楼宇智能化工程技术毕业设计关于机械手的设计方案
机械手毕业设计

机械手毕业设计
机械手毕业设计
机械手是一种能够模拟人类手臂运动的机器人系统。
它可以用于工业生产线上的装配、搬运和包装等任务,也可以用于医疗手术、危险环境作业等领域。
在本次毕业设计中,我将设计一个基于六自由度的机械手系统。
首先,我会进行机械手的结构设计。
根据需要,我选择六自由度机械手,这种类型的机械手可以模拟人类手臂的运动。
我将使用铝合金材料制作机械手的结构,这种材料轻便且耐用。
接下来,我将选择适合的电机和传感器系统。
电机是机械手运动的驱动力,传感器用于感知环境信息和机械手的轨迹位置。
为了确保机械手的精确性和稳定性,我会选择高精度的步进电机和光电编码器作为驱动和反馈装置。
然后,我将设计机械手的控制系统。
控制系统是机械手的大脑,负责将输入信号转化为电机动作并监控机械手的状态。
我打算使用单片机作为控制系统的核心,编写相应的控制程序以实现机械手的运动和任务完成。
最后,我会进行机械手的实验验证。
我将制作一个小型的实验平台,用于测试机械手的运动范围、负载能力和精确度等性能指标。
同时,我还会开发相应的控制软件,以便于对机械手进行控制和调试。
通过这次毕业设计,我希望能够深入了解机械手的原理和设计方法,提高自己的技术能力。
同时,我也希望通过设计一个可实际应用的机械手系统,为工业自动化和机器人技术的发展做出一点贡献。
机械手总体方案毕业设计

机械手总体方案毕业设计引言:机械手是一种能够模拟人手动作的自动化装置,广泛应用于工业生产、医疗领域、科研实验等。
本总体方案旨在设计一台能够实现多自由度运动、具备灵活性和精确性的机械手。
一、设计目标:1.实现多自由度运动:机械手设计应具备足够的关节自由度,能够在不同方向和角度进行运动,适应不同工作场景的需求。
2.提高操作灵活性:机械手应具备灵活的手指和手腕,能够适应各种尺寸和形状的物体抓取,而不会因为形变而导致抓取失败。
3.实现精确控制:机械手的运动应具备高精度,并能够实现准确定位和精确操控。
4.提高安全性:机械手设计应考虑安全性,具备防护装置和自动停机等功能,确保操作人员的安全。
二、机械结构设计:1.关节设计:机械手应由多个关节组成,每个关节由电动机驱动,实现灵活的运动。
关节设计应具备足够的承载能力和稳定性,以确保机械手长时间运行的可靠性。
2.手指设计:机械手手指应具备可调节的灵活性,能够适应不同尺寸和形状的物体抓取。
手指可以采用弹性材料或具有可伸缩性的结构,以增加抓取的稳定性。
3.手腕设计:机械手腕部分应具备多自由度运动,既能够实现水平方向的旋转,又能够实现垂直方向的上下移动,以适应不同工作场景的需求。
4.传动系统设计:机械手的传动系统应选择合适的传动方式,如齿轮传动、链条传动等,以确保精确的位置控制和运动控制。
三、控制系统设计:1.电路设计:机械手的控制系统应包括电源、电机驱动器和数据传输装置。
电路设计应考虑供电稳定性、电磁干扰等因素,以确保机械手的正常运行。
2.传感器设计:机械手应搭载合适的传感器,用于感知物体的位置、形状和力度等参数,以实现对物体的准确抓取和操控。
3.控制算法设计:机械手的控制算法应具备实时性和精确性,能够根据传感器信息实现对机械手的准确控制。
常见的控制算法包括PID控制、模糊控制等。
4.用户界面设计:机械手的控制系统应提供友好的用户界面,使操作人员能够方便地操作机械手,并获取相关信息。
机械手毕业设计

机械手毕业设计引言机械手是一种能够模拟人手运动的机械装置,可广泛应用于工业、医疗等领域。
本文将介绍一个关于机械手的毕业设计项目。
该项目旨在设计和制造一台具有灵活性和精确性的机械手,以满足特定的应用需求。
设计目标该毕业设计项目的设计目标如下:1.制造一台灵活性高的机械手,能够模拟人手的多种运动。
2.实现机械手的自动化控制,能够根据预设任务进行精确的运动。
3.提高机械手的工作效率和生产能力,以适应特定应用场景的需求。
设计方案为实现上述设计目标,我们将采用以下设计方案:1. 机械结构设计机械手的结构设计是整个项目的基础。
我们将使用材料强度高、重量轻的合金材料,以保证机械手的稳定性和灵活性。
机械手的结构将采用多关节并联结构,以模拟人手的运动。
此外,我们还将引入软体机械手的设计概念,以提供更加柔软和灵活的运动能力。
2. 传感器与执行器选择机械手的感知能力和执行能力对于实现自动化控制至关重要。
我们将选择适合项目需求的传感器和执行器。
例如,使用力传感器可以实现机械手对物体的触觉感知,使用步进电机和伺服电机可以实现机械手的运动控制。
3. 控制系统设计控制系统是机械手的大脑,用于实现机械手的运动控制和任务执行。
我们将设计一个基于嵌入式系统的控制系统,通过编程实现机械手的自动化控制。
同时,我们还将考虑通信接口的设计,以便与其他设备或系统进行连接和数据交换。
4. 软件开发在控制系统设计完成后,我们将进行软件开发,实现机械手的运动规划和控制算法。
这将包括运动学和动力学建模、路径规划和轨迹生成等方面的工作。
我们还将开发用户界面,以便用户能够轻松地操作和控制机械手。
5. 实验验证与性能优化完成机械手的制造和软件开发后,我们将进行实验验证和性能优化。
通过对机械手的功能、精度和稳定性进行测试和调试,迭代改进,以达到设计目标。
时间计划完成机械手毕业设计项目需要一定的时间和资源。
根据上述设计方案,我们制定了以下时间计划:1.机械结构设计:2个月2.传感器与执行器选择:1个月3.控制系统设计:1个月4.软件开发:2个月5.实验验证与性能优化:1个月预期成果完成机械手毕业设计项目后,我们将获得以下预期成果:1.一台具有灵活性和精确性的机械手原型。
机械手毕业设计 (2)

机械手毕业设计1. 引言机械手,也称为机器手臂,是一种用于辅助、自动执行一系列工业任务的机械装置。
随着科技的不断发展,机械手在生产制造领域得到了广泛应用。
本文旨在介绍一个关于机械手的毕业设计项目,包括设计背景、目标、可行性分析,以及具体的设计方案和实施计划。
2. 设计背景目前,各个行业的生产制造过程中都需要使用机械手来完成繁重、危险或精密的工作。
为了提高工作效率和质量,设计与开发一个高效、精确的机械手成为迫切需求。
3. 设计目标本毕业设计旨在设计一个具有以下特点的机械手:•稳定性:机械手必须能够在不同工作环境下保持稳定,并且能够承受合适的负荷。
•灵活性:机械手需要具备足够的灵活性和适应性,能够完成不同种类的任务。
•精度:机械手在执行任务时需要具备较高的定位精度,以确保工作的准确性。
•自动化:机械手需要具备一定的自主决策和自动化能力,能够根据任务需要进行自主操作。
4. 可行性分析在设计过程中,我们进行了可行性分析来评估设计方案的可行性。
可行性分析包括以下几个方面:•技术可行性:通过相关的技术研究和实验,我们确定设计方案具备可行性。
•经济可行性:我们评估了设计和制造机械手所需要的成本,并进行了成本效益分析,确认项目的经济可行性。
•时间可行性:我们制定了详细的项目计划,并评估了完成设计和制造所需要的时间,确认项目的时间可行性。
基于可行性分析的结果,我们确定了毕业设计的可行性,并继续进行了后续工作。
5. 设计方案基于设计目标和可行性分析的结果,我们提出了下面的设计方案:•选择适当的机械结构:根据任务的特点和要求,我们选择了合适的机械结构,包括关节式和平行式机械手臂。
•配置合适的传感器:为了提高机械手的反馈控制能力,我们配置了合适的传感器,例如位置传感器、力传感器和视觉传感器等。
•开发控制系统:我们设计和开发了机械手的控制系统,包括硬件和软件部分。
控制系统能够实现机械手的运动控制、力控制和视觉控制等功能。
机械手毕业设计说明书

机械手毕业设计说明书一、设计目的本毕业设计旨在设计一种机械手,能够根据预先设定的程序自动执行各种操作。
通过该设计,可以提高工作效率,减少人力成本,同时具备高精度和高可靠性。
二、设计背景近年来,随着工业自动化的不断发展,机械手在工业生产中的应用越来越广泛。
机械手凭借其高速、高精度、高可靠性等优势,成为工厂生产线上的重要设备之一。
因此,设计一种功能强大的机械手对于工业生产的提升具有重要意义。
三、设计内容1.机械结构设计本设计采用七自由度机械手结构,包括基座、旋转关节、摇摆关节、剪切关节以及爪子等部分。
结构设计中要考虑刚性、稳定性以及重量平衡等因素,确保机械手能够准确地执行各种操作。
2.传感器系统设计为了使机械手具备自主感知能力,本设计将配备多种传感器,如力传感器、视觉传感器等。
通过传感器系统的设计,机械手可以根据实时的反馈信息进行运动控制,提高操作的准确性和安全性。
3.运动控制系统设计运动控制系统是机械手的核心部分,本设计将采用PLC (可编程逻辑控制器)作为控制器,结合伺服驱动器实现机械手的精确定位和协调运动。
通过编写程序,机械手可以根据预先设定的路径和信号执行各种操作。
四、设计过程1.需求分析针对机械手的应用场景和功能需求,进行需求分析。
确定机械手所需执行的任务类型、速度要求、负载能力等。
2.机械结构设计根据需求分析,设计机械手的结构,包括基座、旋转关节、摇摆关节、剪切关节和爪子等。
进行力学分析和模拟,确保结构设计的合理性和可靠性。
3.传感器系统设计根据需求分析,确定机械手所需的传感器类型和数量。
选择合适的传感器并安装在机械手上,设计传感器的接口电路和数据处理算法。
4.运动控制系统设计选择合适的PLC和伺服驱动器,进行硬件选型和连接。
编写控制程序,实现机械手的位置控制、速度控制和力控制等功能。
5.整体集成与测试将机械结构、传感器系统和运动控制系统进行整体集成。
进行系统测试,检验机械手的功能和性能是否满足设计要求。
智能机械手的设计与实现

智能机械手的设计与实现第一章:引言随着技术的发展,机械设备的智能化已经成为一个不可逆转的趋势。
智能机械手是其中的一个重要部分,它可以完成各种复杂的操作,不仅提高了生产效率,还减轻了人工劳动强度。
本文就智能机械手的设计与实现进行探讨,并提出一些具体的解决方案。
第二章:智能机械手的设计要点智能机械手的设计需要考虑以下要点:2.1 机械结构设计机械结构设计是智能机械手设计的基础。
应该根据使用需求和工作环境,选择合适的机械结构,并保证机械手的稳定性和精度。
同时还应该考虑机械手的可靠性和寿命,避免机械结构复杂或容易损坏。
2.2 控制系统设计控制系统设计是智能机械手设计的核心,应该选择适合机械手的控制器和传感器,并编写相应的程序,实现机械手的自动化控制。
控制系统必须具备良好的稳定性和可靠性,能够实现高精度的控制,同时还应该具备较强的扩展性和灵活性,方便后续的升级和改造。
2.3 智能识别和感知设计智能机械手需要具有较高的识别和感知能力,能够识别和感知不同形状、尺寸、材料和颜色的物体。
这需要使用一些先进的传感器技术,如视觉传感器、力传感器、接近传感器等,进行物体识别和位置控制。
第三章:智能机械手的实现方案基于上述智能机械手设计要点,本文提出以下实现方案:3.1 机械结构设计方案机械手的机械结构可以采用并联机构或串联机构。
并联机构具有较高的机动性和灵活性,适合用于特定的操作场合,如装配线上的自适应操作。
串联机构具有较高的精度和稳定性,适合用于精密加工、检测等场合。
机械手的机械结构可以采用轻质材料,如碳纤维增强复合材料,以减轻机械手的质量。
3.2 控制系统设计方案控制系统可以采用PLC控制器或单片机控制器,根据不同的需求进行选择。
控制系统应该具有良好的稳定性和可靠性,能够适应不同的工作环境和工作要求。
控制程序应该实现机械手的自动化控制、逆向运动控制、力控制等功能,以满足不同的操作需求。
3.3 智能识别和感知设计方案智能识别和感知技术可以采用图像识别技术和声学识别技术。
多功能抓取机械手的设计 毕业设计

设计一个多功能抓取机械手作为毕业设计是一个很有挑战性和创新性的课题。
以下是你可以考虑的一些建议和步骤:1. 项目背景和需求分析:-确定多功能抓取机械手的应用领域和具体需求,例如工业自动化、物流仓储等。
-分析市场上已有的类似产品,找出它们的优缺点,为设计提供参考。
2. 功能设计:-确定多功能抓取机械手需要具备的功能,如夹取、旋转、升降等。
-考虑集成传感器、视觉系统等技术,实现自动化控制和智能识别功能。
3. 机械结构设计:-设计机械手的结构,包括关节、连杆、末端执行器等部件,确保机械手具有足够的稳定性和灵活性。
-考虑采用轻量化材料和结构优化,以提高机械手的运动速度和精度。
4. 控制系统设计:-设计控制系统,选择合适的控制器和执行器,实现对机械手各部件的精准控制。
-考虑采用开放式控制系统,支持不同传感器和通讯接口的集成。
5. 电气系统设计:-设计电路板和电气布线,确保机械手的电气系统稳定可靠。
-考虑安全性设计,包括过载保护、紧急停止等功能。
6. 软件编程:-编写控制程序和用户界面,实现机械手的操作和监控。
-考虑采用先进的编程语言和算法,提高机械手的智能化水平。
7. 性能测试与优化:-进行多功能抓取机械手的性能测试,包括速度、精度、负载能力等指标。
-根据测试结果进行优化,提高机械手的性能和稳定性。
8. 报告撰写与展示:-撰写毕业设计报告,详细记录设计过程、方法和结果。
-准备设计成果的展示材料,向指导老师和评委展示你的设计成果和创新之处。
通过以上设计步骤和细致的实施,你可以完成一份出色的多功能抓取机械手毕业设计,并展示你在机械设计、控制技术和创新思维方面的能力和成就。
祝你顺利完成毕业设计!。
机械手总体方案设计范文

机械手总体方案设计一、背景与目的机械手作为一种智能化、精准高效的装配工具,在工业制造领域中应用较为广泛。
本文的设计目的是为制造业企业提供一种可靠性高、精度高、成本低的机械手总体方案,以提高装配速度、减少劳动成本,提升生产效率,促进企业发展。
二、机械手总体设计方案机械手总体设计需要考虑到机器人的工作环境、工作物体、工作任务、控制要求等多方面因素,我们总结出以下机械手设计方案:1.工作环境基于机器人企业实际应用中资金和场地的限制,我们决定采用基于三轴方案的机械手设计,即机械手的运动空间仅包括X、Y、Z三个轴,安装在固定的平台上进行工作。
2.工作物体本方案的机械手设计主要针对小型零部件装配和物品搬运,静载荷在5KG以内。
根据零部件的尺寸大小、重量等参数,考虑采用柔性指夹爪作为机械手的主夹具,以适应不同形状、大小的零部件抓取和移动。
3.工作任务机械手的主要工作任务是零部件的装配和移动,具体包括:完成零部件间的组装,完成零部件的放置和摆放,根据工艺要求完成零部件的切割、粘接等工作。
4.控制要求机械手控制需要达到以下要求:•精度高:机械手要求定位精度小于0.1mm,重复定位精度小于0.05mm,以确保零部件的精准装配。
•运动快:机械手的最大末端速度要求大于1000mm/s,以保证零部件的高效装配。
•可编程行:机械手的行动需要可以灵活编程,在不同的工艺生产场合中进行。
•安全性高:机械手要求在危险区域、电气扰动等不安全情况下能够及时停止运动。
三、机械手硬件设计1.机械手机构设计机械手机构设计以柔性指夹爪为主夹具,同时根据零部件的特点设计不同的补偿机构,以适应各类工作任务。
2.机械手控制系统设计机械手控制系统包括传感器、控制芯片、控制软件等多个部分,通过这些设备完成机械手的姿态控制、位置控制等功能。
其中,机械手的控制软件需要具备编程灵活、参数调节方便等特点。
3.机械手电气系统设计机械手的电气系统包括各种传感器、控制器、电机及相关电路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
太原城市职业技术学院信息工程系毕业设计任务书类别:专业:楼宇智能化工程技术班级:楼宇0811姓名:王进飞毕业设计题目:关于机械手的设计方案指导教师姓名:葛晶晶2011 年 5 月20 日关于机械手的设计方案摘要机械手是模仿着人手的部分动作,按照给定程序、轨迹和要求能实现自动抓取、搬运的自动机械装置。
在工业生产中应用的机械手叫做“工业机械手”。
在实际生产中,应用机械手可以提高生产的自动化水平和劳动生产率,可以减轻劳动强度、保证产品质量、实现安全生产。
尤其在高温、高压、低温、低压、粉尘、易爆、有毒气体和放射性等恶劣的环境下,它代替人进行正常的工作,意义更为重大。
随着生产的发展,功能和性能的不断改善和提高,在机械加工、冲压、锻、铸、焊接、热处理、电镀、喷漆、装配以及轻工业、交通运输业等领域得到了越来越广泛的应用。
关键词:PLC,机械手目录1绪论 (5)1.1机械手的概述 (5)1.1.1 机械手的简介 (5)1.1.2 机械手的发展 (5)1.2 气动机械手的的发展状况 (6)2 可编程控制器 (8)2.1 可编程控制器的系统组成 (8)2.2 可编程控制器的工作原理 (10)2.3 SIEMENS S7-300可编程控制器 (10)3 机械手总体方案的设计 (12)3.1 机械手的工作过程及控制要求 (12)3.1.1 机械手的基本结构 (12)3.1.2 机械手的控制要求 (14)3.3 机械手软件的选择 (15)4 系统硬件的设计 (16)4.1气动伺服阀 (16)4.2 气动执行机构的应用及选择 (16)4.2.1 执行气缸 (16)4.2.2 执行气爪 (18)4.3 低速电机的选型 (19)4.3.1低速电机结构原理与应用 (19)4.3.2低速电机选型 (21)4.4 光电开关 (21)4.4.1 光电开关的工作原理 (21)4.4.2 光电开关的分类 (22)4.4.3 光电开关的特点 (23)4.4.4光电开关的选型 (24)4.5 PLC模块的选型 (24)5 PLC程序的设计与调试 (26)致谢 (28)参考文献 (29)1绪论1.1机械手的概述1.1.1 机械手的简介机械手是模仿着人手的部分动作,按照给定程序、轨迹和要求能实现自动抓取、搬运的自动机械装置。
在工业生产中应用的机械手叫做“工业机械手”。
在实际生产中,应用机械手可以提高生产的自动化水平和劳动生产率,可以减轻劳动强度、保证产品质量、实现安全生产。
尤其在高温、高压、低温、低压、粉尘、易爆、有毒气体和放射性等恶劣的环境下,它代替人进行正常的工作,意义更为重大。
随着生产的发展,功能和性能的不断改善和提高,在机械加工、冲压、锻、铸、焊接、热处理、电镀、喷漆、装配以及轻工业、交通运输业等领域得到了越来越广泛的应用。
国内外对机器人及机械手所作的定义不尽相同。
国际标准化组织(ISO)对机器人的定义:“机器人是一种能自动定位、可控的可编程的多功能操作机。
这类操作机具有几个轴,在可编程序操作下,能处理各种材料、零件、工具和专用装置,以执行各种任务。
”美国国家标准(NBS)对机器人的定义:“一种可编程,并在自动化控制下执行某种特定操作和移动作业任务的机械装置。
”日本工业机器人协会对工业机器人的定义:“一种装备有记忆装置和最终执行装置,能够完成各种移动来代替人类劳动的通用机器。
”它又分为以下两种情况来定义:(1)工业机器人:“一种能执行与人的上肢类似动作的多功能机器。
”(2)智能机器人:“一种具有感觉和识别能力,并能够控制自身行为的机器。
”机械手可分为专用机械手和通用机械手两大类。
专用机械手:它作为整机的附属部分,动作简单,工作对象单一,具有固定(有时可调)程序,使用大批量的自动生产。
如自动生产线上的上料机械手,自动换刀机械手,装配焊接机械手等装置。
通用机械手:它是一种具有独立的控制系统、程序可变、动作灵活多样的机械手。
它适用于可变换生产品种的中小PLC的硬件结构主要分单元式和模块式两种。
将PLC的主要部分(包括CPU、I/O系统、电源等) 体积小,安装方便,全部安装在一个机箱内。
1.1.2 机械手的发展工业机械手是在第二次世界大战期间发展起来的,始于40年代的美国橡树岭国家实验室的搬运核原料的遥控机械操作手研究,它是一种主从型的控制系统。
1958年美国联合控制公司研制出第一台机械手。
它的结构是:机体上安装一回转长臂,端部装有电磁铁的工件抓放机构,控制系统是示教型的;1962年,美国联合控制公司在上述方案的基础上,又试制成一台数控示教再现型机械手,命名为Unimate(即万能自动)。
1962年美国机械铸造公司也实验成功一种叫Versatran机械手,原意是灵活搬运,可作点位和轨迹控制;该机械手的中央立柱可以回转、升降、伸缩,采用液压驱动,控制系统也是示教再现型。
虽然这两种机械手出现在六十年代初,但都是国外工业机械手发展的基础。
从60年代后期起,喷漆、弧焊工业机器人相继在生产中开始应用。
1978年美国Unimate 公司和斯坦福大学、麻省理工学院联合研制出一种Unimation-Vic-arm型工业机械手,装有小型电子计算机进行控制,用于装配作业,定位误差可小于±lmm。
联邦德国机器制造业是从1970年开始应用机械手,主要用于起重运输、焊接和设备的上下料等作业;联邦德国Kuka公司还生产一种点焊机械手,采用关节式结构和程序控制;日本是工业机器人发展最快,应用国家最多的国家,自1969年从美国引进两种典型机械手后,开始大力从事机械手的研究,目前以成为世界上工业机械手(机器人)应用最多的国家之一。
前苏联自六十年代开始发展应用机械手,主要用于机械化、自动化程序较低、繁重单调、有害于健康的辅助性工作。
我国工业机械手的研究与开发始于20世纪70年代。
1972年我国第一台机械手开发于上海,随之全国各省都开始研制和应用机械手。
从第七个五年计划(1986-1990)开始,我国政府将工业机器人的发展列入其中,并且为此项目投入的大量的资金,研究开发并且制造了一系列的工业机器人,有由北京机械自动化研究所设计制造的喷涂机器人,广州机床研究所和北京机床研究所合作设计制造的点焊机器人,大连机床研究所设计制造的氩弧焊机器人,沈阳工业大学设计制造的装卸载机器等等。
这些机人的控制器,都是由中国科学院沈阳自动化研究所(SIA)和北京科技大学机器人研究所开发的,同时一系列的机器人关键部件也被开发出来,如机器人专用轴承,减震齿轮,直流伺服电机,编码器,DC--PWM等等。
我国的工业机械手(或第一代机械手)发展主要是逐步扩大其应用范围;在应用专用机械手的同时,相应地发展通用机械手,研制出示教式机械手、计算机控制机械手和组合式机械手等。
可以将机械手各运动构件,如伸缩、摆动、升降、横移、俯仰等机构,设计成典型的通用机构,以便根据不同的作业要求,选用不同的典型机构,组装成各种用途的机械手,即便于设计制造,又便于更换工件,扩大了应用范围。
1.2 气动机械手的的发展状况气动技术——这个被誉为工业自动化之“肌肉”的传动与控制技术,在加工制造业领域越来越受到人们的重视,并获得了广泛应用。
目前,伴随着微电子技术、通信技术和自动化控制技术的迅猛发展,气动技术也不断创新,以工程实际应用为目标,得到了前所未有的发展。
另一方面,气动技术作为“廉价的自动化技术”,由于其元器件性能的不断提高,生产成本的不断降低,被广泛应用于现代工业生产领域。
在现代化的成套设备与自动化生产线上,几乎都配有气动系统。
机械手的驱动方式有气压传动、液压传动、电气传动和机械传动。
气动机械手与其它控制方式的机械手相比,具有价格低廉、结构简单、功率体积比高、无污染及抗干扰性强等特点。
因此,气动机械手设备来满足社会生产实践需要也越来越多的受到重视,气动机械手技术已经成为能够满足许多行业生产实践要求的一种重要实用技术。
工业自动化技术发展至今,气动定位系统已由传统的两点可靠定位,发展到任意位置定位。
传统的气动系统只能在两个机械调定位置可靠定位,并且其运动速度只能靠单向节流阀单一调定的状态,经常无法满足许多设备的自动控制要求。
因而电—气比例和伺服控制系统,特别是定位系统得到了越来越广泛的应用。
因为采用电—气伺服定位系统可非常方便地实现多点无极定位(柔性定位)和无极调速,此外利用伺服定位气缸的运动速度连续可调性以代替传统的节流阀和气缸端部缓冲方式,可以达到最佳的速度和缓冲效果,大幅度降低气缸的动作时间,缩短工序节拍,提高生产率。
原先要设计某一专用机械手时,由于无法做到气缸任意位置上的定位,因此气缸的定位是靠选择它的两个终点位置来实现的。
如选用多位气缸,他的定位长度由气缸的行程预先来确定。
如果需要增加一个停顿位置,或者要改变其中两个位置之间的距离,原来设计的多位气缸便完全失去功能,如果要求停的位置越多,那么它的滑块导向机构设计就越复杂。
也有在其外部设立固定挡块来限制位置定位的(由于受到挡块本身尺寸的限制,两个相邻的位置的距离必须大于挡块的尺寸,且挡块也经不起重载和高速冲击。
2 可编程控制器PLC是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。
它采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。
PLC已经广泛应用于钢铁、石油、化工、电力、建材、机械制造、汽车、轻纺、交通运输、环保及文化娱乐等各个行业,它具有高可靠性、抗干扰能力强、功能强大、灵活,易学易用、体积小,重量轻,价格便宜的特点。
该种技术是计算机技术与继电接触控制技术相互结合的产物,其解决了传统控制系统内接线复杂、可靠性低、耗能高以及灵活性较差等缺点,因此近年来被广泛应用于电气自动化中。
要正确、合理地应用PLC去完成机械手的控制任务,首先应了解它的结构特点和工作原理,这对控制系统应用程序的开发设计有着非常重要的作用。
2.1 可编程控制器的系统组成可编程控制器主要由中央处理单元CPU、存储器、输入输出接口、电源、I/O扩展接口、外部设备接口、编程器等几个主要部分构成。
(1)CPUCPU作为整个PLC的核心起着总指挥的作用,是PLC的运算和控制中心。
它的主要任务是:①诊断PLC电源、内部电路的工作状态及编制程序中的语法错误。
②用扫描方式采集由现场输入装置送来的状态或数据,并存人输入映象寄存器或数据寄存器中。
③在运行状态时,按用户程序存储器中存放的先后顺序逐条读取指令,经编译解释后,按指令规定的任务完成各种运算和操作,根据运算结果存储相应数据,并更新有关标志位的状态和输出映象寄存器的内容。
(2)存储器PLC内部的存储器有两类:一类是系统程序存储器,用以存放系统程序。