水泵的串联运行和并联运行工况分析
动力管道手册水泵并联流量折减系数

动力管道手册水泵并联流量折减系数摘要:1.动力管道手册的概述2.水泵并联的概念3.流量折减系数的定义4.流量折减系数的计算方法5.流量折减系数的应用实例正文:一、动力管道手册的概述动力管道手册是一本关于流体力学、管道设计和水泵技术等方面的专业书籍。
书中详细介绍了各种类型的水泵、管道系统的设计与施工,以及在水泵并联、串联等应用场景中需要注意的问题。
本文将从水泵并联的角度,介绍一个重要的概念——流量折减系数。
二、水泵并联的概念在水泵系统中,为了满足不同工况下的流量和压力需求,可以采用多台水泵同时工作的方式,这种工作方式被称为水泵并联。
并联的水泵可以共同提供流量和压力,使得系统具有更高的可靠性和灵活性。
在实际应用中,水泵并联可以降低单台水泵的负荷,提高系统的运行效率。
三、流量折减系数的定义流量折减系数是在水泵并联系统中,用来描述系统总流量与各并联水泵单独运行时流量之比的一个系数。
流量折减系数用符号K 表示,计算公式为:K= Q_total / (Q1 + Q2 +...+ Qn),其中Q_total 为系统总流量,Q1、Q2、...、Qn 分别为各并联水泵单独运行时的流量。
四、流量折减系数的计算方法流量折减系数的计算方法有多种,常见的有试验法、经验公式法和数值模拟法等。
1.试验法:通过搭建实际水泵并联系统,测量不同工况下的流量,然后计算流量折减系数。
2.经验公式法:根据大量实际工程数据,总结出一些经验公式,用于估算流量折减系数。
例如,对于相同型号的水泵并联,可以采用如下经验公式计算流量折减系数:K = 1 - (N - 1) / (N * (N - 1)),其中N 为并联水泵的数量。
3.数值模拟法:利用计算机仿真技术,模拟水泵并联系统的运行过程,计算流量折减系数。
五、流量折减系数的应用实例假设有一台水泵,单独运行时的流量为Q1,压力为P1;另外一台水泵,单独运行时的流量为Q2,压力为P2。
当两台水泵并联运行时,系统的总流量为Q_total,总压力为P_total。
350MW超临界供热机组供暖季循环水“两机一泵”运行和节能分析

350MW超临界供热机组供暖季循环水“两机一泵”运行和节能分析一、设备简介公司2×350MW超临界汽轮机由东方汽轮机有限公司设计制造。
汽轮机型号为:CC350/272.9-24.2/1.1/0.4/566/566,汽轮机型式:超临界、一次中间再热、单轴、三缸双排汽、双抽凝汽式;最大连续出力为387.7MW,额定出力350MW;机组设计寿命不少于30年。
我厂循环水系统采用带冷却塔的扩大单元制系统,两台机配一座9000m2双曲线自然通风冷却塔,主要向凝汽器、高低压开式循环冷却水系统提供冷却水。
每台机配备两台循环水泵,一台定速电机、一台双速电机,通过改变运行水泵的运行台数和双速电机转速可以组合成多种运行工况。
现两台机各运行一低速循泵(1B、2B),电流分别为191A、172A;#1、#2机开冷泵运行,电流为69A。
二、可行性分析2.1根据我厂循环水系统设计,循环水主要用于主机冷油器、闭式冷却器、小机冷油器等各种辅机用户和凝汽器冷却。
根据测算,350MW超临界机组单台汽轮机配置一台东方汽轮机有限公司设计和制造的N- N-23000型凝汽器,凝汽器型式为双流程、表面式式凝汽器,冷却面积为23000m2,循环倍率为60。
表2-1 凝汽器设备规范凝汽器壳体采用焊接钢结构,其强度和刚度能承受管道的转移荷载和设计压力,防止汽轮机传递来的振动造成冲击和共振。
凡与凝汽器壳体相连的管道接口,工质温度在150℃及以上者设隔热套管。
喷嘴和内部管道工作温度超过400℃者,采用合金钢。
凝汽器的设计条件:VWO工况、清洁系数0.9、堵管率5%、管内设计流速2.1m/s、循环倍率60,凝汽器背压为0.0057MPa(a)。
凝汽器能在TRL工况下运行,此时的循环水进水温度为36℃,背压为0.0118MPa(a)。
为防止高速、高温气流冲击凝汽器管和内部构件,使流量分配装置和挡板具有足够的强度。
凝汽器管束材质为不锈钢。
2.2单台机组共配置2台循环水泵,其中一台定速泵、一台高低速泵,1号、2号机组循环水系统可联络运行,循环水泵设计参数如下:表2-2 循环水泵设计技术规范2.3机组切低压缸运行工况对循环水泵运行没有明显安全性影响,但可结合凝汽器热负荷大小和对循环冷却水流量需求对循环水泵运行方式进行优化,提高机组运行经济性。
水泵的最优工况

水泵的最优工况水泵的最优工况,也被称为最佳工作点或最佳效率点,是指水泵在其性能曲线上能够达到最高能效的运行状态。
在这个工况下,水泵的能耗最低,同时能够提供满足系统需求的水流量和扬程。
以下是确定水泵最优工况时需要考虑的几个关键因素:1. 流量:水泵的流量应与系统的需求量相匹配。
选择过大的水泵可能导致频繁启停或长时间低负荷运行,而选择过小的水泵则可能导致无法满足系统需求。
2. 扬程:水泵的扬程应略高于系统所需的扬程,以克服管道阻力、高度差等因素。
但过高的扬程会造成能源浪费。
3. 效率:水泵的效率是衡量其将输入能量转化为输出能量(即泵送水的能力)的指标。
在最优工况下,水泵的效率应尽可能高。
4. 功率:水泵的轴功率与其效率和扬程、流量有关。
最优工况下的水泵应在满足扬程和流量需求的同时,具有较低的轴功率。
5. NPSH(净正吸入头):NPSH是衡量水泵进口处最低允许压力的指标,以避免发生汽蚀现象。
最优工况下的水泵应具有足够的NPSH值。
6. 运行范围:水泵的运行范围应与系统的需求相匹配。
如果可能,最好选择一个能够在较宽范围内高效运行的水泵。
7. 调节方式:水泵可以通过阀门调节、变频调节等方式来改变其运行状态,以适应不同的系统需求。
8. 可靠性和维护:在考虑最优工况时,还应考虑水泵的可靠性和维护成本,以确保长期稳定运行。
9. 成本效益分析:在选择水泵时,应对不同型号和配置进行成本效益分析,以找到最经济有效的解决方案。
综上所述,水泵的最优工况是一个综合考虑多个因素的结果,包括流量、扬程、效率、功率、NPSH等。
在选择水泵时,应根据系统的具体要求和运行条件来确定最优工况,以确保水泵能够高效、稳定地运行。
水泵并联运行的流量变化

.;. 水泵并联运行的流量变化,同型号水泵并联运行的流量变化相同型号的水泵并联运行,水泵并联运行的流量因为两台泵从同一水池吸水送往同一高地水池,即静扬程Hst相同,并且从吸水口A、B 两点至并联节点O点的管路完全相同,因此,AO、BO管段的水头损失相同,因此,两台水泵的扬程相同。
AO、BO两管段通过的流量均为Q1+2/2,OG管段通过的总流量为两台泵的流量之和。
所以,两台泵在并联运行时总流量等于两台离心泵流量之和,总扬程等于各水泵扬程。
按照横加法原则,将单台水泵同一扬程下的流量扩大两倍即可得到两台泵并联工作的(Q-H)1+2曲线。
根据上面的分析可知,两台水泵的静扬程相同,管路中的水头损失也相同,即并联之后两台水泵的扬程相等,且等于总扬程。
单泵工作时的轴功率大于并联工作时各单泵的轴功率。
因此,在选配电动机时,要根据单泵单独工作的轴功率来配套。
另外,两台泵并联工作时的总流量并不等于单台泵单独工作时流量的两倍,这种现象在多台泵并联时,就很明显。
多台同型号水泵并联工作的特性曲线同样可以用横加法求得,每增加一台水泵所增加的水量并不相同,水泵并联越多,增加的水量就越少。
以一台泵工作流量为100,当两台水泵并联的流量为190,比单泵工作时增加了90,三台泵并联的总流量为251,比两台泵并联时增加了61,四台泵并联的总流量为284,比三台泵并联增加了33,无台泵并联的总流量为300,仅比四台泵并联增加了16.由此可见,当水泵并联台数4-5台以上时,增加的流量很小,已经没有意义了。
每台水泵的工况点,随着并联水泵台数的增多,而向扬程高的一侧移动。
台数过多就可能使工况点移出高效段范围。
所以,是否通过增加并联工作的水泵台数来增加水量,要通过工况分析和计算决定,不能简单地理解增加水泵台数就能成倍增加水量。
尤其是改扩建工程,更要认真分析计算水泵并联工况,才能确定。
离心泵综合实验

离心泵综合实验实验教学大纲离心泵综合实验一、所涉及的课程及知识点:《工程流体力学》、《输油管道设计与管理》二、实验要求1、掌握离心泵特性曲线(H-Q曲线,N-Q曲线,η-Q曲线)的测定方法。
2、通过泵气蚀的产生,分析泵产生泵气蚀机理,学会确定气蚀余量的临界值。
3、了解离心泵的串并联运行工况及其特点,绘制泵的串并联运行曲线。
4、学会对实验结果的处理分析方法。
三、实验装置和原理图1 实验台简图实验台的结构如图所示,主要有泵Ⅰ、泵Ⅱ、计量水箱、储水箱、压力表、真空压力表、文丘里流量计、U型压差计、管道及阀门组成.在测定泵的特性曲线时,利用各阀门的开启和调节形成泵Ⅰ单泵工作回路,在不同流量下测定一组相应的压力表、真空表和流量的读数以及电流电压的计数.即可读出一组泵的流量Q,扬程H,输入功率N等数据,最后可以绘出泵的H-Q、N-Q、η-Q等特性曲线。
在进行泵汽蚀实验时利用相应的阀门开启和调节,开成泵Ⅰ的单泵工作回路,并使储水罐由于水的抽出而产生真空,从而使泵的进口压力减小,直到发生气蚀。
在进行泵的串并联实验时,利用相应阀门的开启和调节形成两个泵的串并联回路,测定串联和并联的运行特性.水泵气蚀余量△h 是水泵设计和使用的重要基本参数,气蚀实验是确定△h 的唯一可靠方法,进行水泵气蚀实验时,我们将泵放在一定工作条件下(即固定的H 、Q 、η),而在较大范围内改变泵的进口压力,本实验装置是靠改变水箱内的真空度来实现的。
对于被试泵在转速和流量为定值时泵△h 是不变的,但当进口压力下降到一定程度时,泵的性能既开始下降,理论上讲,当流量曲线跌落至1~2%时,泵就进入了气蚀的临界状态,即△h=△p/r ,测定该工况下的△h,也就间接的确定了水泵在该流量下的气蚀余量.既γνγb P g Ps h ++=∆221式中:Ps —实验条件下泵吸入口处的液面压强1ν—水泵进口处的平均流速P b —汽化压力,根据实验条件下的水温查表当单台泵不能满足需要流量时,可采用2台泵(或两台以上)并联运行方式,离心泵Ⅰ、Ⅱ并联后扬程不变,而流量Q 是这两台流量之和,Q 并=Q 1+Q 2,并联后的系统特性曲线同,是在不同扬程下,用计量水箱测得流量Q 并,绘出Q 并—H 并曲线。
水泵变频运行的图解

2 水泵变频运行分析的误区2.1 有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律流量比例定律q1/q2=n1/n2扬程比例定律h1/h2=(n1/n2)2轴功率比例定律p1/p2=(n1/n2)3并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的3次方成正比。
以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题:(1) 为什么水泵变频运行时频率在30~35hz以上时才出水?(2) 为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一个突跳,然后才随着转速的升高而升高?2.2 绘制水泵的性能特性曲线和管道阻力曲线很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示。
图1 水泵的特性曲线图1中,水泵在工频运行的特性曲线为f1,额定工作点为a,额定流量qa,额定扬程ha,管网理想阻力曲线r1=kq与流量q成正比。
采用节流调节时的实际管网阻力曲线r2,工作点为b,流量qb,扬程hb。
采用变频调速且没有节流的特性曲线f2,理想工作点为c,流量qc,扬程hc;这里qb=qc。
按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这与实际情况是不相符的。
实际水泵变频调速时,频率降到30~35hz以下时就不出水了,流量已经降到零。
2.3 变频泵与工频泵并联变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水?是否工频泵的水会向变频泵倒灌?3 以上分析的误区(1) 相似定律确实是风机水泵在理论分析当中的一条很重要的定律,它表明相似泵(或风机)在相似工况下运行时,对应各参数之相互关系的计算公式。
而比例定律是相似定律作为特例演变而来的。
即两台完全相同的泵在相同的工况条件下,输送相同的流体,且泵的直径和输送流体的密度不变,仅仅转速不同时,水泵的流量、扬程和功率与转速之间的关系。
两个串联水泵的作用

两个串联水泵的作用
两个串联水泵的作用是通过增加扬程来满足装置的压力要求,主要用于解决单台水泵扬程不足的问题。
具体来说,当单台泵的扬程不能满足装置的压力要求时,可以通过将第一台泵的出口与第二台泵的进口连接的方式,提高水泵的扬程。
这种串联运行的方式还可以同时增加流量和压力,适用于长距离管道运输、提高下一次泵的汽蚀性能等应用场合。
需要注意的是,串联运行对水泵的承压、轴承、轴封等有一定要求,否则可能会造成壳体断裂、轴封损坏、轴承发热等问题。
同时,关闭其中一台或多台泵时,剩余泵的运行工况也会发生变化。
因此,在选择串联水泵时,需要考虑实际情况和需求,合理选择水泵的型号和数量。
水泵试验报告

水泵实验报告(附实验指导书)学院专业班级学号姓名指导教师兰州交通大学流体工程教研室年月日1一、实验装置整个系统的实验装置工艺系统图见图1。
本实验装置为一综合性实验装置,可进行水泵基本性能实验、水泵并联实验、水泵串联实验和水泵汽蚀性能实验。
主要由以下部分组成:地下蓄水池、吸水管、阀1、阀2、机械真空表、电子真空表、U形管水银真空计、真空泵、真空管、真空阀10、真空阀11、气水分离器、水泵机组Ⅰ(左侧水泵机组,主要用于水泵基本性能实验、并联实验和串联实验)、水泵机组Ⅱ(右侧水泵机组,主要用于并联实验、串联实验和汽蚀性能实验)、真空罐(用于汽蚀性能实验)、机械压力表、电子压力表、U形管水银压力计、涡轮流量计、电流表、电压表、功率表、光电转速表、压力水管、阀3~阀9、三角堰、真空罐、温度计、阀12~阀15等(见图1)。
1.吸水管路系统2由直管段、弯头、法兰等组成。
水泵在启动前,应使吸水管和水泵内部充满水。
本装置在水泵吸入口处留有抽真空接管(用于抽气引水)并安装有真空表。
2.抽水机组由离心泵及其配套电机等组成。
水泵与电机采用直接传动方式。
3.压水管路系统由直管段、弯头、法兰和阀门等组成。
水泵出口阀门用于水泵的启动、停车、调节流量和并、串联工作的控制。
4.基本参数测量、显示与控制系统在水泵入口处连接有机械真空表、电子真空表和U形管水银真空计,在水泵出口处连p 接有机械压力表、电子压力表和U形管水银压力计,分别用于测定水泵进口的真空值V p。
功率表用于测定电机的输入功率Np,并根据电机的基本性能曲线之和出口的压力值d一可查得相应的输出功率。
U形水银真空计、压力计以及功率表等均安装于控制显示面板上,如图3所示。
水泵的流量用三角堰测量,(测量原理请参看有关流体力学书籍)。
水泵4二、实验1 水泵基本性能实验(一)目的要求1.掌握水泵主要性能参数的测量方法,了解水泵实验装置的组成和操作过程;2.掌握水泵实验性能曲线(Q~H、Q~N、Q~ )的绘制,并能运用该曲线分析水泵的工作性能和启动方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泵的串联和并联运行
(1)两台相同特性泵的串联运行
图10-8中HⅠ是单台泵的特性曲线。
HⅡ是两台泵串联工作时的合成特性曲线,它是在同一流量下两泵相应扬程(纵坐标)相加得到的。
R是装置特性曲线。
单台泵运转时工况点为A,两泵串联时工况点为B,由图可知,两台泵串联扬程和流量都增加,其增加程度和装置特性曲线的形状有关,但都小于单独运行时的两倍。
(2)不同特性泵的串联运行
图10-9中,HⅠ、HⅡ为两条单独运转时的特性曲线,HⅢ是串联合成特性曲线。
R1,R2是两条装置特性曲线。
当装置特性曲线为R1时,合成工况点为A,两泵的工况点分别为A1、A2。
如果装置特性曲线为A2时,合成工况点为B。
当阻力曲线在R2以下时,其运转状态是不合理的。
在Q>QB时,两泵合成的扬程小于泵Ⅱ的扬程。
若泵Ⅱ作为串联工作的第二级,则泵Ⅰ变为泵Ⅱ吸入侧阻力,使泵Ⅱ吸入条件变坏,有可能发生气蚀。
若把泵Ⅰ作为串联工作的第二级,则泵Ⅰ变为泵Ⅱ排出侧的阻力,消耗一部分泵Ⅱ的扬程。
两台泵串联工作,第二级的压力增高,应注意校核轴封和壳体强度的可靠性。
泵串联工作,按相同的流量分配扬程。
(3)相同特性泵的并联运转
图10-10中HⅠ(HⅡ)是单独一台泵的特性曲线。
HⅢ是两泵并联合成的特性曲线,它是在相同扬程下两泵流量相加得到的。
一台泵单独运转时的工况点为A1,合成工况点是A,各泵的实际工况点为B。
一台泵运转时,流量为QA1,两台泵并联运行时的流量为QA。
因QA=2QB<2QA1。
即是说,由于管路阻力的存在,即使用两台泵并联运行,总的合成流量也小于单独运行时流量的2倍。
并联运行时的流量随装置特性曲线变陡而减小。
(4)两台不同特性泵的并联运转
如图10-11所示,HⅠ和HⅡ是两泵单独的特性曲线,HⅢ是两泵并联合成特性曲线。
当装置特性曲线为R1时,合成工况点为A点,实际两泵的工况点为B1和B2点。
其流量小于两台泵单独运行时流量QB1、QB2之和。
当装置特性曲线如R2时,关死扬程低的泵Ⅱ,在流量为零的工况下运转。
这时泵消耗的功率使液体加热,有可能出现事故。
如果泵Ⅱ无逆止阀,水将通过泵Ⅱ倒流,并引起该泵反转。
由以上两例可知,泵并联运转按扬程相等分配流量。
(5)串联、并联运转的选择
图10-12中,HⅠ(HⅡ)为泵单独运转时的特性曲线,HⅢ为两台泵串联时的特性曲线,HⅣ为两台泵并联时的特性曲线。
串联和并联合成特性曲线的交点A是确定两种运转方式的分界点。
当装置特性曲线为A点下方的R1时,并联合成工况点A4较串联合成工况点A3的流量大;当装置特性曲线为A点上方的R2时串联比并联流量
大。
因此,欲用两台泵增加流量采用并联还是串联,要根据装置特性曲线的形状决定。