结构风振响应分析
建筑物风振响应分析与减震设计

建筑物风振响应分析与减震设计引言:建筑物作为人类生活的重要组成部分,承载着人们居住、工作和娱乐的需求。
然而,当建筑物面临自然灾害或环境变化时,其结构与稳定性就成为关键问题。
其中,风振响应是建筑物设计中需要重点考虑的因素之一。
本文将探讨建筑物风振响应分析与减震设计的相关内容。
一、风振响应的原理与影响因素建筑物风振响应指的是建筑物在面对风力作用时产生的结构变形与振动现象。
这种响应是由风力引起的,主要受到以下几个因素的影响:1. 建筑物结构:建筑物的高度、形状、刚度以及材料的特性等都会影响其风振响应。
一般来说,高度较低、刚度较小的建筑物更容易产生较大的振动响应。
2. 风力特性:风力大小、方向、气流速度和气候条件等都会对建筑物产生不同的振动力。
风速越大、风向变化越剧烈,建筑物的风振响应相应增加。
3. 结构组合形式:建筑物的结构形式(如钢筋混凝土、钢结构等)会影响其振动频率和振幅。
不同的结构形式需要采用不同的减振措施。
二、风振响应分析方法为了评估建筑物的风振响应,工程师们通常采用数值分析方法和模型试验方法。
数值分析方法主要基于有限元理论,通过建立建筑物的数学模型,模拟风载作用,并求解其对建筑物结构的响应。
这种方法可以快速评估建筑物的振动性能,但需要准确的结构参数和边界条件。
模型试验方法则是通过搭建小型模型或使用风洞进行实验,测量建筑物在不同风速下的振动响应。
这种方法能够直接观测建筑物的振动情况,但需要大量的实验成本和时间。
结合数值分析方法和模型试验方法,可以较全面地评估建筑物的风振响应,并为减震设计提供准确的依据。
三、减震设计与实践为了减少建筑物的风振响应,工程师们通常采用减震设计。
减震设计主要包括两个方面:结构刚度的调整和减振措施的采用。
在结构刚度方面,通过增加建筑物的刚度,可以降低其受风力作用时的变形和振动。
例如,在高层建筑中,采用钢筋混凝土框架结构来提高整体的刚度。
减振措施方面,常见的方法有:1. 阻尼器:阻尼器是一种能够吸收和消散振动能量的装置,通常安装在建筑物的结构体系中,通过调整阻尼器的参数来减少建筑物的振动。
超高层建筑结构风振响应分析与抑制技术研究

超高层建筑结构风振响应分析与抑制技术研究超高层建筑是现代城市的标志性建筑之一,然而,随着建筑高度的增加,其在强风环境下存在严重的风振问题。
风振现象不仅会导致超高层建筑剧烈的摇摆,甚至可能引发结构破坏和安全隐患。
因此,研究超高层建筑结构风振响应分析与抑制技术具有重要的工程应用价值。
首先,针对超高层建筑结构风振问题的研究,需要进行风洞试验和数值模拟分析。
风洞试验可以通过模拟真实的风场环境,获取结构在风力作用下的响应。
通过风洞试验可以确定结构的风荷载分布及其对结构的力学性能的影响。
同时,数值模拟分析也是研究超高层建筑结构风振响应的重要手段。
基于ANSYS等有限元软件,可以对超高层建筑进行模拟,预测结构的风振响应。
其次,为了减小超高层建筑的风振响应,需采取有效的抑制技术。
目前,常用的抑制技术主要包括被动控制、主动控制和半主动控制。
被动控制技术是通过优化结构的刚度和阻尼特性,减小结构对风荷载的响应。
常见的被动控制技术包括质量调节、增加剪力墙等。
主动控制技术则是通过使用传感器和执行器,对结构进行实时监测和调节,以抑制结构的振动。
而半主动控制技术则是被动和主动控制的结合,兼具两者的优点。
在具体研究超高层建筑结构风振响应分析与抑制技术的过程中,需要考虑多方面的因素。
首先,要充分地了解超高层建筑的结构特点和风动力学特性。
超高层建筑的结构比较复杂,一般由钢结构和混凝土结构组成。
其风动力学特性则受到结构形态和风洞效应的影响。
因此,在进行风振响应分析时,需要综合考虑这些因素,并建立准确的数学模型。
此外,对于超高层建筑的风振响应抑制技术研究,还需考虑经济性和可行性。
抑制技术的实施会增加工程的投资成本,因此,需要权衡抑制效果与成本。
同时,超高层建筑已经建成,抑制技术的实施需要考虑施工的可行性和结构的可操作性。
因此,在研究过程中还需要充分考虑这些实际问题,并提出合理的解决方案。
总结而言,超高层建筑结构风振响应分析与抑制技术研究是一个复杂且具有挑战性的课题。
结构动力学中的风振问题分析

结构动力学中的风振问题分析结构动力学是研究结构在外界力作用下的振动行为的学科,而风振问题则是结构动力学中一个重要的研究方向。
本文将从风振问题的背景和原因、影响因素和评估方法等方面进行详细分析和讨论。
一、背景和原因在风振问题中,结构物在大风环境下会受到风力的作用,引起结构的振动。
风振问题主要存在于高层建筑、长跨度桥梁、烟囱、塔楼等高耸结构中。
这种振动既可能是结构自身的自由振动,也可能是受到风力激励后的强迫振动。
风振问题的产生原因可以归结为以下几点:1. 气象因素:大风引起的气动力是产生风振问题的主要原因之一。
气象因素包括风速、风向、风向变化频率等。
2. 结构刚度:结构刚度的大小将直接影响结构的振动特性,而刚度小的结构更容易受到风力的激励而发生振动。
3. 结构阻尼:结构的阻尼越小,振动越容易发生和持续。
因此,结构的阻尼对于风振问题的研究具有重要意义。
4. 结构质量:结构质量的大小也将影响结构的振动特性,质量越大,振动频率越低,风振问题相对较小。
二、影响因素风振问题的复杂性决定了其受到多个因素的共同影响。
主要的影响因素包括:1. 风速和风向:风速和风向是产生风振问题的主要因素,其中风速对结构振动的影响最为显著。
2. 结构特性:结构的刚度、质量和阻尼等特性将直接影响结构的振动响应。
3. 结构形状和几何尺寸:结构的形状和几何尺寸影响着结构对风力的反应,尤其是在流体作用下的层流和湍流区域。
4. 地面效应:结构与地面之间的交互作用对风振问题也具有重要影响。
三、评估方法针对风振问题,需要进行定量的评估和分析,以寻找有效的风振控制措施。
常用的评估方法包括:1. 数值模拟:通过数值模拟方法,可以模拟结构在大风作用下的振动响应。
常用的数值方法包括有限元法、计算流体力学方法等。
2. 风洞试验:风洞试验可以模拟真实的风场环境,并通过模型的测试来评估结构的振动响应。
风洞试验是评估风振问题最为直观和准确的方法之一。
3. 实测方法:通过实际的结构振动监测数据,可以对结构的风振问题进行评估和分析。
结构风振响应分析

▪第五章第六章6.1单自由度体系时域分析(自由、强迫振动)SDOF⏹单自由度(⏹对于低阻尼自由振动,方程的解可以写为SDOF⏹单自由度(⏹将任意的动荷载看成一系列独立脉冲的总和,求出每一独立冲SDOF质量在微分时间间隔内受到的冲量为⏹根据叠加原理,体系在动荷载作用下的响应看成一系列冲量连SDOF虽然时域分析是完全一般性的,且可用来计算任何线性单自⏹单自由度阻尼体系在任意荷载作用下的响应可写为⏹SDOF⏹对荷载项进行傅里叶变换:⏹当输入SDOF脉冲响应函数和频率响应函数是线性体系分别在时域内和频⏹在任意荷载作用下体系的响应可以写成⏹多自由度体系⏹多自由度体系(⏹利用振型矩阵,把描述系统运动的广义坐标变换到模态坐标振型分解法[M⏹左乘振型矩阵的转置:6.2⏹自然风是典型的随机过程,由它引起的结构振动也自然是一⏹6.2.16.2.1概率分布函数⏹定义⏹6.2.2在实际问题中求随机变量的概率分布函数不是一件容易的事。
⏹(4)矩6.2.2⏹(4)协方差和相关系数⏹定义6.2.3⏹(1)数学期望⏹(6)自相关函数6.2.3⏹(9)互相关函数⏹按照随机过程的统计特性是否与过程的初始时间有关,随机6.2.4⏹(1)数学期望⏹(6)自相关函数6.2.4⏹(9)互相关函数6.2.5⏹要计算一个随机过程的统计特征(如期望、相关函数等),⏹随机过程的数学期望是某时刻对所有样本函数上的值的总体6.2.5⏹若一个平稳随机过程,还满足集合平均等于时间平均,即⏹在观察时间足够长时,一个样本6.2.6⏹首先回顾有关确定性时间函数的能量、能量谱密度、功率和功⏹巴塞瓦(6.2.6⏹在工程技术中有很多重要的时间函数的能量是无限的,它们⏹确定函数6.2.6lim时间函数与平稳随机过程的公式很相似。
6.2.6⏹维纳-辛钦(平稳随机过程的谱密度⏹平稳过程按其功率谱密度6.2.6⏹平稳过程按其功率谱密度⏹宽带平稳过程⏹白噪声也叫白噪声过程,它是宽带过程的一个重要的特例⎣6.2.6⏹白噪声在物理上是不能实现的,由于它在数学上的简单性,6.2.7⏹随机荷载作用下单自由度体系运动方程6.2.7⏹时域法6.2.7⏹频域法6.2.7⏹频域法6.2.7平稳速度和加速度的功率谱密度函数则分别为6.2.7⏹当平稳随机干扰▪作用在结构上的顺风向风压可以分解为:平均风、脉动风。
高层建筑结构抗风振性能分析与设计

高层建筑结构抗风振性能分析与设计高层建筑抗风振是指建筑物在强风作用下抵抗风振的能力。
由于高层建筑的高度和细长形状,容易受风的作用,产生结构的振动。
因此,为了确保高层建筑的安全和稳定,必须对其抗风振性能进行分析和设计。
一、风振分析高层建筑抗风振性能的分析是通过计算建筑物在风场中受到的风压力,分析建筑结构的振动特性,以及评估结构的稳定性和安全性。
主要包括以下几个方面:1. 风压力计算:根据建筑物高度、形状和所在地的风速,计算出建筑物在不同高度和不同方向上受到的风压力大小。
这需要考虑的因素包括建筑物的表面积、气动力系数和风压力系数等。
2. 结构振动特性分析:通过数学模型和计算方法,分析建筑结构在风作用下的振动特性。
包括自振频率、阻尼比和模态形式等参数。
这些参数能够帮助工程师判断结构的振动情况,进而评估其稳定性和抗风能力。
3. 结构响应分析:根据建筑结构的振动特性,进行结构响应分析,即模拟建筑物在风场中的受力和变形情况。
通过有限元分析等方法,定量计算结构的应力、位移和变形等参数,为结构的抗风设计提供依据。
二、设计原则与方法在高层建筑抗风振的设计过程中,需要遵循一些基本的原则和方法,以保证结构的稳定性和安全性。
1. 抵抗风压力:结构的设计应考虑到不同高度和不同方向上的风压力变化。
采用适当的结构形式和截面尺寸,以抵抗风压力的作用,并保证结构的整体稳定性。
2. 减小结构振动:通过合理的结构抗振措施,减小结构在风作用下的振动。
常用的方法包括增加结构的坚固性、增加阻尼装置、优化结构参数和采用风洞试验等。
3. 考虑风-结构相互作用:在风振设计中,需要考虑风-结构相互作用的影响。
即风场的作用对结构的响应造成的影响,以准确评估建筑物的受力和变形情况。
4. 断面设计:根据结构的受力特点和抗振要求,进行断面的设计。
选择合适的材料和截面形式,以满足结构的抗风要求和使用寿命。
5. 工程实践经验:高层建筑抗风振的设计需考虑到实际工程施工和运行中的各种影响因素。
高耸结构物中的风振响应分析方法

高耸结构物中的风振响应分析方法近年来,随着城市化的不断发展和人们对高耸结构物的需求增加,高耸结构物的数量也显著增加。
然而,由于高耸结构物所处的空气动力环境非常复杂,其面临的风振问题也日益凸显。
因此,对高耸结构物的风振响应进行准确的分析和预测变得非常重要。
在高耸结构物的风振问题研究中,一种常用的方法是基于CFD(Computational Fluid Dynamics,计算流体力学)模拟的风场数据进行数值分析。
通过建立几何模型和边界条件,并利用数值方法求解相关方程,可以模拟风场中的气流运动,进而得到高耸结构物所受到的风荷载。
然而,CFD模拟方法也存在一些不足之处。
首先,CFD模拟需要耗费大量的计算资源,模拟一个高耸结构物的风场可能需要几天甚至几周的时间。
其次,CFD 模拟的结果对参数设置和网格划分非常敏感,不同的参数设置和网格划分可能导致不同的模拟结果。
最后,CFD模拟只能得到某一时刻的风荷载情况,并无法全面考虑不同时间尺度上的风荷载变化。
为了克服CFD模拟方法的不足,研究人员提出了一种基于风洞试验的风振响应分析方法。
风洞试验是通过在实验室内建立一个可以模拟真实风场的风洞来对高耸结构物的风振响应进行测试。
通过在风洞中放置缩比模型,可以使得实际结构物所受到的风荷载与模型所受到的风荷载相似,从而准确测量结构物的风振响应。
风洞试验能够较为准确地模拟高耸结构物在不同气流条件下的风振响应,但其也存在一些限制。
首先,风洞试验需要昂贵的建设和维护成本,对于大型高耸结构物来说可能无法进行风洞试验。
其次,风洞试验的结果往往只能得到特定风速下的风振响应,无法得到整个风速范围内的风振情况。
最后,风洞试验的时间和空间尺度受到限制,无法模拟长时间和大尺度的风荷载作用。
除了CFD模拟和风洞试验之外,还有一种基于结构物响应监测的风振分析方法。
这种方法通过在结构物上设置振动传感器,实时测量结构物的振动响应数据,并通过信号处理和频域分析等手段进行数据处理,得到高耸结构物的风振特性。
高层建筑风振响应分析与控制研究

高层建筑风振响应分析与控制研究引言在现代城市的发展中,高层建筑已成为城市景观的一部分。
然而,高层建筑在面临强风的情况下可能出现风振问题,对建筑结构的稳定性和人员生命安全带来威胁。
因此,高层建筑风振响应分析与控制研究变得至关重要。
1. 高层建筑风振现象高层建筑的结构相比于传统建筑更加灵活,在面对风力时容易产生振动现象。
这主要归因于风作用在建筑物上所产生的涡流及压力变化。
当风速超过一定阈值时,建筑结构开始出现共振现象,振幅逐渐增大,进而影响建筑的安全性和舒适性。
2. 高层建筑风振响应分析方法为了研究高层建筑的风振响应,需要进行风洞试验和数值模拟。
风洞试验能够模拟不同风速和风向条件下的风场,以获取风作用下的建筑振动响应数据。
同时,数值模拟方法如计算流体力学(CFD)和有限元分析(FEA)也成为研究的重要手段。
3. 高层建筑风振控制技术为了减轻高层建筑的风振响应,研究者们提出了一系列控制技术。
其中一种是主动控制技术,通过在结构上设置反馈控制系统,动态地修正结构的响应。
另一种是被动控制技术,通过在结构上设置阻尼器、质量调整器等装置,改变结构的固有特性,从而减小振动幅度。
此外,还有一些其他的技术,如涂层减振、断层结构等,也在一定程度上缓解了高层建筑的风振问题。
4. 实例分析及案例研究以某个高层建筑为例,对其进行风振响应分析和控制研究。
通过在风洞中进行试验,获取了建筑在不同风速下的振动数据。
同时,通过有限元分析,分析了建筑结构的固有频率和模态振型。
在此基础上,设计了一种主动控制系统,通过调整反馈参数,使建筑的振动响应受到有效控制。
进一步,对比了不同风振控制技术的效果,评估了各种技术的优缺点。
结论高层建筑风振响应的研究和控制对于保障建筑结构的安全和居民的生命安全具有重要意义。
通过风洞试验和数值模拟分析,可以全面了解风作用下建筑结构的振动响应。
在此基础上,采用主动或被动的控制技术,可以有效减小高层建筑的风振响应,提高其在强风环境下的稳定性和舒适性。
结构风振响应分析

平均风压
脉动风压
50
01——0:;_sec
0、200400600
——U0N/m2)
10
•
由涡旋脱落引起的结构受迫振动。
特点:
1)细长形结构
2)确定性谐波振动
3)风荷载可由风洞试验或正弦激励假定确定
Along-wind
方柱的升力系数和
阻力系数时程
方柱的升力和阻力
功率谱
會3LOW
fB/U
10W
當.3(7电
★风振响应坐标系统
★按响应方向分类•顺风向振动
沿来流风向的振动; 主要由大气来流中的 湍流脉动引起的。
★按响应性质分类
•
由风压脉动引起的结构振动。
特点:
1)受迫振动
2)随机振动,需采用随机振动理论分析3)风荷载通常由风洞试验Fra bibliotek拟定常假定确定
拟定常假定:假定作用在物体表面的脉动 风压与来流风速具有相同的变化规律。
Required Course for Undergraduate Students
4.
武岳孙瑛
Harbi n Institute of T ech no logy
本章内容
4.1结构风振响应类型4.2顺风向风振响应分析
4.3横风向风振响应分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
输入 (动力荷载)
结构 (系统)
输出 (动力反应)
结构上的风力:顺风向(抖振)线性
顺风向力
横风向力
随机振动非理线性论分析
结构风响应: 结构位移 杆件内力
风振扭力响矩 横风向(涡激振动)
顶点速度、加速度
应分析
周期性简谐荷载下动力分析支反力
自激振动
找到临界风速,在设计中要避免
17
§4.2 顺风向风振响应分析
Required Course for Undergraduate Students
4. 结构风振响应分析
Wind-induced response analysis
武岳 孙瑛
Harbin Institute of Technology
本章内容
4.1 结构风振响应类型 4.2 顺风向风振响应分析 4.3 横风向风振响应分析 4.4 等效静风荷载
10
§4.1 结构风振响应类型
★ 自激振动 (aeroelastic vibration)
当风速达到某值时,结构通过自身振动从外部吸收的 能量满足甚至超过振动所耗散的能量,此时振幅会持续增 大,直到使结构产生破坏。
来流风
风的脉 动作用
气动弹性现象 (流固耦合)
附加气 动力
变形或 振动
11
§4.1 结构风振响应类型
St fv B U
锁定区
Ucr 1.3Ucr
非锁定区:
fv
St
U B
风速U
锁定区:
fv fs
9
§4.1 结构风振响应的类型
★ 自激振动 (aeroelastic vibration)
当风速达到某值时,结构通过自身振动从外部吸收的 能量满足甚至超过振动所耗散的能量,此时振幅会持续增 大,直到使结构产生破坏。
5
§4.1 结构风振响应的类型
拟定常假定:假定作用在物体表面的脉动 风压与来流风速具有相同的变化规律。
P
1Hale Waihona Puke 2saU2
p(t) s aUu(t)
平均风压 脉动风压
6
§4.1 结构风振响应的类型
涡激振动 (vortex induced vibration)
由涡旋脱落引起的结构受迫振动。
特点: 1)细长形结构 2)确定性谐波振动 3)风荷载可由风洞试验或正弦激励假定确定
1
§4.1 结构风振响应的类型
§4.1 结构风振响应类型
Types of wind-induced oscillations
2
★ 风振响应坐标系统
§4.1 结构风振响应的类型
• 风轴
• 体轴
= 攻角(angle of attack)
3
★ 按响应方向分类
§4.1 结构风振响应的类型
• 顺风向振动
沿来流风向的振动;
顺风向
主要由大气来流中的
湍流脉动引起的。
f(t)
• 横风向振动
与风向垂直的振动; 主要由尾流漩涡的交 替脱落引起。
横风向
4
★ 按响应性质分类
§4.1 结构风振响应的类型
• 抖振(buffeting vibration) 由风压脉动引起的结构振动。
特点: 1)受迫振动 2)随机振动,需采用随机振动理论分析 3)风荷载通常由风洞试验或拟定常假定确定
1
2
2
2
2
荷载作用频率 频 结响构函固数有反频映率
了系统在不同
频率谐 1波作用
下的响应特 征。
0
|H( i )|2 Gk2 1
7
方柱的升力和阻力 功率谱
§4.1 结构风振响应的类型
方柱的升力系数和 阻力系数时程
8
锁定效应 (Lock-in)
§4.1 结构风振响应的类型
当漩涡脱落频率与结构固有频率接近时,结构的振 动会迫使旋涡脱落频率固定在结构的固有频率附近而不 按Strouhal频率脱落。
旋涡脱落 频率fv
自 振 频 率
1)通过风洞实验或风速-风压转换关系确定风荷 载P(t);
2)确定结构的质量M、阻尼C、刚度K等参数, 建立结构有限元模型;
3)求解结构动力平衡方程,得到结构的位移和 内力响应时程;
4)对结构响应时程进行统计分析,得到均值、 均方差等统计信息。
21
★ 频域分析方法
§4.2.1 顺风向风振响应分析方法
将荷载展成多个简谐分量,叠加各简谐响应, 即可获得总响应。
19
★ 时域分析方法
§4.2.1 顺风向风振响应分析方法
在时间域内,求解结构动力平衡方程,得 到结构响应的时程信息。
Mx(t) Cx(t) Kx(t) P(t)
风洞实验
风速时程
风压时程
响应时程
20
时域分析的基本步骤:
§4.2.1 顺风向风振响应分析方法
(a)新月形; (b)扇形; (c)D形
13
我国的输电线驰振地区分布
§4.1 结构风振响应类型
14
2. 桥梁颤振( Bridge Flutter)
——弯扭耦合的气弹失稳现象
§4.1 结构风振响应类型
15
§4.1 结构风振响应类型
抖振、涡激振动与自激振动比较
16
★ 风振响应分析
§4.1 结构风振响应类型
★ 自激振动 (aeroelastic vibration)
注:圆形截面不会出现自激振动现象。
12
两种典型的工程自激振动现象
§4.1 结构风振响应类型
1)输电线驰振( Conductor Galloping)
在冬季,当风吹到因覆冰而变为非圆截面的导线时, 将诱发导线产生一种低频(约0.1~3 Hz)、大振幅 (约为导线直径的5~300倍)的自激振动。
在频域内,根据随机振动理论,由风压谱和 结构动力特性得到结构响应谱。
Sx H (i) 2 SP ()
Sx()
|H( i )|2
SP()
结构响应谱
=
频响函数
×
风压谱
1
1
22
§4.2.1 顺风向风振响应分析方法
频响函数(Frequency Response Function) 在频率域内系统的输出与输入之比。
单自由度系统运动方程:
mx cx kx f t
c 2m1
两端作傅立叶变换得到频域方程:
m2 X icX kX F
H
i
X F
k
1
m2
ic
k
1
1 2 i2
23
频响函数的模
§4.2.1 顺风向风振响应分析方法
H i 2 H (i)H (i)
1
k2
§4.2 顺风向风振响应分析
Along-wind response analysis
18
§4.2.1 顺风向风振响应分析方法
§4.2.1 顺风向风振响应分析方法
顺风向风振分析的实质上是求解多自由度体系 在随机风荷载场作用下的随机振动问题。 • 时域分析方法:
将荷载分割成无数无穷小脉冲,将各自由振 动响应叠加,得到总响应。 • 频域方法: