:这一假说能够说明磁现象产生的电本质,即磁场都是由运动的电荷产生的,故B 正确,A错误;由右手螺旋定则可知,引起地磁场的环形电流方向应是与赤道平面平行的顺时针方向(俯视),C 、D 错误.3.[2024·江苏省无锡市、江阴市等四校联考]科考队进入某一磁矿区域后,发现指南针静止时,N 极指向为北偏东60°,如图虚线所示.设该位置地磁场磁感应强度的水平分量为B ,磁矿所产生的磁感应强度水平分量最小值为( )A .B 2 B .3B 2C .BD . 3 B 答案:B解析:磁矿所产生的磁场水平分量与地磁场水平分量垂直时,磁矿所产生的磁感应强度水平分量最小,为B′min =B cos 60°=32B ,B 正确.4.[2024·河北省邯郸市多校联考]如图所示为某磁场中部分磁感线的分布图,P 、Q 为磁场中的两点,下列说法正确的是( )A .P 点的磁感应强度小于Q 点的磁感应强度B .同一电流元在P 点受到的磁场力可能小于在Q 点受到的磁场力C .同一线圈在P 点的磁通量一定大于在Q 点的磁通量D .同一线圈在P 点的磁通量一定小于在Q 点的磁通量 答案:B解析:磁感线的疏密程度表示磁感应强度的大小,由图可知,P 点的磁感应强度大于Q 点的磁感应强度,A 错误;电流元在磁场中的受力与放置方式有关,同一电流元在P 点受到的磁场力可能小于在Q 点受到的磁场力,B 正确;磁通量大小不只与磁感应强度大小有关,还与线圈的放置方式有关,故同一线圈在P 、Q 两点的磁通量无法比较,C 、D 错误.5.[2024·陕西省西安市质检]在匀强磁场中,一根长为0.4 m 的通电导线中的电流为20 A ,这条导线与磁场方向垂直时,所受的磁场力为0.015 N ,则磁感应强度的大小为( )A .7.2×10-4 TB .3.75×10-3 TC .1.875×10-3 TD .1.5×10-3 T 答案:C解析:根据安培力公式F =ILB ,代入数据求得B =F IL =0.0150.4×20 T =1.875×10-3 T ,C 正确.6.在磁感应强度为B 的匀强磁场中有一顺时针的环形电流,当环形电流所在平面平行于匀强磁场方向时,环心O 处的磁感应强度为B 1,如图甲所示;当环形电流所在平面垂直于匀强磁场方向时,环心O 处的磁感应强度为B 2,如图乙所示.已知B 1=22B 2,则环形电流在环心O 处产生的磁感应强度大小为( )A .12B B .BC .32 B D .2B答案:B解析:设环形电流中心轴线的磁感应强度大小为B′,根据安培定则可知其方向为垂直纸面向内,则有B 21 =B′2+B 2,B 2=B′+B ,解得环形电流在环心O 处产生的磁感应强度大小为B′=B ,B 项正确.7.如图所示,直角三角形abc 中,∠abc =30°,将一电流为I 、方向垂直纸面向外的长直导线放置在顶点a 处,则顶点c 处的磁感应强度大小为B 0.现再将一电流大小为4I 、方向垂直纸面向里的长直导线放置在顶点b 处.已知长直通电导线产生的磁场在其周围空间某点的磁感应强度大小B =k Ir ,其中I 表示电流大小,r 表示该点到导线的距离,k 为常量.则顶点c 处的磁感应强度( )A .大小为 3B 0,方向沿ac 向上 B .大小为B 0,方向垂直纸面向里C .大小为3B 0,方向沿∠abc 平分线向下D .大小为2B 0,方向垂直bc 向上答案:A解析:令ac 间距为r ,根据几何知识可知bc 间距为2r ,由安培定则可知,a 点处电流产生的磁场在c 点处的磁感应强度方向垂直ac 向左,大小为B 0=k Ir .用安培定则判断通电直导线b 在c 点上所产生的磁场方向垂直于bc 斜向右上,大小为B b =k 4I 2r =2k Ir =2B 0.如图所示由几何知识可得θ=60°,根据矢量的合成法则,则有各通电导线在c 点的合磁感应强度,在水平方向上的分矢量B x =2B 0cos 60°-B 0=0在竖直方向上的分矢量B y =2B 0sin 60°= 3 B 0所以在c 点处的磁感应强度大小为 3 B 0,方向沿ac 向上.。
专题3 磁动力模型-2023年高考物理磁场常用模型精练(解析版)

2023年高考物理《磁场》常用模型最新模拟题精练专题3.磁动力模型一.选择题1..(2023广东重点高中期末)如图为一款热销“永动机”玩具示意图,其原理是通过隐藏的电池和磁铁对小钢球施加安培力从而实现“永动”。
小钢球从水平光滑平台的洞口M 点静止出发,无磕碰地穿过竖直绝缘管道后从末端N 点进入平行导轨PP ʹ-QQ ʹ,电池、导轨与小钢球构成闭合回路后形成电流,其中电源正极连接导轨PQ ,负极连接P ʹQ ʹ;通电小钢球在底部磁场区域受安培力加速,并从导轨的圆弧段末端QQ ʹ抛出;然后小钢球恰好在最高点运动到水平光滑平台上,最终滚动至与挡板发生完全非弹性碰撞后再次从M 点静止出发,如此循环。
已知导轨末端QQ ʹ与平台右端的水平、竖直距离均为0.2m ,小钢球质量为40g ,在导轨上克服摩擦做功为0.04J ,其余摩擦忽略不计,重力加速度g 取10m/s 2,则()A .磁铁的N 极朝上B .取下电池后,小钢球从M 点静止出发仍能回到平台上C .小钢球从导轨末端QQ ʹ抛出时速度为2m/sD .为了维持“永动”,每个循环需安培力对小球做功大于0.04J【参考答案】.AD【名师解析】.由电路可知钢球中电流方向垂直于纸面向里,由左手定则可知磁铁上方轨道处磁场方向向上,故磁铁N 极朝上,故A 正确;取下电池后,小球缺少安培力做功,即使从导轨末端抛出,初速度减小也将导致不能到达平台,故B 错误;斜抛到最高点可反向看作平抛运动,则212y gt =,x x v t =解得0.2s t =,1m/s x v =所以2m/sy v gt ==所以抛出时的速度为225m/s x y v v v =+=,故C 错误;为了维持“永动”,每个循环安培力做的功应该补充机械能的损失,一部分是克服摩擦力做的功,还有一部分是碰撞挡板的损失,一定大于0.04J ,故D 正确。
2.(2022河北普通高中第一次联考)如图甲为市面上常见的一种电动车,图乙为这种电动车的电动机的工作示意图。
磁场考试题及答案

磁场考试题及答案一、单项选择题(每题2分,共20分)1. 磁场的基本性质是它对放入其中的磁体产生力的作用。
A. 正确B. 错误答案:A2. 地球的磁场是由地球内部的液态金属流动产生的。
A. 正确B. 错误答案:A3. 根据右手定则,当电流方向沿拇指方向时,磁场方向沿四指方向。
A. 正确B. 错误答案:B4. 磁场的强度单位是特斯拉。
A. 正确B. 错误答案:A5. 磁感应强度的大小与磁场中某点的磁力成正比。
A. 正确B. 错误答案:B6. 磁极间的相互作用遵循同性相斥、异性相吸的规律。
A. 正确B. 错误答案:A7. 磁通量是磁场线穿过某一面积的总和。
A. 正确B. 错误答案:A8. 磁场对电流的作用力称为安培力。
A. 正确B. 错误答案:A9. 磁悬浮列车利用的是磁场的排斥力。
A. 正确B. 错误答案:A10. 地球磁场的北极在地理南极附近。
A. 正确B. 错误答案:A二、填空题(每空1分,共10分)1. 磁场中某点的磁感应强度B与该点的磁力F和电流元I的比值成正比,其关系式为________。
答案:B = F/I2. 根据安培环路定理,磁场强度H沿闭合回路的线积分等于该回路所包围的总电流I,其关系式为________。
答案:∮H·dl = I3. 磁通量Φ是磁场B与垂直于磁场方向的面积A的乘积,其关系式为________。
答案:Φ = BA4. 磁阻Rm是磁通量Φ与磁动势Fm的比值,其关系式为________。
答案:Rm = Φ/Fm5. 磁导率μ是磁感应强度B与磁场强度H的比值,其关系式为________。
答案:μ = B/H三、简答题(每题10分,共20分)1. 简述磁场对运动电荷的作用力。
答案:磁场对运动电荷的作用力称为洛伦兹力,其大小与电荷量q、速度v和磁场B的乘积成正比,方向垂直于电荷速度和磁场方向,遵循左手定则。
2. 描述磁悬浮技术的原理及其应用。
答案:磁悬浮技术利用磁极间的排斥力或吸引力使物体悬浮。
磁场试题及答案

磁场试题及答案
1. 磁场的基本性质是什么?
答案:磁场的基本性质包括:(1) 磁场对放入其中的磁体有力的作用;(2) 磁场对电流有作用力;(3) 磁场的方向与磁场线的方向一致。
2. 磁场的方向是如何定义的?
答案:磁场的方向是指小磁针静止时N极所指的方向。
3. 磁场的强度是如何计算的?
答案:磁场的强度可以通过安培环路定理来计算,即穿过闭合环路
的总磁通量与环路的面积之比。
4. 请描述奥斯特实验的基本原理。
答案:奥斯特实验的基本原理是通电导线周围存在磁场,磁场的方
向与电流的方向垂直。
5. 什么是磁通量?
答案:磁通量是指磁场线穿过某个面积的总数量,其大小等于磁场
强度与面积的乘积。
6. 磁感应强度的单位是什么?
答案:磁感应强度的单位是特斯拉(T)。
7. 地球磁场的南北极与地理南北极的关系是怎样的?
答案:地球磁场的南北极与地理南北极是相反的,即地球磁场的北
极位于地理南极附近,地球磁场的南极位于地理北极附近。
8. 请解释洛伦兹力。
答案:洛伦兹力是指带电粒子在磁场中运动时受到的力,其大小与带电粒子的电荷量、速度以及磁场强度有关。
9. 磁化过程是如何进行的?
答案:磁化过程是指磁性材料在外磁场的作用下,内部的磁畴排列一致,从而产生磁性的过程。
10. 磁悬浮列车的原理是什么?
答案:磁悬浮列车的原理是利用磁场的排斥力使列车悬浮在轨道上,从而减少摩擦力,提高运行速度。
磁场习题(含答案解析)

磁场典型例题(一)磁通量的大小比较与磁通量的变化例题1. 如图所示,a、b为两同心圆线圈,且线圈平面均垂直于条形磁铁,a的半径大于b,两线圈中的磁通量较大的是线圈___________。
解析:b 部分学生由于对所有磁感线均通过磁铁内部形成闭合曲线理解不深,容易出错。
例题2. 磁感应强度为B的匀强磁场方向水平向右,一面积为S的线圈abcd如图所示放置,平面abcd与竖直面成θ角。
将abcd绕ad轴转180º角,则穿过线圈的磁通量的变化量为()A. 0B. 2BSC. 2BSc osθD. 2BSs inθ解析:C部分学生由于不理解关于穿过一个面的磁通量正负的规定而出现错误。
(二)等效分析法在空间问题中的应用例题3. 一个可自由运动的线圈L1和一个固定的线圈L2互相绝缘垂直放置,且两个圆线圈的圆心重合,当两线圈都通过如图所示的电流时,则从左向右看,线圈L1将()A. 不动B. 顺时针转动C. 逆时针转动D. 向纸外平动解析:C 本题可把L1、L2等效成两个条形磁铁,利用同名磁极相斥,异名磁极相吸,即可判断出L1将逆时针转动。
(三)安培力作用下的平衡问题例题4. 一劲度系数为k的轻质弹簧,下端挂有一匝数为n的矩形线框abcd,bc边长为l。
线框的下半部处在匀强磁场中,磁感应强度大小为B,方向与线框平面垂直,在图中垂直于纸面向里。
线框中通以电流I,方向如图所示。
开始时线框处于平衡状态。
令磁场反向,磁感应强度的大小仍为B,线框达到新的平衡。
在此过程中线框位移的大小=__________,方向_____________。
解析:,向下。
本题为静力学与安培力综合,把安培力看成静力学中按性质来命名的一个力进行受力分析,是本题解答的基本思路。
例题5. 如图所示,两平行光滑导轨相距为20cm,金属棒MN质量为10g,电阻R=8Ω,匀强磁场的磁感应强度B的方向竖直向下,大小为0.8T,电源电动势为10V,内阻为1Ω。
高中物理磁场练习题(含解析)
D.库仑通过与万有引力类比,在实验的基础上验证得出库仑定律
4.电磁炮是利用电磁系统中电磁场产生的安培力来对金属炮弹进行加速,使其达到打击目标所需的巨大动能,如图甲所示。原理图可简化为如图乙所示,其中金属杆表示炮弹,磁场方向垂直轨道平面向上,则当弹体中通过如图乙所示的电流时,炮弹加速度的方向为( )
高中物理磁场练习题
学校:___________姓名:___________班级:___________
一、单选题
1.假设一个力单独作用的效果跟某几个力共同作用的效果相同,这个力就叫作那几个力的合力,以下概念的建立方法与合力相同的是( )
A.瞬时速度B.交流电的有效值
C.电场强度D.磁通量
2.如图所示,匀强磁场方向垂直纸面向里,匀强电场方向竖直向下,有一正离子恰能沿直线从左向右水平飞越此区域。不计重力,则( )
16.“用霍尔元件测量磁场”的实验中,把载流子为带负电的电子e的霍尔元件接入电路如图,电流为I,方向向左,长方体霍尔元件长宽高分别为 、 、 ,处于竖直向上的恒定匀强磁场中。
(1)前后极板M、N,电势较高的是___________。(选填“M板”或“N板”)
(2)某同学在实验时,改变电流的大小,记录了不同电流下对应的 值,如下表
14.如图所示,面积为10m2的正方形导线框处于磁感应强度为 的匀强磁场中。在线框平面以ad边为轴转过180°的过程中,线圈中________感应电流产生(选填“有”或“无”),整个过程中,磁通量变化量为________Wb。
四、实验题
15.奥斯特研究电和磁的关系的实验中,通电导线附近的小磁针发生偏转的原因是______ 实验时为使小磁针发生明显偏转,通电前导线应放置在其上方,并与小磁针保持______ 选填“垂直”、“平行”、“任意角度” .元电荷的电量是______C.
高中物理:磁场练习及答案(解析版)
高中物理:磁场练习及答案一、选择题1、如图所示,空间的某一区域存在着相互垂直的匀强电场和匀强磁场,一个带电粒子以某一初速度由A点进入这个区域沿直线运动,从C点离开区域;如果将磁场撤去,其他条件不变,则粒子从B点离开场区;如果将电场撤去,其他条件不变,则这个粒子从D点离开场区。
已知BC=CD,设粒子在上述三种情况下,从A到B、从A到C和从A到D所用的时间分别是t1,t2和t3,离开三点时的动能分别是Ek1、Ek2、Ek3,粒子重力忽略不计,以下关系式正确的是 ( )A.t1=t2<t3B.t1<t2=t3C.Ek1=Ek2<Ek3D.Ek1>Ek2=Ek32、(多选)下列说法正确的是()A.磁场中某点的磁感应强度可以这样测定:把一小段通电导线放在该点时,受到的磁场力F与该导线的长度L、通过的电流I的乘积的比值B=FIL,即磁场中某点的磁感应强度B.通电导线在某点不受磁场力的作用,则该点的磁感应强度一定为零C.磁感应强度B=FIL只是定义式,它的大小取决于场源及磁场中的位置,与F、I、L以及通电导线在磁场中的方向无关D.磁场是客观存在的3、如图所示,用三条细线悬挂的水平圆形线圈共有n匝,线圈由粗细均匀、单位长度质量为2.5 g的导线绕制而成,三条细线呈对称分布,稳定时线圈平面水平,在线圈正下方放有一个圆柱形条形磁铁,磁铁的中轴线OO′垂直于线圈平面且通过其圆心O,测得线圈的导线所在处磁感应强度大小为0.5 T,方向与竖直线成30°角,要使三条细线上的张力为零,线圈中通过的电流至少为(g取10 m/s2)()A.0.1 A B.0.2 A C.0.05 A D.0.01 A4、(多选)光滑平行导轨水平放置,导轨左端通过开关S与内阻不计、电动势为E的电源相连,右端与半径为L=20 cm的两段光滑圆弧导轨相接,一根质量m=60 g、电阻R=1 Ω、长为L 的导体棒ab,用长也为L的绝缘细线悬挂,如图所示,系统空间有竖直方向的匀强磁场,磁感应强度B=0.5 T,当闭合开关S后,导体棒沿圆弧摆动,摆到最大高度时,细线与竖直方向成θ=53°角,摆动过程中导体棒始终与导轨接触良好且细线处于张紧状态,导轨电阻不计,sin 53°=0.8,g取10 m/s2则()A.磁场方向一定竖直向下B.电源电动势E=3.0 VC.导体棒在摆动过程中所受安培力F=3 ND.导体棒在摆动过程中电源提供的电能为0.048 J5、(多选)一质量为m、电荷量为q的负电荷在磁感应强度为B的匀强磁场中绕固定的正电荷沿固定的光滑轨道做匀速圆周运动,若磁场方向垂直于它的运动平面,且作用在负电荷的电场力恰好是磁场力的三倍,则负电荷做圆周运动的角速度可能是()A.4qBm B.3qBm C.2qBm D.qBm6、如图所示,正六边形abcdef区域内有垂直于纸面的匀强磁场.一带正电的粒子从f点沿fd 方向射入磁场区域,当速度大小为v b时,从b点离开磁场,在磁场中运动的时间为t b;当速度大小为v c时,从c点离开磁场,在磁场中运动的时间为t c.不计粒子重力.则()A.v b∶v c=1∶2,t b∶t c=2∶1B.v b∶v c=2∶1,t b∶t c=1∶2C.v b∶v c=2∶1,t b∶t c=2∶1D.v b∶v c=1∶2,t b∶t c=1∶27、速度相同的一束粒子由左端射入质谱仪后分成甲、乙两束,其运动轨迹如图所示,其中S0A=23S0C,则下列说法中正确的是()A.甲束粒子带正电,乙束粒子带负电B.甲束粒子的比荷大于乙束粒子的比荷C.能通过狭缝S0的带电粒子的速率等于E B2D.若甲、乙两束粒子的电荷量相等,则甲、乙两束粒子的质量比为3∶2*8、关于磁感线的描述,下列说法中正确的是()A.磁感线可以形象地描述各点磁场的强弱和方向,它每一点的切线方向都和小磁针放在该点静止时北极所指的方向一致B.磁感线可以用细铁屑来显示,因而是真实存在的C.两条磁感线的空隙处一定不存在磁场D.两个磁场叠加的区域,磁感线就可能相交*9、如图所示,在同一平面内互相绝缘的三根无限长直导线ab、cd、ef围成一个等边三角形,三根导线通过的电流大小相等,方向如图所示,O为等边三角形的中心,M、N分别为O关于导线ab、cd的对称点.已知三根导线中的电流形成的合磁场在O点的磁感应强度大小为B1,在M点的磁感应强度大小为B2,若撤去导线ef,而ab、cd中电流不变,则此时N点的磁感应强度大小为()A.B1+B2B.B1-B2C.B1+B22D.B1-B2210、在如图所示的平行板器件中,电场强度E和磁感应强度B相互垂直。
磁场测试题及答案
磁场测试题及答案一、选择题1. 磁场的基本单位是:A. 牛顿B. 特斯拉C. 安培D. 库仑2. 地球的磁场是由什么产生的?A. 地球的自转B. 地球的公转C. 地球内部的液态铁D. 太阳风3. 以下哪个现象不是由磁场引起的?A. 指南针指向北方B. 磁铁吸引铁钉C. 电流通过导线产生热量D. 磁悬浮列车的悬浮二、填空题4. 磁场中某点的磁场强度B可以通过公式_______来计算,其中H是磁场强度,I是电流,l是导线长度。
5. 磁感应强度的单位是_______,它表示磁场对运动电荷的作用力。
三、简答题6. 简述磁场对运动电荷的作用。
7. 描述一下磁铁的两极以及它们之间的相互作用。
四、计算题8. 一个长为0.5米的直导线,通过电流为10安培,求在距离导线0.1米处的磁场强度。
9. 如果将上述导线弯曲成半径为0.2米的圆形,求圆心处的磁场强度。
五、论述题10. 论述地球磁场对人类生活的影响。
答案:一、选择题1. B2. C3. C二、填空题4. B = μ₀I/(2πl)5. 特斯拉(T)三、简答题6. 磁场对运动电荷的作用表现为洛伦兹力,其大小与电荷的速度、电荷量和磁场强度有关,作用方向垂直于电荷速度和磁场方向。
7. 磁铁的两极分别是N极和S极,同名磁极相互排斥,异名磁极相互吸引。
四、计算题8. 根据公式B = μ₀I/(2πd),其中μ₀是真空的磁导率,大约为4π×10⁻⁷ T·m/A,d是距离,I是电流。
代入数值得B =(4π×10⁻⁷ T·m/A × 10 A) / (2π × 0.1 m) ≈ 2×10⁻⁵ T。
9. 对于圆形导线,圆心处的磁场强度B = (μ₀I)/(2R),代入数值得B = (4π×10⁻⁷ T·m/A × 10 A) / (2 × 0.2 m) ≈ 10⁻⁵ T。
磁场中的磁感应强度练习题及
磁场中的磁感应强度练习题及解答磁场中的磁感应强度练习题及解答一、选择题1. 在一个匀强磁场中,一个电荷粒子的轨迹为A. 直线B. 圆弧C. 双曲线D. 椭圆2. 一个电子垂直进入一个匀强磁场,其受力方向为A. 由外向内B. 由内向外C. 垂直于电子的运动方向D. 受力为零3. 在垂直于磁场方向的直导线中,电流方向为从南到北,导线上的力方向为A. 垂直于导线方向向上B. 垂直于导线方向向下C. 延导线方向向左D. 延导线方向向右4. 在地球的地磁场中,南北杆的磁力线方向A. 南指北B. 北指南C. 与北极和南极平行D. 与南极和北极垂直5. 在一个匀强磁场中,一个带电粒子受到的洛伦兹力大小与带电粒子在磁场中的速度和磁感应强度之间的关系为A. 正比关系B. 反比关系C. 平方反比关系D. 无关二、计算题1. 在一个磁感应强度为0.2T的匀强磁场中,一根长度为1m的导线以速度5m/s直线通过磁场。
如果导线的方向与磁场方向垂直,求导线上感受到的洛伦兹力的大小。
解:由洛伦兹力公式F = qvBsinθ 可得,此处电荷量q为导线中的电荷数量,速度v为导线运动的速度,B为磁感应强度,θ为磁场和速度方向之间的夹角。
题中导线长度为1m,速度为5m/s,磁感应强度为0.2T,导线和磁场垂直,故θ = 90°。
代入公式得F = qvBsinθ = q * 5 * 0.2 * 1 = qN所以导线上感受到的洛伦兹力的大小为qN。
2. 一个电子以速度4×10^5m/s沿x轴正方向运动,进入一磁感应强度为0.8T的磁场区域,且磁场方向沿y轴正方向,求电子受到的洛伦兹力的大小和方向。
解:由洛伦兹力公式 F = q vBsinθ 可得,此处电荷量q为电子的电荷量,速度v为电子的运动速度,B为磁感应强度,θ为磁场和速度方向之间的夹角。
题中电子速度为4×10^5m/s,磁感应强度为0.8T,电子沿x轴正方向运动,磁场方向沿y轴正方向,故θ = 90°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3-1磁场练习题一、单项选择题1.关于磁感应强度,下列说法正确的是()A.一小段通电导线放在B为零的位置,那么它受到的磁场力也一定为零B.通电导线所受磁场力为零,该处的磁感应强度也一定为零C.放置在磁场中1m长的通电导线,通过1A的电流,受到的磁场力为1N,则该处的磁感应强度为1TD.磁场中某处的B方向跟电流在该处受到的磁场力F方向相同2.如图所示,正交的电磁场区域中,有两个质量相同、带同种电荷的带电粒子,电量分别为q a、q b.它们沿水平方向以相同的速率相对着匀速直线穿过电磁场区,则()A.它们带负电,且q a>q bB.它们带负电,且q a<q bC.它们带正电,且q a>q bD.它们带正电,且q a<q b3.如图所示,有一三角形线圈ABC,通以逆时针方向的电流,现有一水平匀强磁场沿BC方向向右则线圈运动情况是()A.以底边BC为轴转动,A向纸面外B.以中心G为轴,在纸面逆时针转动C.以中线AM为轴,逆时针转动(俯视)D.受合力为零,故不转动4.如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v从A点沿直径AOB 方向射入磁场,经过Δt时间从C点射出磁场,OC与OB成600角。
现将带电粒子的速度变为v/3,仍从A点射入磁场,不计重力,则粒子在磁场中的运动时间变为()A.1 2t∆B.2t∆C.1 3t∆D.3t∆二、多项选择题5.通电矩形导线框abcd与无限长通电直导线MN在同一平面内,电流方向如图所示,ab边与MN平行,关于MN的磁场对线框的作用,下列叙述正确的是()A.线框有两条边所受的安培力方向相同B.线框有两条边所受的安培力大小不同C.线框所受安培力的合力方向向左D.线框所受安培力的合力方向向右6.如图所示,磁感应强大小为B的匀强磁场垂直于纸面向内,一带电粒子(重力不计)在垂直于磁场的竖直平面内做以O为圆心沿顺时针方向的匀速圆周运动,当粒子运动到最低点P时,突然加一个竖直方向的匀强电场,粒子运动到P/点,且P/、O在同一水平面上.则下列说法中正确..的是()A.粒子带正电B.匀强电场的方向向下C.粒子在P/点处的速度小于在P点处的速度D.粒子在P/点处的电势能大于在P点处的电势能7.如图所示,在x>0、y>0的空间中有恒定的匀强磁场,磁感应强度的方向垂直于xOy平面向里,大小为B.现有一质量为m、电荷量为q的带正电粒子,在x轴上到原点的距离为x0的P点,以平行于y轴的初速度射入此磁场,在磁场作用下沿垂直于y轴的方向射出此磁场,不计重力的影响,则( )A.可以确定粒子通过y轴时的位置B.可以确定粒子速度的大小C.可以确定粒子在磁场中运动的时间D.以上说法都不对8.如图下所示,带正电的小球穿在绝缘粗糙直杆上,杆倾角为θ,整个空间存在着竖直向上的匀强电场和垂直于杆斜向上的匀强磁场,小球沿杆向下运动,在a点时动能为100J,到C点动能为零,而b点恰为a、c的中点,在此运动过程中()A.小球经b点时动能为50JB.小球电势能增加量可能大于其重力势能减少量C.小球在ab段克服摩擦所做的功与在bc段克服摩擦所做的功相等D.小球到C点后可能沿杆向上运动。
9.电视机的显像管中,电子束的偏转是用磁偏转技术实现的。
电子束经过加速电场后,进入一圆形匀强磁场区,磁场方向垂直于圆面。
不加磁场时,电子束将通过磁场中心O点而打到屏幕上的中心M,加磁场后电子束偏转到P点外侧。
现要使电子束偏转回到P点,可行的办法是()A.增大加速电压B.将圆形磁场区域向屏幕靠近些C.增加偏转磁场的磁感应强度D.将圆形磁场的半径增大些三、计算题10.在直径为d的圆形区域内存在着均匀磁场,磁感应强度为B,磁场方向垂直于纸面向外。
一电荷量为q、质量为m的带正电粒子,从磁场区域的一条直径AC上的A点沿纸面射入磁场,其速度方向与AC成30α=角,如图所示,若此粒子在磁场区域运动过程中速度的方向改变了120°,粒子的重力忽略不计,求:(1)该粒子在磁场区域内运动所用的时间t;(2)该粒子射入时的速度大小v。
11.水平面上有电阻不计的U形导轨NMPQ,它们之间的宽度为L,M和P之间接入电动势为E 的电源(不计内阻).现垂直于导轨搁一根质量为m,电阻为R的金属棒ab,并加一个范围较大的匀强磁场,磁感应强度大小为B,方向与水平面夹角为θ且指向右斜上方,如右图所示,问:(1)当ab棒静止时,受到的支持力和摩擦力各为多少?(2)若B的大小和方向均能改变,则要使ab棒所受支持力为零,B的大小至少为多少?此时B的方向如何?12.如图所示,内壁光滑的绝缘管做在的圆环半径为R,位于竖直平面内。
管的内径远小于R,以环的圆心为原点建立平面坐标系xoy,在第四象限加一竖直向下的匀强电场,其它象限加垂直环面向外的匀强磁场。
一电荷量为+q、质量为m的小球在管内从b点由时静止释放,小球直径略小于管的内径,小球可视为质点。
要使小球能沿绝缘管做圆周运动通过最高点a。
(1)电场强度至少为多少?(2)在(1)问的情况下,要使小球继续运动,第二次通过最高点a时,小球对绝缘管恰好无压力,匀强磁场的磁感应强度多大?(重力加速度为g)13.如图所示,在边长为L的等边三角形ACD区域内,存在着磁感应强度为B、方向垂直纸面向外的匀强磁场。
现有一束质量为m、电荷量为+q的带电粒子,以某一速度从AC边中点P、平行于CD边垂直磁场飞入,粒子重力忽略不计。
(1)若粒子进入磁场时的速度大小为v0,求粒子在磁场中运动的轨道半径;(2)若粒子能从AC边飞出磁场,求粒子在磁场中运动的时间(3)为使粒子能从CD边飞出磁场,粒子进入磁场时的速度大小应满足什么条件?14.如图,在0≤x≤3a区域内存在与xOy平面垂直的匀强磁场,磁感应强度的大小为B。
在t=0时刻,一位于坐标原点的粒子源在xOy平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与y轴正方向的夹角分布在0°~180°范围内。
已知沿y轴正方向发射的粒子在t=t0时刻刚好从磁场边界上P(3a,a)点离开磁场。
求:(1)粒子在磁场中做圆周运动的半径R及粒子的比荷q/m;(2)此时刻仍在磁场中的粒子的初速度方向与y轴正方向夹角的取值范围;(3)从粒子发射到全部粒子离开磁场所用的时间15.扭摆器是同步辐射装置中的插入件,能使粒子的运动轨迹发生扭摆。
其简化模型如图:Ⅰ、II 两处的条形匀强磁场区边界竖直,相距为L,磁场方向相反且垂直纸面。
一质量为m、电量为-q、重力不计的粒子,从靠近平行板电容器MN板处由静止释放,极板间电压为U,粒子经电场加速后平行于纸面射入Ⅰ区,射入时速度与水平和方向夹角θ=300(1)当Ⅰ区宽度L1=L、磁感应强度大小B1=B0时,粒子从Ⅰ区右边界射出时速度与水平方向夹角也为300,求B0及粒子在Ⅰ区运动的时间t0(2)若Ⅱ区宽度L2=L1=L磁感应强度大小B2=B1=B0,求粒子在Ⅰ区的最高点与Ⅱ区的最低点之间的高度差h(3)若L2=L1=L、B1=B0,为使粒子能返回Ⅰ区,求B2应满足的条件(4)若B1≠B2,L1≠L2,且已保证了粒子能从Ⅱ区右边界射出。
为使粒子从Ⅱ区右边界射出的方向与从Ⅰ区左边界射出的方向总相同,求B1、B2、L1、L2之间应满足的关系式。
(参考答案)1.A 2.D 3.C 4.B5.BC 6.CD 7.ABC 8.BD 9.AB2.【解析】由题意可判断粒子要考虑重力,分别对a 和b 两个粒子受力分析,如图。
由平衡条件得:q b E=q b vB+mg ,q a E+q a vB=mg ,解得:q a =mg/(E+vB),q b =mg/(E-vB)因此q a <q b ,且都为正电荷。
4.【解析】作出粒子轨迹如图,以速度v 从A 点沿直径AOB 方向射入磁场经过Δt =T/6从C 点射出磁场,轨道半径3r AO =v /3时,运动半径是r 33AO ,由几何关系可得在磁场中运动转过的圆心角为1200,运动时间为T/3,即2Δt 。
6.【解析】由粒子在P 点的速度水平向左可知,粒子做顺时针方向的运动,由左手定则判断洛伦兹力方向知粒子带负电,A 错。
粒子从P 点被“甩出”,做离心运动,因此向心力减小,受到向下的电场力,因此电场方向向上,B 错误。
粒子从P 到P /的过程中,电场力做负功,电势能增加,D 正确;但是动能减小,C 正确。
8.【解析】A 到B 再到C 的过程中动能减小,速度减小,洛伦兹力减小,小球和杆之间的压力也减小,摩擦力减小,而AB=BC ,所以两端的摩擦力做功不同,C 错误,合外力做功不同,动能变化也不同,A 错误。
由于运动过程中可能有qE>mg ,到C 点后会返回,D 正确,克服电场力做功有可能大于重力做功,B 正确。
9.【解析】若电子束初速度v 0不变,由qU=mv 2/2 –mv 02/2及轨道半径r=mv/qB 知,增大偏转磁场B ,r 减小,电子束偏转到P 点外侧;增大U ,r 增大,偏回到P 点。
将圆形磁场区域向屏幕靠近些,电子束偏回到P 点。
10.【解析】(1)作出粒子运动轨迹,设粒子从D 点出磁场,轨迹的圆心为O ,半径为r 。
粒子速度的偏转角为1200,由几何关系知,圆心角∠AOD=1200。
因此粒子运动时间为qBm qB m T T t 3223131360120ππ=⨯===(2)由几何关系AD=ACcos300=2rcos300,因此r=AC/2=d/2. 由r v m qvB 2=得qB mv r =,解得:mqBd v 2= 11.【解析】(1)对金属棒进行受力分析得:mg F F N =+θcos 安,θsin 安F f =又BIL F =安,RE I =,解得:θsin R EBL f =,θcos REBL mg F N -= (2)要使ab 棒受到的支持力为零,令0=N F 得θcos R EBL mg =,所以θcos EL mgR B = 当1cos =θ时,B 最小值ELmgR B =min ,此时mg F =安,方向竖直向上。
由左手定则判断,此时磁感应强度B 方向水平向右。
12.【解析】(1)小球恰能通过a 点,即到达a 点的速度为0,从b 到a 由动能定理得:qER -mgR =0 解得E=mg/q ①(2)设第二次到达a 点的速度v a ,由动能定理有qER=mv a 2/2 ②到达最高点时小球对轨道恰好无压力,由牛顿第二定律有:R mv B qv mg a a 2=+③ 联立①②③得Rg q m B 2= 13.【解析】(1)由rv m B qv 20=得:qB mv r 0= (2)设粒子从AC 边的Q 点飞出,由对称性知,粒子运动的圆弧所对圆心角为2400因此qBm qB m T t 34232360240ππ=⨯== (3)粒子从CD 边飞出的临界条件分别为轨迹与CD 边相切和轨迹经过D 点。