城轨车辆空气制动系统资料

合集下载

城轨交通车辆电制动与空气制动

城轨交通车辆电制动与空气制动

4.制动控制的原则
制动控制的基本原则包括常用制动优先原则、 常用制动混合原则和常用制动力的分配原则。
(1)常用制动优先原则。第一优先再生制动 ,第二优先电阻制动,第三优先摩擦制动(气制动) 。
电制动与空气制动
1 电制动
4.制动控制的原则
(2)常用制动混合原则。 ①电制动无故障状态下的制动原则。在DCU无故障状态的情况 下,电制动始终起作用,提供常用制动所需的制动力(AW0~AW2) 。制动指令值同时送至所有的DCU和ECU,并由它们分别根据车辆 的载荷情况计算所需的制动力。 ②电制动与气制动混合的控制原则。电制动与气制动之间的融 合(混合)应是平滑的,并满足正常运行的冲击极限。气制动用来填补 所要求的制动需求和已达到的电制动力之间的差额。
电制动与空气制动
图5-4 电阻制动原理
电制动与空气制动
1 电制动
3.制动模式
常用制动 快速制动 紧急制动
弹簧停放制动 保压制动
电制动与空气制动
1 电制动
3.制动模式
(1)常用制动。在常用制动模式下,电制动和空气制动 一般都处于激活状态。一般情况下,电制动能满足车辆制动要 求,当电制动不能满足制动要求时,气制动能够迅速、平滑地 补充,实现混合制动作用。
电制动与空气制动
1 电制动
5.制动控制系统的分类
➢ ②模拟指令式制动控制系统。模拟指令式制动控制系统与 数字指令式制动控制系统基本相同。唯一的区别是从驾驶 室送往各车辆的制动电气指令是使用模拟量传递的,所以 称为模拟指令式制动控制系统。从控制系统可获得无限级 制动力,即可控制制动的细微调节,因此比较适宜于ATC 控制的列车。
电制动与空气制动
1 电制动
4.制动控制的原则

城市轨道车辆制动系统

城市轨道车辆制动系统

(四) 整车运输的特殊形式 1 .整车分卸 2 .站界内搬运和途中装卸 (五) 准、米轨间直通运输 (六) 国铁与地方铁路间直通运输
(三)铁路内部货运管理规则与办法 铁路内部货运管理规则与办法主要有《铁
路货物运输管理规则》( 简称《管规》) 和 《铁路货运事故处理规则》( 简称《事规》) 。《管规》明确规定了货物运输各个环节的作 业内容和质量要求,是铁路货运工作人员的工 作细则。《事规》是铁路内部处理货运事故的 规定。其他还有《铁路零担货物运输组织规则
(1)动力制动系统。它一般与牵引系统连在一起形成 主电路,包括再生反馈电路和制动电阻器,将动力制动产 生的电能反馈给供电接触网或消耗在制动电阻器上。
(2)空气制动系统。它由供气部分、控制部分和执行 部分等组成。供气部分有空气压缩机组、空气干燥器和风 缸等;控制部分有电-空转换阀(EP)、紧急阀、称重阀 和中继阀等;执行部分有闸瓦制动装置和盘形制动装置等。
3.制动机:产生制动原动力并进行操纵和控制的部分设备。
二、货运工作的法规依据
(一) 铁路货物运输合同的主要法律依据 1. 《中华人民共和国合同法》( 简称《合同法》
) ,是调整横向经济关系的法律规定。 2. 《中华人民共和国铁路法》( 简称《铁路法》
) ,是保障铁路运输和铁路建设顺利进行的法 律规定。 3. 《铁路货物运输合同实施细则》( 简称《实施 细则》) ,是以《合同法》作为依据,结合铁 路货物运输的特点而制定的经济法规,是《合 同法》的补充。
现铁路运输创新发展的重要举措,是拓展市场、做大做强铁路运输
企业、探索中国铁路在新形势下发展道路的重要途径。

为进一步方便广大旅客货主,推动铁路向现代物流转型发展,
中国铁路95306网站已于2015年 4月10日上线运行。

城轨车辆制动系统课件

城轨车辆制动系统课件

制动控制方式
城轨车辆制动系统采用多种制动控制 方式,如电制动、空气制动等,以满 足不同情况下的制动需求。
制动系统在城轨车辆中的实践案例
北京地铁
北京地铁采用具有自主知识产权的城轨 车辆制动系统,实现了列车的安全、可 靠制动。
VS
上海地铁
上海地铁采用进口的城轨车辆制动系统, 为列车提供稳定的制动和停车功能。
对于不符合法规与标准的行为,需要进行整改和处罚,加强监管和执法力度,提高城轨车辆制动系统的 安全性和可靠性。
制动系统相关法规与标准的未来发展与完善
随着城市轨道交通的快速发展和技术进步,制 动系统相关法规与标准也需要不断更新和完善 ,以适应新的安全需求和技术发展趋势。
未来发展与完善过程中,需要加强国际交流与 合作,借鉴国际先进经验和技术成果,推动制 动系统相关法规与标准的国际化和标准化。
制动系统的发展趋势与未来展望
智能化
01
随着技术的发展,城轨车辆制动系统将更加智能化,实现自动
化控制和故障诊断。
节能环保
02
未来城轨车辆制动系统将更加重视节能环保,采用更加高效的
制动方式,减少能源消耗和环境污染。
自主创新
03
未来城轨车辆制动系统将更加重视自主创新,研发具有自主知
识产权的核心技术,提升我国城轨交通产业的竞争力。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
01
城轨车辆制动系统概述
制动系统的定义与功能
定义
城轨车辆制动系统是用于控制列 车运行速度并在必要时使列车安 全停止的系统。
功能
城轨车辆制动系统具有减速、停 车和保持车辆静止等基本功能, 同时还可以根据需要调车辆制动系统通过制动器将车辆动能转化为热能散发到空气中,从而实现 制动。

《城市轨道交通车辆构造》教学课件 项目6 城轨车辆制动系统

《城市轨道交通车辆构造》教学课件 项目6  城轨车辆制动系统

2.2 空气制动系统的工作原理
2〕自动空气制动机
〔1〕工作原理。 自动空气制动机的工作原理如图6-14所示。与其他空气制动机相比,自动空气制动 机增加了三个部件,即在总风缸与制动阀之间增加了给气阀,在每节车辆的制动管与制动 缸之间增加了三通阀和副风缸。其中,给气阀的作用是给制动管定压,即无论总风缸压力 多高,给气阀出口的压力总保持为一个设定值。
① 制动管增压制动、减压缓 解,列车别离时不能自动停车。
② 能实现阶段缓解和阶段制动。
〔2〕 根本特点
④ 制动时,全列车制动缸的压缩 空气都由总风缸供给;缓解时, 各制动缸的压缩空气都需经制动 阀排气口排入大气。因此,前后 车辆的制动一致性较差。
③ 制动力大小由驾驶员将 手柄放置在制动位的时间 长短决定,因此制动控制 不太精确。
任务实施
将全班学生进行分组,每5人为一组,利用本任务学到的知识,具体选定某种类型的城 轨车辆,对其制动系统进行分析,并做成分析报告交给老师。老师根据每组学生的分析报 告进行针对性指导。
参考案例 下面以沈阳地铁1号线车辆为例,认识城轨车辆的制动系统。 沈阳地铁1号线车辆采用的制动系统是德国Knorr公司生产的EP2002型微机控制的模 拟式电空制动系统。该系统具有常用制动、快速制动、停放制动及紧急制动模式。常用制 动和快速制动采用电空混合方式,优先采用电制动。停放制动采取弹簧施加制动和充气缓 解的方式,可以对停放制动进行手动缓解。该制动系统采用单元踏面制动形式,每辆车配 备8套根底制动装置,其中4套带有停放制动功能。 电空制动系统可根据载荷调节制动力的大小,使车辆减速度保持不变,并可以实现防 滑保护及状态监控功能。
1.1 制动的相关概念 2〕缓解
缓解是指对已经施行制动的列车进 行制动解除或减弱的过程。

城轨车辆空气制动与液压制动系统的概述

城轨车辆空气制动与液压制动系统的概述

城轨车辆空气制动与液压制动系统的概述概述了目前城轨车辆上常用的空气制动系统和液压制动系统,分析了两种制动系统的工作原理,并对比了各自的特点。

标签:空气制动;液压制动;工作原理;分析对比绪论对城轨轨道交通来讲,制动系统有着非常重要的作用。

车辆因故障不能出发不会有什么危险,若在运行中因制动系统故障不能按要求停车,则后果不堪设想。

城市轨道交通的站距短,因此车辆的调速及停车比较频繁。

为了提高车辆运行速度,必须使车辆启动快,制动距离短。

同时城市有轨交通车辆的旅客上下波动大,对车辆载重有较大的影响,因此需根据现场实际情况,选择最佳的车辆制动系统。

1 城轨车辆制动系统现代城轨车辆的制动系统主要由两种方式组成:(1)电制动为主,空气制动系统为辅;(2)电制动为主,液压制动为辅。

空气制动系统主要由空气压缩机、制动控制装置、微机单元、空气管路、基础制动装置(用于放大空气制动力的装置)等组成。

液压制动系统主要由液压单元(分为主动式液压单元和被动式液压单元)、液压管路、电子控制单元、制动夹钳等组成。

2 工作原理2.1 空气制动系统的工作原理2.2 液压制动系统的工作原理以广州市海珠区的储能低地板项目的液压制动系统为例,车辆编组为3动1拖(Mc1-T-M-Mc2)。

车辆液压制动系统包括了在动力转向架上的被动式电子液压制动系统,以及拖车转向架上的主动式电子液压控制系统,具有车辆防滑控制和补偿负载控制。

该制动系统的原理图如图2所示。

2.2.1 动力转向架。

动力转向架液压单元由被动式液压单元、被动式弹簧制动夹钳机构、轴式制动盘组成。

车辆在运行过程中,被动式液压单元中的二位二通电磁阀关闭,使被动式液压单元与制动夹钳导通,液压油流入制动夹钳内,使制动夹钳内被动式弹簧受到液压单元的输入压力,从而使制动夹钳保持张开。

而在车辆需要动力轉向架施加制动时,被动式液压单元中的二位二通电磁阀开启,从而使液压油直接回流到油箱,制动夹钳中的被动式弹簧失去输入压力,从而使制动夹钳合拢,夹紧轴式制动盘,产生制动力。

城市轨道交通制动系统研究

城市轨道交通制动系统研究

城市轨道交通制动系统研究摘要:随着中国的现代化进程逐步向世界前端靠拢,中国地铁车辆发展迅速,为了保障人们出行方便和缓解交通压力,城市轨道交通已成为我国便利公共交通、改善出行环境和缓解交通压力的必然选择。

现如今地铁列车的两个站点的距离相对较短,在车辆的高速运转中,必须依赖制动系统来调整列车运行速度并及时准确地停在站台安全位置,这个目标的实现是必须依靠制动系统的精准。

因此,制动系统是地铁车辆不可缺的一部分,地铁列车的制动能力是安全载客能力的最根本保证。

关键词:制动系统前言由于地铁在城市出行中发挥的重要作用,要求列车在到达站点时能够安全平稳的停车,这是非常重要的。

因此在其停车制动方面的要求非常严格。

安全有效的停车制动,会相对减少地铁安全隐患,以及尽量避免安全事故的发生,对保障乘客的安全起到了很重要的作用。

本文根据在操作过程中的实际情况,介绍了相关制动系统的内容。

一.地铁车辆系统组成城市轨道交通地铁车辆通常采用由德国KNORR公司提供的EP2002空气制动系统,是目前先进的轨道车辆制动控制系统。

EP2002系统引入分散式制动控制概念,将制动控制和制动管理电子设备以及常用制动(SB)气动阀,紧急(EB)制动阀和车轮防滑保护装置(WSP)气动阀等多个模块集成到一个阀体中,分别组成智能阀和网关阀,并安装在其所控制的转向架上(即每个转向架1个阀门)。

组合后的智能阀和网关阀通过一根专用的CAN控制总线连接在一起构成了EP2002制动控制系统(如图1-1)。

图1-1制动控制系统二.地铁车辆制动的方式1)常用制动:采取电制动和空气制动混合施加的方式,混合施加时,电制动优先,不足的部分由空气制动进行补偿,GV阀将需要补偿的空气制动力平均分配到每个动车和拖车转向架,待车转向架达到粘着极限后,把剩余空气制动力平均分配到每个车的转向架。

电制动和空气制动具有独立的防滑控制功能。

一般情况下当主手柄置于“制动”位时,司控器输出一定的模拟量,通过车辆总线MVB 传输给GV阀。

jz7空气制动系统

jz7空气制动系统
jz7空气制动系统
contents
目录
• jz7空气制动系统概述 • jz7空气制动系统的构成 • jz7空气制动系统的控制逻辑 • jz7空气制动系统的调试与维护 • jz7空气制动系统的改进与发展
01
CATALOGUE
jz7空气制动系统概述
jz7系统的基本原理
基于空气动力学原理 设计
适用于高速列车和城 市轨道交通车辆的制 动
塞是否活动自如。
月度维护
每月检查制动缸的活塞杆是否有 锈蚀现象,涂抹润滑脂,检查气
源压力是否正常。
年度维护
每年进行全面检查,包括制动系 统的密封性、制动缸的磨损情况 、气管路是否有漏气现象等,并
对磨损严重的部件进行更换。
常见故障及排除方法
制动不灵
检查制动缸压力是否正常,气管路是否有漏气现 象,制动器摩擦片是否磨损严重,需要更换。
逻辑控制关系
制动系统逻辑控制
根据列车状态(如速度、牵引力等)和操作指令(如直接控制、自动控制等),按照预设的逻辑关系 ,控制制动系统的压力和状态。
安全逻辑控制
在制动系统出现故障或异常情况时,通过安全逻辑控制,保证列车安全。
04
CATALOGUE
jz7空气制动系统的调试与维护
调试方法及步骤
初始调试
节能环保
优化制动系统设计,降低能耗和排放,满足环保要求。
高可靠性
加强关键部件的可靠性设计和寿命预测,提高制动系统的安全性和 使用寿命。
产品升级与换代计划
产品升级
根据用户反馈和技术发展,不断优化和 升级jz7空气制动系统,提高产品性能和 可靠性。
VS
新产品研发
开发新一代空气制动系统,满足更多应用 场景和更高性能要求。

城轨交通车辆制动系统—EP2002制动系统

城轨交通车辆制动系统—EP2002制动系统

四、EP2002制动系统的应用
由于EP2002制动控制系统与常规的制动系统相比有比较 突出的优点,目前已经在国内许多新建造的城轨交通车辆中获 得了广泛的应用。比如西安地铁1号线、广州地铁3号线、上海 6辆编组改8辆编组列车已采用这种制动方式,并取得了良好的 效果,其中广州地铁3号线是世界上第一个在地铁车辆上使用 EP2002制动系统的城轨车辆项目。随着EP2002制动系统技术 的不断改进,它将更广泛应用于北京、天津、南京、上海、深 圳等城市的地铁车辆上。
EP2002将制动控制和制动管理电子设备以及常用制动(SB)气 动阀、紧急制动(EB)气动阀和车轮防滑保护装置(WSP)气动阀 都集成在各转向架(EP2002网关阀、RIO阀及智能阀)的机电设备 集成包中。气动系统可以通过一个中心点向各个EP2002阀门供风或 从各处向阀门供风。
整个EP2002制动系统包括空气压缩机、空气干燥塔、大小储风 缸、控制单元和检测点,均采用模块化设计。EP2002制动系统的主 要特点可概括为结构紧凑、质量轻,安装方式多样,使用维护方便 。
图5-23广州地铁3号线地铁车辆采用 EP2002制动系统的动车气路原理
B00—制动控制模块; B10—转向架空 气制动切除塞门; P04—汽笛;
W01—解钩电磁阀; W03—截断塞门
5-23
一、EP2002制动系统的组成


5.EP2002制动系统的基础制动装置 如图5 24所示为国内某地铁车辆的 EP2002制动系统的基础制动装置的分布。 由图可知,EP2002基础制动装置由每轴3 个制动盘组成,以保证制动作用的可靠性。 图5 24国内某地铁车辆的EP2002制 动系统的基础制动装置的分布
一、EP2002制动系统的组成
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空气制动,又称为机械制动或摩擦制动。

城市轨道交通车辆常用的空气制动方式有闸瓦制动和盘形制动。

空气制动主要以压缩空气为动力,压缩空气由车辆的供气系统供给。

一空气制动系统的组成城市轨道交通车辆的空气制动系统由供气系统、基础制动装置(常见的有闸瓦制动系统与盘形制动装置)、防滑装置和制动控制单元组成。

供气系统主要由空气压缩机、空气干燥剂、压力控制装置和管路组成,供气系统除了给车辆制动系统供气外,还向车辆的空气悬架设备,车门控制装置(气动门),气动喇叭,刮水器及车钩操作气动控制设备等需要压缩空气的设备供气。

防滑装置适用于车轮与钢轨黏着不良时,对制动力进行控制的装置。

它的作用是:防止车轮即将抱死;避免滑动并最佳地利用粘着力,以获取最短的制动距离。

制动控制单元是空气制动的核心部件,它接受微机制动控制单元(EBCU)的指令,然后再指示制动执行部件动作。

其组成部分有:模拟转换阀、紧急阀、称重阀和均匀阀等。

这些部件都安装在一块铝合金的气路板上,实现了集成化。

这样避免用管道连接而造成容易泄露和占用空间大等问题。

二、空气制动系统的控制方式空气制动系统按其作用原理的不同,可以分为直通式空气制动机,自动式空气制动机和直通自动式空气制动机。

1.直通式空气制动机直通式空气制动机的机构如图所示空气压缩机将压缩空气储入总风缸内,经总风缸管至制动阀。

制动阀有缓解位、保压位和制动位3个不同位置。

在缓解位时,制动管内的压缩空气经制动阀Ex (Exhaust) 口排向大气;在保压位时,制动阀保持总风缸、制动管和Ex口各不相通;在制动位时,总风缸管压缩空气经制动阀流向制动管。

(1)制动位驾驶员要实施制动时,首先把操纵手柄放在制动位,总风缸的压缩空气经制动阀进入制动管。

制动管是一根贯穿整个列车,两端封闭的管路。

压缩空气由制动管进入各个车辆的制动缸,压缩空气推动制动缸活塞移动,并通过活塞杆带动基础制动装置,使闸瓦压紧车轮,产生制动作用。

制动力的大小,取决于制动缸内压缩空气的压力,由驾驶员操纵手柄在制动位放置时间长短而定。

(2)缓解位要缓解时,驾驶员将操纵手柄置于缓解位,各车辆制动缸内的压缩空气经制动管从制动阀Ex口排入大气。

操纵手柄在缓解位放置的时间应足够长,使制动缸内的压缩空气排尽,压力降至为零。

此时制动缸活塞借助于制动缸缓解弹簧的复原力,使活塞回到缓解位,闸瓦离开车轮,实现车辆缓解。

(3)保压位制动阀操纵手柄放在保压位时,可保持制动缸内压力不变。

当驾驶员将操纵手柄在制动位与保压位之间来回操纵,或在缓解位与保压位之间来回操纵时,制动缸压力能分阶段上升或降下,即实现阶段制动或阶段缓解。

直通式空气制动机的特点如下:1)制动管增压制动、减压缓解,列车分离时不能自动停车。

2)能实现阶段缓解和阶段制动。

3)制动能力大小靠驾驶员操纵手柄在制动位放置时间的长短决定的,因而控制不太精确。

4)制动时全列车制动缸的压缩空气都由总风缸供给;缓解时,各制动缸的压缩空气都需经制动阀排气口排入大气。

因此前后车辆制动一致性不好。

自动式空气制动机自动式空气制动机在直通式空气制动机的基础上增加了三个部件:在总风缸与制动阀之间增加了给气阀;在每节车辆的制动管与制动缸之间增加了三通阀和副风缸。

给气阀的作用是限定制动管定压,人为规定制动管压力,即无论总风缸压力多高,给气阀出口的压力总保持在一个设定值。

自动式空气制动机的制动阀同样也有缓解位、保压位和制动3个作用位置,但内部通路与直通式空气制动机的制动阀有所不同。

在缓解位时它联通给气阀与制动管的通路;制动位时它使制动管与制动阀上的Ex口相通,制动管压缩空气经它排向大气;保压位时仍保持各路不通。

制动阀操纵手柄放在缓解位时,总风缸中的压缩空气经给气阀、制动阀送到制动管,然后通过制动管送到各车辆的三通阀,经三通阀使副风缸充气。

如此时制动缸中有压缩空气,则经三通阀的排气口排入大气。

列车运行时,制动阀操纵手柄一般处于缓解位,直至副风缸充至制动管定压值。

制动阀操纵手柄放在制动位时,制动管内的压缩空气经制动阀Ex口排向大气。

制动管的减压信号传至车辆的三通阀时,三通阀动作,副风缸内的压缩空气经三通阀充向制动缸,制动缸活塞推出,使制动执行机构动作,列车产生制动作用。

由此可见,自动空气制动机是依靠制动管中压缩空气的压力变化来传递制动信号,制动管增压缓解,减压则制动,其中,三通阀是制动缸充气或排气的控制部件。

三通阀的工作原理如图所示三通阀由于它与制动管、副风缸和制动缸相通而得名。

根据制动管压力的变化,三通阀有以下三个基本位置。

(1)充气缓解位制动管压力增加时,在三通阀活塞两侧形成压差,三通阀活塞及活塞杆带动节制阀及滑阀一起移至右侧段位,这时充气沟露出。

三通阀内形成以下两条通路:①制动管→充气沟→滑阀室→副风缸;②制动缸→滑阀室R孔→滑阀底面N槽→三通阀Ex口→大气。

第一条为充气通路,第二条为缓解通路,所谓充气是指向副风缸充气,缓解是指制动缸缓解。

副风缸内压可一直充至与制动管的压力相等,即达到制动管定压,制动缸缓解后的最终压力为零。

(2)制动位制动时,驾驶员把制动阀手柄放在制动位,制动管内的压力空气经制动阀排气减压。

三通阀活塞左侧压力下降,右侧副风缸压力大于左侧。

当两侧压差较小时,不足以推动活塞,副风缸的压力空气有通过充气沟逆流的现象。

但由于制动管内压力下降较快,活塞两侧压差继续增大,压差达到足以克服活塞及节制阀的阻力时活塞及活塞杆带动节制阀向左移一间隙距离,使活塞杆与滑阀之间的间隙B置于前部,活塞折断充气沟,副风缸压力空气停止逆流,滑阀上的通孔上端开放,与副风缸相通。

随着制动管压力刀锋继续下降,活塞两侧压差加大到能够克服滑阀与滑阀座之间的摩擦力时,活塞带动滑阀左移至极端位,滑阀切断制动缸通大气的通路,同时滑阀通孔下端与滑阀座制动缸孔R对准,形成副风缸向制动缸的充气通路。

如果三通阀一直保持这一位置,最终将使副风缸压力与制动缸的压力平衡。

(3)保压位在制动管减压到一定值后,驾驶员将制动阀操纵手柄移至保压位,制动管停止减压。

三通阀活塞左侧压力不再下降,但三通阀活塞仍处于左极端的制动位,因此副风缸压力空气继续充向制动缸,活塞右侧的压力继续下降。

当右侧副风缸压力稍低于左侧制动管的压力时,两侧压差达到能克服活塞和节制阀的阻力时,活塞将带着节制阀向右移一间隙距离,使滑阀与活塞杆之间的间隙位于后端,同时节制阀遮断副风缸向制动缸的充气通路,副风缸压力不再下降。

由于此时活塞两侧压差较小,不足以克服滑阀与滑阀座之间的摩擦力,所以活塞位于此位不再移动,制动缸保压。

当驾驶员将制动阀操纵手柄在制动位和保压位间来回扳动时,制动管压力反复减压、保压,三通阀则反复处于制动位、保压位,而制动缸压力则不断升压、保压,再升压、保压,直至制动缸压力与副风缸压力平衡为止,即自动制动机具有阶段制动动作。

但由于自动制动机三通阀结构的限制,其无法实现阶段缓解,而只能一次缓解。

3.直通自动式空气制动机结构如下直通自动式空气制动机与自动式空气制动机在制动机的组成上基本相同,只增加了一个定压风缸13.但其三通阀的结构和原理与自动式空气制动机的三通阀有较大的区别。

自动式空气制动机三通阀的主控机构是靠制动管与副风缸两者压力的差别与平衡来动作的,即为二压力机构阀。

而直通自动空气制动机三通阀的主控机构由大小两个活塞组成,它的动作是由制动缸压力活塞上侧的制动缸压力,主活塞上、下两侧的制动管压力和定压风缸的压力三者的差别与平衡来控制的,因此它是属于三压力机构阀。

其具有以下四个作用工况:(1)充气缓解位驾驶员将制动阀置于缓解位I,总风缸的压缩空气经给气阀和制动阀充向制动管,再经制动管通向各车辆的三通阀主活塞上侧。

活塞在制动管压力作用下下移,形成下列两条通路:①制动管压缩空气主活塞上侧→充气沟→主活塞下侧定压风缸;②制动缸的压缩空气→制动缸压力活塞的上侧→排气阀口→活塞杆中心口→制动缸压力活塞下侧→三通阀排气口。

(2) 制动位制动阀操作手柄置于制动位III ,制动管以一定的速度减压,定压风缸的压缩空气来不及通过充气沟逆流,主活塞上、下两侧形成压差,,主活塞上移。

首先,排气阀口顶住进排气阀,关闭了制动缸与大气的通路。

同时,充气沟被主活塞遮断,主活塞两侧压差进一步加大,主活塞克服进排气阀弹簧压力而打开进排气阀进气口,形成副风缸通过进气阀口至制动缸充气的通路。

同时制动缸压力也作用在制动缸压力活塞上侧。

(3)制动中立位制动阀操纵手柄置于包压位II ,制动管停止减压。

这时主活塞上侧压力停止下降,但三通阀仍处于制动位,副风缸继续向制动缸充气,制动缸压力活塞上侧压力也继续增加。

当制动缸压力作用在制动缸压力活塞上侧产生的作用力与进排气阀弹簧,再加上主活塞上侧制动管压力产生的作用力,稍稍大于定压风缸压力在主活塞下侧产生的作用力时,进排气阀压向进气阀口,切断副风缸向制动缸的充气通路。

这时排气口也没开启,制动缸处于包压状态,三通阀处于制动中立位。

若驾驶员将制动阀操纵手柄在制动位、中立位来回扳动,三通阀将反复处于制动位与制动中立位,即得到阶段制动。

(4)缓解中立位列车制动后充气缓解,当制动管压力尚未充至定压时,驾驶员将制动阀操纵手柄置于中立位,制动管停止增压。

这时由于主活塞上侧制动管压力仍小于定压风缸的压力(基本上仍保持制动管定压),因此当制动缸压力减至一定值时,作用在活塞上的制动管、制动缸和定压风缸三者压力使向上的压力略大于向下的压力,活塞上移,排气阀口关闭。

但向上的力较小,不足以顶开进排气阀,制动缸保压,三通阀处于缓解中立位。

在制动管充至定压前,反复使制动管处于增压,保压状态,就能实现阶段缓解,,当制动管最终充至定压,制动缸就彻底缓解完毕。

直通自动式空气制动机的特点如下:1)能阶段制动和阶段缓解。

同时,制动管要充到定压,制动缸才能完全缓解。

2)具有制动力不衰减性性能。

即在制动中立位或缓解中立位时,当制动缸压力因泄漏等原因而下降时,三通阀能自动地给与补充压缩空气,使制动缸压力保持原值。

相关文档
最新文档