高一物理下册 机械能守恒定律检测题(Word版 含答案)
高一物理下册机械能守恒定律单元练习(Word版 含答案)

一、第八章机械能守恒定律易错题培优(难)1.一足够长的水平传送带上放置质量为m=2kg小物块(物块与传送带之间动摩擦因数为0.2μ=),现让传送带从静止开始以恒定的加速度a=4m/s2开始运动,当其速度达到v=12m/s后,立即以相同大小的加速度做匀减速运动,经过一段时间后,传送带和小物块均静止不动。
下列说法正确的是()A.小物块0到4s内做匀加速直线运动,后做匀减速直线运动直至静止B.小物块0到3s内做匀加速直线运动,之后做匀减速直线运动直至静止C.物块在传送带上留下划痕长度为12mD.整个过程中小物块和传送带间因摩擦产生的热量为80J【答案】ACD【解析】【分析】【详解】物块和传送带的运动过程如图所示。
AB.由于物块的加速度a1=µg=2m/s2小于传送带的加速度a2=4 m/s2,所以前面阶段两者相对滑动,时间12vta==3s,此时物块的速度v1=6 m/s,传送带的速度v2=12 m/s物块的位移x1=12a1t12=9m传送带的位移x2=12a2t12=18m两者相对位移为121x x x∆=-=9m此后传送带减速,但物块仍加速,B错误;当物块与传送带共速时,由匀变速直线运动规律得12- a2t2=6+ a1t2解得t 2=1s因此物块匀加速所用的时间为t 1+ t 2=4s两者相对位移为2x ∆= 3m ,所以A 正确。
C .物块开始减速的速度为v 3=6+ a 1t 2=8 m/s物块减速至静止所用时间为331v t a ==4s 传送带减速至静止所用时间为342v t a ==2s 该过程物块的位移为x 3=12a 1t 32=16m 传送带的位移为x 2=12a 2t 42=8m 两者相对位移为3x ∆=8m回滑不会增加划痕长度,所以划痕长为12x x x ∆=∆+∆=9m+3m=12mC 正确;D .全程相对路程为L =123x x x ∆+∆+∆=9m+3m+8m=20mQ =µmgL =80JD 正确; 故选ACD 。
人教版高一物理下册 机械能守恒定律单元综合测试(Word版 含答案)

一、第八章 机械能守恒定律易错题培优(难)1.如图所示,质量为1kg 的物块(可视为质点),由A 点以6m/s 的速度滑上正沿逆时针转动的水平传送带(不计两转轮半径的大小),传送带上A 、B 两点间的距离为8m ,已知传送带的速度大小为3m/s ,物块与传送带间的动摩擦因数为0.2,重力加速度为210m/s 。
下列说法正确的是( )A .物块在传送带上运动的时间为2sB .物块在传送带上运动的时间为4sC .整个运动过程中由于摩擦产生的热量为16JD .整个运动过程中由于摩擦产生的热量为28J【答案】BD【解析】【分析】【详解】AB .滑块先向右匀减速,根据牛顿第二定律有mg ma μ=解得22m/s a g μ==根据运动学公式有010v at =-解得13s t = 匀减速运动的位移01063m 9m 8m 22v x t L +==⨯==> 物体向左匀加速过程,加速度大小仍为22m/s a =,根据运动学公式得物体速度增大至2m/s v =时通过的位移2212m 1m 222v x a ===⨯ 用时22s 1s 2v t a === 向左运动时最后3m 做匀速直线运动,有233=s 1s 3x t v == 即滑块在传送带上运动的总时间为 1234s t t t t =++=物块滑离传送带时的速率为2m/s 。
选项A 错误,B 正确;C .向右减速过程和向左加速过程中,摩擦力为恒力,故摩擦力做功为110.211041J 6J f W f x x mg x x μ=--=--=-⨯⨯⨯-=-()()()选项C 错误;D .整个运动过程中由于摩擦产生的热量等于滑块与传送带之间的一对摩擦力做功的代数和,等于摩擦力与相对路程的乘积;物体向右减速过程,传送带向左移动的距离为114m l vt ==物体向左加速过程,传送带运动距离为222m l vt ==即121[]Q fS mg l x l x μ==++-()()代入数据解得28J Q =选项D 正确。
高一物理下册机械能守恒定律单元综合测试(Word版 含答案)

一、第八章 机械能守恒定律易错题培优(难)1.某实验研究小组为探究物体冲上粗糙斜面能达到的最大位移x 与斜面倾角θ的关系,使某一物体每次以不变的初速率v 0沿足够长的斜面向上运动,如图甲所示,调节斜面与水平面的夹角θ,实验测得x 与θ的关系如图乙所示,取g =10m/s 2。
则由图可知( )A .物体的初速率v 0=3m/sB .物体与斜面间的动摩擦因数µ=0.8C .图乙中x min =0.36mD .取初始位置所在水平面为重力势能参考平面,当θ=37°,物体上滑过程中动能与重力势能相等时,物体上滑的位移为0.1875m 【答案】AC 【解析】 【分析】 【详解】 A .当2πθ=时,物体做竖直上抛运动,不受摩擦力作用,根据202v gh =可得03m/s v =A 正确;B .当0θ=时,物体沿水平面做减速运动,根据动能定理2012mv mgx μ= 代入数据解得=0.75μB 错误;C .根据动能定理201cos sin 2mv mgx mgx μθθ=+ 整理得920(0.75cos sin )x θθ=+因此位移最小值min 20.36m 200.751x ==+C 正确;D .动能与重力势能相等的位置o 2o o 01sin 37(sin 37cos37)2mgx mv mgx mgx μ=-+ 整理得0.25m x =D 错误。
故选AC 。
2.如图甲所示,质量为4kg 的物块A 以初速度v 0=6m/s 从左端滑上静止在粗糙水平地面上的木板B 。
已知物块A 与木板B 之间的动摩擦因数为μ1,木板B 与地面之间的动摩擦因数为μ2,A 、B 运动过程的v -t 图像如图乙所示,A 始终未滑离B 。
则( )A .μ1=0.4,μ2=0.2B .物块B 的质量为4kgC .木板的长度至少为3mD .A 、B 间因摩擦而产生的热量为72J【答案】BC 【解析】 【分析】 【详解】A .以物块为研究对象有11ma mg μ=由图看出214m/s a =,可得10.4μ=将物块和木板看成一个整体,在两者速度一致共同减速时,有22M m a M m g μ+=+()()由图看出221m/s a =,可得20.1μ=选项A 错误;B .木板和物块达到共同速度之前的加速度,对木板有123()mg M m g Ma μμ-+=由图看出232m/s a =,解得4kg M =选项B 正确;C .由v -t 图看出物块和木板在1s 内的位移差为3m ,物块始终未滑离木板,故木板长度至少为3m ,选项C 正确;D .A 、B 的相对位移为s =3m ,因此摩擦产热为148J Q mgs μ==选项D 错误。
人教版高一物理下册机械能守恒定律综合测试卷(word含答案)

人教版高一物理下册机械能守恒定律综合测试卷(word含答案)一、第八章机械能守恒定律易错题培优(难)1.一足够长的水平传送带上放置质量为m=2kg小物块(物块与传送带之间动摩擦因数为0.2μ=),现让传送带从静止开始以恒定的加速度a=4m/s2开始运动,当其速度达到v=12m/s后,立即以相同大小的加速度做匀减速运动,经过一段时间后,传送带和小物块均静止不动。
下列说法正确的是()A.小物块0到4s内做匀加速直线运动,后做匀减速直线运动直至静止B.小物块0到3s内做匀加速直线运动,之后做匀减速直线运动直至静止C.物块在传送带上留下划痕长度为12mD.整个过程中小物块和传送带间因摩擦产生的热量为80J ACD物块和传送带的运动过程如图所示。
AB.由于物块的加速度a1=μg=2m/s2小于传送带的加速度a2=4 m/s2,所以前面阶段两者相对滑动,时间12vta==3s,此时物块的速度v1=6 m/s,传送带的速度v2=12 m/s 物块的位移x1=12a1t12=9m传送带的位移x2=12a2t12=18m两者相对位移为121x x x?=-=9m此后传送带减速,但物块仍加速,B错误;当物块与传送带共速时,由匀变速直线运动规律得12- a2t2=6+ a1t2解得t 2=1s因此物块匀加速所用的时间为t 1+ t 2=4s两者相对位移为2x ?= 3m ,所以A 正确。
C .物块开始减速的速度为v 3=6+ a 1t 2=8 m/s物块减速至静止所用时间为331v t a ==4s 传送带减速至静止所用时间为342v t a ==2s 该过程物块的位移为x 3=12a 1t 32=16m 传送带的位移为x 2=12a 2t 42=8m 两者相对位移为3x ?=8m回滑不会增加划痕长度,所以划痕长为12x x x ?=?+?=9m+3m=12mC 正确;D .全程相对路程为L =123x x x ?+?+?=9m+3m+8m=20mQ =μmgL =80JD 正确;故选ACD 。
高一物理下册机械能守恒定律综合测试卷(word含答案)(1)

一、第八章 机械能守恒定律易错题培优(难)1.在机场和火车站对行李进行安全检查用的水平传送带如图所示,当行李放在匀速运动的传送带上后,传送带和行李之间的滑动摩擦力使行李开始运动,随后它们保持相对静止,行李随传送带一起匀速通过检测仪检查,设某机场的传送带匀速前进的速度为0.4 m/s ,某行李箱的质量为5 kg ,行李箱与传送带之间的动摩擦因数为0.2,当旅客把这个行李箱小心地放在传送带上的A 点,已知传送带AB 两点的距离为1.2 m ,那么在通过安全检查的过程中,g 取10 m/s 2,则 ( ).A .开始时行李箱的加速度为0.2 m/s 2B .行李箱从A 点到达B 点时间为3.1 sC .传送带对行李箱做的功为0.4 JD .传送带上将留下一段摩擦痕迹,该痕迹的长度是0.04 m 【答案】BCD 【解析】 【分析】 【详解】行李开始运动时由牛顿第二定律有:μmg=ma ,所以得:a="2" m/s 2,故A 错误;物体加速到与传送带共速的时间10.40.22v t s s a ===,此时物体的位移:110.042x vt m ==,则物体在剩下的x 2=1.2m-0.04m=1.96m 内做匀速运动,用时间22 2.9x t s v==,则行李箱从A 点到达B 点时间为t=t 1+t 2="3.1" s ,选项B 正确;行李最后和传送带最终一起匀速运动,根据动能定理知,传送带对行李做的功为:W=12mv 2="0.4" J ,故C 正确;在传送带上留下的痕迹长度为:0.04?22vt vts vt m =-==,故D 正确.故选BCD .2.在一水平向右匀速传输的传送带的左端A 点,每隔T 的时间,轻放上一个相同的工件,已知工件与传送带间动摩擦因素为,工件质量均为m ,经测量,发现后面那些已经和传送带达到相同速度的工件之间的距离为x ,下列判断正确的有A .传送带的速度为x TB .传送带的速度为22gx μC .每个工件与传送带间因摩擦而产生的热量为12mgx μ D .在一段较长的时间内,传送带因为传送工件而将多消耗的能量为23mtx T【答案】AD 【解析】 【分析】 【详解】A .工件在传送带上先做匀加速直线运动,然后做匀速直线运动,每个工件滑上传送带后运动的规律相同,可知x =vT ,解得传送带的速度v =xT.故A 正确; B .设每个工件匀加速运动的位移为x ,根据牛顿第二定律得,工件的加速度为μg ,则传送带的速度2v gx μ=s 与x 的关系.故B 错误; C .工件与传送带相对滑动的路程为22222v v x x v g g gT μμμ∆=-=则摩擦产生的热量为Q =μmg △x =222mx T故C 错误;D .根据能量守恒得,传送带因传送一个工件多消耗的能量22212mx E mv mg x Tμ=+∆=在时间t 内,传送工件的个数fW E η=则多消耗的能量23mtx E nE T'==故D 正确。
人教版高一物理下册 机械能守恒定律综合测试卷(word含答案)

一、第八章机械能守恒定律易错题培优(难)1.一足够长的水平传送带上放置质量为m=2kg小物块(物块与传送带之间动摩擦因数为0.2μ=),现让传送带从静止开始以恒定的加速度a=4m/s2开始运动,当其速度达到v=12m/s后,立即以相同大小的加速度做匀减速运动,经过一段时间后,传送带和小物块均静止不动。
下列说法正确的是()A.小物块0到4s内做匀加速直线运动,后做匀减速直线运动直至静止B.小物块0到3s内做匀加速直线运动,之后做匀减速直线运动直至静止C.物块在传送带上留下划痕长度为12mD.整个过程中小物块和传送带间因摩擦产生的热量为80J【答案】ACD【解析】【分析】【详解】物块和传送带的运动过程如图所示。
AB.由于物块的加速度a1=µg=2m/s2小于传送带的加速度a2=4 m/s2,所以前面阶段两者相对滑动,时间12vta==3s,此时物块的速度v1=6 m/s,传送带的速度v2=12 m/s物块的位移x1=12a1t12=9m传送带的位移x2=12a2t12=18m两者相对位移为121x x x∆=-=9m此后传送带减速,但物块仍加速,B错误;当物块与传送带共速时,由匀变速直线运动规律得12- a2t2=6+ a1t2解得t 2=1s因此物块匀加速所用的时间为t 1+ t 2=4s两者相对位移为2x ∆= 3m ,所以A 正确。
C .物块开始减速的速度为v 3=6+ a 1t 2=8 m/s物块减速至静止所用时间为331v t a ==4s 传送带减速至静止所用时间为 342v t a ==2s 该过程物块的位移为x 3=12a 1t 32=16m 传送带的位移为x 2=12a 2t 42=8m 两者相对位移为 3x ∆=8m回滑不会增加划痕长度,所以划痕长为12x x x ∆=∆+∆=9m+3m=12mC 正确;D .全程相对路程为L =123x x x ∆+∆+∆=9m+3m+8m=20mQ =µmgL =80JD 正确;故选ACD 。
高一下册物理 机械能守恒定律检测题(Word版 含答案)(1)
一、第八章机械能守恒定律易错题培优(难)1.一足够长的水平传送带上放置质量为m=2kg小物块(物块与传送带之间动摩擦因数为0.2μ=),现让传送带从静止开始以恒定的加速度a=4m/s2开始运动,当其速度达到v=12m/s后,立即以相同大小的加速度做匀减速运动,经过一段时间后,传送带和小物块均静止不动。
下列说法正确的是()A.小物块0到4s内做匀加速直线运动,后做匀减速直线运动直至静止B.小物块0到3s内做匀加速直线运动,之后做匀减速直线运动直至静止C.物块在传送带上留下划痕长度为12mD.整个过程中小物块和传送带间因摩擦产生的热量为80J【答案】ACD【解析】【分析】【详解】物块和传送带的运动过程如图所示。
AB.由于物块的加速度a1=µg=2m/s2小于传送带的加速度a2=4 m/s2,所以前面阶段两者相对滑动,时间12vta==3s,此时物块的速度v1=6 m/s,传送带的速度v2=12 m/s物块的位移x1=12a1t12=9m传送带的位移x2=12a2t12=18m两者相对位移为121x x x∆=-=9m此后传送带减速,但物块仍加速,B错误;当物块与传送带共速时,由匀变速直线运动规律得12- a2t2=6+ a1t2解得t 2=1s因此物块匀加速所用的时间为t 1+ t 2=4s两者相对位移为2x ∆= 3m ,所以A 正确。
C .物块开始减速的速度为v 3=6+ a 1t 2=8 m/s物块减速至静止所用时间为331v t a ==4s 传送带减速至静止所用时间为342v t a ==2s 该过程物块的位移为x 3=12a 1t 32=16m 传送带的位移为x 2=12a 2t 42=8m 两者相对位移为3x ∆=8m回滑不会增加划痕长度,所以划痕长为12x x x ∆=∆+∆=9m+3m=12mC 正确;D .全程相对路程为L =123x x x ∆+∆+∆=9m+3m+8m=20mQ =µmgL =80JD 正确; 故选ACD 。
人教版物理高一下册 机械能守恒定律综合测试卷(word含答案)
一、第八章机械能守恒定律易错题培优(难)1.如图所示,两个质量均为m的小滑块P、Q通过铰链用长为L的刚性轻杆连接,P套在固定的竖直光滑杆上,Q放在光滑水平地面上,轻杆与竖直方向夹角α=30°.原长为2L的轻弹簧水平放置,右端与Q相连,左端固定在竖直杆O点上。
P由静止释放,下降到最低点时α变为60°.整个运动过程中,P、Q始终在同一竖直平面内,弹簧在弹性限度内,忽略一切摩擦,重力加速度为g。
则P下降过程中()A.P、Q组成的系统机械能守恒B.P、Q的速度大小始终相等C31-mgLD.P达到最大动能时,Q受到地面的支持力大小为2mg【答案】CD【解析】【分析】【详解】A.根据能量守恒知,P、Q、弹簧组成的系统机械能守恒,而P、Q组成的系统机械能不守恒,选项A错误;B.在下滑过程中,根据速度的合成与分解可知cos sinP Qv vαα=解得tanPQvvα=由于α变化,故P、Q的速度大小不相同,选项B错误;C.根据系统机械能守恒可得(cos30cos60)PE mgL=︒-︒弹性势能的最大值为312PE mgL=选项C正确;D.P由静止释放,P开始向下做加速度逐渐减小的加速运动,当加速度为零时,P的速度达到最大,此时动能最大,对P、Q和弹簧组成的整体受力分析,在竖直方向,根据牛顿第二定律可得200N F mg m m -=⨯+⨯解得F N =2mg选项D 正确。
故选CD 。
2.如图所示,两质量都为m 的滑块a ,b (为质点)通过铰链用长度为L 的刚性轻杆相连接,a 套在竖直杆A 上,b 套在水平杆B 上两根足够长的细杆A 、B 两杆分离不接触,且两杆间的距离忽略不计。
将滑块a 从图示位置由静止释放(轻杆与B 杆夹角为30°),不计一切摩擦,已知重力加速度为g 。
在此后的运动过程中,下列说法中正确的是( )A .滑块a 和滑块b 所组成的系统机械能守恒B .滑块b 的速度为零时,滑块a 的加速度大小一定等于gC .滑块b 3gLD .滑块a 2gL【答案】AC 【解析】 【分析】 【详解】A .由于整个运动过程中没有摩擦阻力,因此机械能守恒,A 正确;B .初始位置时,滑块b 的速度为零时,而轻杆对滑块a 有斜向上的推力,因此滑块a 的加速度小于g ,B 错误;C .当滑块a 下降到最低点时,滑块a 的速度为零,滑块b 的速度最大,根据机械能守恒定律o 21(1sin 30)2b mgL mv +=解得3b v gL =C 正确;D .滑块a 最大速度的位置一定在两杆交叉点之下,设该位置杆与水平方向夹角为θ 根据机械能守恒定律o 2211(sin 30sin )22a b mgL mv mv θ+=+ 而两个物体沿杆方向速度相等cos sin b a v v θθ=两式联立,利用三角函数整理得212(sin )cos 2a v gL θθ=+利用特殊值,将o =30θ 代入上式可得.521a v gL gL =>因此最大值不是2gL ,D 错误。
人教版高一物理下册 机械能守恒定律综合测试卷(word含答案)
一、第八章 机械能守恒定律易错题培优(难)1.如图所示,质量为1kg 的物块(可视为质点),由A 点以6m/s 的速度滑上正沿逆时针转动的水平传送带(不计两转轮半径的大小),传送带上A 、B 两点间的距离为8m ,已知传送带的速度大小为3m/s ,物块与传送带间的动摩擦因数为0.2,重力加速度为210m/s 。
下列说法正确的是( )A .物块在传送带上运动的时间为2sB .物块在传送带上运动的时间为4sC .整个运动过程中由于摩擦产生的热量为16JD .整个运动过程中由于摩擦产生的热量为28J 【答案】BD 【解析】 【分析】 【详解】AB .滑块先向右匀减速,根据牛顿第二定律有mg ma μ=解得22m/s a g μ==根据运动学公式有010v at =-解得13s t =匀减速运动的位移01063m 9m 8m 22v x t L +==⨯==> 物体向左匀加速过程,加速度大小仍为22m/s a =,根据运动学公式得物体速度增大至2m/s v =时通过的位移2212m 1m 222v x a ===⨯用时22s 1s 2v t a === 向左运动时最后3m 做匀速直线运动,有233=s 1s 3x t v == 即滑块在传送带上运动的总时间为1234s t t t t =++=物块滑离传送带时的速率为2m/s 。
选项A 错误,B 正确;C .向右减速过程和向左加速过程中,摩擦力为恒力,故摩擦力做功为110.211041J 6J f W f x x mg x x μ=--=--=-⨯⨯⨯-=-()()()选项C 错误;D .整个运动过程中由于摩擦产生的热量等于滑块与传送带之间的一对摩擦力做功的代数和,等于摩擦力与相对路程的乘积;物体向右减速过程,传送带向左移动的距离为114m l vt ==物体向左加速过程,传送带运动距离为222m l vt ==即121[]Q fS mg l x l x μ==++-()()代入数据解得28J Q =选项D 正确。
人教版物理高一下册 机械能守恒定律检测题(Word版 含答案)(1)
一、第八章 机械能守恒定律易错题培优(难)1.如图所示,质量为1kg 的物块(可视为质点),由A 点以6m/s 的速度滑上正沿逆时针转动的水平传送带(不计两转轮半径的大小),传送带上A 、B 两点间的距离为8m ,已知传送带的速度大小为3m/s ,物块与传送带间的动摩擦因数为0.2,重力加速度为210m/s 。
下列说法正确的是( )A .物块在传送带上运动的时间为2sB .物块在传送带上运动的时间为4sC .整个运动过程中由于摩擦产生的热量为16JD .整个运动过程中由于摩擦产生的热量为28J【答案】BD【解析】【分析】【详解】AB .滑块先向右匀减速,根据牛顿第二定律有mg ma μ=解得22m/s a g μ==根据运动学公式有010v at =-解得13s t = 匀减速运动的位移01063m 9m 8m 22v x t L +==⨯==> 物体向左匀加速过程,加速度大小仍为22m/s a =,根据运动学公式得物体速度增大至2m/s v =时通过的位移2212m 1m 222v x a ===⨯ 用时22s 1s 2v t a === 向左运动时最后3m 做匀速直线运动,有233=s 1s 3x t v == 即滑块在传送带上运动的总时间为 1234s t t t t =++=物块滑离传送带时的速率为2m/s 。
选项A 错误,B 正确;C .向右减速过程和向左加速过程中,摩擦力为恒力,故摩擦力做功为110.211041J 6J f W f x x mg x x μ=--=--=-⨯⨯⨯-=-()()()选项C 错误;D .整个运动过程中由于摩擦产生的热量等于滑块与传送带之间的一对摩擦力做功的代数和,等于摩擦力与相对路程的乘积;物体向右减速过程,传送带向左移动的距离为114m l vt ==物体向左加速过程,传送带运动距离为222m l vt ==即121[]Q fS mg l x l x μ==++-()()代入数据解得28J Q =选项D 正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、第八章机械能守恒定律易错题培优(难)1.一足够长的水平传送带上放置质量为m=2kg小物块(物块与传送带之间动摩擦因数为0.2μ=),现让传送带从静止开始以恒定的加速度a=4m/s2开始运动,当其速度达到v=12m/s后,立即以相同大小的加速度做匀减速运动,经过一段时间后,传送带和小物块均静止不动。
下列说法正确的是()A.小物块0到4s内做匀加速直线运动,后做匀减速直线运动直至静止B.小物块0到3s内做匀加速直线运动,之后做匀减速直线运动直至静止C.物块在传送带上留下划痕长度为12mD.整个过程中小物块和传送带间因摩擦产生的热量为80J【答案】ACD【解析】【分析】【详解】物块和传送带的运动过程如图所示。
AB.由于物块的加速度a1=µg=2m/s2小于传送带的加速度a2=4 m/s2,所以前面阶段两者相对滑动,时间12vta==3s,此时物块的速度v1=6 m/s,传送带的速度v2=12 m/s物块的位移x1=12a1t12=9m传送带的位移x2=12a2t12=18m两者相对位移为121x x x∆=-=9m此后传送带减速,但物块仍加速,B错误;当物块与传送带共速时,由匀变速直线运动规律得12- a2t2=6+ a1t2解得t 2=1s因此物块匀加速所用的时间为t 1+ t 2=4s两者相对位移为2x ∆= 3m ,所以A 正确。
C .物块开始减速的速度为v 3=6+ a 1t 2=8 m/s物块减速至静止所用时间为331v t a ==4s 传送带减速至静止所用时间为342v t a ==2s 该过程物块的位移为x 3=12a 1t 32=16m 传送带的位移为x 2=12a 2t 42=8m 两者相对位移为3x ∆=8m回滑不会增加划痕长度,所以划痕长为12x x x ∆=∆+∆=9m+3m=12mC 正确;D .全程相对路程为L =123x x x ∆+∆+∆=9m+3m+8m=20mQ =µmgL =80JD 正确; 故选ACD 。
2.某实验研究小组为探究物体冲上粗糙斜面能达到的最大位移x 与斜面倾角θ的关系,使某一物体每次以不变的初速率v 0沿足够长的斜面向上运动,如图甲所示,调节斜面与水平面的夹角θ,实验测得x 与θ的关系如图乙所示,取g =10m/s 2。
则由图可知( )A .物体的初速率v 0=3m/sB .物体与斜面间的动摩擦因数µ=0.8C .图乙中x min =0.36mD .取初始位置所在水平面为重力势能参考平面,当θ=37°,物体上滑过程中动能与重力势能相等时,物体上滑的位移为0.1875m 【答案】AC 【解析】 【分析】 【详解】 A .当2πθ=时,物体做竖直上抛运动,不受摩擦力作用,根据202v gh =可得03m/s v =A 正确;B .当0θ=时,物体沿水平面做减速运动,根据动能定理2012mv mgx μ= 代入数据解得=0.75μB 错误;C .根据动能定理201cos sin 2mv mgx mgx μθθ=+ 整理得920(0.75cos sin )x θθ=+因此位移最小值min 0.36m x ==C 正确;D .动能与重力势能相等的位置o 2o o 01sin 37(sin 37cos37)2mgx mv mgx mgx μ=-+ 整理得0.25m x =D 错误。
故选AC 。
3.如图所示,两质量都为m 的滑块a ,b (为质点)通过铰链用长度为L 的刚性轻杆相连接,a 套在竖直杆A 上,b 套在水平杆B 上两根足够长的细杆A 、B 两杆分离不接触,且两杆间的距离忽略不计。
将滑块a 从图示位置由静止释放(轻杆与B 杆夹角为30°),不计一切摩擦,已知重力加速度为g 。
在此后的运动过程中,下列说法中正确的是( )A .滑块a 和滑块b 所组成的系统机械能守恒B .滑块b 的速度为零时,滑块a 的加速度大小一定等于gC .滑块b 3gLD .滑块a 2gL【答案】AC 【解析】 【分析】 【详解】A .由于整个运动过程中没有摩擦阻力,因此机械能守恒,A 正确;B .初始位置时,滑块b 的速度为零时,而轻杆对滑块a 有斜向上的推力,因此滑块a 的加速度小于g ,B 错误;C .当滑块a 下降到最低点时,滑块a 的速度为零,滑块b 的速度最大,根据机械能守恒定律o 21(1sin 30)2b mgL mv +=解得3b v gL =C 正确;D .滑块a 最大速度的位置一定在两杆交叉点之下,设该位置杆与水平方向夹角为θ 根据机械能守恒定律o 2211(sin 30sin )22a b mgL mv mv θ+=+ 而两个物体沿杆方向速度相等cos sin b a v v θθ=两式联立,利用三角函数整理得212(sin )cos 2a v gL θθ=+利用特殊值,将o =30θ 代入上式可得.521a v gL gL =>因此最大值不是2gL ,D 错误。
故选AC 。
4.在一水平向右匀速传输的传送带的左端A 点,每隔T 的时间,轻放上一个相同的工件,已知工件与传送带间动摩擦因素为,工件质量均为m ,经测量,发现后面那些已经和传送带达到相同速度的工件之间的距离为x ,下列判断正确的有A .传送带的速度为x TB .传送带的速度为22gx μC .每个工件与传送带间因摩擦而产生的热量为12mgx μ D .在一段较长的时间内,传送带因为传送工件而将多消耗的能量为23mtx T【答案】AD 【解析】 【分析】 【详解】A .工件在传送带上先做匀加速直线运动,然后做匀速直线运动,每个工件滑上传送带后运动的规律相同,可知x =vT ,解得传送带的速度v =xT.故A 正确; B .设每个工件匀加速运动的位移为x ,根据牛顿第二定律得,工件的加速度为μg ,则传送带的速度2v gx μ=s 与x 的关系.故B 错误; C .工件与传送带相对滑动的路程为22222v v x x v g g gT μμμ∆=-=则摩擦产生的热量为Q =μmg △x =222mx T故C 错误;D .根据能量守恒得,传送带因传送一个工件多消耗的能量22212mx E mv mg x Tμ=+∆=在时间t 内,传送工件的个数fW E η=则多消耗的能量23mtx E nE T'==故D 正确。
故选AD 。
5.如图所示,质量为0.1kg 的小滑块(视为质点)从足够长的固定斜面OM 下端以20m/s 的初速度沿斜面向上运动,小滑块向上滑行到最高点所用的时间为3s ,小滑块与斜面间的动摩擦因数为3,取重力加速度大小g =10m/s 2,下列说法正确的是( )A .斜面的倾角为60°B .小滑块上滑过程损失的机械能为5JC .小滑块上滑的最大高度为10mD .若只减小斜面的倾角,则小滑块上滑的最大高度可能比原来高 【答案】AB 【解析】 【分析】 【详解】A .物体上滑的加速度为203v a t == 由牛顿第二定律sin cos mg mg ma θμθ+=解得=60θ选项A 正确;B .小滑块上滑过程损失的机械能为3120cos6013J=5J2322vE mg tμ∆=⋅=⨯⨯⨯⨯选项B正确;C.小滑块上滑的最大高度为203sin60sin603m=15m222vh l t===⨯⨯选项C错误;D.根据动能定理21cossin2hmgh mg mvμθθ+⋅=解得22(1)tanvhgμθ=+则若只减小斜面的倾角θ,则小滑块上滑的最大高度减小,选项D错误。
故选AB。
6.如图所示,竖直固定的光滑直杆上套有一个质量为m的滑块,初始时静置于a点.一原长为l的轻质弹簧左端固定在O点,右端与滑块相连.直杆上还有b、c、d三点,且b 与O在同一水平线上,Ob=l,Oa、Oc与Ob夹角均为37°,Od与Ob夹角为53°.现由静止释放小滑块,在小滑块从a下滑到d过程中,弹簧始终处于弹性限度内,sin37°=0.6,则下列说法正确的是A.滑块在b点时速度最大,加速度为gB.从a下滑到c点的过程中,滑块的机械能守恒C.滑块在c3gLD.滑块在d处的机械能小于在a处的机械能【答案】CD【解析】【分析】【详解】A、从a到b,弹簧对滑块有沿弹簧向下的拉力,滑块的速度不断增大.从b到c,弹簧对滑块沿弹簧向上的拉力,开始时拉力沿杆向上的分力小于滑块的重力,滑块仍在加速,所以滑块在b点时速度不是最大,此时滑块的合力为mg,则加速度为g.故A 错误.B 、从a 下滑到c 点的过程中,因为弹簧的弹力对滑块做功,因此滑块的机械能不守恒.故B 错误.C 、对于滑块与弹簧组成的系统,只有重力和弹力做功,系统的机械能守恒,由机械能守恒定律得212sin 372c mg l mv ⨯=,解得3c v gL = ,故C 对; D 、弹簧在d 处的弹性势能大于在a 处的弹性势能,由系统的机械能守恒可以知道,滑块在d 处的机械能小于在a 处的机械能,故D 对; 故选CD 【点睛】滑块的速度根据其受力情况,分析速度的变化情况确定.加速度由牛顿第二定律分析.对于滑块与弹簧组成的系统,只有重力和弹力做功,系统的机械能守恒,但滑块的机械能不守恒.根据系统的机械能守恒求滑块在c 点的速度.7.如图所示,劲度系数k =40N/m 的轻质弹簧放置在光滑的水平面上,左端固定在竖直墙上,物块A 、B 在水平向左的推力F =10N 作用下,压迫弹簧处于静止状态,已知两物块不粘连,质量均为m =3kg 。
现突然撤去力F ,同时用水平向右的拉力F '作用在物块B 上,同时控制F '的大小使A 、B 一起以a =2m/s 2的加速度向右做匀加速运动,直到A 、B 分离,此过程弹簧对物块做的功为W 弹=0.8J 。
则下列说法正确的是( )A .两物块刚开始向右匀加速运动时,拉力F '=2NB .弹簧刚好恢复原长时,两物块正好分离C .两物块一起匀加速运动经过1010s 刚好分离 D .两物块一起匀加速运动到分离,拉力F '对物块做的功为0.6J 【答案】AC 【解析】 【分析】 【详解】A .两物块刚开始向右匀加速运动时,对AB 整体,由牛顿第二定律可知2F F ma '+=解得2232N 10N 2N F ma F '=-=⨯⨯-=故A 正确;BC .两物体刚好分离的临界条件;两物体之间的弹力为零且加速度相等。
设此时弹簧的压缩量为x ,则有kx ma =代入数据,可得32m 0.15m 40ma x k ⨯=== 弹簧最初的压缩量010m=0.25m 40F x k == 故两物块一起匀加速运动到分离的时间为2012at x x =- 解得02()2(0.250.15)10s s 210x x t a --=== 故B 错误,C 正确;D .对AB 整体,从一起匀加速运动到分离,由动能定理可得2122F W W mv '+=⨯弹10102m/s 105v at ==⨯= 解得221110223()J 0.8J 0.4J 22F W mv W '=⨯-=⨯⨯⨯-=弹故D 错误。