2018考前三个月高考数学理科总复习——解答题滚动练五
【高三数学试题精选】2018版考前三个月高考数学理科总复习:12+4满分练(全国通用12份附答案)

∴2a-15=1,-a+25=-1,解得a= )
A x∈R,ln(ex-1) 0
B x∈R,ln(ex-1)≥0
c x0∈R,ln(-1)<0
D x0∈R,ln(-1)≥0
答案D
4(2018四川双流中学月考)已知函数f(x)=Asinωx+φA 0,ω0,φ<π2的部分图象如图所示,若将f(x)图象上的所有点向右平移π12个单位长度得到函数g(x)的图象,则函数g(x)的单调递增区间为( )
A内切B相交c外切D外离
答案B
解析化简圆x2+(-a)2=a2 (0,a),r1=a到直线x+=0的距离d=a2 a22+2=a2 a=2 (0,2),r1=2,又N(1,1),r2=1 |N|=2 |r1-r2|<|N|<|r1+r2|两圆相交
8(2018资阳模拟)一块硬质材料的三视图如图所示,正(主)视图和俯视图都是边长为10 c的正方形,将该木料切削、打磨,加工成球,则能得到的最大球的半径最接近( )
A43 B83 c163 D323
答案c
解析如图,过cD作平面EcD,使AB⊥平面EcD,
交AB于点E,设点E到cD的距离为EF,
当球心在EF上时,EF最大,此时E,F分别为AB,cD的中点,且球心为EF的中点,所以EF=2,
所以Vax=13×12×4×2×4=163,故选c
7(2018武邑检测)已知圆x2+2-2a=0a 0截直线x+=0所得线段的长度是22,则圆与圆N(x-1)2+-12=1的位置关系是( )
A(-∞,0) B0,12e
c(-∞,0)∪12e,+∞D12e,+∞
答案c
解析由题意得-12a=1+x-2eln1+x=(t-2e)ln tt=x+1>0,
2018届高考数学理科全国通用一轮总复习习题:阶段滚动月考卷五 含答案

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
阶段滚动月考卷(五)解析几何(时间:120分钟分值:150分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(滚动单独考查)设i为虚数单位,若错误!未找到引用源。
=b-i(a,b∈R),则a+b= ( )A.1B.2C.3D.42.(滚动交汇考查)(2016·莱芜模拟)设点P(x,y),则“x=2且y=-1”是“点P在圆(x-2)2+y2=1上”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.(2016·合肥模拟)若圆(x-3)2+(y+5)2=r2上有且只有两个点到直线4x-3y=2的距离等于1,则半径r的取值范围是( )A.(4,6)B. D.4.(滚动单独考查)(2016·邢台模拟)若a>b>c,则使错误!未找到引用源。
+错误!未找到引用源。
≥错误!未找到引用源。
恒成立的最大的正整数k为( )A.2B.3C.4D.55.(滚动单独考查)已知函数f(x)=Asin(ωx+φ)错误!未找到引用源。
的部分图象如图所示,为了得到g(x)=sin2x的图象,则只需将f(x)的图象( )A.向右平移错误!未找到引用源。
个长度单位B.向右平移错误!未找到引用源。
个长度单位C.向左平移错误!未找到引用源。
个长度单位D.向左平移错误!未找到引用源。
个长度单位6.(2016·滨州模拟)已知A,B是圆O:x2+y2=1上的两个点,P是线段AB上的动点,当△AOB的面积最大时,则错误!未找到引用源。
·错误!未找到引用源。
-错误!未找到引用源。
的最大值是( )A.-1B.0C.错误!未找到引用源。
D.错误!未找到引用源。
7.(滚动交汇考查)如图,已知点D为△ABC的边BC上一点,错误!未找到引用源。
2018考前三个月高考数学理科(江苏专用)总复习训练题(冲刺集合195页)

2018考前三个月高考数学理科(江苏专用)总复习训练题(冲刺集合195页)附加题高分练+解答题滚动练+小题满分练 +中档大题规范练+压轴大题突破练+考前回扣中档大题规范练 1.解三角形1.(2017·苏锡常镇调研)在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边.已知a cos B =3,b cos A =1,且A -B =π6.(1)求c 的长; (2)求B 的大小.解 (1)方法一 在△ABC 中,a cos B =3,由余弦定理,得a ·a 2+c 2-b 22ac=3,得a 2+c 2-b 2=6c ,①b cos A =1,则b ·b 2+c 2-a 22bc=1,得b 2+c 2-a 2=2c ,②①+②得2c 2=8c ,所以c =4.方法二 因为在△ABC 中,A +B +C =π, 则sin A cos B +sin B cos A =sin(A +B ) =sin(π-C )=sin C , 由asin A =b sin B =c sin C ,得sin A =a sin C c ,sin B =b sin C c,代入上式得 c =a cos B +b cos A =3+1=4.(2)由正弦定理得a cos Bb cos A =sin A cos B sin B cos A =tan Atan B=3. 又tan(A -B )=tan A -tan B 1+tan A tan B =2tan B 1+3tan 2B =33, 解得tan B =33.又B ∈(0,π),所以B =π6. 2.(2017·苏州暑假测试)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知b cos C +c cos B =2a cos A .(1)求角A 的大小;(2)若AB →·AC →=3,求△ABC 的面积.解 (1)方法一 在△ABC 中,由正弦定理及b cos C +c cos B =2a cos A , 得sin B cos C +sin C cos B =2sin A cos A , 即sin A =2sin A cos A .因为A ∈(0,π),则sin A ≠0,所以cos A =12,所以A =π3.方法二 在△ABC 中,由余弦定理及b cos C +c cos B =2a cos A ,得b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a ·b 2+c 2-a 22bc ,所以a 2=b 2+c 2-bc ,所以cos A =b 2+c 2-a 22bc =12.因为A ∈(0,π),所以A =π3. (2)由AB →·AC →=bc cos A =3,得bc =23, 所以△ABC 的面积S =12bc sin A =12×23sin π3=32.3.(2017·南京、盐城一模)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且b sin2C =c sin B .(1)求角C 的大小;(2)若sin ⎝⎛⎭⎪⎫B -π3=35,求sin A 的值.解 (1)由b sin2C =c sin B ,根据正弦定理得 2sin B sin C cos C =sin C sin B .因为sin B >0,sin C >0,所以cos C =12.又C ∈(0,π),所以C =π3.(2)因为C =π3,所以B ∈⎝ ⎛⎭⎪⎫0,2π3,所以B -π3∈⎝ ⎛⎭⎪⎫-π3,π3,又sin ⎝⎛⎭⎪⎫B -π3=35,又A +B =2π3,即A =2π3-B ,所以sin A =sin ⎝⎛⎭⎪⎫2π3-B =sin ⎣⎢⎡⎦⎥⎤π3-⎝ ⎛⎭⎪⎫B -π3 =sin π3cos ⎝ ⎛⎭⎪⎫B -π3-cos π3sin ⎝ ⎛⎭⎪⎫B -π3=32×45-12×35=43-310. 4.(2017·徐州、连云港、宿迁三检)如图,在△ABC 中,已知点D 在边AB 上,AD =3DB ,cos A =45,cos ∠ACB =513,BC =13.(1)求cos B 的值; (2)求CD 的长.解 (1)在△ABC 中,cos A =45,A ∈(0,π),所以sin A =1-cos 2A =1-⎝ ⎛⎭⎪⎫452=35. 同理可得,sin ∠ACB =1213.所以cos B =cos[π-(A +∠ACB )]=-cos(A +∠ACB ) =sin A sin ∠ACB -cos A cos ∠ACB =35×1213-45×513=1665.(2)在△ABC 中,由正弦定理,得AB =BCsin A sin ∠ACB =1335×1213=20.又AD =3DB ,所以BD =14AB =5.在△BCD 中,由余弦定理,得CD =BD 2+BC 2-2BD ·BC cos B=52+132-2×5×13×1665=9 2.3.空间平行与垂直1.(2017·南京学情调研)如图,在直三棱柱ABC-A1B1C1中,M,N分别为线段A1B,AC1的中点.(1)求证:MN∥平面BB1C1C;(2)若D在边BC上,AD⊥DC1,求证:MN⊥AD.证明(1)如图,连结A1C,在直三棱柱ABC-A1B1C1中,侧面AA1C1C为平行四边形,又因为N为线段AC1的中点,所以A1C与AC1相交于点N,即A1C经过点N,且N为线段A1C的中点.因为M为线段A1B的中点,所以MN∥BC.又MN⊄平面BB1C1C,BC⊂平面BB1C1C,所以MN∥平面BB1C1C.(2)在直三棱柱ABC-A1B1C1中,CC1⊥平面ABC,又AD⊂平面ABC,所以CC1⊥AD.因为AD⊥DC1,DC1⊂平面BB1C1C,CC1⊂平面BB1C1C,CC1∩DC1=C1,所以AD⊥平面BB1C1C. 又BC⊂平面BB1C1C,所以AD⊥BC.由(1)知MN∥BC,所以MN⊥AD.2.如图,在四棱锥P-ABCD中,底面ABCD是正方形,AC与BD交于点O,PC⊥底面ABCD,E为PB上一点,G为PO的中点.(1)若PD∥平面ACE,求证:E为PB的中点;(2)若AB=2PC,求证:CG⊥平面PBD.证明 (1)连结OE ,由四边形ABCD 是正方形知,O 为BD 的中点, 因为PD ∥平面ACE ,PD ⊂平面PBD ,平面PBD ∩平面ACE =OE , 所以PD ∥OE .因为O 为BD 的中点,所以E 为PB 的中点. (2)在四棱锥P -ABCD 中,AB =2PC , 因为四边形ABCD 是正方形,所以OC =22AB , 所以PC =OC .因为G 为PO 的中点,所以CG ⊥PO . 又因为PC ⊥底面ABCD ,BD ⊂底面ABCD , 所以PC ⊥BD .而四边形ABCD 是正方形,所以AC ⊥BD , 因为AC ,PC ⊂平面PAC ,AC ∩PC =C , 所以BD ⊥平面PAC ,因为CG ⊂平面PAC ,所以BD ⊥CG . 因为PO ,BD ⊂平面PBD ,PO ∩BD =O , 所以CG ⊥平面PBD .3.如图,已知平面PAC ⊥平面ABC ,AC ⊥BC ,PE ∥CB ,M 是AE 的中点. (1)若N 是PA 的中点,求证:平面CMN ⊥平面PAC ; (2)若MN ∥平面ABC ,求证:N 是PA 的中点.证明 (1)因为平面PAC ⊥平面ABC ,平面PAC ∩平面ABC =AC ,AC ⊥BC ,BC ⊂平面ABC , 所以BC ⊥平面PAC ,因为M ,N 分别为AE ,AP 的中点,所以MN ∥PE , 又因为PE ∥BC ,所以MN ∥BC , 即MN ⊥平面PAC ,又MN ⊂平面CMN , 所以平面CMN ⊥平面PAC .(2)因为PE ∥CB ,BC ⊂平面ABC ,PE ⊄平面ABC , 所以PE ∥平面ABC ,设平面PAE 与平面ABC 的交线为l ,则PE ∥l . 又MN ∥平面ABC ,MN ⊂平面PAE ,所以MN ∥l . 所以MN ∥PE ,因为M 是AE 的中点,所以N 为PA 的中点.4.如图,在直三棱柱ABC -A 1B 1C 1中,D 为棱BC 上一点. (1)若AB =AC ,D 为棱BC 的中点,求证:平面ADC 1⊥平面BCC 1B 1; (2)若A 1B ∥平面ADC 1,求BD DC的值.(1)证明 因为AB =AC ,点D 为BC 的中点, 所以AD ⊥BC .因为ABC -A 1B 1C 1是直三棱柱,所以BB 1⊥平面ABC . 因为AD ⊂平面ABC ,所以BB 1⊥AD .因为BC ∩BB 1=B ,BC ⊂平面BCC 1B 1,BB 1⊂平面BCC 1B 1, 所以AD ⊥平面BCC 1B 1.因为AD ⊂平面ADC 1,所以平面ADC 1⊥平面BCC 1B 1.(2)解 连结A 1C ,交AC 1于O ,连结OD ,所以O 为A 1C 的中点.因为A 1B ∥平面ADC 1,A 1B ⊂平面A 1BC ,平面ADC 1∩平面A 1BC =OD ,所以A 1B ∥OD . 因为O 为A 1C 的中点,所以D 为BC 的中点, 所以BD DC=1.4.应用题1.(2017·苏锡常镇调研)某单位将举办庆典活动,要在广场上竖立一形状为等腰梯形的彩门BADC (如图).设计要求彩门的面积为S (单位:m 2),高为h (单位:m)(S ,h 为常数).彩门的下底BC 固定在广场底面上,上底和两腰由不锈钢支架组成,设腰和下底的夹底为α,不锈钢支架的长度之和记为l .(1)请将l 表示成关于α的函数l =f (α); (2)问:当α为何值时l 最小,并求最小值.解 (1)过D 作DH ⊥BC 于点H ,则∠DCB =α⎝ ⎛⎭⎪⎫0<α<π2,DH =h ,设AD =x .则DC =h sin α,CH =h tan α,BC =x +2htan α.因为S =12⎝ ⎛⎭⎪⎫x +x +2h tan α·h ,则x =S h -htan α, 则l =f (α)=2DC +AD =S h+h ⎝⎛⎭⎪⎫2sin α-1tan α⎝⎛⎭⎪⎫0<α<π2.(2)f ′(α)=h ·⎝⎛⎭⎪⎫-2cos αsin 2α--1sin 2α=h ·1-2cos αsin 2α, 令f ′(α)=h ·1-2cos αsin 2α=0,得α=π3. 当α变化时,f ′(α),f (α)的变化情况如下表:所以l min =f ⎝ ⎛⎭⎪⎫π3=3h +h .答 当α=π3时,l 有最小值,为3h +Sh(m).2.(2017·南京学情调研)如图,某城市有一块半径为40m 的半圆形绿化区域(以O 为圆心,AB 为直径),现计划对其进行改建,在AB 的延长线上取点D ,OD =80m ,在半圆上选定一点C ,改建后的绿化区域由扇形区域AOC 和三角形区域COD 组成,其面积为S m 2.设∠AOC =x rad.(1)写出S 关于x 的函数关系式S (x ),并指出x 的取值范围; (2)试问∠AOC 多大时,改建后的绿化区域面积S 取得最大值?解 (1)因为扇形AOC 的半径为40m ,∠AOC =x rad ,所以扇形AOC 的面积S 扇形AOC =x ·OA 22=800x,0<x <π.在△COD 中,OD =80,OC =40,∠COD =π-x , 所以△COD 的面积S △COD =12OC ·OD ·sin∠COD=1600sin(π-x )=1600sin x ,从而S =S △COD +S 扇形AOC =1600sin x +800x,0<x <π. (2)由(1)知,S (x )=1600sin x +800x,0<x <π, 则S ′(x )=1600cos x +800=1600⎝ ⎛⎭⎪⎫cos x +12, 由S ′(x )=0,解得x =2π3,从而当0<x <2π3时,S ′(x )>0;当2π3<x <π时,S ′(x )<0,因此S (x )在区间⎝ ⎛⎭⎪⎫0,2π3上单调递增,在区间⎝⎛⎭⎪⎫2π3,π上单调递减.所以当x =2π3时,S (x )取得最大值.答 当∠AOC =2π3时,改建后的绿化区域面积S 最大.3.某宾馆在装修时,为了美观,欲将客户的窗户设计成半径为1m 的圆形,并用四根木条将圆分成如图所示的9个区域,其中四边形ABCD 为中心在圆心的矩形,现计划将矩形ABCD 区域设计为可推拉的窗口.(1)若窗口ABCD 为正方形,且面积大于14m 2(木条宽度忽略不计),求四根木条总长的取值范围;(2)若四根木条总长为6m ,求窗口ABCD 面积的最大值.解 (1)设一根木条长为x m ,因为S 四边形ABCD >14,所以4-x 2>14,即x <152.又因为四根木条将圆分成9个区域,所以x >2, 所以42<4x <215.答 四根木条总长的取值范围为(42,215).(2)方法一 设AB 所在的木条长为a m ,则BC 所在的木条长为(3-a )m. 因为a ∈(0,2),3-a ∈(0,2),所以a ∈(1,2).S 矩形ABCD =41-a 24·1-(3-a )24=4-a 2·4-(3-a )2=a 4-6a 3+a 2+24a -20, 设f (a )=a 4-6a 3+a 2+24a -20,则f ′(a )=4a 3-18a 2+2a +24=2(a +1)(2a -3)(a -4), 令f ′(a )=0,得a =32或a =-1(舍去)或a =4(舍去).当a 变化时,f ′(a ),f (a )的变化情况如下表:所以当a =32时,f (a )max =f ⎝ ⎛⎭⎪⎫32=4916,即S max =74.答 窗口ABCD 面积的最大值为74m 2.方法二 设AB 所在的木条长为a m ,BC 所在的木条长为b m .由条件知,2a +2b =6,即a +b =3.因为a ,b ∈(0,2),所以b =3-a ∈(0,2),从而a ,b ∈(1,2). 由于AB =21-b 24,BC =21-a 24,S 矩形ABCD =41-b 241-a 24=4-b24-a 2,因为4-b24-a 2≤8-(a 2+b 2)2≤8-(a +b )222=74,当且仅当a =b =32∈(1,2)时,S 矩形ABCD =74为最大值.答 窗口ABCD 面积的最大值为74m 2.4.某隧道设计为双向四车道,车道总宽20m ,要求通行车辆限高4.5m ,隧道口截面的拱线近似地看成抛物线形状的一部分,如图所示建立平面直角坐标系xOy . (1)若最大拱高h 为6m ,则隧道设计的拱宽l 是多少?(2)为了使施工的土方工程量最小,需隧道口截面面积最小.现隧道口的最大拱高h 不小于6m ,则应如何设计拱高h 和拱宽l ,使得隧道口截面面积最小?隧道口截面面积公式为S =23lh.解 (1)设抛物线的方程为y =-ax 2(a >0),则抛物线过点⎝⎛⎭⎪⎫10,-32,代入抛物线方程解得a =3200, 令y =-6,解得x =±20,则隧道设计的拱宽l 是40m.(2)抛物线最大拱高为h m ,h ≥6,抛物线过点⎝⎛⎭⎪⎫10,-h +92,代入抛物线方程得a =h -92100.令y =-h ,则-h -92100x 2=-h ,解得x 2=100hh -92,则⎝ ⎛⎭⎪⎫l 22=100h h -92,h =92l 2l 2-400.因为h ≥6,所以92l 2l 2-400≥6,即20<l ≤40.所以S =23lh =23l ·92l 2l 2-400=3l3l 2-400(20<l ≤40).所以S ′=9l 2(l 2-400)-3l 3·2l (l 2-400)2=3l 2(l 2-1200)(l 2-400)2=3l 2(l +203)(l -203)(l 2-400)2, 当20<l <203时,S ′<0;当203<l ≤40时,S ′>0,即S 在(20,203)上单调递减,在(203,40]上单调递增,所以S 在l =203时取得最小值,此时l =203,h =274.答 当拱高为274m ,拱宽为203m 时,使得隧道口截面面积最小.5.直线与圆1.已知圆心为C 的圆,满足下列条件:圆心C 位于x 轴正半轴上,与直线3x -4y +7=0相切,且被y 轴截得的弦长为23,圆C 的面积小于13. (1)求圆C 的标准方程;(2)设过点M (0,3)的直线与圆C 交于不同的两点A ,B ,以OA ,OB 为邻边作平行四边形OADB .是否存在这样的直线l ,使得直线OD 与MC 恰好平行?如果存在,求出l 的方程;若不存在,请说明理由.解 (1)设圆C :(x -a )2+y 2=r 2(a >0),由题意知⎩⎪⎨⎪⎧|3a +7|32+(-4)2=r ,a 2+3=r ,解得a =1或a =138,又S =πr 2<13,∴a =1,∴圆C 的标准方程为(x -1)2+y 2=4.(2)当斜率不存在时,直线l 为x =0,不满足题意.当斜率存在时,设直线l :y =kx +3,A (x 1,y 1),B (x 2,y 2),又l 与圆C 相交于不同的两点,联立得⎩⎪⎨⎪⎧y =kx +3,(x -1)2+y 2=4,消去y 得(1+k 2)x 2+(6k -2)x +6=0.∴Δ=(6k -2)2-24(1+k 2)=12k 2-24k -20>0, 解得k <1-263或k >1+263.x 1+x 2=-6k -21+k 2,y 1+y 2=k (x 1+x 2)+6=2k +61+k2, OD →=OA →+OB →=(x 1+x 2,y 1+y 2),MC →=(1,-3), 假设OD →∥MC →,则-3(x 1+x 2)=y 1+y 2,解得k =34∉⎝ ⎛⎭⎪⎫-∞,1-263∪⎝ ⎛⎭⎪⎫1+263,+∞,假设不成立,∴不存在这样的直线l .2.如图,在平面直角坐标系xOy 中,已知圆C :x 2+y 2-4x =0及点A (-1,0),B (1,2).(1)若直线l ∥AB ,与圆C 相交于M ,N 两点,MN =AB ,求直线l 的方程; (2)在圆C 上是否存在点P ,使得PA 2+PB 2=12?若存在,求点P 的个数;若不存在,请说明理由.解 (1)圆C 的标准方程为(x -2)2+y 2=4, 所以圆心C (2,0),半径为2.因为l ∥AB ,A (-1,0),B (1,2),所以直线l 的斜率为2-01-(-1)=1,设直线l 的方程为x -y +m =0,则圆心C 到直线l 的距离为d =|2-0+m |2=|2+m |2.因为MN =AB =22+22=22,而CM 2=d 2+⎝ ⎛⎭⎪⎫MN 22,所以4=(2+m )22+2,解得m =0或m =-4,故直线l 的方程为x -y =0或x -y -4=0.(2)假设圆C 上存在点P ,设P (x ,y ),则(x -2)2+y 2=4,PA 2+PB 2=(x +1)2+(y -0)2+(x -1)2+(y -2)2=12即x 2+y 2-2y -3=0,即x 2+(y -1)2=4.因为|2-2|<(2-0)2+(0-1)2<2+2,所以圆(x -2)2+y 2=4与圆x 2+(y -1)2=4相交, 所以点P 的个数为2.3.在平面直角坐标系xOy 中,已知椭圆C :x 24+y 23=1的左顶点为A ,右焦点为F ,P ,Q 为椭圆C 上两点,圆O :x 2+y 2=r 2(r >0).(1)若PF ⊥x 轴,且满足直线AP 与圆O 相切,求圆O 的方程;(2)若圆O 的半径为3,点P ,Q 满足k OP ·k OQ =-34,求直线PQ 被圆O 截得的弦长的最大值.解 (1)因为椭圆C 的方程为x 24+y 23=1,所以A (-2,0),F (1,0).如图,因为PF ⊥x 轴,所以P ⎝⎛⎭⎪⎫1,±32, 根据对称性,可取P ⎝ ⎛⎭⎪⎫1,32,则直线AP 的方程为y =12(x +2),即x -2y +2=0.由圆O 与直线AP 相切,得r =25,所以圆O 的方程为x 2+y 2=45.(2)易知,圆O 的方程为x 2+y 2=3. ①当PQ ⊥x 轴时,k OP ·k OQ =-k 2OP =-34,所以k OP=±32,不妨设OP :y =32x ,联立⎩⎪⎨⎪⎧y =32x ,x 24+y23=1,解得x =2,y =62,即P ⎝⎛⎭⎪⎫2,62, 此时得直线PQ 被圆O 截得的弦长为2. ②当PQ 与x 轴不垂直时,设直线PQ 的方程为y =kx +b ,P (x 1,y 1),Q (x 2,y 2)(x 1x 2≠0), 由k OP ·k OQ =-34,得3x 1x 2+4y 1y 2=0,即3x 1x 2+4(kx 1+b )(kx 2+b )=0,所以(3+4k 2)x 1x 2+4kb (x 1+x 2)+4b 2=0.(*)联立⎩⎪⎨⎪⎧y =kx +b ,x 24+y23=1消去y ,得(3+4k 2)x 2+8kbx +4b 2-12=0,将x 1+x 2=-8kb 3+4k 2,x 1x 2=4b 2-123+4k 2代入(*)式,得2b 2=4k 2+3.由于圆心O 到直线PQ 的距离为d =|b |k 2+1,所以直线PQ 被圆O 截得的弦长为l =23-d 2=4+2k 2+1,故当k =0时,l 有最大值 6. 综上,因为6>2,所以直线PQ 被圆O 截得的弦长的最大值为 6.4.如图,某市有一条东西走向的公路l ,现欲经过公路l 上的O 处铺设一条南北走向的公路m .在施工过程中发现在O 处的正北1百米的A 处有一汉代古迹.为了保护古迹,该市决定以A 为圆心,1百米为半径设立一个圆形保护区.为了连通公路l ,m ,欲再建一条公路PQ ,点P ,Q 分别在公路l ,m 上,且要求PQ 与圆A 相切.(1)当P 距O 处2百米时,求OQ 的长; (2)当公路PQ 长最短时,求OQ 的长.解 以O 为原点,直线l ,m 分别为x 轴,y 轴建立平面直角坐标系.设PQ 与圆A 相切于点B ,连结AB ,以1百米为单位长度,则圆A 的方程为x 2+(y -1)2=1.(1)由题意可设直线PQ 的方程为x 2+yq =1,即qx +2y -2q =0(q >2), ∵PQ 与圆A 相切, ∴|2-2q |q 2+22=1,解得q =83,故当P 距O 处2百米时,OQ 的长为83百米.(2)设直线PQ 的方程为x p +y q=1, 即qx +py -pq =0(p >1,q >2), ∵PQ 与圆A 相切,∴|p -pq |q 2+p 2=1,化简得p 2=q q -2, 则PQ 2=p 2+q 2=qq -2+q 2, 令f (q )=qq -2+q 2(q >2), ∴f ′(q )=2q -2(q -2)2=2(q -1)(q 2-3q +1)(q -2)2(q >2),当q >3+52时,f ′(q )>0,即f (q )在⎝ ⎛⎭⎪⎫3+52,+∞上单调递增,∴f (q )在q =3+52时取得最小值,故当公路PQ 长最短时,OQ 的长为3+52百米.6.圆锥曲线1.(2017·苏州期末)如图,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且过点P (2,-1).(1)求椭圆C 的方程;(2)设点Q 在椭圆C 上,且PQ 与x 轴平行,过点P 作两条直线分别交椭圆C 于A (x 1,y 1),B (x 2,y 2)两点,若直线PQ 平分∠APB ,求证:直线AB 的斜率是定值,并求出这个定值.解 (1)由e =ca =32,得a ∶b ∶c =2∶1∶3, 椭圆C 的方程为x 24b 2+y 2b2=1.把P (2,-1)代入,得b 2=2, 所以椭圆C 的方程是x 28+y 22=1.(2)由已知得PA ,PB 的斜率存在,且互为相反数. 设直线PA 的方程为y +1=k (x -2),其中k ≠0.由⎩⎪⎨⎪⎧y +1=k (x -2),x 2+4y 2=8消去y ,得x 2+4[kx -(2k +1)]2=8,即(1+4k 2)x 2-8k (2k +1)x +4(2k +1)2-8=0, 因为该方程的两根为2,x A ,所以2x A =4(2k +1)2-81+4k 2,即x A =8k 2+8k -21+4k 2, 从而y A =4k 2-4k -14k 2+1. 把k 换成-k ,得x B =8k 2-8k -21+4k 2,y B =4k 2+4k -14k 2+1. 故k AB =y B -y A x B -x A =8k -16k =-12,是定值. 2.(2017·常州期末)已知圆C :(x -t )2+y 2=20(t <0)与椭圆E :x 2a 2+y 2b2=1(a >b >0)的一个公共点为B (0,-2),F (c,0)为椭圆E 的右焦点,直线BF 与圆C 相切于点B . (1)求t 的值以及椭圆E 的方程;(2)过点F 任作与两坐标轴都不垂直的直线l 与椭圆交于M ,N 两点,在x 轴上是否存在一定点P ,使PF 恰为∠MPN 的平分线? 解 (1)由题意得b =2. 因为C (t,0),B (0,-2), 所以BC =t 2+4=20, 所以t =±4.因为t <0,所以t =-4.因为BC ⊥BF ,所以20+c 2+4=(c +4)2, 所以c =1,所以a 2=b 2+c 2=5. 所以椭圆E 的方程为x 25+y 24=1.(2)设M (x 1,y 1),N (x 2,y 2),设l :y =k (x -1)(k ≠0),代入x 25+y 24=1,化简得(4+5k 2)x 2-10k 2x +5k 2-20=0,所以⎩⎪⎨⎪⎧x 1+x 2=10k 24+5k2,x 1x 2=5k 2-204+5k2.若点P 存在,设P (m,0),由题意k PM +k PN =0, 所以y 1x 1-m +y 2x 2-m =k (x 1-1)x 1-m +k (x 2-1)x 2-m=0,所以(x 1-1)(x 2-m )+(x 2-1)(x 1-m )=0, 即2x 1x 2-(1+m )(x 1+x 2)+2m=2·5k 2-204+5k 2-(1+m )10k 24+5k 2+2m =0,所以8m -40=0,所以m =5.所以存在定点P (5,0),使PF 恰为∠MPN 的平分线.3.(2017·无锡期末)已知椭圆x 24+y 23=1,动直线l 与椭圆交于B ,C 两点(点B 在第一象限).(1)若点B 的坐标为⎝ ⎛⎭⎪⎫1,32,求△OBC 面积的最大值; (2)设B (x 1,y 1),C (x 2,y 2),且3y 1+y 2=0,求当△OBC 的面积最大时直线l 的方程. 解 (1)直线OB 方程为y =32x ,即3x -2y =0,设过点C 且平行于OB 的直线l ′方程为y =32x +b .则当l ′与椭圆只有一个公共点时,△OBC 的面积最大.由⎩⎪⎨⎪⎧x 24+y 23=1,y =32x +b消去y 整理得3x 2+3bx +b 2-3=0,此时Δ=9b 2-12(b 2-3),令Δ=0,解得b =±23, 当b =23时,C ⎝ ⎛⎭⎪⎫-3,32; 当b =-23时,C ⎝⎛⎭⎪⎫3,-32, 所以△OBC 面积的最大值为12×1+94×|33+3|13= 3. (2)显然,直线l 与y 轴不垂直,设直线l 的方程为x =my +n .由⎩⎪⎨⎪⎧x 24+y 23=1,x =my +n消去x 并整理得(3m 2+4)y 2+6mny +3n 2-12=0,所以⎩⎪⎨⎪⎧y 1+y 2=-6mn3m 2+4,y 1y 2=3n 2-123m 2+4.因为3y 1+y 2=0,所以⎩⎪⎨⎪⎧y 1=3mn3m 2+4,y 21=4-n23m 2+4,从而9n 2m 2(3m 2+4)2=4-n 23m 2+4, 即n 2=3m 2+43m 2+1,所以S △OBC =12|n |·|y 1-y 2|=2|n |·|y 1|=6|m |n 23m +4=6|m |3m +1.因为B 在第一象限,所以x 1=my 1+n =3m 2n3m 2+4+n >0,所以n >0.因为y 1>0,所以m >0, 所以S △OBC =6m 3m 2+1=63m +1m≤623=3,当且仅当3m =1m ,即m =33时取等号,此时n =102,4.(2017·南京、盐城二模)如图,在平面直角坐标系xOy 中,焦点在x 轴上的椭圆C :x 28+y 2b 2=1经过点(b,2e ),其中e 为椭圆C 的离心率.过点T (1,0)作斜率为k (k >0)的直线l 交椭圆C 于A ,B 两点(A 在x 轴下方). (1)求椭圆C 的标准方程;(2)过点O 且平行于l 的直线交椭圆C 于M ,N 两点,求AT ·BTMN 2的值; (3)记直线l 与y 轴的交点为P ,若AP →=25TB →,求直线l 的斜率k .解 (1)由点(b,2e )在椭圆C 上,得b 28+4e 2b =1.因为e 2=c 2a 2=8-b 28=1-b 28,所以b 28+4b 2=32.又b 2<a 2=8,解得b 2=4, 所以椭圆C 的标准方程是x 28+y 24=1.(2)设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0), 由对称性知N (-x 0,-y 0),其中y 1<0. 因为MN ∥AB ,所以AT ·BT MN 2=-y 1y 24y 20. 直线AB 的方程为y =k (x -1),直线MN 的方程为y =kx ,其中k >0.由⎩⎪⎨⎪⎧ y =k (x -1),x 2+2y 2=8消去x ,得(1+2k 2)y 2+2ky -7k 2=0,所以y 1y 2=-7k21+2k2.由⎩⎪⎨⎪⎧y =kx ,x 2+2y 2=8消去x ,得(1+2k 2)y 2=8k 2,所以y 2=8k 21+2k ,从而得AT ·BT MN =732. (3)由AP →=25TB →,得-x 1=25(x 2-1).由⎩⎪⎨⎪⎧y =k (x -1),x 2+2y 2=8消去y ,得(1+2k 2)x 2-4k 2x +2k 2-8=0, 所以x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-81+2k 2.又因为-x 1=25(x 2-1),所以x 1=-4k 2+23(1+2k 2),x 2=16k 2-23(1+2k 2),从而-4k 2+23(1+2k 2)·16k 2-23(1+2k 2)=2k 2-81+2k 2.整理得50k 4-83k 2-34=0, 解得k 2=2或k 2=-1750(舍).因为k >0,所以k = 2.压轴大题突破练 1.函数与导数1.设函数f (x )=x ln x +ax ,a ∈R .(1)当a =1时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)求函数y =f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最小值; (3)若g (x )=f (x )+12ax 2-(2a +1)x ,求证:a ≥0是函数y =g (x )在x ∈(1,2)时单调递增的充分不必要条件.(1)解 由f (x )=x ln x +ax ,得f ′(x )=ln x +a +1. 当a =1时,f ′(x )=ln x +2,f (1)=1,f ′(1)=2, 求得切线方程为y =2x -1. (2)解 令f ′(x )=0,得x =e -(a +1).∴当e-(a +1)≤1e ,即a ≥0时,x ∈⎣⎢⎡⎦⎥⎤1e ,e 时f ′(x )≥0恒成立,f (x )单调递增, 此时f (x )min =f ⎝ ⎛⎭⎪⎫1e =a -1e .当e-(a +1)≥e ,即a ≤-2时,x ∈⎣⎢⎡⎦⎥⎤1e ,e 时f ′(x )≤0恒成立,f (x )单调递减,此时f (x )min=f (e)=a e +e.当1e <e -(a +1)<e ,即-2<a <0时,x ∈⎣⎢⎡⎭⎪⎫1e ,e -(a +1)时f ′(x )<0,f (x )单调递减;当x ∈(e -(a +1),e)时,f ′(x )>0,f (x )单调递增,此时f (x )min =f (e -(a +1))=-e-(a +1).(3)证明 g ′(x )=f ′(x )+ax -(2a +1) =ln x +ax -a =ln x +a (x -1),∴当a ≥0时,x ∈(1,2)时,ln x >0,a (x -1)≥0,g ′(x )>0恒成立,函数y =g (x )在x ∈(1,2)时单调递增,充分条件成立; 又当a =-12时,代入g ′(x )=ln x +a (x -1)=ln x -12x +12.设h (x )=g ′(x )=ln x -12x +12,x ∈(1,2),则h ′(x )=1x -12=2-x2x >0恒成立,∴当x ∈(1,2)时,h (x )单调递增.又h (1)=0,∴当x ∈(1,2)时,h (x )>0恒成立. 而h (x )=g ′(x ),∴当x ∈(1,2)时,g ′(x )>0恒成立, 函数y =g (x )单调递增, ∴必要条件不成立.综上,a ≥0是函数y =g (x )在x ∈(1,2)时单调递增的充分不必要条件. 2.设函数f (x )=e x-|x -a |,其中a 是实数. (1)若f (x )在R 上单调递增,求实数a 的取值范围;(2)若函数有极大值点x 2和极小值点x 1,且f (x 2)-f (x 1)≥k (x 2-x 1)恒成立,求实数k 的取值范围.解 (1)因为f (x )=e x-|x -a |=⎩⎪⎨⎪⎧e x-x +a ,x ≥a ,e x+x -a ,x <a ,则f ′(x )=⎩⎪⎨⎪⎧e x-1,x ≥a ,e x+1,x <a ,因为f (x )在R 上单调递增,所以f ′(x )≥0恒成立,当x <a 时,f ′(x )=e x+1≥1>0恒成立,当x ≥a 时,f ′(x )=e x-1≥0恒成立, 故应f ′(a )≥0,即a ≥0.(2)由(1)知当a ≥0时,f (x )在R 上单调递增,不符合题意,所以有a <0. 此时,当x <a 时,f ′(x )=e x+1≥1>0,f (x )单调递增, 当x ≥a 时,f ′(x )=e x-1,令f ′(x )=0,得x =0,所以f ′(x )<0在(a,0)上恒成立,f (x )在(a,0)上单调递减,f ′(x )>0在(0,+∞)上恒成立,f (x )在(0,+∞)上单调递增,所以f (x )极大=f (a )=e a,f (x )极小=f (0)=1+a ,即a <0符合题意.由f (x 2)-f (x 1)≥k (x 2-x 1)恒成立,可得e a-a -1≥ka 对任意a <0恒成立, 设g (a )=e a-(k +1)a -1,求导,得g ′(a )=e a-(k +1),①当k ≤-1时,g ′(a )>0恒成立,g (a )在(-∞,0)上单调递增,又因为g (-1)=1e +k <0,与g (a )>0矛盾;②当k ≥0时,g ′(a )<0在(-∞,0)上恒成立,g (a )在(-∞,0)上单调递减, 又因为g (0)=0,所以此时g (a )≥0恒成立,符合题意;③当-1<k <0时,g ′(a )>0在(-∞,0)上的解集为(ln(k +1),0),即g (a )在(ln(k +1),0)上单调递增,又因为g (0)=0,所以g (ln (k +1))<0不符合题意.综上,实数k 的取值范围为[0,+∞).3.(2017·江苏泰兴中学质检)已知函数f (x )=13x 3-mx 2-x +13m ,其中m ∈R .(1)求函数y =f (x )的单调区间;(2)若对任意的x 1,x 2∈[-1,1],都有|f ′(x 1)-f ′(x 2)|≤4,求实数m 的取值范围; (3)求函数f (x )的零点个数. 解 (1)f ′(x )=x 2-2mx -1,由f ′(x )≥0,得x ≤m -m 2+1或x ≥m +m 2+1;故函数f (x )的单调增区间为(-∞,m -m 2+1),(m +m 2+1,+∞), 由f ′(x )<0,得m -m 2-1<x <m +m 2+1,故函数f (x )的单调减区间为(m -m 2+1,m +m 2+1).(2)“对任意的x 1,x 2∈[-1,1],都有|f ′(x 1)-f ′(x 2)|≤4”等价于“函数y =f ′(x ),x ∈[-1,1]的最大值与最小值的差小于等于4”. 对于f ′(x )=x 2-2mx -1,对称轴x =m .①当m <-1时,f ′(x )的最大值为f ′(1),最小值为f ′(-1), 由f ′(1)-f ′(-1)≤4,即-4m ≤4,解得m ≥-1,舍去;②当-1≤m ≤1时,f ′(x )的最大值为f ′(1)或f ′(-1),最小值为f ′(m ),由⎩⎪⎨⎪⎧f ′(1)-f ′(m )≤4,f ′(-1)-f ′(m )≤4,即⎩⎪⎨⎪⎧m 2-2m -3≤0,m 2+2m -3≤0,解得-1≤m ≤1;③当m >1时,f ′(x )的最大值为f ′(-1),最小值为f ′(1), 由f ′(-1)-f ′(1)≤4,即4m ≤4,解得m ≤1,舍去. 综上,实数m 的取值范围是[-1,1]. (3)由f ′(x )=0,得x 2-2mx -1=0,因为Δ=4m 2+4>0,所以y =f (x )既有极大值也有极小值. 设f ′(x 0)=0,即x 20-2mx 0-1=0,x 20=2mx 0+1,则f (x 0)=13x 30-mx 20-x 0+13m =-13mx 20-23x 0+13m =-23x 0(m 2+1),所以极大值f (m -m 2+1)=-23(m -m 2+1)(m 2+1)>0,极小值f (m +m 2+1)=-23(m +m 2+1)(m 2+1)<0,故函数f (x )有三个零点.4.已知函数f (x )=x 3+ax 2-a 2x +2,a ∈R . (1)若a <0,试求函数y =f (x )的单调递减区间;(2)若a =0,且曲线y =f (x )在点A ,B (A ,B 不重合)处切线的交点位于直线x =2上,证明:A ,B 两点的横坐标之和小于4;(3)如果对于一切x 1,x 2,x 3∈[0,1],总存在以f (x 1),f (x 2),f (x 3)为三边长的三角形,试求正实数a 的取值范围.(1)解 函数f (x )的导函数f ′(x )=3x 2+2ax -a 2=3(x +a )⎝ ⎛⎭⎪⎫x -a 3.因为a <0,由f ′(x )<0,解得a3<x <-a .所以函数y =f (x )的单调递减区间为⎝ ⎛⎭⎪⎫a3,-a . (2)证明 当a =0时,f (x )=x 3+2.设在点A (x 1,x 31+2),B (x 2,x 32+2)处的切线交于直线x =2上一点P (2,t ). 因为y ′=3x 2,所以曲线y =f (x )在点A 处的切线斜率为k =3x 21, 所以在点A 处的切线方程为y -(x 31+2)=3x 21(x -x 1). 因为切线过点P ,所以t -(x 31+2)=3x 21(2-x 1), 即2x 31-6x 21+(t -2)=0. 同理可得2x 32-6x 22+(t -2)=0, 两式相减得2(x 31-x 32)-6(x 21-x 22)=0,即(x 1-x 2)(x 21+x 1x 2+x 22)-3(x 1-x 2)(x 1+x 2)=0, 因为x 1-x 2≠0,所以x 21+x 1x 2+x 22-3(x 1+x 2)=0, 即(x 1+x 2)2-x 1x 2-3(x 1+x 2)=0. 因为x 1x 2≤⎝ ⎛⎭⎪⎫x 1+x 222,且x 1≠x 2,所以x 1x 2<⎝⎛⎭⎪⎫x 1+x 222.从而上式可以化为(x 1+x 2)2-⎝⎛⎭⎪⎫x 1+x 222-3(x 1+x 2)<0,即(x 1+x 2)(x 1+x 2-4)<0.解得0<x 1+x 2<4,即A ,B 两点的横坐标之和小于4. (3)解 由题设知,f (0)<f (1)+f (1), 即2<2(-a 2+a +3),解得-1<a <2. 又因为a >0,所以0<a <2. 因为f ′(x )=3(x +a )⎝ ⎛⎭⎪⎫x -a 3,所以当x ∈⎝ ⎛⎭⎪⎫0,a 3时,f ′(x )<0,f (x )单调递减,当x ∈⎝ ⎛⎭⎪⎫a3,1时,f ′(x )>0,f (x )单调递增.所以当x =a 3时,f (x )有最小值f ⎝ ⎛⎭⎪⎫a 3=-527a 3+2. 从而条件转化为⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫a 3=-527a 3+2>0, ①f (0)<2⎝ ⎛⎭⎪⎫-527a 3+2, ②f (1)<2⎝ ⎛⎭⎪⎫-527a 3+2. ③由①得a <33235;由②得a <335,再根据0<a <2,得0<a <335.不等式③化为1027a 3-a 2+a -1<0.令g (a )=1027a 3-a 2+a -1,则g ′(a )=109a 2-2a +1>0,所以g (a )为增函数.又g (2)=-127<0,所以当a ∈⎝ ⎛⎭⎪⎪⎫0,335时,g (a )<0恒成立,即③成立. 所以a 的取值范围为⎝⎛⎭⎪⎪⎫0,335.2.数 列1.已知数列{a n }中a 1=1,a n +1=⎩⎪⎨⎪⎧13a n +n ,n 为奇数,a n -3n ,n 为偶数.(1)是否存在实数λ,使得数列{a 2n -λ}是等比数列?若存在,求出λ的值;若不存在,请说明理由;(2)若S n 是数列{a n }的前n 项和,求满足S n >0的所有正整数n . 解 (1)由已知,得a 2(n +1)=13a 2n +1+(2n +1)=13[a 2n -3(2n )]+2n +1=13a 2n +1. 令a 2(n +1)-λ=13(a 2n -λ),得a 2(n +1)=13a 2n +23λ,所以λ=32.此时,a 2-λ=13+1-32=-16.所以存在λ=32,使得数列{a 2n -λ}是等比数列.(2)由(1)知,数列⎩⎨⎧⎭⎬⎫a 2n -32是首项为-16,公比为13的等比数列,所以a 2n -32=-16⎝ ⎛⎭⎪⎫13n -1=-12·13n ,即a 2n =12⎝ ⎛⎭⎪⎫3-13n .由a 2n =13a 2n -1+(2n -1),得a 2n -1=3a 2n -3(2n -1)=32⎝ ⎛⎭⎪⎫3-13n -6n +3,所以a 2n -1+a 2n =32⎝ ⎛⎭⎪⎫3-13n -6n +3+12⎝ ⎛⎭⎪⎫3-13n=-2⎝ ⎛⎭⎪⎫13n-6n +9,所以S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=-2⎣⎢⎡⎦⎥⎤13+⎝ ⎛⎭⎪⎫132+…+⎝ ⎛⎭⎪⎫13n -6(1+2+…+n )+9n =13n -3n 2+6n -1,从而S 2n -1=S 2n -a 2n =32×13n -3n 2+6n -52.因为13n 和-3n 2+6n =-3(n -1)2+3在n ∈N *时均单调递减,所以S 2n 和S 2n -1均各自单调递减.计算得S 1=1,S 2=73,S 3=-73,S 4=-89,所以满足S n >0的所有正整数n 的值为1和2.2.已知数列{a n }的前n 项和为S n ,设数列{b n }满足b n =2(S n +1-S n )S n -n (S n +1+S n )(n ∈N *). (1)若数列{a n }为等差数列,且b n =0,求数列{a n }的通项公式;(2)若a 1=1,a 2=3,且数列{a 2n -1},{a 2n }都是以2为公比的等比数列,求满足不等式b 2n <b 2n -1的所有正整数n 的集合.解 (1)设等差数列{a n }的公差为d , 所以a n +1=a 1+nd ,S n =na 1+n (n -1)2d .由b n =2(S n +1-S n )S n -n (S n +1+S n )(n ∈N *), 得b n =2a n +1S n -n (2S n +a n +1). 又由b n =0,得2(a 1+nd )⎣⎢⎡⎦⎥⎤na 1+n (n -1)2d -n [2na 1+n (n -1)d +a 1+nd ]=0对一切n ∈N *都成立,即(d 2-d )n 2+(3a 1d -d 2-2a 1)n +2a 21-a 1d -a 1=0对一切n ∈N *都成立. 令n =1,n =2,解得⎩⎪⎨⎪⎧d =0,a 1=0或⎩⎪⎨⎪⎧d =1,a 1=1,经检验,符合题意.所以数列{a n }的通项公式为a n =0或a n =n . (2)由题意得a 2n -1=2n -1,a 2n =3×2n -1,S 2n =2n -1+3(2n -1)=4×2n -4,S 2n -1=S 2n -a 2n =4×2n -4-3×2n -1=5×2n -1-4. b 2n =2a 2n +1S 2n -2n (2S 2n +a 2n +1)=2×2n×(4×2n-4)-2n (8×2n-8+2n) =2n +1(2n +2-9n -4)+16n .b 2n -1=2a 2n S 2n -1-(2n -1)(2S 2n -1+a 2n )=6×2n -1×(5×2n -1-4)-(2n -1)(10×2n -1-8+3×2n -1)=2n -1(30×2n -1-26n -11)+16n-8.所以b 2n -b 2n -1=2n +1(2n +2-9n -4)+16n -[2n -1(30×2n -1-26n -11)+16n -8]=2n⎝⎛⎭⎪⎫2n -1-5n -52+8=22n -1+8-2n ⎝⎛⎭⎪⎫5n +52. 记f (n )=22n -1+8-2n ⎝⎛⎭⎪⎫5n +52,即f (n )=2n ⎣⎢⎡⎦⎥⎤12×2n-⎝⎛⎭⎪⎫5n +52+8.记g (n )=12×2n-⎝⎛⎭⎪⎫5n +52,则g (n +1)-g (n )=12×2n +1-⎝⎛⎭⎪⎫5n +152-12×2n +5n +52=12×2n-5,当n =1,2,3时,g (n +1)-g (n )<0;当n ∈N *时,n ≥4,g (n +1)-g (n )=12×2n -5>0,因为当n =1时,g (1)=-132<0,所以g (4)<0,且g (6)=-12<0,g (7)=532>0.所以f (n )=2n ⎣⎢⎡⎦⎥⎤12×2n -⎝ ⎛⎭⎪⎫5n +52+8在n ≥7(n ∈N *)时也单调递增,当n =1时,f (1)=-5<0; 当n =2时,f (2)=-34<0; 当n =3时,f (3)=-100<0; 当n =4时,f (4)=-224<0; 当n =5时,f (5)=-360<0; 当n =6时,f (6)=-24<0; 当n =7时,f (7)=3400>0,所以满足条件的正整数n 的集合为{1,2,3,4,5,6}.3.已知等差数列{a n }的前n 项和为S n ,且2a 5-a 3=13,S 4=16. (1)求数列{a n }的前n 项和S n ;(2)设T n =∑ni =1(-1)i a i ,若对一切正整数n ,不等式λT n <[a n +1+(-1)n +1a n ]2n -1恒成立,求实数λ的取值范围;(3)是否存在正整数m ,n (n >m >2),使得S 2,S m -S 2,S n -S m 成等比数列?若存在,求出所有的m ,n ;若不存在,请说明理由. 解 (1)设数列{a n }的公差为d . 因为2a 5-a 3=13,S 4=16,所以⎩⎪⎨⎪⎧2(a 1+4d )-(a 1+2d )=13,4a 1+6d =16,解得⎩⎪⎨⎪⎧a 1=1,d =2,所以a n =2n -1,S n =n 2.(2)①当n 为偶数时,设n =2k ,k ∈N *,则T 2k =(a 2-a 1)+(a 4-a 3)+…+(a 2k -a 2k -1)=2k . 代入不等式λT n <[a n +1+(-1)n +1a n ]·2n -1,得λ·2k <4k,从而λ<4k2k.设f (k )=4k2k ,则f (k +1)-f (k )=4k +12(k +1)-4k2k =4k(3k -1)2k (k +1).因为k ∈N *,所以f (k +1)-f (k )>0,所以f (k )是递增的,所以f (k )min =2,所以λ<2. ②当n 为奇数时,设n =2k -1,k ∈N *, 则T 2k -1=T 2k -(-1)2ka 2k =2k -(4k -1)=1-2k . 代入不等式λT n <[a n +1+(-1)n +1a n ]2n -1,得λ(1-2k )<(2k -1)4k ,从而λ>-4k .因为k ∈N *,所以-4k的最大值为-4,所以λ>-4. 综上,λ的取值范围为(-4,2).(3)假设存在正整数m ,n (n >m >2),使得S 2,S m -S 2,S n -S m 成等比数列, 则(S m -S 2)2=S 2(S n -S m ),即(m 2-4)2=4(n 2-m 2), 所以4n 2=(m 2-2)2+12,即4n 2-(m 2-2)2=12, 即(2n -m 2+2)(2n +m 2-2)=12.因为n >m >2,所以n ≥4,m ≥3,所以2n +m 2-2≥15.因为2n -m 2+2是整数,所以等式(2n -m 2+2)(2n +m 2-2)=12不成立, 故不存在正整数m ,n (n >m >2),使得S 2,S m -S 2,S n -S m 成等比数列.4.若一个数列从第2项起,每一项与它前一项的差都大于2,则称这个数列为“A 型数列”. (1)若首项为1,公差为整数的等差数列{a n }为“A 型数列”,且其前n 项和为S n ,若对于任意n ∈N *,都有S n <32n 2+n ,求{a n }的通项公式;(2)已知等比数列{a n }的每一项均为正整数,且{a n }为“A 型数列”,b n =23a n ,c n =a n(n +1)·2n -5,当数列{b n }不是“A 型数列”时,试判断数列{c n }是否为“A 型数列”,并说明理由. 解 (1)设等差数列{a n }的公差为d ,则d >2, 由a 1=1,得S n =n +n (n -1)2d ,且S 1<52.由题意,得n +n (n -1)2d <32n 2+n 对n ∈N *均成立,即d <3nn -1对n ≥2均成立, ∵3n n -1=3+3n -1>3, ∴d ≤3,又d >2, ∴d =3,∴a n =3n -2.(2)设数列{a n }的公比为q ,则a n =a 1q n -1,∵{a n }的每一项均为正整数, 且a n +1-a n =a n q -a n =a n (q -1)>2>0, ∴a 1>0,且q >1,∵a n +1-a n =q (a n -a n -1)>a n -a n -1, 即在{a n -a n -1}中,a 2-a 1为最小项, 同理,在{b n -b n -1}中,b 2-b 1为最小项,由{a n }为“A 型数列”,可知只需a 2-a 1>2,即a 1(q -1)>2, 又∵{b n }不是“A 型数列”,且b 2-b 1为最小项, ∴b 2-b 1≤2,即a 1(q -1)≤3,由数列{a n }的每一项均为正整数,可得a 1(q -1)=3, ∴a 1=1,q =4或a 1=3,q =2. ①当a 1=1,q =4时,a n =4n -1,则c n =4n -1(n +1)·2n -5=2n +3n +1, 令d n =c n +1-c n (n ∈N *),则d n =2n +4n +2-2n +3n +1=2n +3·n (n +1)(n +2),令e n =d n +1-d n (n ∈N *),则e n =2n +4·n +1(n +2)(n +3)-2n +3·n (n +1)(n +2)=2n +3n +2·n 2+n +2(n +1)(n +3)>0,∴{d n }为递增数列, 即d n >d n -1>d n -2>…>d 1,即c n +1-c n >c n -c n -1>c n -1-c n -2>…>c 2-c 1, ∵c 2-c 1=323-8=83>2,∴对任意的n ∈N *都有c n +1-c n >2, 即数列{c n }为“A 型数列”. ②当a 1=3,q =2时,a n =3·2n -1,则c n =3·2n +1(n +1)·2n -5=48n +1, 显然,{c n }为递减数列,c 2-c 1<0≤2, 故数列{c n }不是“A 型数列”; 综上所述,当a n =4n -1时,数列{c n }为“A 型数列”,当a n =3·2n -1时,数列{c n }不是“A 型数列”.小题满分练小题满分练11.设全集U=R,A={x|x2-2x≤0},B={y|y=cos x,x∈R},则图中阴影部分表示的区间是________.答案(-∞,-1)∪(2,+∞)解析因为A={x|0≤x≤2}=[0,2],B={y|-1≤y≤1}=[-1,1],所以A∪B=[-1,2],所以∁R(A∪B)=(-∞,-1)∪(2,+∞).2.(2017·苏州暑假测试)命题“∃x>1,x2≥2”的否定是________.答案∀x>1,x2<2解析根据存在性命题的否定规则得“∃x>1,x2≥2”的否定是“∀x>1,x2<2”.3.若复数z满足z i=1+2i,则z的共轭复数是________.答案2+i解析∵z i=1+2i,∴z=1+2ii=2-i,∴z=2+i.4.(2017·徐州、连云港、宿迁三检)已知一组数据3,6,9,8,4,则该组数据的方差是________.答案265(或5.2)解析这组数据的平均数x=15(3+6+9+8+4)=6,方差s2=15(9+0+9+4+4)=265.5.若流程图如图所示,则该程序运行后输出的值是________.答案10000。
2018版考前三个月高考数学理科(全国通用)总复习文档:解答题滚动练4

解答题滚动练41.(2017·佳木斯一中期中)已知函数f (x )=34sin 2x +12cos 2x . (1)求函数f (x )的最大值及取到最大值时x 的集合;(2)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若f (A )=12,a =1,求△ABC 周长的最大值.解 (1)f (x )=34sin 2x +12×12(1+cos 2x )=34sin 2x +14cos 2x +14=12sin ⎝⎛⎭⎫2x +π6+14,由2x +π6=2k π+π2,得x =k π+π6,k ∈Z ,当x =k π+π6,k ∈Z 时,f (x )有最大值34,即f (x )取最大值时x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π+π6,k ∈Z . (2)f (A )=12sin ⎝⎛⎭⎫2A +π6+14=12,sin ⎝⎛⎭⎫2A +π6=12, ∵A ∈(0,π), ∴2A +π6∈⎝⎛⎭⎫π6,13π6, ∴2A +π6=5π6,A =π3,∴12=a 2=b 2+c 2-2bc cos π3=b 2+c 2-bc =(b +c )2-3bc ≥(b +c )24,∴b +c ≤2,a +b +c ≤3,即△ABC 周长的最大值为3. 2.已知数列{a n }满足:a 1=-23,a n +1=-2a n -33a n +4(n ∈N *).(1)证明:数列⎩⎨⎧⎭⎬⎫1a n +1是等差数列,并求{a n }的通项公式;(2)若数列{b n }满足:b n =32(a n +1)(n ∈N *),若对一切n ∈N *,都有(1-b 1)(1-b 2)…(1-b n )≤λ2n +1成立,求实数λ的最小值.解 (1)因为a n +1+1=-2a n -33a n +4+1=a n +13a n +4,因为1a n +1+1=3a n +4a n +1=3+1a n +1,所以1a n +1+1-1a n +1=3,所以⎩⎨⎧⎭⎬⎫1a n +1是首项为3,公差为3的等差数列,所以1a n +1=3n ,∴a n =13n -1.(2)由(1)知b n =12n ,设f (n )=2n +1·⎝⎛⎭⎫12·34·56…2n -12n (n ≥1,n ∈N *),由f (n +1)f (n )=4n 2+8n +34n 2+8n +4<1,得λ≥32,即λ的最小值为32. 3.几年来,网上购物风靡,快递业迅猛发展,某市的快递业务主要由两家快递公司承接,即甲公司与乙公司,“快递员”的工资是“底薪+送件提成”,这两家公司对“快递员”的日工资结算方案为:甲公司规定快递员每天底薪为70元,每送件一次提成1元;乙公司规定快递员每天底薪为120元,每日前83件没有提成,超过83件部分每件提成10元,假设同一公司的快递员每天送件数相同,现从这两家公司各随机抽取一名快递员并记录其100天的送件数,得到如下条形图:(1)求乙公司的快递员日工资y (单位:元)与送件数n 的函数关系; (2)若将频率视为概率,回答下列问题:①记甲公司的“快递员”日工资为X (单位:元),求X 的分布列和期望;②小王想到这两家公司中的一家应聘“快递员”的工作,如果仅从日收入的角度考虑,请你利用所学过的统计学知识为他作出选择,并说明理由.解 (1)由题意,当0≤n ≤83时,y =120元,当n >83时,y =120+(n -83)×10=10n -710, ∴乙公司的快递员日工资y (单位:元)与送件数n 的函数关系为y =⎩⎪⎨⎪⎧120,0≤n ≤83,10n -710,n >83. (2)X 的所有可能取值为152,154,156,158,160.①由题意,P (X =152)=0.1,P (X =154)=0.1,P (X =156)=0.2,P (X =158)=0.3,P (X =160)=0.3, ∴X 的分布列为∴期望E (X )=152×0.1+154×0.1+156×0.2+158×0.3+160×0.3=157.2. ②设乙公司的日工资为Y ,则E (Y )=120×0.1+130×0.2+150×0.1+170×0.4+190×0.2=159.由于甲公司的日工资的期望(均值)没有乙公司的日工资的期望(均值)高,∴小王应当到乙公司应聘“快递员”的工作.4.已知函数f (x )=12x 2+a cos x ,g (x )是f (x )的导函数.(1)若f (x )在⎝⎛⎭⎫π2,f ⎝⎛⎭⎫π2处的切线方程为y =π+22x -π2+4π8,求a 的值; (2)若a ≥0且f (x )在x =0时取得最小值,求a 的取值范围;(3)在(1)的条件下,当x >0时,求证g ′()x 2+38x 2(1)解 f ′(x )=x -a sin x ,f ′⎝⎛⎭⎫π2=π2-a =π+22, ∴a =-1,经验证a =-1符合题意. (2)解 g (x )=f ′(x )=x -a sin x , 则g ′(x )=1-a cos x .①当a =0时,f (x )=12x 2,显然在x =0时取得最小值,∴a =0符合题意; ②当a >0时,(i)当1a ≥1即0<a ≤1时,g ′(x )≥0恒成立,∴g (x )在(-∞,+∞)上单调递增,又g (0)=0,∴当x <0时,g (x )<0,即f ′(x )<0,当x >0时,g (x )>0,即f ′(x )>0, ∴f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增, ∴f (x )在x =0时取得最小值, ∴当0<a ≤1时符合题意;(ii)当0<1a <1,即a >1时,在(0,π)内存在唯一x 0使g ′(x )=0,即cos x 0=1a .当x ∈(0,x 0)时,∵y =cos x 在(0,π)上单调递减, ∴cos x >cos x 0=1a ,∴g ′(x )=a ⎝⎛⎭⎫1a -cos x <0, ∴g (x )在(0,x 0)上单调递减, ∴g (x )<g (0)=0, 即f ′(x )<0,∴f (x )在(0,x 0)上单调递减, ∴当x ∈(0,x 0)时,f (x )<f (0),这与f (x )在x =0时取得最小值,即f (x )≥f (0)矛盾, ∴当a >1时不合题意.综上,a 的取值范围是[0,1]. (3)证明 由(1)知,a =-1,此时g (x )=x +sin x ,g ′(x )=1+cos x ,∴g ′(x )2=1+cos x 2=⎪⎪⎪⎪cos x 2≥cos x2, ∴若要证原不等式成立,只需证cos x 2+38x 2>e x -1x成立.由(2)知,当a =1时,f (x )≥f (0)恒成立,即12x 2+cos x ≥1恒成立,即cos x ≥1-12x 2(当且仅当x =0时取“=”),∴cos x 2≥1-18x 2(当且仅当x =0时取“=”),①∴只需证1-18x 2+38x 21+14x 2又由基本不等式知,1+14x 2≥x (当且仅当x =2时取“=”),②∵①②两个不等式取”=”的条件不一致,∴只需证x两边取对数得ln x ≥1-1x,③下面证③式成立,令φ(x )=ln x -1+1x ,则φ′(x )=1x -1x 2=x -1x2,∴φ(x )在(0,1)上单调递减,在(1,+∞)上单调递增, ∴φ(x )≥φ(1)=0,即ln x -1+1x ≥0,∴ln x ≥1-1x.即③式成立,∴原不等式成立.。
全国通用2018版高考数学总复习考前三个月解答题滚动练5理.doc

解答题滚动练51.(2017 •北京)如图,在四棱锥尸一』成中,底面』助为正方形,平面0/a平面/砌,点所在线段用上,仞〃平面切G PA=PD=y[6, AB=4.(1)求证:M为PB的中点;(2)求二面角B-PD-A的大小;(3)求直线欢与平面时所成角的正弦值.⑴证明设化BD交于.E,连接必如图.因为愆〃平面切G 平面切CTI平面破=班,所以PD//ME.因为四边形敬力是正方形,所以E为BD的中点,所以M为PB的中点.⑵解取欢的中点。
,连接弟OE.因为PA=PD,所以那_L也,又因为平面平面ABCD,且游u平面PAD,所以必>_L平面ABCD.因为两u平面ABCD,所以OPLOE.因为四边形物⑦是正方形,所以OELAD.如图,建立空间直角坐标系赤*,则尸(0, 0,展),力(2, 0, 0),以一2, 4, 0),航(4, -4, 0),社(2, 0, 一俎). 设平面战£?的法向量n= (x, y, z),n ■BD=g, 则<_0 •应=0, J4x —4y=0, 〔2x —吏 z=0.(3)解 令x=l,则尸1, z=吏.于是n= (1, 1,吏). 平面的法向量为p=(0, 1, 0),n • p 1所以cos 5, p)=扁¥=云由题意知二面角B — PD — A 为锐角,JI所以它的大小为 O设直线必与平面夕班所成的角为a,则sm a = |cos 5,丽 | 笑,\n\\MC\所以直线照与平面妍所成角的正弦值为绊.2. (2017 •安徽太和中学模拟)新一届班委会的7名成员有0, B,。
三人是上一届的成员,现 对7名成员进行如下分工.(1) 若正、副班长两职只能由4 B,。
三人中选两人担任,则有多少种分工方案?(2) 若4 B,「三人不能再担任上一届各自的职务,则有多少种分工方案?解 ⑴先确定正、副班长,有A ;种选法,其余全排列有A?种,共有A 锵= 720(种)分工方案.(2)方法一设B,。
2018考前三个月高考数学理科总复习训练题:——解答题滚动练6 含答案

解答题滚动练61.在△ABC 中,三个内角分别为A ,B ,C ,已知sin ⎝⎛⎭⎪⎫A +π6=2cos A . (1)若cos C =63,求证:2a -3c =0; (2)若B ∈⎝⎛⎭⎪⎫0,π3,且cos(A -B )=45,求sin B . (1)证明 因为sin ⎝⎛⎭⎪⎫A +π6=2cos A ,得32sin A +12cos A =2cos A , 即sin A =3cos A ,因为A ∈(0,π),且cos A ≠0,所以tan A =3,所以A =π3. 因为sin 2C +cos 2C =1,cos C =63,C ∈(0,π), 所以sin C =33, 由正弦定理知a sin A =c sin C ,即a c =sin A sin C =3233=32, 即2a -3c =0.(2)解 因为B ∈⎝ ⎛⎭⎪⎫0,π3,所以A -B =π3-B ∈⎝ ⎛⎭⎪⎫0,π3, 因为sin 2(A -B )+cos 2(A -B )=1, 所以sin(A -B )=35, 所以sin B =sin(A -(A -B ))=sin A cos(A -B )-cos A ·sin(A -B )=43-310. 2.已知函数f (x )=ax 3-2x -ln x ,a ∈R .(1)若曲线y =f (x )在x =1处的切线方程为y =b ,求a +b 的值;(2)在(1)的条件下,求函数f (x )零点的个数.解 (1)f ′(x )=3ax 2-2-1x, 由题意,f ′(1)=0,f (1)=b ,解得,a =1,b =-1,所以a +b =0.(2)由(1)知,f (x )=x 3-2x -ln x ,f ′(x )=3x 2-2-1x =3x 3-2x -1x=(x -1)(3x 2+3x +1)x, 令f ′(x )=0,得x =1,且当0<x <1时,f ′(x )<0;当x >1时,f ′(x )>0,所以函数f (x )在(0,1)上单调递减,在(1,+∞)上单调递增.因为f (1)=-1<0,f ⎝ ⎛⎭⎪⎫1e =1e 3-2e +1>0,f (e)=e 3-2e -1>0,函数f (x )在区间⎣⎢⎡⎦⎥⎤1e ,1和[1,e]上的图象是一条不间断的曲线,由零点存在性定理,知函数f (x )有两个零点.3.已知圆M :x 2+(y -4)2=4,点P 是直线l :x -2y =0上的一动点,过点P 作圆M 的切线PA ,PB ,切点为A ,B .(1)当切线PA 的长度为23时,求点P 的坐标;(2)若△PAM 的外接圆为圆N ,试问:当P 运动时,圆N 是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由;(3)求线段AB 长度的最小值.解 (1)由题意可知,圆M 的半径r =2,设P (2b ,b ),因为PA 是圆M 的一条切线,A 为切点,所以∠MAP =90°,所以MP =(0-2b )2+(4-b )2=AM 2+AP 2=4,解得b =0或b =85, 所以P (0,0)或P ⎝ ⎛⎭⎪⎫165,85. (2)设P (2b ,b ),因为∠MAP =90°,所以经过A ,P ,M 三点的圆N 以MP 为直径, 其方程为(x -b )2+⎝ ⎛⎭⎪⎫y -b +422=4b 2+(b -4)24, 即(2x +y -4)b -(x 2+y 2-4y )=0.由⎩⎪⎨⎪⎧ 2x +y -4=0,x 2+y 2-4y =0,解得⎩⎨⎧ x =0,y =4,或⎩⎪⎨⎪⎧ x =85,y =45,所以圆过定点(0,4),⎝ ⎛⎭⎪⎫85,45. (3)因为圆N 方程为(x -b )2+⎝ ⎛⎭⎪⎫y -b +422=4b 2+(b -4)24,即x2+y2-2bx-(b+4)y+4b=0.①圆M:x2+(y-4)2=4,即x2+y2-8y+12=0.②②-①得圆M与圆N的相交弦AB所在直线方程为2bx+(b-4)y+12-4b=0,点M到直线AB的距离d=4 5b2-8b+16,相交弦长AB=24-d2=41-45b2-8b+16=41-45⎝⎛⎭⎪⎫b-452+645.当b=45时,AB有最小值11.4.如图是一“T”型水渠的平面视图(俯视图),水渠的南北方向和东西方向轴截面均为矩形,南北向渠宽为4m,东西向渠宽2m(从拐角处,即图中A,B处开始).假定渠内的水面始终保持水平位置(即无高度差).(1)在水平面内,过点A的一条直线与水渠的内壁交于P,Q两点,且与水渠的一边的夹角为θ⎝⎛⎭⎪⎫0<θ<π2,将线段PQ的长度l表示为θ的函数;(2)若从南面漂来一根长为7m的笔直的竹竿(粗细不计),竹竿始终浮于水平面内,且不发生形变,问:这根竹竿能否从拐角处一直漂向东西向的水渠(不会卡住)?请说明理由.解(1)由题意,PA=2sinθ,QA=4cosθ,所以l=PA+QA=2sinθ+4cosθ⎝⎛⎭⎪⎫0<θ<π2. (2)设f(θ)=2sinθ+4cosθ,θ∈⎝⎛⎭⎪⎫0,π2.由f′(θ)=-2cosθsin2θ+4sinθcos2θ=2(22sin3θ-cos3θ)sin2θcos2θ,令f′(θ)=0,得tanθ0=22.且当θ∈(0,θ0),f′(θ)<0;当θ∈⎝⎛⎭⎪⎫θ0,π2,f′(θ)>0,所以f(θ)在(0,θ0)上单调递减,在⎝⎛⎭⎪⎫θ0,π2上单调递增,所以当θ=θ0时,f(θ)取得极小值,即为最小值.当tanθ0=22时,sinθ0=13,cosθ0=23,所以f(θ)的最小值为36,即这根竹竿能通过拐角处的长度的最大值为36m.因为36>7,所以这根竹竿能从拐角处一直漂向东西向的水渠.。
2018考前三个月高考数学理科(江苏专用)总复习训练题:——解答题滚动练3 含答案
;;解答题滚动练3;1.(2017·镇江期末)已知向量m =(cos α,-1),n =(2,sin α),其中α∈⎝⎛⎭⎪⎫0,π2,且m ⊥n .(1)求cos2α的值;;; (2)若sin(α-β)=1010,且β∈⎝⎛⎭⎪⎫0,π2,求角β的大小.解 方法一 (1)由m ⊥n ,得2cos α-sin α=0,所以sin α=2cos α,代入cos 2α+sin 2α=1,得5cos 2α=1,且α∈⎝⎛⎭⎪⎫0,π2,则cos α=55,sin α=255, 则cos2α=2cos 2α-1=2×⎝⎛⎭⎪⎫552-1=-35.;; (2)由α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,得α-β∈⎝ ⎛⎭⎪⎫-π2,π2.又sin(α-β)=1010,则cos(α-β)=31010. 则sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=255×31010-55×1010=22.; 因为β∈⎝⎛⎭⎪⎫0,π2,所以β=π4.;方法二 (1)由m ⊥n ,得2cos α-sin α=0,tan α=2,故cos2α=cos 2α-sin 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α=1-41+4=-35. (2)由(1)知,2cos α-sin α=0,且cos 2α+sin 2α=1,α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝⎛⎭⎪⎫0,π2,则sin α=255,cos α=55,以下同方法一(2).2.如图,在四棱锥P -ABCD 中,AB ⊥平面PAD ,DC ∥AB ,DC =2AB ,E 为棱PA 上一点. (1)设O 为AC 与BD 的交点,若PE =2AE ,求证:OE ∥平面PBC ; (2)若DE ⊥AP ,求证:PB ⊥DE .证明 (1)在△AOB 与△COD 中, 因为DC ∥AB ,DC =2AB ,所以AO CO =AB CD =12, 又因为PE =2AE ,所以在△APC 中,有AO CO =AE PE =12,则OE ∥PC . 又因为OE ⊄平面PBC ,PC ⊂平面PBC ,所以OE ∥平面PBC . (2)因为AB ⊥平面PAD ,DE ⊂平面PAD , 所以AB ⊥DE .又因为AP ⊥DE ,AB ⊂平面PAB ,AP ⊂平面PAB ,AP ∩AB =A , 所以DE ⊥平面PAB ,又PB ⊂平面PAB ,所以DE ⊥PB .3.已知某食品厂需要定期购买食品配料,该厂每天需要食品配料200千克,配料的价格为1.8元/千克,每次购买配料需支付运费236元.每次购买来的配料还需支付保管费用,其标准如下:7天以内(含7天),无论重量多少,均按10元/天支付;超出7天以外的天数,根据实际剩余配料的重量,以每天0.03元/千克支付.(1)当9天购买一次配料时,求该厂用于配料的保管费用P 是多少元?(2)设该厂x 天购买一次配料,求该厂在这x 天中用于配料的总费用y (元)关于x 的函数关系式,并求该厂多少天购买一次配料才能使平均每天支付的费用最少?解 (1)当9天购买一次时,该厂用于配料的保管费用P =70+0.03×200×(1+2)=88(元). (2)①当0<x ≤7时,y =360x +10x +236=370x +236, ②当x >7时,y =360x +236+70+6[(x -7)+(x -8)+…+2+1]=3x 2+321x +432∴y =⎩⎪⎨⎪⎧370x +236,0<x ≤7,3x 2+321x +432,x >7.∴设该厂x 天购买一次配料平均每天支付的费用为f (x )元. f (x )=⎩⎪⎨⎪⎧370x +236x ,0<x ≤7,3x 2+321x +432x,x >7.当0<x ≤7时,f (x )=370+236x ,当且仅当x =7时f (x )有最小值28267≈404(元),当x >7时,f (x )=3x 2+321x +432x=3⎝ ⎛⎭⎪⎫x +144x +321≥393,当且仅当x =12时取等号.∵393<404,∴当x =12时f (x )有最小值393元.4.已知函数f (x )=2ln x -x 2+ax (a ∈R ).(1)当a =2时,求f (x )的图象在x =1处的切线方程;(2)若函数g (x )=f (x )-ax +m 在⎣⎢⎡⎦⎥⎤1e ,e 上有两个零点,求实数m 的取值范围;(3)若函数f (x )的图象与x 轴有两个不同的交点A (x 1,0),B (x 2,0),且0<x 1<x 2,求证:f ′⎝ ⎛⎭⎪⎫x 1+x 22<0(其中f ′(x )是f (x )的导函数). (1)解 当a =2时,f (x )=2ln x -x 2+2x ,f ′(x )=2x-2x +2,切点坐标为(1,1),切线的斜率k =f ′(1)=2,则切线方程为y -1=2(x -1),即y =2x -1. (2)解 g (x )=2ln x -x 2+m ,则g ′(x )=2x -2x =-2(x +1)(x -1)x,∵x ∈⎣⎢⎡⎦⎥⎤1e ,e ,故g ′(x )=0时,x =1.当1e <x <1时,g ′(x )>0;当1<x <e 时,g ′(x )<0.故g (x )在x =1处取得极大值g (1)=m -1.又g ⎝ ⎛⎭⎪⎫1e =m -2-1e 2,g (e)=m +2-e 2,g (e)-g ⎝ ⎛⎭⎪⎫1e =4-e 2+1e 2<0,则g (e)<g ⎝ ⎛⎭⎪⎫1e ,所以g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最小值为g (e). g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上有两个零点的条件是⎩⎪⎨⎪⎧g (1)=m -1>0,g ⎝ ⎛⎭⎪⎫1e =m -2-1e 2≤0,解得1<m ≤2+1e 2,所以实数m 的取值范围是⎝⎛⎦⎥⎤1,2+1e 2.(3)证明 因为f (x )的图象与x 轴交于两个不同的点A (x 1,0),B (x 2,0),所以方程2ln x -x 2+ax =0的两个根为x 1,x 2,则⎩⎪⎨⎪⎧2ln x 1-x 21+ax 1=0,2ln x 2-x 22+ax 2=0,两式相减得a =(x 1+x 2)-2(ln x 1-ln x 2)x 1-x 2,又f (x )=2ln x -x 2+ax ,f ′(x )=2x -2x +a ,则f ′⎝ ⎛⎭⎪⎫x 1+x 22=4x 1+x 2-(x 1+x 2)+a =4x 1+x 2-2(ln x 1-ln x 2)x 1-x 2.下证4x 1+x 2-2(ln x 1-ln x 2)x 1-x 2<0,即证明2(x 2-x 1)x 1+x 2+ln x 1x 2<0,令t =x 1x 2. 因为0<x 1<x 2,所以0<t <1,即证明u (t )=2(1-t )t +1+ln t <0在0<t <1上恒成立.因为u ′(t )=-2(t +1)-2(1-t )(t +1)2+1t =1t -4(t +1)2=(t -1)2t (t +1)2,又0<t <1,所以u ′(t )>0, 所以u (t )在(0,1)上是增函数,则u (t )<u (1)=0,从而知2(x 2-x 1)x 1+x 2+ln x 1x 2<0,故4x 1+x 2-2(ln x 1-ln x 2)x 1-x 2<0,即f ′⎝ ⎛⎭⎪⎫x 1+x 22<0成立.。
2018考前三个月高考数学理科总复习训练题:——解答题滚动练4 含答案
解答题滚动练41.如图,在四棱锥P -ABCD 中,已知底面ABCD 为矩形,且AB =2,BC =1,E ,F 分别是AB ,PC 的中点,PA ⊥DE .(1)求证:EF ∥平面PAD ; (2)求证:平面PAC ⊥平面PDE .证明 (1)方法一 取线段PD 的中点M ,连结FM ,AM . 因为F 为PC 的中点,所以FM ∥CD ,且FM =12CD .因为四边形ABCD 为矩形,E 为AB 的中点, 所以EA ∥CD ,且EA =12CD .所以FM ∥EA ,且FM =EA .所以四边形AEFM 为平行四边形,所以EF ∥AM . 又AM ⊂平面PAD ,EF ⊄平面PAD , 所以EF ∥平面PAD .方法二 连结CE 并延长交DA 的延长线于N ,连结PN .因为四边形ABCD 为矩形,所以AD ∥BC , 所以∠BCE =∠ANE ,∠CBE =∠NAE . 又AE =EB ,所以△CEB ≌△NEA . 所以CE =NE .又F 为PC 的中点,所以EF ∥NP . 又NP ⊂平面PAD ,EF ⊄平面PAD , 所以EF ∥平面PAD .方法三 取CD 的中点Q ,连结FQ ,EQ . 在矩形ABCD 中,E 为AB 的中点, 所以AE =DQ ,且AE ∥DQ . 所以四边形AEQD 为平行四边形, 所以EQ ∥AD .又AD ⊂平面PAD ,EQ ⊄平面PAD , 所以EQ ∥平面PAD .因为Q ,F 分别为CD ,CP 的中点, 所以FQ ∥PD .又PD ⊂平面PAD ,FQ ⊄平面PAD , 所以FQ ∥平面PAD .又FQ ,EQ ⊂平面EQF ,FQ ∩EQ =Q ,所以平面EQF ∥平面PAD . 因为EF ⊂平面EQF ,所以EF ∥平面PAD . (2)设AC ,DE 相交于G . 在矩形ABCD 中, 因为AB =2BC ,E 为AB 的中点,所以DA AE =CDDA= 2.又∠DAE =∠CDA ,所以△DAE ∽△CDA , 所以∠ADE =∠DCA .又∠ADE +∠CDE =∠ADC =90°, 所以∠DCA +∠CDE =90°.由△DGC 的内角和为180°,得∠DGC =90°. 即DE ⊥AC . 又PA ⊥DE ,PA ∩AC =A ,PA ,AC ⊂平面PAC ,所以DE ⊥平面PAC ,又DE ⊂平面PDE ,所以平面PAC ⊥平面PDE .2.如图所示,A ,B 是两个垃圾中转站,B 在A 的正东方向16km 处,AB 的南面为居民生活区.为了妥善处理生活垃圾,政府决定在AB 的北面建一个垃圾发电厂P .垃圾发电厂P 的选址拟满足以下两个要求(A ,B ,P 可看成三个点):①垃圾发电厂到两个垃圾中转站的距离与它们每天集中的生活垃圾量成反比,比例系数相同;②垃圾发电厂应尽量远离居民区(这里参考的指标是点P 到直线AB 的距离要尽可能大).现估测得A ,B 两个中转站每天集中的生活垃圾量分别约为30吨和50吨,问垃圾发电厂该如何选址才能同时满足上述要求?解 方法一 由条件①,得PA PB =5030=53. 设PA =5x ,PB =3x ,则cos ∠PAB =(5x )2+162-(3x )22×16×5x =x 10+85x ,所以点P 到直线AB 的距离h =PA sin ∠PAB =5x1-⎝ ⎛⎭⎪⎫x 10+85x 2=-14x 4+17x 2-64 =-14(x 2-34)2+225, 所以当x 2=34,即x =34时,h 取得最大值15km. 即选址应满足PA =534km ,PB =334km.方法二 以AB 所在直线为x 轴,线段AB 的中垂线为y 轴,建立如图所示的平面直角坐标系, 则A (-8,0),B (8,0).由条件①,得PA PB =5030=53.设P (x ,y )(y >0),则3(x +8)2+y 2=5(x -8)2+y 2, 化简得(x -17)2+y 2=152(y >0),即点P 的轨迹是以点(17,0)为圆心、15为半径的圆位于x 轴上方的部分. 则当x =17时,点P 到直线AB 的距离最大,最大值为15km. 所以点P 的选址应满足在上述坐标系中坐标为(17,15)即可.方法三 由条件①,得PA PB =5030=53.过点P 作PD 垂直于AB ,设PD =h ,AD =x ,则DB =|16-x |, 3x 2+h 2=5h 2+(16-x )2,h 2=-(x -25)2+225.所以当x =25时,h 取得最大值15. 答 选址应满足PA =534km ,PB =334km. 3.已知数列{a n }满足a n +a n +1=2n -3,n ∈N *.(1)若数列{a n }为等差数列,求a 1;(2)设a 1=a (a >0),∀n ∈N *,n ≥2,不等式a 2n +a 2n +1a n +a n +1≥3成立,求实数a 的最小值.解 (1)设数列{a n }公差为d ,则2n -3=a n +a n +1=a 1+(n -1)d +a 1+nd =2dn +(2a 1-d )对∀n ∈N *成立,所以⎩⎪⎨⎪⎧2d =2,2a 1-d =-3,故d =1,a 1=-1.(2)由a n +a n +1=2n -3,知{a n -(n -2)}为等比数列,公比q =-1, 所以a n -(n -2)=(a +1)(-1)n -1,故a n =(n -2)+(a +1)(-1)n -1.①当n 为不小于3的奇数时,由a 2n +a 2n +1a n +a n +1≥3,得(n -1+a )2+(n -2-a )22n -3≥3,化简得a 2+a ≥-(n -3)2+2恒成立,所以a 2+a ≥2,解得a ≥1. ②n 为不小于2的偶数时,同理有a 2+3a ≥-(n -3)2恒成立,因为a >0,显然恒成立.所以a >0.由①②得a ≥1,故a 的最小值为1.4.已知椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),点A ,B 分别为其左、右顶点,点F 1,F 2分别为其左、右焦点,以点A 为圆心、AF 1为半径作圆A ,以点B 为圆心、OB 为半径作圆B .若直线l :y =-33x 被圆A 和圆B 截得的弦长之比为15∶6. (1)求椭圆C 的离心率;(2)已知a =7,问在x 轴上是否存在点P ,使得过点P 有无数条直线被圆A 和圆B 截得的弦长之比为3∶4,若存在,请求出所有点P 的坐标;若不存在,请说明理由.解 (1)分别过点A ,B 作直线l 的垂线,垂足为A 1,B 1, 由题意得AA 1=BB 1,由点到直线距离公式得AA 1=BB 1=a2,因为圆A 以AF 1为半径,所以半径为a -c ,被直线l 截得的弦长为2(a -c )2-⎝ ⎛⎭⎪⎫a 22,因为圆B 以OB 为半径,所以半径为a ,被直线l 截得的弦长为2a 2-⎝ ⎛⎭⎪⎫a 22. 因为直线l :y =-33x 被圆A 和圆B 截得的弦长之比为15∶6,所以2(a -c )2-⎝ ⎛⎭⎪⎫a 22234a 2=156, 化简得7a 2-32ac +16c 2=0,两边同时除以a 2,得16e 2-32e +7=0, 解得e =14或e =74(舍去).所以所求的离心率为14.(2)存在点P ,使得过点P 有无数条直线被圆A 和圆B 截得的弦长之比为3∶4, 设点P (x 0,0),由题意可得直线方程为y =k (x -x 0), 则直线截圆A 所得的弦长为2(a -c )2-⎝⎛⎭⎪⎫|k (-7-x 0)|1+k 22, 直线截圆B 所得的弦长为2a 2-⎝⎛⎭⎪⎫|k (7-x 0)|1+k 22,2(a -c )2-⎝⎛⎭⎪⎫k (7+x 0)1+k 222a 2-⎝ ⎛⎭⎪⎫k (7-x 0)1+k 22=34, 即有16⎣⎢⎡⎦⎥⎤(a -c )2-⎝⎛⎭⎪⎫7k +kx 01+k 22=9⎣⎢⎡⎦⎥⎤a 2-⎝ ⎛⎭⎪⎫7k -kx 01+k 22,其中a =7,c =74,a -c =214,上式整理得,16(7k +kx 0)21+k 2=9(7k -kx 0)21+k 2,关于k 的方程有无穷多解, 故有7x 20+350x 0+343=0, 解得x 0=-1或x 0=-49,故存在2个点P ,使得过点P 有无数条直线被圆A 和圆B 截得的弦长之比为3∶4,P 点坐标为(-1,0)或(-49,0).。
2018考前三个月高考数学理科总复习训练题:——解答题滚动练3 含答案
解答题滚动练31.(2017·镇江期末)已知向量m =(cos α,-1),n =(2,sin α),其中α∈⎝⎛⎭⎪⎫0,π2,且m ⊥n .(1)求cos2α的值; (2)若sin(α-β)=1010,且β∈⎝⎛⎭⎪⎫0,π2,求角β的大小.解 方法一 (1)由m ⊥n ,得2cos α-sin α=0,所以sin α=2cos α,代入cos 2α+sin 2α=1,得5cos 2α=1,且α∈⎝⎛⎭⎪⎫0,π2,则cos α=55,sin α=255, 则cos2α=2cos 2α-1=2×⎝⎛⎭⎪⎫552-1=-35. (2)由α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,得α-β∈⎝ ⎛⎭⎪⎫-π2,π2.又sin(α-β)=1010,则cos(α-β)=31010. 则sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=255×31010-55×1010=22. 因为β∈⎝⎛⎭⎪⎫0,π2,所以β=π4.方法二 (1)由m ⊥n ,得2cos α-sin α=0,tan α=2,故cos2α=cos 2α-sin 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α=1-41+4=-35. (2)由(1)知,2cos α-sin α=0,且cos 2α+sin 2α=1,α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝⎛⎭⎪⎫0,π2,则sin α=255,cos α=55,以下同方法一(2).2.如图,在四棱锥P -ABCD 中,AB ⊥平面PAD ,DC ∥AB ,DC =2AB ,E 为棱PA 上一点. (1)设O 为AC 与BD 的交点,若PE =2AE ,求证:OE ∥平面PBC ; (2)若DE ⊥AP ,求证:PB ⊥DE .证明 (1)在△AOB 与△COD 中, 因为DC ∥AB ,DC =2AB ,所以AO CO =AB CD =12, 又因为PE =2AE ,所以在△APC 中,有AO CO =AE PE =12,则OE ∥PC . 又因为OE ⊄平面PBC ,PC ⊂平面PBC ,所以OE ∥平面PBC . (2)因为AB ⊥平面PAD ,DE ⊂平面PAD , 所以AB ⊥DE .又因为AP ⊥DE ,AB ⊂平面PAB ,AP ⊂平面PAB ,AP ∩AB =A , 所以DE ⊥平面PAB ,又PB ⊂平面PAB ,所以DE ⊥PB .3.已知某食品厂需要定期购买食品配料,该厂每天需要食品配料200千克,配料的价格为1.8元/千克,每次购买配料需支付运费236元.每次购买来的配料还需支付保管费用,其标准如下:7天以内(含7天),无论重量多少,均按10元/天支付;超出7天以外的天数,根据实际剩余配料的重量,以每天0.03元/千克支付.(1)当9天购买一次配料时,求该厂用于配料的保管费用P 是多少元?(2)设该厂x 天购买一次配料,求该厂在这x 天中用于配料的总费用y (元)关于x 的函数关系式,并求该厂多少天购买一次配料才能使平均每天支付的费用最少?解 (1)当9天购买一次时,该厂用于配料的保管费用P =70+0.03×200×(1+2)=88(元). (2)①当0<x ≤7时,y =360x +10x +236=370x +236, ②当x >7时,y =360x +236+70+6[(x -7)+(x -8)+…+2+1]=3x 2+321x +432∴y =⎩⎪⎨⎪⎧370x +236,0<x ≤7,3x 2+321x +432,x >7.∴设该厂x 天购买一次配料平均每天支付的费用为f (x )元. f (x )=⎩⎪⎨⎪⎧370x +236x ,0<x ≤7,3x 2+321x +432x,x >7.当0<x ≤7时,f (x )=370+236x ,当且仅当x =7时f (x )有最小值28267≈404(元),当x >7时,f (x )=3x 2+321x +432x=3⎝ ⎛⎭⎪⎫x +144x +321≥393,当且仅当x =12时取等号.∵393<404,∴当x =12时f (x )有最小值393元.4.已知函数f (x )=2ln x -x 2+ax (a ∈R ).(1)当a =2时,求f (x )的图象在x =1处的切线方程;(2)若函数g (x )=f (x )-ax +m 在⎣⎢⎡⎦⎥⎤1e ,e 上有两个零点,求实数m 的取值范围;(3)若函数f (x )的图象与x 轴有两个不同的交点A (x 1,0),B (x 2,0),且0<x 1<x 2,求证:f ′⎝ ⎛⎭⎪⎫x 1+x 22<0(其中f ′(x )是f (x )的导函数). (1)解 当a =2时,f (x )=2ln x -x 2+2x ,f ′(x )=2x-2x +2,切点坐标为(1,1),切线的斜率k =f ′(1)=2,则切线方程为y -1=2(x -1),即y =2x -1. (2)解 g (x )=2ln x -x 2+m ,则g ′(x )=2x -2x =-2(x +1)(x -1)x,∵x ∈⎣⎢⎡⎦⎥⎤1e ,e ,故g ′(x )=0时,x =1.当1e <x <1时,g ′(x )>0;当1<x <e 时,g ′(x )<0.故g (x )在x =1处取得极大值g (1)=m -1.又g ⎝ ⎛⎭⎪⎫1e =m -2-1e 2,g (e)=m +2-e 2,g (e)-g ⎝ ⎛⎭⎪⎫1e =4-e 2+1e 2<0,则g (e)<g ⎝ ⎛⎭⎪⎫1e ,所以g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最小值为g (e). g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上有两个零点的条件是⎩⎪⎨⎪⎧g (1)=m -1>0,g ⎝ ⎛⎭⎪⎫1e =m -2-1e 2≤0,解得1<m ≤2+1e 2,所以实数m 的取值范围是⎝⎛⎦⎥⎤1,2+1e 2.(3)证明 因为f (x )的图象与x 轴交于两个不同的点A (x 1,0),B (x 2,0),所以方程2ln x -x 2+ax =0的两个根为x 1,x 2,则⎩⎪⎨⎪⎧2ln x 1-x 21+ax 1=0,2ln x 2-x 22+ax 2=0,两式相减得a =(x 1+x 2)-2(ln x 1-ln x 2)x 1-x 2,又f (x )=2ln x -x 2+ax ,f ′(x )=2x -2x +a ,则f ′⎝ ⎛⎭⎪⎫x 1+x 22=4x 1+x 2-(x 1+x 2)+a =4x 1+x 2-2(ln x 1-ln x 2)x 1-x 2.下证4x 1+x 2-2(ln x 1-ln x 2)x 1-x 2<0,即证明2(x 2-x 1)x 1+x 2+ln x 1x 2<0,令t =x 1x 2. 因为0<x 1<x 2,所以0<t <1,即证明u (t )=2(1-t )t +1+ln t <0在0<t <1上恒成立.因为u ′(t )=-2(t +1)-2(1-t )(t +1)2+1t =1t -4(t +1)2=(t -1)2t (t +1)2,又0<t <1,所以u ′(t )>0, 所以u (t )在(0,1)上是增函数,则u (t )<u (1)=0,从而知2(x 2-x 1)x 1+x 2+ln x 1x 2<0,故4x 1+x 2-2(ln x 1-ln x 2)x 1-x 2<0,即f ′⎝ ⎛⎭⎪⎫x 1+x 22<0成立.。
2018单元滚动检测卷高考数学理人教A版全国通用:阶段
阶段滚动检测(五)考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3.本次考试时间120分钟,满分150分. 4.请在密封线内作答,保持试卷清洁完整.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图所示的Venn 图中,A ,B 是非空集合,定义A *B 表示阴影部分的集合.若x ,y ∈R ,A ={x |y =2x -x 2},B ={y |y =3x ,x >0},则A *B 等于( )A .(2,+∞)B .0,1)∪(2,+∞)C .0,1]∪(2,+∞)D .0,1]∪2,+∞)2.(2016·南昌调研)“x >1”是“1x <1”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件3.函数y =|x |(1-x )在区间A 上是增函数,那么区间A 是( ) A .(-∞,0) B .0,12] C .0,+∞)D .(12,+∞)4.(2016·大同质检)已知f (x )为偶函数,当x ≥0时,f (x )=⎩⎪⎨⎪⎧cosπx ,x ∈[0,12],2x -1,x ∈(12,+∞),则不等式f (x -1)≤12的解集为( ) A .14,23]∪43,74]B .-34,-13]∪14,23]C .13,34]∪43,74]D .-34,-13]∪13,34]5.在三棱锥P -ABC 中,P A ⊥平面ABC ,AC ⊥BC ,D 为侧棱PC 上的一点,它的正视图和侧视图如图所示,则下列命题正确的是( )A .AD ⊥平面PBC 且三棱锥D -ABC 的体积为83 B .BD ⊥平面P AC 且三棱锥D -ABC 的体积为83 C .AD ⊥平面PBC 且三棱锥D -ABC 的体积为163 D .BD ⊥平面P AC 且三棱锥D -ABC 的体积为1636.(2016·济宁模拟)设等差数列{a n }的前n 项和是S n ,若-a m <a 1<-a m +1(m ∈N *且m ≥2),则必定有( ) A .S m >0,且S m +1<0 B .S m <0,且S m +1>0 C .S m >0,且S m +1>0D .S m <0,且S m +1<07.(2016·黄山联考)设函数f (x )=3cos(2x +φ)+sin(2x +φ)(|φ|<π2),且其图象关于直线x =0对称,则( )A .y =f (x )的最小正周期为π,且在(0,π2)上为增函数 B .y =f (x )的最小正周期为π,且在(0,π2)上为减函数 C .y =f (x )的最小正周期为π2,且在(0,π4)上为增函数 D .y =f (x )的最小正周期为π2,且在(0,π4)上为减函数8.(2017·昆明统考)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且2S =(a +b )2-c 2,则tan C 等于( ) A.34B.43C .-43D .-349.设1<x <2,则ln x x ,(ln x x )2,ln x 2x 2的大小关系是( )A .(ln x x )2<ln x x <ln x 2x 2 B.ln x x <(ln x x )2<ln x 2x 2 C .(ln x x )2<ln x 2x 2<ln x xD.ln x 2x 2<(ln x x )2<ln x x10.(2016·滨州一模)若对任意的x >1,x 2+3x -1≥a 恒成立,则a 的最大值是( )A .4B .6C .8D .1011.若f (x )=x 2+2ʃ10f (x )d x ,则ʃ10f (x )d x 等于( )A .-1B .-13C.13D .112.已知函数y =a n x 2(a n ≠0,n ∈N *)的图象在x =1处的切线斜率为2a n -1+1(n ≥2,n ∈N *)且当n =1时其图象过点(2,8),则a 7的值为( ) A.12B .7C .5D .6第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.(2016·福州质检)在△ABC 中,AR →=2RB →,CP →=2PR →,若AP →=mAB →+nAC →,则m+n =________.14.在算式“4×△+1×○=30”中的△,○中,分别填入两个正整数,使它们的倒数和最小,则这两个数构成的数对(△,○)应为________.15.棱长为a 的正方体ABCD -A 1B 1C 1D 1的8个顶点都在球O 的表面上,E 、F 分别是棱AA 1、DD 1的中点,则直线EF 被球O 截得的线段长为________. 16.已知函数f (x )=1-xax +ln x ,若函数f (x )在1,+∞)上为增函数,则正实数a 的取值范围为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)函数f (x )=A sin(ωx +φ)(A >0,ω>0,-π2<φ<π2,x ∈R )的部分图象如图所示.(1)求函数y=f(x)的解析式;(2)当x∈-π,-π6]时,求f(x)的取值范围.18.(12分)已知数列{a n}是递增的等差数列,a2,a4是方程x2-5x+6=0的根.(1)求数列{a n}的通项公式;(2)求数列{a n2n}的前n项和.19.(12分)已知向量a=(1,1),向量a与向量b的夹角为3π4,且a·b=-1.(1)求向量b;(2)若向量b与q=(1,0)共线,向量p=(2cos2C2,cos A),其中A,B,C为△ABC的内角,且A,B,C依次成等差数列,求|b+p|的取值范围.20.(12分)(2016·河北衡水中学调考)如图,在四棱锥S-ABCD中,底面ABCD是直角梯形,侧棱SA⊥底面ABCD,AB垂直于AD和BC,SA=AB=BC=2,AD=1,M是棱SB的中点.(1)求证:AM∥平面SCD;(2)求平面SCD 与平面SAB 所成的二面角的平面角的余弦值;(3)设N 是直线CD 上的动点,MN 与平面SAB 所成的角为θ,求sin θ的最大值.21.(12分)(2016·合肥质检)已知△ABC 的三边长AB =13,BC =4,AC =1,动点M 满足CM →=λCA →+μCB →,且λμ=14.(1)求|CM →|最小值,并指出此时CM →与C A →,C B →的夹角;(2)是否存在两定点F 1,F 2,使||MF 1→|-|MF 2→||恒为常数k ?若存在,指出常数k 的值,若不存在,说明理由.22.(12分)(2016·潍坊一中期初考试)已知函数f (x )=x +1e x (e 为自然对数的底数).(1)求函数f (x )的最大值;(2)设函数φ(x )=xf (x )+tf ′(x )+1e x ,存在实数x 1,x 2∈0,1],使得2φ(x 1)<φ(x 2)成立,求实数t 的取值范围.答案精析1.C A ={x |0≤x ≤2},B ={y |y >1}, 故A ∪B ={x |x ≥0},A ∩B ={x |1<x ≤2}, 由题图可知,A *B ={x |x ∈A 或x ∈B 且x ∉A ∩B } ={x |0≤x ≤1或x >2}.]2.A 当x >1时,1x <1,当1x <1时,x >1或x <0, 所以“x >1”是“1x <1”的充分不必要条件.] 3.B y =|x |(1-x )=⎩⎨⎧x (1-x ),x ≥0,-x (1-x ),x <0=⎩⎨⎧-x 2+x ,x ≥0,x 2-x ,x <0=⎩⎪⎨⎪⎧-(x -12)2+14,x ≥0,(x -12)2-14,x <0.画出函数的图象,如图.由图易知原函数在0,12]上单调递增.故选B.]4.A 借助偶函数的性质,先解不等式f (x )≤12,再利用图象的平移知识解不等式f (x -1)≤12.当x ∈0,12]时,由cosπx ≤12,得13≤x ≤12; 当x ∈(12,+∞)时,由2x -1≤12,得12<x ≤34;所以不等式f (x )≤12(x ≥0)的解为13≤x ≤12或12<x ≤34,即13≤x ≤34.由于偶函数的图象关于y 轴对称,则在函数的定义域内,不等式f (x )≤12的解为-34≤x ≤-13或13≤x ≤34.函数f (x -1)的图象可以看作由f (x )的图象向右平移1个单位得到的,故不等式f (x )≤12的解为14≤x ≤23或43≤x ≤74,即解集为14,23]∪43,74].] 5.C ∵P A ⊥平面ABC ,∴P A ⊥BC , 又AC ⊥BC ,P A ∩AC =A , ∴BC ⊥平面P AC ,∴BC ⊥AD ,又由三视图可得在△P AC 中,P A =AC =4,D 为PC 的中点, ∴AD ⊥PC ,∴AD ⊥平面PBC .又BC =4,∠ADC =90°,BC ⊥平面P AC . 故V D -ABC =V B -ADC =13×12×22×22×4=163.] 6.A 因为-a m <a 1<-a m +1, 所以⎩⎨⎧a 1+a m >0,a 1+a m +1<0.易得S m =a 1+a m 2·m >0,S m +1=a 1+a m +12·(m +1)<0.]7.B ∵f (x )=3cos(2x +φ)+sin(2x +φ)=2sin(2x +π3+φ), 且其图象关于x =0对称,∴f (x )是偶函数, ∴π3+φ=π2+k π,k ∈Z . 又∵|φ|<π2,∴φ=π6,∴f (x )=2sin(2x +π3+π6)=2cos2x .易知f (x )的最小正周期为π,在(0,π2)上为减函数.]8.C 因为2S =(a +b )2-c 2=a 2+b 2-c 2+2ab ,则结合面积公式与余弦定理,得ab sin C =2ab cos C +2ab , 即sin C -2cos C =2,所以(sin C -2cos C )2=4,sin 2C -4sin C cos C +4cos 2Csin 2C +cos 2C=4,所以tan 2C -4tan C +4tan 2C +1=4,解得tan C =-43或tan C =0(舍去),故选C.] 9.A 方法一 令f (x )=x -ln x (1<x <2),则f ′(x )=1-1x =x -1x >0, ∴函数y =f (x )(1<x <2)为增函数, ∴f (x )>1>0,∴x >ln x >0⇒0<ln xx <1, ∴(ln x x )2<ln x x .又ln x 2x 2-ln x x =2ln x -x ln x x 2=(2-x )ln x x 2>0,∴(ln x x )2<ln x x <ln x 2x 2,故选A.方法二 ∵1<x <2,∴0<ln x x <1,∴(ln x x )2<ln xx , 又ln x 2x 2=2x ·ln x x >ln x x ,∴(ln x x )2<ln x x <ln x 2x 2.] 10.B a ≤x 2+3x -1对x ∈(1,+∞)恒成立,即a ≤(x 2+3x -1)min ,x 2+3x -1=(x -1)2+2(x -1)+4x -1=(x -1)+4x -1+2, ∵x >1,∴(x -1)+4x -1+2 ≥2(x -1)·4x -1+2=6,当且仅当x -1=4x -1,即当x =3时取“=”, ∴a ≤6,∴a 的最大值为6,故选B.]11.B 因为f (x )=x 2+2ʃ10f (x )d x ,所以ʃ10f (x )d x =(13x 3+2x ʃ10f (x )d x )|10=13+2ʃ10f (x )d x , 所以ʃ10f (x )d x =-13.]12.C 由题意知y ′=2a n x , 所以2a n =2a n -1+1(n ≥2,n ∈N *), 所以a n -a n -1=12.又当n =1时其图象过点(2,8),所以a 1×22=8, 得a 1=2,所以{a n }是首项为2,公差为12的等差数列,a n =n 2+32,得a 7=5.] 13.79解析 由CP→=2PR →,得AP →-AC →=2(AR →-AP →),得AP →=13(AC →+2AR →).又由AR→=2RB →,得AR →=2(AB →-AR →),得AR →=23AB →, 故AP →=13AC →+49AB →, 所以m +n =79. 14.(5,10)解析 设数对为(a ,b ),则4a +b =30, 所以1a +1b =130(1a +1b )(4a +b )=130(5+b a +4a b ) ≥130(5+2b a ·4a b )=310,当且仅当⎩⎪⎨⎪⎧b a =4a b ,4a +b =30,即⎩⎨⎧a =5,b =10时等号成立,所以满足题意的数对为(5,10). 15.2a解析 因为正方体内接于球, 所以2R =a 2+a 2+a 2, R =32a ,过球心O 和点E 、F 的大圆的截面图如图所示,则直线被球截得的线段为QR ,过点O 作OP ⊥QR 于点P , 所以,在△QPO 中,QR =2QP =2(32a )2-(12a )2=2a .16.1,+∞) 解析 ∵f (x )=1-xax+ln x , ∴f ′(x )=ax -1ax 2(a >0).∵函数f (x )在1,+∞)上为增函数,∴f ′(x )=ax -1ax 2≥0在x ∈1,+∞)上恒成立, ∴ax -1≥0在x ∈1,+∞)上恒成立, 即a ≥1x 在x ∈1,+∞)上恒成立,∴a ≥1. 17.解 (1)由题图得A =1,T 4=2π3-π6=π2, 所以T =2π,则ω=1, 将(π6,1)代入得1=sin(π6+φ), 因为-π2<φ<π2, 所以φ=π3,因此函数f (x )=sin(x +π3).(2)由于x ∈-π,-π6],则-2π3≤x +π3≤π6, 所以-1≤sin(x +π3)≤12, 所以f (x )的取值范围是-1,12].18.解 (1)方程x 2-5x +6=0的两根为2,3, 由题意得a 2=2,a 4=3.设数列{a n }的公差为d ,则a 4-a 2=2d , 故d =12,从而a 1=32.所以{a n }的通项公式为a n =12n +1.(2)设{a n 2n }的前n 项和为S n ,由(1)知a n 2n =n +22n +1,则S n =322+423+…+n +12n +n +22n +1,12S n =323+424+…+n +12n +1+n +22n +2. 两式相减得12S n =34+(123+…+12n +1)-n +22n +2=34+14(1-12n -1)-n +22n +2. 所以S n =2-n +42n +1. 19.解 (1)设b =(x ,y ),则a ·b =x +y =-1,①又向量b 与向量a 的夹角为3π4,∴x 2+y 2=1,②由①②解得⎩⎨⎧ x =-1,y =0或⎩⎨⎧x =0,y =-1.∴b =(-1,0)或b =(0,-1).(2)由向量b 与q =(1,0)共线,知b =(-1,0),由2B =A +C ,得B =π3,A +C =2π3,0<A <2π3,∵b +p =(cos C ,cos A ),∴|b +p |2=cos 2C +cos 2A =1+cos2A 2+1+cos2C 2 =1+12cos2A +cos(4π3-2A )]=1+12cos(2A +π3).∵0<A <2π3,π3<2A +π3<5π3,∴-1≤cos(2A +π3)<12,∴12≤1+12cos(2A +π3)<54,即|b +p |2∈12,54),∴|b +p |∈22,52).20.(1)证明 以点A 为坐标原点,建立如图所示的空间直角坐标系,则A (0,0,0),B (0,2,0),C (2,2,0),D (1,0,0),S (0,0,2),M (0,1,1),∴AM→=(0,1,1),SD →=(1,0,-2),CD →=(-1,-2,0). 设平面SCD 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ SD →·n =0,CD →·n =0,即⎩⎨⎧x -2z =0,-x -2y =0, 令z =1,得n =(2,-1,1).∵AM →·n =0,∴AM→⊥n ,∴AM ∥平面SCD . (2)解 易知平面SAB 的一个法向量为n 1=(1,0,0).设平面SCD 与平面SAB 所成的二面角的平面角为φ,易知0<φ<π2,则cos φ=|n ·n 1|n ||n 1||=21×6=63, ∴平面SCD 与平面SAB 所成的二面角的平面角的余弦值为63.(3)解 设N (x,2x -2,0),x >0,则MN→=(x,2x -3,-1). 易知平面SAB 的一个法向量为n 1=(1,0,0),∴sin θ=MN →·n 1|MN →||n 1|=x 5x 2-12x +10 =110×(1x )2-12×1x +5=110×(1x -35)2+75, 故当1x =35,即x =53时,sin θ取得最大值,且(sin θ)max =357.21.解 (1)由余弦定理知cos ∠ACB =12+42-132×1×4=12⇒∠ACB =π3, 因为|CM →|2=CM →2=(λC A →+μC B →)2=λ2+16μ2+2λμC A →·C B →=λ2+1λ2+1≥3,所以|CM→|≥3, 当且仅当λ=±1时,“=”成立,故|CM→|的最小值是3, 此时〈CM →,C A →〉=〈CM →,C B →〉=π6或5π6.(2)以C 为坐标原点,∠ACB 的平分线所在直线为x 轴,建立平面直角坐标系如图,所以A (32,12),B (23,-2),设动点M (x ,y ),因为CM →=λC A →+μC B →,所以⎩⎪⎨⎪⎧ x =32λ+23μ,y =12λ-2μ⇒⎩⎪⎨⎪⎧ x 23=(λ2+2μ)2,y 2=(λ2-2μ)2,再由λμ=14知x 23-y 2=1,所以动点M 的轨迹是以F 1(-2,0),F 2(2,0)为焦点,实轴长为23的双曲线,即||MF 1→|-|MF 2→||恒为常数23,即存在k =2 3. 22.解 (1)函数f (x )的定义域为R ,f ′(x )=-x e x .当x <0时,f ′(x )>0;当x >0时,f ′(x )<0,所以f (x )在(-∞,0)上单调递增,在(0,+∞)上单调递减.因此,f (x )在x =0处取得极大值,也是最大值,最大值为1.(2)由题意,存在x 1,x 2∈0,1],使得2φ(x 1)<φ(x 2)成立,即2φ(x )min <φ(x )max .因为φ(x )=xf (x )+tf ′(x )+1e x =x 2+(1-t )x +1e x,x ∈0,1], 所以φ′(x )=-x 2+(1+t )x -t e x =-(x -1)(x -t )e x. ①当t ≥1时,φ′(x )≤0,φ(x )在0,1]上单调递减,所以2φ(1)<φ(0),即t >3-e 2>1,符合题意.②当t ≤0时,φ′(x )≥0,φ(x )在0,1]上单调递增, 所以2φ(0)<φ(1),即t <3-2e<0,符合题意. ③当0<t <1时,若x ∈0,t ),φ′(x )<0,φ(x )在0,t )上单调递减;若x ∈(t,1],φ′(x )>0,φ(x )在(t,1]上单调递增. 所以2φ(t )<max{φ(0),φ(1)},即2×t +1e t <max{1,3-t e }.(*)由(1)知,函数g (t )=2·t +1e t 在0,1]上单调递减,故4e ≤2·t +1e t ≤2,而2e <3-t e <3e ,所以不等式(*)无解.综上所述,t 的取值范围为(-∞,3-2e)∪(3-e 2,+∞).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解答题滚动练5
1.已知α∈(0,π),且sin ⎝
⎛⎭⎪⎫α+π3=6-24. (1)求sin ⎝
⎛⎭⎪⎫α-π4的值; (2)求cos ⎝
⎛⎭⎪⎫2α-π3的值. 解 方法一 联立⎩⎪⎨⎪⎧ sin ⎝
⎛⎭⎪⎫α+π3=6-24,sin 2α+cos 2α=1.⇒4sin 2α-(6-2)sin α-(1+3)=0,
解得sin α=6+24或sin α=-22
, 因为α∈(0,π),所以sin α=
6+24, 所以cos α=2-64
. (1)sin ⎝
⎛⎭⎪⎫α-π4=sin αcos π4-cos αsin π4=6+24×22-2-64×22=62×22=32
. (2)sin2α=2sin αcos α=2×6+24×2-64=-12,cos2α=1-2sin 2α=-32
. cos ⎝
⎛⎭⎪⎫2α-π3=cos2αcos π3+sin2αsin π3=-32. 方法二 因为α∈(0,π),sin ⎝
⎛⎭⎪⎫α+π3=6-24<12,所以5π6<α+π3<4π3, sin 11π12=sin ⎝ ⎛⎭
⎪⎫π4-π6=sin π4cos π6-cos π4sin π6=6-24, 所以α+π3=11π12,所以α=7π12
. (1)sin ⎝ ⎛⎭⎪⎫α-π4=sin ⎝ ⎛⎭
⎪⎫7π12-π4 =sin π3=32
.
(2)cos ⎝ ⎛⎭⎪⎫2α-π3=cos ⎝
⎛⎭⎪⎫2×7π12-π3=cos 5π6=-32. 2.如图,在四棱锥P -ABCD 中,△ACD 是正三角形,BD 垂直平分AC ,垂足为M ,∠ABC =120°,PA =AB =1,PD =2,N 为PD 的中点.
(1)求证:AD ⊥平面PAB ;
(2)求证:CN ∥平面PAB .
证明 (1)因为BD 垂直平分AC ,所以BA =BC ,
在△ABC 中,因为∠ABC =120°,
所以∠BAC =30°.
因为△ACD 是正三角形,所以∠DAC =60°,
所以∠BAD =90°,即AD ⊥AB .
因为AB =1,∠ABC =120°,所以AD =AC =3,
又因为PA =1,PD =2,由PA 2+AD 2=PD 2,
知∠PAD =90°,即AD ⊥AP .
因为AB ,AP ⊂平面PAB ,AB ∩AP =A ,
所以AD ⊥平面PAB .
(2)方法一 取AD 的中点H ,连结CH ,NH .
因为N 为PD 的中点,
所以HN ∥PA ,
因为PA ⊂平面PAB ,HN ⊄平面PAB ,
所以HN ∥平面PAB .
由△ACD 是正三角形,H 为AD 的中点,
所以CH ⊥AD .
由(1)知,BA ⊥AD ,所以CH ∥BA ,
因为BA ⊂平面PAB ,CH ⊄平面PAB ,
所以CH ∥平面PAB .
因为CH ,HN ⊂平面CNH ,CH ∩HN =H ,
所以平面CNH ∥平面PAB .
因为CN ⊂平面CNH ,
所以CN ∥平面PAB .
方法二 取PA 的中点S ,
过C 作CT ∥AD 交AB 的延长线于T ,连结ST ,SN .
因为N 为PD 的中点,所以SN ∥AD ,且SN =12
AD , 因为CT ∥AD ,所以CT ∥SN .
由(1)知,AB ⊥AD ,所以CT ⊥AT ,
在Rt △CBT 中,BC =1,∠CBT =60°,
得CT =32
. 由(1)知,AD =3,所以CT =12
AD , 所以CT =SN .
所以四边形SNCT 是平行四边形,
所以CN ∥TS .
因为TS ⊂平面PAB ,CN ⊄平面PAB ,
所以CN ∥平面PAB .
3.已知圆O :x 2+y 2=4,两个定点A (a,2),B (m,1),其中a ∈R ,m >0.P 为圆O 上任意一点,且PA PB
=k (k 为常数).
(1)求常数k 的值;
(2)过点E (a ,t )作直线l 与圆C :x 2+y 2=m 交于M ,N 两点,若M 点恰好是线段NE 的中点,求实数t 的取值范围.
解 (1)设点P (x ,y ),x 2+y 2=4, PA =(x -a )2+(y -2)2,PB =(x -m )2+(y -1)2, 因为PA PB =k ,所以(x -a )2+(y -2)2=k 2[(x -m )2+(y -1)2],
又x 2+y 2=4,化简得2ax +4y -a 2-8=k 2(2mx +2y -m 2-5),
因为P 为圆O 上任意一点,所以⎩⎪⎨⎪⎧ 2a =2mk 2,4=2k 2,
a 2+8=k 2(m 2+5),
又m >0,k >0,解得⎩⎨⎧ k =2,
a =2,m =1,
所以常数k = 2. (2)方法一 设M (x 0,y 0),M 是线段NE 的中点,N (2x 0-2,2y 0-t ),
又点M ,N 在圆C 上,即关于x ,y 的方程组⎩
⎪⎨⎪⎧ x 20+y 20=1,(2x 0-2)2+(2y 0-t )2=1有解, 化简得⎩
⎪⎨⎪⎧ x 20+y 20=1,8x 0+4ty 0-t 2-7=0有解, 即直线n :8x +4ty -t 2-7=0与圆C :x 2+y 2=1有交点,
则点(0,0)到直线n 的距离d =
|t 2+7|64+16t 2≤1,化简得,t 4-2t 2
-15≤0, 解得t ∈[-5,5].
方法二 设过E 的切线与圆C 切于切点F ,EF 2=EM ·EN ,
又M 是线段NE 的中点,所以EN =2MN ,EM =MN ,所以EF 2=2MN 2,
又EF 2=EC 2-CF 2=22+t 2-1=t 2+3,MN ≤2,
所以t 2+3≤8,
所以t ∈[-5,5].
4.已知函数f (x )=-x 2-(2a +1)x +ln x ,且该函数在x =1处取得极值.
(1)求实数a 的值,并求出函数的单调区间;
(2)若函数g (x )=f (x )-b +5x 2在区间(0,2018)上只有一个零点,求实数b 的值. 解 (1)由已知,得f ′(x )=-2x -2a -1+1x
, 据题意,f ′(1)=0,得到a =-1,
所以f (x )=-x 2
+x +ln x , f ′(x )=-2x +1+1x =(2x +1)(-x +1)x
. 由x >0,令f ′(x )>0,得0<x <1,
令f ′(x )<0,得x >1,所以函数f (x )在x =1处取得极值,所以a =-1, f (x )的单调增区间为(0,1),f (x )的单调减区间为(1,+∞).
(2)g (x )=f (x )-b +5x 2=-x 2+7x 2
+ln x -b ,x ∈(0,2018). 则g ′(x )=-2x +72+1x
, 令g ′(x )=0, 得x =2,负值舍去.
当0<x <2时,g ′(x )>0,g (x )的单调增区间为(0,2),
当2<x <2018时,g ′(x )<0,g (x )的单调减区间为(2,2018).
所以函数g (x )=f (x )-b +
5x 2
在区间(0,2018)上只有一个零点,等价于g (2)=0, 解得b =ln2+3.。