专题《解析几何》的一轮复习分析与指导
(全国版)高考数学一轮复习 第8章 平面解析几何 第2讲 两直线的位置关系学案-人教版高三全册数学学

第2讲 两直线的位置关系板块一 知识梳理·自主学习[必备知识]考点1 两条直线的位置关系 1.两条直线平行与垂直 (1)两条直线平行①对于两条不重合的直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,若其斜率分别为k 1、k 2,则有l 1∥l 2⇔k 1=k 2,b 1≠b 2.②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2. (2)两条直线垂直①如果两条直线l 1,l 2的斜率存在,设为k 1、k 2,则有l 1⊥l 2⇔k 1k 2=-1. ②当其中一条直线的斜率不存在,而另一条的斜率为0时,l 1⊥l 2. 2.两条直线的交点直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解.考点2 三种距离公式1.两点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离 |P 1P 2|=(x 1-x 2)2+(y 1-y 2)2. 2.点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.3.两条平行线Ax +By +C 1=0与Ax +By +C 2=0(其中C 1≠C 2)间的距离d =|C 1-C 2|A 2+B2.[必会结论]1.与直线Ax +By +C =0(A 2+B 2≠0)垂直和平行的直线方程可设为: (1)垂直:Bx -Ay +m =0;(2)平行:Ax +By +n =0. 2.与对称问题相关的两个结论:(1)点P (x 0,y 0)关于A (a ,b )的对称点为P ′(2a -x 0,2b -y 0). (2)设点P (x 0,y 0)关于直线y =kx +b 的对称点为P ′(x ′,y ′),则有⎩⎪⎨⎪⎧y ′-y 0x ′-x 0·k =-1,y ′+y2=k ·x ′+x 02+b ,可求出x ′,y ′.[考点自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)若两直线的方程组成的方程组有解,则两直线相交.( ) (2)点P (x 0,y 0)到直线y =kx +b 的距离为|kx 0+b |1+k2.( ) (3)直线外一点与直线上一点的距离的最小值就是点到直线的距离.( )(4)两平行线间的距离是一条直线上任一点到另一条直线的距离,也可以看作是两条直线上各取一点的最短距离.( )(5)若点A ,B 关于直线l :y =kx +b (k ≠0)对称,则直线AB 的斜率等于-1k,且线段AB的中点在直线l 上.( )答案 (1)× (2)× (3)√ (4)√ (5)√2.[课本改编]过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A.x -2y -1=0 B .x -2y +1=0 C.2x +y -2=0 D .x +2y -1=0答案 A解析 设直线方程为x -2y +c =0,又经过点(1,0),故c =-1,所求方程为x -2y -1=0.3.[2018·重庆模拟]若直线ax +2y +1=0与直线x +y -2=0互相垂直,那么a 的值等于( )A.1 B .-13 C .-23D .-2答案 D解析 由a ·1+2·1=0得a =-2,故选D.4.[课本改编]已知点(a,2)(a >0)到直线l :x -y +3=0的距离为1,则a 等于( ) A. 2 B .2- 2 C.2-1 D.2+1答案 C解析 由题意知|a -2+3|2=1,∴|a +1|=2,又a >0,∴a =2-1.5.[课本改编]平行线3x +4y -9=0和6x +8y +2=0的距离是( ) A.85 B .2 C.115 D.75 答案 B解析 依题意得,所求的距离等于|-18-2|62+82=2. 6.[2018·南宁模拟]直线x -2y +1=0关于直线x =1对称的直线方程是( ) A.x +2y -1=0 B .2x +y -1=0 C.2x +y -3=0 D .x +2y -3=0 答案 D解析 设所求直线上任一点(x ,y ),则它关于直线x =1的对称点(2-x ,y )在直线x -2y +1=0上,即2-x -2y +1=0,化简得x +2y -3=0.板块二 典例探究·考向突破 考向平行与垂直问题例1 (1)直线2x +y +m =0和x +2y +n =0的位置关系是( ) A.平行 B .垂直 C.相交但不垂直 D .不能确定答案 C解析 由⎩⎪⎨⎪⎧2x +y +m =0,x +2y +n =0,可得3x +2m -n =0,由于3x +2m -n =0有唯一解,故方程组有唯一解,故两直线相交,两直线的斜率分别为-2,-12,斜率之积不等于-1,故不垂直.(2)[2018·金华十校模拟]“直线ax -y =0与直线x -ay =1平行”是“a =1”成立的( )A.充分不必要条件 B .必要不充分条件 C.充要条件 D .既不充分也不必要条件答案 B解析 由直线ax -y =0与x -ay =1平行,得a 2=1,即a =±1,所以“直线ax -y =0与x -ay =1平行”是“a =1”的必要不充分条件.触类旁通两直线位置关系问题的解题策略(1)充分掌握两直线平行与垂直的条件是解决此类试题的关键,对于斜率都存在且不重合的两条直线l 1和l 2,l 1∥l 2⇔k 1=k 2,l 1⊥l 2⇔k 1·k 2=-1.若有一条直线的斜率不存在,那么另一条直线的斜率是否存在一定要特别注意.(2)设l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1⊥l 2⇔A 1A 2+B 1B 2=0.【变式训练1】 (1)“m =3”是“直线l 1:2(m +1)x +(m -3)y +7-5m =0与直线l 2:(m -3)x +2y -5=0垂直”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 答案 A解析 由l 1⊥l 2,得2(m +1)(m -3)+2(m -3)=0, ∴m =3或m =-2,∴m =3是l 1⊥l 2的充分不必要条件.(2)[2018·宁夏模拟]若直线l 1:x +2my -1=0与l 2:(3m -1)x -my -1=0平行,则实数m 的值为________.答案 0或16解析 因为直线l 1:x +2my -1=0与l 2:(3m -1)x -my -1=0平行,则斜率相等或者斜率不存在,-12m =3m -1m 或者m =0,∴m =16或0.考向距离公式的应用例2 [2018·潍坊模拟]已知点P (2,-1). (1)求过点P 且与原点的距离为2的直线l 的方程;(2)求过点P 且与原点的距离最大的直线l 的方程,最大距离是多少?(3)是否存在过点P 且与原点的距离为6的直线?若存在,求出方程;若不存在,请说明理由.解 (1)过点P 的直线l 与原点的距离为2,而点P 的坐标为(2,-1),显然,过P (2,-1)且垂直于x 轴的直线满足条件,此时l 的斜率不存在,其方程为x =2.若斜率存在,设l 的方程为y +1=k (x -2), 即kx -y -2k -1=0.由已知得|-2k -1|k 2+1=2,解得k =34,此时l 的方程为3x -4y -10=0.综上,可得直线l 的方程为x =2或3x -4y -10=0.(2)作图可得过点P 与原点O 的距离最大的直线是过点P 且与PO 垂直的直线,如图.由l ⊥OP ,得k l k OP =-1,所以k l =-1k OP=2.由直线方程的点斜式得y +1=2(x -2),即2x -y -5=0.所以直线2x -y -5=0是过点P 且与原点O 的距离最大的直线,最大距离为|-5|5= 5.(3)由(2)可知,过点P 不存在到原点的距离超过5的直线,因此不存在过点P 且到原点的距离为6的直线.触类旁通与距离有关问题的常见类型及解题策略(1)求距离.利用距离公式求解法将两条平行线间的距离转化为点到直线的距离. (2)已知距离求参数值.列方程求出参数.(3)求距离的最值.可利用距离公式得出距离关于某个点的函数,利用函数知识求最值. 【变式训练2】 (1)若直线l 1:x -2y +m =0(m >0)与直线l 2:x +ny -3=0之间的距离是5,则m +n =( )A.0 B .1 C .-1 D .2 答案 A解析 ∵直线l 1:x -2y +m =0(m >0)与直线l 2:x +ny -3=0之间的距离为5,∴⎩⎪⎨⎪⎧n =-2,|m +3|5=5,∴n =-2,m =2(负值舍去),∴m +n =0.(2)已知点A (-3,-4),B (6,3)到直线l :ax +y +1=0的距离相等,则实数a 的值为________.答案 -13或-79解析 由题意及点到直线的距离公式得|-3a -4+1|a 2+1=|6a +3+1|a 2+1,解得a =-13或-79. 考向对称问题命题角度1 点关于点的对称 例3 过点P (0,1)作直线l 使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,求直线l 的方程.解 设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上,代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上, 所以由两点式得直线l 的方程为x +4y -4=0.命题角度2 点关于线的对称例4 若将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m ,n )重合,则m +n =________.答案345解析 由题可知纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线y =2x -3,它也是点(7,3)与点(m ,n )连线的中垂线,于是⎩⎪⎨⎪⎧3+n 2=2×7+m2-3,n -3m -7=-12,解得⎩⎪⎨⎪⎧m =35,n =315,故m +n =345.命题角度3 直线关于直线的对称例5 直线2x -y +3=0关于直线x -y +2=0对称的直线方程是( ) A.x -2y +3=0 B .x -2y -3=0 C.x +2y +1=0 D .x +2y -1=0答案 A解析 设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P ′(x 0,y 0),由⎩⎪⎨⎪⎧x +x 02-y +y 02+2=0,x -x 0=-(y -y 0),得⎩⎪⎨⎪⎧x 0=y -2,y 0=x +2,由点P ′(x 0,y 0)在直线2x -y +3=0上, 则2(y -2)-(x +2)+3=0,即x -2y +3=0. 命题角度4 对称问题的应用例6 已知直线l :x -2y +8=0和两点A (2,0),B (-2,-4). (1)在直线l 上求一点P ,使|PA |+|PB |最小; (2)在直线l 上求一点P ,使||PB |-|PA ||最大.解 (1)设A 关于直线l 的对称点为A ′(m ,n ),则⎩⎪⎨⎪⎧n -0m -2=-2,m +22-2·n +02+8=0,解得⎩⎪⎨⎪⎧m =-2,n =8,故A ′(-2,8).P 为直线l 上的一点,则|PA |+|PB |=|PA ′|+|PB |≥|A ′B |,当且仅当B ,P ,A ′三点共线时,|PA |+|PB |取得最小值,为|A ′B |,点P 即是直线A ′B 与直线l 的交点,解⎩⎪⎨⎪⎧x =-2,x -2y +8=0,得⎩⎪⎨⎪⎧x =-2,y =3,故所求的点P 的坐标为(-2,3).(2)A ,B 两点在直线l 的同侧,P 是直线l 上的一点,则||PB |-|PA ||≤|AB |,当且仅当A ,B ,P 三点共线时,||PB |-|PA ||取得最大值,为|AB |,点P 即是直线AB 与直线l 的交点,又直线AB 的方程为y =x -2,解⎩⎪⎨⎪⎧y =x -2,x -2y +8=0,得⎩⎪⎨⎪⎧x =12,y =10,故所求的点P 的坐标为(12,10).触类旁通解决对称问题的方法 (1)中心对称①点P (x ,y )关于O (a ,b )的对称点P ′(x ′,y ′)满足⎩⎪⎨⎪⎧x ′=2a -x ,y ′=2b -y .②直线关于点的对称可转化为点关于点的对称问题来解决. (2)轴对称①点A (a ,b )关于直线Ax +By +C =0(B ≠0)的对称点为A ′(m ,n ),则有⎩⎪⎨⎪⎧n -b m -a ×⎝ ⎛⎭⎪⎫-A B =-1,A ·a +m 2+B ·b +n 2+C =0.②直线关于直线的对称可转化为点关于直线的对称问题来解决.核心规律1.两直线的位置关系要考虑平行、垂直和重合.2.对称问题一般是将线与线的对称转化为点与点的对称.3.光线的反射问题具有入射角等于反射角的特点,这样就有两种对称关系,一是入射光线与反射光线关于过反射点且与反射轴垂直的直线(法线)对称,二是入射光线与反射光线所在直线关于反射轴对称.满分策略1.在判断两条直线的位置关系时,首先应分析直线的斜率是否存在.若直线无斜率,要单独考虑.2.使用点到直线的距离公式前必须将直线方程化为一般式,同时此公式对直线与坐标轴垂直或平行的情况也适用;使用两平行线间的距离公式时,一定要注意先把两直线方程中的x ,y 的系数化成相等.板块三 启智培优·破译高考题型技法系列 13——物理光学中对称思想的应用[2018·湖南模拟]在等腰直角三角形ABC 中,AB =AC =4,点P 为边AB 上异于A ,B 的一点,光线从点P 出发,经BC ,CA 反射后又回到点P .若光线QR 经过△ABC 的重心,则AP 等于( )A.2 B .1 C.83 D.43解题视点 依入射光线与反射光线的对称性知,点P 关于直线BC 的对称点P 2在直线RQ上,点P 关于直线AC 的对称点P 1也在直线RQ 上,所以点P 1,D ,P 2三点共线(D 为△ABC 的重心),利用kP 1D =kP 2D 即可破解.解析 以A 为原点,AB 为x 轴,AC 为y 轴建立直角坐标系如图所示.则A (0,0),B (4,0),C (0,4).设△ABC 的重心为D ,则D 点坐标为⎝ ⎛⎭⎪⎫43,43. 设P 点坐标为(m,0),则P 点关于y 轴的对称点P 1为(-m,0),因为直线BC 方程为x +y -4=0,所以P 点关于BC 的对称点P 2为(4,4-m ),根据光线反射原理,P 1,P 2均在QR 所在直线上,∴kP 1D =kP 2D ,即4343+m =43-4+m 43-4,解得m =43或m =0.当m =0时,P 点与A 点重合,故舍去.∴m =43.答案 D答题启示 许多问题都隐含着对称性,要注意深刻挖掘,充分利用对称变换来解决,如角平分线、线段中垂线、光线反射等,恰当地利用平面几何的知识对解题能起到事半功倍的效果.跟踪训练光线从A (-4,-2)点射出,射到直线y =x 上的B 点后被直线y =x 反射到y 轴上的C 点,又被y 轴反射,这时反射光线恰好过点D (-1,6),求BC 所在的直线方程.解 作出草图,如图所示,设A 关于直线y =x 的对称点为A ′,D 关于y 轴的对称点为D ′,则易得A ′(-2,-4),D ′(1,6).由入射角等于反射角可得A ′D ′所在直线经过点B 与C .故BC 所在的直线方程为y +46+4=x +21+2.即10x -3y +8=0.板块四 模拟演练·提能增分[A 级 基础达标]1.[2018·四川模拟]设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 答案 A解析 若两直线平行,则a (a +1)=2,即a 2+a -2=0,∴a =1或-2,故a =1是两直线平行的充分不必要条件.2.若直线mx +4y -2=0与直线2x -5y +n =0垂直,垂足为(1,p ),则实数n 的值为( )A.-12 B .-2 C .0 D .10 答案 A解析 由2m -20=0得m =10.由垂足(1,p )在直线mx +4y -2=0上,得10+4p -2=0,∴p =-2.又垂足(1,-2)在直线2x -5y +n =0上,则解得n =-12.3.[2018·启东模拟]不论m 为何值时,直线(m -1)x +(2m -1)y =m -5恒过定点( ) A.⎝ ⎛⎭⎪⎫1,-12 B .(-2,0) C.(2,3) D .(9,-4)答案 D解析 由(m -1)x +(2m -1)y =m -5,得(x +2y -1)m -(x +y -5)=0,由⎩⎪⎨⎪⎧x +2y -1=0,x +y -5=0,得定点坐标为(9,-4),故选D.4.P 点在直线3x +y -5=0上,且点P 到直线x -y -1=0的距离为2,则P 点坐标为( )A.(1,2)B .(2,1)C.(1,2)或(2,-1) D .(2,1)或(-1,2)答案 C解析 设P (x,5-3x ),则d =|x -5+3x -1|12+(-1)2=2,化简得|4x -6|=2,即4x -6=±2,解得x =1或x =2,故点P 的坐标为(1,2)或(2,-1).5.[2018·绵阳模拟]若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|PQ |的最小值为( )A.95B.185C.2910D.295 答案 C解析 因为36=48≠-125,所以两直线平行,由题意可知|PQ |的最小值为这两条平行直线间的距离,即|-24-5|62+82=2910,所以|PQ | 的最小值为2910. 6.[2018·合肥模拟]已知直线l :x -y -1=0,l 1:2x -y -2=0.若直线l 2与l 1关于l 对称,则l 2的方程是( )A.x -2y +1=0 B .x -2y -1=0 C.x +y -1=0 D .x +2y -1=0答案 B解析 因为l 1与l 2关于l 对称,所以l 1上任一点关于l 的对称点都在l 2上,故l 与l 1的交点(1,0)在l 2上.又易知(0,-2)为l 1上一点,设它关于l 的对称点为(x ,y ),则⎩⎪⎨⎪⎧x +02-y -22-1=0,y +2x ×1=-1,解得⎩⎪⎨⎪⎧x =-1,y =-1,即(1,0),(-1,-1)为l 2上两点,可得l 2的方程为x -2y -1=0.7.若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点的距离的最小值为( )A.3 2 B .2 2 C .3 3 D .4 2 答案 A解析 ∵l 1:x +y -7=0和l 2:x +y -5=0是平行直线,∴可判断AB 所在直线过原点且与直线l 1,l 2垂直时,中点M 到原点的距离最小.∵直线l 1:x +y -7=0,l 2:x +y -5=0,∴两直线的距离为|7-5|12+12=2,又原点到直线l 2的距离为522,∴AB 的中点M 到原点的距离的最小值为522+22=3 2.故选A.8.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是________.答案 [-2,2]解析 b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时,b 分别取得最小值和最大值. ∴b 的取值范围是[-2,2].9.已知直线l 1:ax -y +2a =0,l 2:(2a -1)x +ay +a =0互相垂直,则实数a 的值是________.答案 0或1解析 因为直线l 1:ax -y +2a =0,l 2:(2a -1)x +ay +a =0互相垂直,故有a (2a -1)+a (-1)=0,可知a 的值为0或1.10.[2018·银川模拟]点P (2,1)到直线l :mx -y -3=0(m ∈R )的最大距离是________. 答案 2 5解析 直线l 经过定点Q (0,-3),如图所示.由图知,当PQ ⊥l 时,点P (2,1)到直线l 的距离取得最大值|PQ |= (2-0)2+(1+3)2=25,所以点P (2,1)到直线l 的最大距离为2 5.[B 级 知能提升]1.[2018·东城期末]如果平面直角坐标系内的两点A (a -1,a +1),B (a ,a )关于直线l 对称,那么直线l 的方程为( )A.x -y +1=0 B .x +y +1=0 C.x -y -1=0 D .x +y -1=0答案 A解析 因为直线AB 的斜率为a +1-aa -1-a=-1,所以直线l 的斜率为1,设直线l 的方程为y =x +b ,由题意知直线l 过点⎝⎛⎭⎪⎫2a -12,2a +12,所以2a +12=2a -12+b ,解得b =1,所以直线l 的方程为y =x +1,即x -y +1=0.故选A.2.[2018·宜春统考]已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为( )A.2x +3y -18=0B.2x -y -2=0C.3x -2y +18=0或x +2y +2=0D.2x +3y -18=0或2x -y -2=0 答案 D解析 依题意,设直线l :y -4=k (x -3), 即kx -y +4-3k =0, 则有|-5k +2|k 2+1=|k +6|k 2+1,因此-5k +2=k +6或-5k +2=-(k +6),解得k =-23或k =2,故直线l 的方程为2x +3y -18=0或2x -y -2=0.3.[2018·淮安调研]已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________________.答案 6x -y -6=0解析 设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,所以⎩⎪⎨⎪⎧b -4a -(-3)·1=-1,-3+a 2-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0.4.已知两条直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值:(1)l 1⊥l 2,且l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等. 解 (1)由已知可得l 2的斜率存在,且k 2=1-a . 若k 2=0,则1-a =0,a =1.∵l 1⊥l 2,∴直线l 1的斜率k 1必不存在,即b =0. 又∵l 1过点(-3,-1), ∴-3a +4=0,即a =43(矛盾),∴此种情况不存在,∴k 2≠0,即k 1,k 2都存在.∵k 2=1-a ,k 1=a b,l 1⊥l 2, ∴k 1k 2=-1,即a b(1-a )=-1.①又∵l 1过点(-3,-1),∴-3a +b +4=0.② 由①②联立,解得a =2,b =2.(2)∵l 2的斜率存在且l 1∥l 2,∴直线l 1的斜率存在,k 1=k 2,即ab=1-a .③又∵坐标原点到这两条直线的距离相等,且l 1∥l 2, ∴l 1,l 2在y 轴上的截距互为相反数,即4b=b ,④联立③④,解得⎩⎪⎨⎪⎧a =2,b =-2或⎩⎪⎨⎪⎧a =23,b =2.∴a =2,b =-2或a =23,b =2.5.[2018·合肥模拟]已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (3)直线l 关于点A (-1,-2)对称的直线l ′的方程. 解 (1)设A ′(x ,y ),由已知条件得⎩⎪⎨⎪⎧ y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413.∴A ′⎝ ⎛⎭⎪⎫-3313,413.(2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上. 设对称点M ′(a ,b ),则⎩⎪⎨⎪⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1,得M ′⎝⎛⎭⎪⎫613,3013.设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).又∵m ′经过点N (4,3),∴由两点式得直线m ′的方程为9x -46y +102=0. (3)解法一:在l :2x -3y +1=0上任取两点,如M (1,1),N (4,3),则M ,N 关于点A (-1,-2)的对称点M ′,N ′均在直线l ′上, 易得M ′(-3,-5),N ′(-6,-7), 再由两点式可得l ′的方程为2x -3y -9=0. 解法二:∵l ∥l ′,∴设l ′的方程为2x -3y +C =0(C ≠1). ∵点A (-1,-2)到两直线l ,l ′的距离相等, ∴由点到直线的距离公式,得|-2+6+C |22+32=|-2+6+1|22+32,解得C =-9, ∴l ′的方程为2x -3y -9=0.解法三:设P (x ,y )为l ′上任意一点, 则P (x ,y )关于点A (-1,-2)的对称点为P ′(-2-x ,-4-y ).∵点P ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0, 即2x -3y -9=0.。
高三数学高考一本通解析几何第一轮复习第十课时 直线与圆锥曲线的位置关系教案人教版

直线与圆锥曲线的位置关系【考点诠释】:能够正确熟练地解决直线和圆锥曲线的位置关系的一些问题;能够正确运用圆锥曲线的第一定义、第二定义和标准方程解决焦点弦问题,焦点三角形问题,弦中点问题.直线与圆锥曲线的位置关系是高考的必考内容,且常以中、高档题目出现.特别是弦长、弦中点、定值与最值问题、轨迹问题、是高考的热点.这部分对运算能力、分析综合能力要求较高,要给予相当重视. 【知识整合】:1. 判断直线L 与圆锥曲线C 的位置关系时,通常将直线L 的方程Ax+By+C=0(A 、B 不同时为0)代入圆锥曲线C 的方程F(x,y)=0,消去y(也可以消去x)得到一个关于变量x 的一元方程.即 Ax+By+C=0F(x,y)=0 消去y 后得ax 2+bx+c=0.(1)当a ≠0时,则有⊿>0,直线L 与曲线C ;⊿=0,直线L 与曲线C ; ⊿<0,直线L 与曲线C .(2)当a =0时,即得到一个一次方程,则L 与C 相交,且只有一个交点,此时,若C 为双曲线,则直线L 与双曲线的渐近线是 ;若C 为抛物线,则直线L 与抛物线的对称轴的位置关系是 .2. 连结圆锥曲线上两个点的线段称为圆锥曲线的弦,要能熟练地利用方程的根与系数关系来计算弦长,常用的弦长公式:|AB |=21k +|x 1-x 2|=211k+|y 1-y 2|. 3.已知弦AB 的中点,研究AB 的斜率和方程.(1)AB 是椭圆12222=+by a x (a >b >0)的一条弦,中点M 坐标为(x 0,y 0),则 AB 的斜率为 .运用点差法求AB 的斜率.设A(x 1,y 1)B(x 2,y 2).A 、B 都在椭圆上,1221221=+b ya x1222222=+b y a x 两式相减得02222122221=-+-byy a x x∴0))(())((2212122121=+-++-b y y y y a x x x x 即=++-=--)()(2122122121y y a x x b x x y y 故k AB =(2)运用类比的手法可以推出已知AB 是双曲线12222=-by a x 的弦,中点M (x 0,y 0),则k AB = ;已知抛物线y 2=2px(p >0)的弦的中点M (x 0,y 0),则k AB = .【基础再现】: 1. 直线y=kx+23与曲线y 2-2y-x+3=0只有一个公共点,则k 的值为( ) A. o 或21 B. 0或41 C. -21或41 D. 0或-21或412. 直线2x-y-1=0与圆锥曲线C 交于A(x 1,y 1),B(x 2,y 2)两点,若|AB |=10,则|y 1-y 2|=3. 点P(8,1)平分双曲线x 2-4y 2=4的一条弦,这条弦所在的直线方程是 .4. 给出下列曲线:①4x+2y-1=0②x 2+y 2=3③22x +y 2=1④22x -y 2=1其中与直线y=-2x-3有交点的所有曲线是( )A. ①③B. ②④C. ①②③D. ②③④【例题精析】:例1、 过点P(-1,1),作直线与椭圆12422=+y x 交于A 、B 两点,若AB 的中点恰为P 点,求AB 所在直线的方程和线段AB 的长度.例2、 抛物线(y+m)2=4(x+n)的焦点在直线y=x-1上滑动,试问:能否滑到使抛物线截直线y=121+x 所得弦长与y 轴所得的弦长相等?若能,求出此时的抛物线方程,若不能,说明理由。
数学一轮复习第八章平面解析几何第九节圆锥曲线的综合问题第1课时最值范围证明问题学案含解析

第九节圆锥曲线的综合问题最新考纲考情分析1.掌握解决直线与椭圆、抛物线的位置关系的思想方法.2.了解圆锥曲线的简单应用.3.理解数形结合的思想.1.直线与椭圆、抛物线的位置关系是近几年高考命题的热点.2.考查知识有直线与椭圆、抛物线相交,涉及弦长、中点、面积、对称、存在性问题.3.题型主要以解答题的形式出现,属中高档题。
知识点一直线与圆锥曲线的位置关系1.直线与圆锥曲线的位置关系判断直线l与圆锥曲线C的位置关系时,通常将直线l的方程Ax+By+C=0(A,B不同时为0)代入圆锥曲线C的方程F(x,y)=0,消去y(也可以消去x)得到一个关于变量x(或变量y)的一元方程.即错误!消去y,得ax2+bx+c=0。
(1)当a≠0时,设一元二次方程ax2+bx+c=0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C相交;Δ=0⇔直线与圆锥曲线C相切;Δ<0⇔直线与圆锥曲线C相离.(2)当a=0,b≠0时,即得到一个一元一次方程,则直线l 与圆锥曲线C相交,且只有一个交点,此时,若C为双曲线,则直线l与双曲线的渐近线的位置关系是平行;若C为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A,B两点,A(x1,y1),B(x2,y2),则|AB|=错误!|x1-x2|=错误!·错误!=错误!·|y1-y2|=错误!·错误!.知识点二圆锥曲线中的最值与取值范围问题圆锥曲线中的最值与取值范围问题一直是高考命题的热点,各种题型都有,命题角度很广,归纳起来常见的命题角度有:1.转化为函数利用基本不等式或二次函数求最值;2.利用三角函数有界性求最值;3.数形结合利用几何性质求最值.知识点三圆锥曲线中的定值与定点问题1.这类问题一般考查直线与圆锥曲线的位置关系,一元二次方程的根与系数之间的关系,考查斜率、向量的运算以及运算能力.2.解决这类定点与定值问题的方法有两种:一是研究一般情况,通过逻辑推理与计算得到定点或定值,这种方法难度大,运算量大,且思路不好寻找;另外一种方法就是先利用特殊情况确定定点或定值,然后验证,这样在整理式子或求值时就有了明确的方向.1.思考辨析判断下列结论正误(在括号内打“√”或“×”)(1)直线l与椭圆C相切的充要条件是:直线l与椭圆C只有一个公共点.(√)(2)直线l与双曲线C相切的充要条件是:直线l与双曲线C只有一个公共点.(×)(3)直线l与抛物线C相切的充要条件是:直线l与抛物线C 只有一个公共点.(×)(4)如果直线x=ty+a与圆锥曲线相交于A(x1,y1),B(x2,y2)两点,则弦长|AB|=错误!|y1-y2|.(√)解析:(2)因为直线l与双曲线C的渐近线平行时,也只有一个公共点,是相交,但并不相切.(3)因为直线l与抛物线C的对称轴平行或重合时,也只有一个公共点,是相交,但不相切.2.小题热身(1)过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有(C)A.1条B.2条C.3条D.4条解析:结合图形分析可知,满足题意的直线共有3条:直线x=0,过点(0,1)且平行于x轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x=0).(2)(2020·浙江八校联考)抛物线y=ax2与直线y=kx+b(k≠0)交于A,B两点,且这两点的横坐标分别为x1,x2,直线与x轴交点的横坐标是x3,则(B)A.x3=x1+x2B.x1x2=x1x3+x2x3C.x1+x2+x3=0 D.x1x2+x2x3+x3x1=0解析:由错误!消去y得ax2-kx-b=0,可知x1+x2=错误!,x1x2=-错误!,令kx+b=0得x3=-错误!,所以x1x2=x1x3+x2x3.(3)已知抛物线y=ax2(a>0)的准线为l,l与双曲线x24-y2=1的两条渐近线分别交于A,B两点,若|AB|=4,则a=错误!.解析:抛物线y=ax2(a〉0)的准线l:y=-错误!,双曲线错误!-y2=1的两条渐近线分别为y=错误!x,y=-错误!x,可得x A=-错误!,x B=错误!,可得|AB|=错误!-错误!=4,解得a=错误!。
高考数学一轮复习第九章平面解析几何第48课直线与椭圆的位置关系课件

交 C 于 A,B 两点,且 AB=3,则 C 的方程为__________. x42+y32=1 [依题意,设椭圆 C:ax22+by22=1(a>b>0).
过点 F2(1,0)且垂直于 x 轴的直线被曲线 C 截得弦长 AB=3,
∴点 A1,32必在椭圆上,∴a12+49b2=1.
①
圆的右焦点,则 S△ABF 的最大值为 bc.( )
(4)直线 y=k(x-1)+1 与椭圆x92+y42=1 的位置关系随 k 的变化而变化.(
)
[答案] (1)√ (2)× (3)√ (4)×
2.(教材改编)若斜率为 1 的直线 l 与椭圆x42+y2=1 相交于 A,B 两点,则
AB 的最大值为________.
又由 c=1,得 1+b2=a2.
②
由①②联立,得 b2=3,a2=4.
故所求椭圆 C 的方程为x42+y32=1.]
5.若椭圆x42+y22=1 中过点 P(1,1)的弦恰好被 P 平分,则此弦所在直线的方
程是________. x+2y-3=0 [设弦的两个端点分别为(x1,y1),(x2,y2)则
ax212+by212=1, ∴xa222+by222=1.
∴a12(x1+x2)(x1-x2)+b12(y1+y2)(y1-y2)=0.
∴a12+b12kAD·kBD=0,∵e=ac=12,∴ba22=34,∴k1=-4k3AD. ∵AD⊥AB,∴k2=-k1AD,∴kk12=--4kk31AADD=34. 法二:设 A(x0,y0),D(x1,y1),则 B(-x0,-y0). 则 kAD·kBD=yx11- -yx00·yx11+ +yx00=xy2112--xy0022=b21-axx21212- -bx2021-ax202=-ab22,下同法一.
浙江高考数学一轮复习第九章平面解析几何专题突破六高考中的圆锥曲线问题第1课时范围最值问题讲义含解析

高考专题突破六 高考中的圆锥曲线问题第1课时 范围、最值问题题型一 范围问题例1 (2018·浙江)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆x 2+y 24=1(x <0)上的动点,求△PAB 面积的取值范围.(1)证明 设P (x 0,y 0),A ⎝ ⎛⎭⎪⎫14y 21,y 1,B ⎝ ⎛⎭⎪⎫14y 22,y 2. 因为PA ,PB 的中点在抛物线上,所以y 1,y 2为方程⎝ ⎛⎭⎪⎫y +y 022=4·14y 2+x 02,即y 2-2y 0y +8x 0-y 20=0的两个不同的实根. 所以y 1+y 2=2y 0, 所以PM 垂直于y 轴.(2)解 由(1)可知⎩⎪⎨⎪⎧y 1+y 2=2y 0,y 1y 2=8x 0-y 20,所以|PM |=18(y 21+y 22)-x 0=34y 20-3x 0,|y 1-y 2|=22(y 20-4x 0). 所以△PAB 的面积S △PAB =12|PM |·|y 1-y 2|=324(y 20-4x 0). 因为x 2+y 204=1(-1≤x 0<0),所以y 20-4x 0=-4x 20-4x 0+4∈[4,5], 所以△PAB 面积的取值范围是⎣⎢⎡⎦⎥⎤62,15104.思维升华解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围.(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系.(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围. (4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.跟踪训练1 (2018·杭州质检)已知椭圆C :x 23+y 22=1,直线l :y =kx +m (m ≠0),设直线l与椭圆C 交于A ,B 两点.(1)若|m |>3,求实数k 的取值范围;(2)若直线OA ,AB ,OB 的斜率成等比数列(其中O 为坐标原点),求△OAB 的面积的取值范围. 解 (1)联立方程x 23+y 22=1和y =kx +m ,得(2+3k 2)x 2+6kmx +3m 2-6=0, 所以Δ=(6km )2-4(2+3k 2)(3m 2-6)>0, 所以m 2<2+3k 2,又|m |>3,所以2+3k 2>3, 即k 2>13,解得k >33或k <-33.所以实数k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-33∪⎝ ⎛⎭⎪⎫33,+∞. (2)设A (x 1,y 1),B (x 2,y 2),则由(1)知x 1+x 2=-6km 2+3k 2,x 1x 2=3m 2-62+3k 2,设直线OA ,OB 的斜率分别为k 1,k 2, 因为直线OA ,AB ,OB 的斜率成等比数列, 所以k 1k 2=y 1y 2x 1x 2=k 2,即(kx 1+m )(kx 2+m )x 1x 2=k 2, 化简得2+3k 2=6k 2,即k 2=23.因为|AB |=1+k 2|x 1-x 2|=53⎝ ⎛⎭⎪⎫6-32m 2, 原点O 到直线AB 的距离h =|m |1+k2=35·|m |, 所以△OAB 的面积S △OAB =12|AB |·h =66×32m 2⎝ ⎛⎭⎪⎫6-32m 2≤66×32m 2+⎝ ⎛⎭⎪⎫6-32m 22=62, 当且仅当32m 2=6-32m 2,即m =±2时,等号成立.但此时直线OA 或OB 的斜率不存在,所以等号取不到, 所以S △OAB ∈⎝ ⎛⎭⎪⎫0,62.题型二 最值问题命题点1 利用三角函数有界性求最值例2 过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,点O 是坐标原点,则|AF |·|BF |的最小值是( ) A.2B.2C.4D.2 2 答案 C解析 设直线AB 的倾斜角为θ,可得|AF |=21-cos θ,|BF |=21+cos θ,则|AF |·|BF |=21-cos θ×21+cos θ=4sin 2θ≥4. 命题点2 数形结合利用几何性质求最值例3 在平面直角坐标系xOy 中,P 为双曲线x 2-y 2=1右支上的一个动点.若点P 到直线x -y +1=0的距离大于c 恒成立,则实数c 的最大值为________. 答案22解析 双曲线x 2-y 2=1的渐近线为x ±y =0,直线x -y +1=0与渐近线x -y =0平行,故两平行线间的距离d =|1-0|12+(-1)2=22.由点P 到直线x -y +1=0的距离大于c 恒成立,得c ≤22,故c 的最大值为22. 命题点3 转化为函数利用基本不等式或函数单调性求最值例4 (2017·浙江)如图,已知抛物线x 2=y ,点A ⎝ ⎛⎭⎪⎫-12,14,B ⎝ ⎛⎭⎪⎫32,94,抛物线上的点P (x ,y )⎝ ⎛⎭⎪⎫-12<x <32,过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围; (2)求|PA |·|PQ |的最大值.解 (1)设直线AP 的斜率为k ,k =x 2-14x +12=x -12,因为-12<x <32.所以直线AP 斜率的取值范围为(-1,1). (2)联立直线AP 与BQ 的方程⎩⎪⎨⎪⎧kx -y +12k +14=0,x +ky -94k -32=0,解得点Q 的横坐标是x Q =-k 2+4k +32(k 2+1). 因为|PA |=1+k 2⎝ ⎛⎭⎪⎫x +12=1+k 2(k +1),|PQ |=1+k 2(x Q -x )=-(k -1)(k +1)2k 2+1,所以|PA |·|PQ |=-(k -1)(k +1)3, 令f (k )=-(k -1)(k +1)3, 因为f ′(k )=-(4k -2)(k +1)2,所以f (k )在区间⎝ ⎛⎭⎪⎫-1,12上单调递增,在⎝ ⎛⎭⎪⎫12,1上单调递减. 因此当k =12时,|PA |·|PQ |取得最大值2716.思维升华处理圆锥曲线最值问题的求解方法圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.跟踪训练2 (2018·浙江省杭州地区四校联考)已知椭圆x 2a 2+y 2b2=1(a >b >0),从椭圆的一个焦点出发的光线经椭圆反射后经过另一个焦点,再经椭圆反射后回到起点.光线经过的路径为正三角形,且该三角形的周长为12. (1)求椭圆的方程;(2)过A (0,b )且互相垂直的直线分别与椭圆交于另外两点B ,C ,记它们的横坐标分别为x B ,x C ,求x B x C 的最小值以及x B x C 最小时△ABC 的面积.解 (1)不妨设光线从焦点F 1(-c ,0)出发到达椭圆上的点M ,反射后经过另一个焦点F 2(c ,0)到达椭圆上的点N .由于光线经过的路径为正三角形F 1MN , 则|F 1M |=|F 1N |,所以MN ⊥F 1F 2,F 1F 2为△F 1MN 的中线. 由椭圆的定义得4a =12,a =3. 又|F 1F 2|=2c =32×4=23, 所以c =3,b 2=a 2-c 2=6, 所以椭圆的方程为x 29+y 26=1.(2)由(1)得A (0,6).显然直线AB ,AC 的斜率均存在且不为0. 设直线AB 的方程为y =kx +6(k ≠0), 代入x 29+y 26=1,得(2+3k 2)x 2+66kx =0,所以x B =-66k 2+3k 2,同理求得x C =66k2k 2+3, 所以x B x C =-66k 2+3k 2×66k 2k 2+3=-216k 2(2+3k 2)(2k 2+3)=-216k 26k 4+13k 2+6=-2166k 2+13+6k2=-2166⎝ ⎛⎭⎪⎫k 2+1k 2+13≥-21625,当且仅当k 2=1时等号成立.所以当k 2=1时,x B x C 取得最小值-21625.当k 2=1时,|AB |=66|k |1+k 22+3k 2,|AC |=66|k | 1+⎝ ⎛⎭⎪⎫-1k 22k 2+3, S △ABC =12×|AB |×|AC |=108|k |(1+k 2)(2+3k 2)(2k 2+3)=21625.1.已知P (x 0,y 0)是椭圆C :x 24+y 2=1上的一点,F 1,F 2是C 的两个焦点,若PF 1→·PF 2→<0,则x 0的取值范围是( )A.⎝ ⎛⎭⎪⎫-263,263B.⎝ ⎛⎭⎪⎫-233,233C.⎝ ⎛⎭⎪⎫-33,33 D.⎝ ⎛⎭⎪⎫-63,63 答案 A解析 由题意可知,F 1(-3,0),F 2(3,0), 则PF 1→·PF 2→=(x 0+3)(x 0-3)+y 20=x 20+y 20-3<0, 点P 在椭圆上,则y 20=1-x 204,故x 2+⎝ ⎛⎭⎪⎫1-x 204-3<0,解得-263<x 0<263, 即x 0的取值范围是⎝ ⎛⎭⎪⎫-263,263.2.定长为4的线段MN 的两端点在抛物线y 2=x 上移动,设点P 为线段MN 的中点,则点P 到y 轴距离的最小值为( )A.1B.74C.2D.5答案 B解析 设M (x 1,y 1),N (x 2,y 2),抛物线y 2=x 的焦点为F ⎝ ⎛⎭⎪⎫14,0,抛物线的准线为x =-14,所求的距离d =⎪⎪⎪⎪⎪⎪x 1+x 22=x 1+14+x 2+142-14=|MF |+|NF |2-14,所以|MF |+|NF |2-14≥|MN |2-14=74(两边之和大于第三边且M ,N ,F 三点共线时取等号). 3.过抛物线y 2=x 的焦点F 的直线l 交抛物线于A ,B 两点,且直线l 的倾斜角θ≥π4,点A在x 轴上方,则|FA |的取值范围是( )A.⎝ ⎛⎦⎥⎤14,1B.⎝ ⎛⎭⎪⎫14,+∞C.⎝ ⎛⎭⎪⎫12,+∞ D.⎝ ⎛⎦⎥⎤14,1+22答案 D解析 记点A 的横坐标是x 1,则有|AF |=x 1+14=⎝ ⎛⎭⎪⎫14+|AF |cos θ+14=12+|AF |cos θ,|AF |(1-cos θ)=12,|AF |=12(1-cos θ).由π4≤θ<π得-1<cos θ≤22,2-2≤2(1-cos θ)<4,14<12(1-cos θ)≤12-2=1+22, 即|AF |的取值范围是⎝ ⎛⎦⎥⎤14,1+22.4.(2018·绍兴质检)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1且垂直于x 轴的直线与该双曲线的左支交于A ,B 两点,AF 2,BF 2分别交y 轴于P ,Q 两点.若△PQF 2的周长为16,则ba +1的最大值为( )A.43B.34C.53D.45 答案 A解析 如图(1),由已知条件得△ABF 2的周长为32,因为|AF 2|=2a +|AF 1|,|BF 2|=2a +|BF 1|,|AF 1|=|BF 1|=b 2a ,所以4a +4b 2a =32,b 2a +a =8,可整理为(a -4)2+b 2=16.设k =b a +1,则k 表示为(a ,b )与(-1,0)连线的斜率,作出图形,如图(2),易知k max =43.故选A.5.设O 为坐标原点,P 是以F 为焦点的抛物线y 2=2px (p >0)上任意一点,M 是线段PF 上的点,且|PM |=2|MF |,则直线OM 的斜率的最大值为( ) A.22B.23C.33D.1 答案 A解析 由题意可得F ⎝ ⎛⎭⎪⎫p 2,0,设P ⎝ ⎛⎭⎪⎫y 202p ,y 0(y 0>0), 则OM →=OF →+FM →=OF →+13FP →=OF →+13(OP →-OF →)=13OP →+23OF →=⎝ ⎛⎭⎪⎫y 206p +p 3,y 03,可得k =y 03y 206p +p 3=1y 02p +p y 0≤12y 02p ·p y 0=22. 当且仅当y 02p =py 0时取得等号,故选A.6.(2018·浙江省杭州市七校联考)已知M ,N 为双曲线x 24-y 2=1上关于坐标原点O 对称的两点,P 为双曲线上异于M ,N 的点,若直线PM 的斜率的取值范围是⎣⎢⎡⎦⎥⎤12,2,则直线PN 的斜率的取值范围是( )A.⎝ ⎛⎭⎪⎫18,12B.⎣⎢⎡⎦⎥⎤-12,-18C.⎣⎢⎡⎦⎥⎤18,12 D.⎣⎢⎡⎦⎥⎤-12,-18∪⎣⎢⎡⎦⎥⎤18,12答案 C解析 设M (x 0,y 0),N (-x 0,-y 0),P (m ,n )(m ≠±x 0),则k PM =n -y 0m -x 0,k PN =n +y 0m +x 0.因为点P ,M ,N 均在双曲线x 24-y 2=1上,所以m 24-n 2=1,x 204-y 20=1,两式相减得(m -x 0)(m +x 0)4-(n -y 0)(n +y 0)=0,化简得n -y 0m -x 0·n +y 0m +x 0=14,即k PM ·k PN =14,又12≤k PM ≤2, 即12≤14k PN ≤2,解得18≤k PN ≤12,故选C. 7.椭圆C :x 2a 2+y 2=1(a >1)的离心率为32,F 1,F 2是C 的两个焦点,过F 1的直线l 与C 交于A ,B 两点,则|AF 2|+|BF 2|的最大值为________.答案 7解析 因为椭圆C 的离心率为32,所以a 2-1a =32,解得a =2,由椭圆定义得|AF 2|+|BF 2|+|AB |=4a =8, 即|AF 2|+|BF 2|=8-|AB |,而由焦点弦性质,知当AB ⊥x 轴时,|AB |取得最小值2×b 2a=1,因此|AF 2|+|BF 2|的最大值为8-1=7.8.已知F 1,F 2是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,点P 在双曲线的右支上,如果|PF 1|=t |PF 2|(t ∈(1,3]),则双曲线经过第一、三象限的渐近线的斜率的取值范围是______________. 答案 (0,3]解析 由双曲线的定义及题意可得⎩⎪⎨⎪⎧|PF 1|-|PF 2|=2a ,|PF 1|=t |PF 2|,解得⎩⎪⎨⎪⎧|PF 1|=2att -1,|PF 2|=2at -1.又|PF 1|+|PF 2|≥2c ,∴|PF 1|+|PF 2|=2at t -1+2at -1≥2c , 整理得e =c a ≤t +1t -1=1+2t -1,∵1<t ≤3,∴1+2t -1≥2,∴1<e ≤2. 又b 2a 2=c 2-a 2a 2=e 2-1,∴0<b 2a 2≤3,故0<ba≤ 3.∴双曲线经过第一、三象限的渐近线的斜率的取值范围是(0,3].9.椭圆x 24+y 23=1的左、右焦点分别为F 1,F 2,过椭圆的右焦点F 2作一条直线l 交椭圆于P ,Q两点,则△F 1PQ 的内切圆面积的最大值是________. 答案9π16解析 令直线l :x =my +1,与椭圆方程联立消去x ,得(3m 2+4)y 2+6my -9=0,由题意得,Δ>0,可设P (x 1,y 1),Q (x 2,y 2), 则y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4.可知=12|F 1F 2||y 1-y 2|=(y 1+y 2)2-4y 1y 2=12m 2+1(3m 2+4)2, 又m 2+1(3m 2+4)2=19(m 2+1)+1m 2+1+6≤116,当且仅当m =0时取等号, 故≤3.三角形的周长与三角形内切圆的半径的积是三角形面积的二倍,三角形的周长l =4a =8,则内切圆半径r =≤34(当m =0时,取等号),其面积最大值为9π16.10.已知斜率为k 的直线与椭圆x 24+y 23=1交于A ,B 两点,弦AB 的中垂线交x 轴于点P (x 0,0),则x 0的取值范围是____________.答案 ⎝ ⎛⎭⎪⎫-12,12 解析 设直线的方程为y =kx +m ,联立⎩⎪⎨⎪⎧3x 2+4y 2=12,y =kx +m ,化简得(3+4k 2)x 2+8kmx +4m 2-12=0, 所以Δ=64k 2m 2-4(3+4k 2)(4m 2-12)>0, 所以4k 2-m 2+3>0. 设A (x 1,y 1),B (x 2,y 2), 由题意得⎩⎪⎨⎪⎧x 1+x 2=-8km3+4k2,x 1·x 2=4m 2-123+4k2,所以y 1+y 2=kx 1+m +kx 2+m =k (x 1+x 2)+2m =2m -8k 2m 3+4k 2=6m3+4k2,所以x 1+x 22=-4km 3+4k 2,y 1+y 22=3m3+4k2, 所以线段AB 的中点坐标为⎝⎛⎭⎪⎫-4km 3+4k 2,3m 3+4k 2,当k =0时,弦AB 的中垂线为y 轴,此时x 0=0, 当k ≠0时,线段AB 的垂直平分线方程为y -3m 3+4k 2=-1k ⎝ ⎛⎭⎪⎫x +4km 3+4k 2, 把点P (x 0,0)代入上面的方程得x 0(3+4k 2)=-km .所以m =-x 0(3+4k 2)k,代入4k 2-m 2+3>0.整理得x 20<4k 4+3k 216k 4+24k 2+9,令k 2=t (t >0), x 2<4t 2+3t 16t 2+24t +9=116t 2+24t +94t 2+3t =14+3t<14, 综上,-12<x 0<12.11.(2018·浙江省温州高考适应性测试)已知抛物线C :y 2=2px (p >0),焦点为F ,直线l 交抛物线C 于A (x 1,y 1),B (x 2,y 2)两点,D (x 0,y 0)为线段AB 的中点,且|AF |+|BF |=1+2x 0.(1)求抛物线C 的方程; (2)若x 1x 2+y 1y 2=-1,求x 0|AB |的最小值. 解 (1)由题意知|AF |+|BF |=x 1+x 2+p , ∵x 1+x 2=2x 0,且|AF |+|BF |=1+2x 0, ∴p =1,∴抛物线C 的方程为y 2=2x . (2)设直线l 的方程为x =my +b , 代入抛物线方程,得y 2-2my -2b =0, Δ=4m 2+8b >0,∴y 1+y 2=2m ,y 1y 2=-2b . ∵x 1x 2+y 1y 2=-1,即y 21y 224+y 1y 2=-1,∴y 1y 2=-2,即b =1,则m 取任意实数时,Δ>0恒成立. ∴|AB |=1+m 2|y 1-y 2| =1+m 2·(y 1+y 2)2-4y 1y 2 =21+m 2·m 2+2,x 0=x 1+x 22=y 21+y 224=14[(y 1+y 2)2-2y 1y 2]=m 2+1, ∴x 0|AB |=m 2+12m 2+1·m 2+2, 令t =m 2+1,t ∈[1,+∞),则 x 0|AB |=t 2t ·t +1=121+1t ≥24, ∴x 0|AB |的最小值为24. 12.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),且椭圆上的点到一个焦点的最短距离为33b . (1)求椭圆C 的离心率;(2)若点M ⎝ ⎛⎭⎪⎫3,32在椭圆C 上,不过原点O 的直线l 与椭圆C 相交于A ,B 两点,与直线OM 相交于点N ,且N 是线段AB 的中点,求△OAB 面积的最大值.解 (1)由题意,得a -c =33b ,则(a -c )2=13b 2, 结合b 2=a 2-c 2,得(a -c )2=13(a 2-c 2), 即2c 2-3ac +a 2=0,亦即2e 2-3e +1=0,结合0<e <1,解得e =12. 所以椭圆C 的离心率为12. (2)由(1)得a =2c ,则b 2=3c 2. 将M ⎝⎛⎭⎪⎫3,32代入椭圆方程x 24c 2+y 23c 2=1,解得c =1. 所以椭圆方程为x 24+y 23=1. 易得直线OM 的方程为y =12x . 当直线l 的斜率不存在时,线段AB 的中点不在直线y =12x 上,故直线l 的斜率存在. 设直线l 的方程为y =kx +m (m ≠0),与x 24+y 23=1联立消去y 得(3+4k 2)x 2+8kmx +4m 2-12=0,由题意得Δ=64k 2m 2-4(3+4k 2)(4m 2-12)=48(3+4k 2-m 2)>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km 3+4k 2,x 1x 2=4m 2-123+4k 2. 因为y 1+y 2=k (x 1+x 2)+2m =6m3+4k 2, 所以线段AB 的中点N 的坐标为⎝ ⎛⎭⎪⎫-4km3+4k 2,3m3+4k 2, 因为点N 在直线y =12x 上, 所以-4km 3+4k 2=2×3m 3+4k 2, 解得k =-32. 所以Δ=48(12-m 2)>0,解得-23<m <23,且m ≠0,|AB |=1+⎝ ⎛⎭⎪⎫-322|x 2-x 1| =132·(x 1+x 2)2-4x 1x 2 =132·m 2-4m 2-123=39612-m 2. 又原点O 到直线l 的距离d =2|m |13, 所以S △OAB =12×39612-m 2×2|m |13=36(12-m 2)m 2≤36·12-m 2+m 22= 3. 当且仅当12-m 2=m 2,即m =±6时等号成立,符合-23<m <23,且m ≠0.所以△OAB 面积的最大值为 3.13.已知双曲线Γ:x 2a 2-y 2b2=1(a >0,b >0)的右顶点为A ,与x 轴平行的直线交Γ于B ,C 两点,记∠BAC =θ,若Γ的离心率为2,则( )A.θ∈⎝⎛⎭⎪⎫0,π2 B.θ=π2C.θ∈⎝ ⎛⎭⎪⎫3π4,π D.θ=3π4 答案 B 解析 ∵e =c a =2,∴c =2a ,∴b 2=c 2-a 2=a 2,∴双曲线方程可变形为x 2-y 2=a 2.设B (x 0,y 0),由对称性可知C (-x 0,y 0),∵点B (x 0,y 0)在双曲线上,∴x 20-y 20=a 2.∵A (a ,0),∴AB →=(x 0-a ,y 0),AC →=(-x 0-a ,y 0),∴AB →·AC →=(x 0-a )·(-x 0-a )+y 20=a 2-x 20+y 20=0,∴AB →⊥AC →,即θ=π2.故选B. 14.若点O 和点F 分别为椭圆x 29+y 28=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最小值为__________.答案 6解析 点P 为椭圆x 29+y 28=1上的任意一点, 设P (x ,y )(-3≤x ≤3,-22≤y ≤22),由题意得左焦点F (-1,0),∴OP →=(x ,y ),FP →=(x +1,y ),∴OP →·FP →=x (x +1)+y 2=x 2+x +72-8x 29=19·⎝ ⎛⎭⎪⎫x +922+234. ∵-3≤x ≤3,∴32≤x +92≤152, ∴94≤⎝ ⎛⎭⎪⎫x +922≤2254,∴14≤19⎝ ⎛⎭⎪⎫x +922≤254, ∴6≤19·⎝ ⎛⎭⎪⎫x +922+234≤12, 即6≤OP →·FP →≤12.故最小值为6.15.如图,由抛物线y 2=12x 与圆E :(x -3)2+y 2=16的实线部分构成图形Ω,过点P (3,0)的直线始终与图形Ω中的抛物线部分及圆部分有交点,则|AB |的取值范围为( )A.[4,5]B.[7,8]C.[6,7]D.[5,6]答案 B解析 由题意可知抛物线y 2=12x 的焦点为F (3,0),圆(x -3)2+y 2=16的圆心为E (3,0),因此点P ,F ,E 三点重合,所以|PA |=4,设B (x 0,y 0),则由抛物线的定义可知|PB |=x 0+3,由⎩⎪⎨⎪⎧ y 2=12x ,(x -3)2+y 2=16得(x -3)2+12x =16,整理得x 2+6x -7=0,解得x 1=1,x 2=-7(舍去),设圆E 与抛物线交于C ,D 两点,所以x C =x D =1,因此0≤x 0≤1,又|AB |=|AP |+|BP |=4+x 0+3=x 0+7,所以|AB |=x 0+7∈[7,8],故选B.16.(2018·嘉兴测试)已知F 1,F 2为椭圆与双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=45°,求该椭圆与双曲线的离心率之积的最小值.解 不妨设|PF 1|+|PF 2|=2a 1,|PF 1|-|PF 2|=2a 2,其中a 1,a 2分别为椭圆的长半轴长和双曲线的实半轴长,则|PF 1|=a 1+a 2,|PF 2|=a 1-a 2,由余弦定理得(2-2)a 21+(2+2)a 22=4c 2(c 为半焦距),设椭圆和双曲线的离心率分别为e 1,e 2,则2-2e 21+2+2e 22=4. 又4=2-2e 21+2+2e 22≥2(2-2)(2+2)e 21·e 22=22e 1·e 2, 即e 1·e 2≥22, 当e 1=2-22,e 2=2+22时,等号成立, 所以椭圆与双曲线的离心率之积的最小值为22.。
高考数学一轮复习 第九章 平面解析几何 10 第10讲 圆锥曲线的综合问题教学案

第10讲 圆锥曲线的综合问题圆锥曲线中的定点、定值问题(2020·杭州七校联考)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为12,焦点与短轴的两顶点的连线与圆x 2+y 2=34相切.(1)求椭圆C 的方程;(2)过点(1,0)的直线l 与C 相交于A ,B 两点,在x 轴上是否存在点N ,使得NA →·NB →为定值?如果有,求出点N 的坐标及定值;如果没有,请说明理由.【解】 (1)因为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,焦点与短轴的两顶点的连线与圆x 2+y 2=34相切,所以⎝⎛e =c a =12bc =32b 2+c2a 2=b 2+c2,解得c 2=1,a 2=4,b 2=3.所以椭圆C 的方程为x 24+y 23=1.(2)当直线l 的斜率存在时,设其方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2),⎩⎪⎨⎪⎧3x 2+4y 2=12y =k (x -1)⇒(3+4k 2)x 2-8k 2x +4k 2-12=0,则Δ>0,⎩⎪⎨⎪⎧x 1+x 2=8k24k 2+3x 1x 2=4k 2-124k 2+3, 若存在定点N (m ,0)满足条件, 则有NA →·NB →=(x 1-m )(x 2-m )+y 1y 2 =x 1x 2+m 2-m (x 1+x 2)+k 2(x 1-1)(x 2-1) =(1+k 2)x 1x 2-(m +k 2)(x 1+x 2)+k 2+m 2=(1+k 2)(4k 2-12)4k 2+3-(m +k 2)8k 24k 2+3+k 2+m 2=(4m 2-8m -5)k 2+3m 2-124k 2+3. 如果要使上式为定值,则必须有4m 2-8m -53m 2-12=43⇒m =118,验证当直线l 斜率不存在时,也符合.故存在点N ⎝ ⎛⎭⎪⎫118,0满足NA →·NB →=-13564.圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值:依题意设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值.(2)求点到直线的距离为定值:利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得.(3)求某线段长度为定值:利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.(2020·杭州、宁波二市三校联考)已知抛物线C :y 2=2px (p >0)过点M (m ,2),其焦点为F ′,且|MF ′|=2.(1)求抛物线C 的方程;(2)设E 为y 轴上异于原点的任意一点,过点E 作不经过原点的两条直线分别与抛物线C 和圆F :(x -1)2+y 2=1相切,切点分别为A ,B ,求证:直线AB 过定点.解:(1)抛物线C 的准线方程为x =-p2,所以|MF ′|=m +p2=2,又4=2pm ,即4=2p ⎝⎛⎭⎪⎫2-p 2,所以p 2-4p +4=0,所以p =2, 所以抛物线C 的方程为y 2=4x .(2)证明:设点E (0,t )(t ≠0),由已知切线不为y 轴,设直线EA :y =kx +t ,联立⎩⎪⎨⎪⎧y =kx +ty 2=4x ,消去y ,可得k 2x 2+(2kt -4)x+t 2=0,①因为直线EA 与抛物线C 相切,所以Δ=(2kt -4)2-4k 2t 2=0,即kt =1,代入①可得1t2x 2-2x +t 2=0,所以x =t 2,即A (t 2,2t ).设切点B (x 0,y 0),则由几何性质可以判断点O ,B 关于直线EF :y =-tx +t 对称,则⎩⎪⎨⎪⎧y 0x 0×t -00-1=-1y 02=-t ·x 02+t ,解得⎩⎪⎨⎪⎧x 0=2t2t 2+1y 0=2t t 2+1,即B ⎝ ⎛⎭⎪⎫2t 2t 2+1,2t t 2+1.直线AF 的斜率为k AF =2tt 2-1(t ≠±1),直线BF 的斜率为k BF =2tt 2+1-02t 2t 2+1-1=2tt 2-1(t ≠±1),所以k AF =k BF ,即A ,B ,F 三点共线.当t =±1时,A (1,±2),B (1,±1),此时A ,B ,F 三点共线.所以直线AB 过定点F (1,0).圆锥曲线中的范围、最值问题(高频考点) 圆锥曲线中的范围(最值)问题是高考命题的热点,多以解答题的第二问呈现,试题难度较大.主要命题角度有:(1)建立目标函数求范围、最值; (2)利用基本不等式求最值;(3)利用判别式构造不等关系求范围. 角度一 建立目标函数求范围、最值 如图,已知抛物线x 2=y ,点A ⎝ ⎛⎭⎪⎫-12,14,B ⎝ ⎛⎭⎪⎫32,94,抛物线上的点P (x ,y )⎝ ⎛⎭⎪⎫-12<x <32.过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围; (2)求|PA |·|PQ |的最大值.【解】 (1)设直线AP 的斜率为k ,k =x 2-14x +12=x -12,因为-12<x <32,所以直线AP 斜率的取值范围是(-1,1).(2)联立直线AP 与BQ 的方程⎩⎪⎨⎪⎧kx -y +12k +14=0,x +ky -94k -32=0,解得点Q 的横坐标x Q =-k 2+4k +32(k 2+1). 因为|PA |= 1+k2⎝⎛⎭⎪⎫x +12=1+k 2(k +1),|PQ |= 1+k 2(x Q -x )=-(k -1)(k +1)2k 2+1, 所以|PA |·|PQ |=-(k -1)(k +1)3. 令f (k )=-(k -1)(k +1)3, 因为f ′(k )=-(4k -2)(k +1)2, 所以f (k )在区间⎝ ⎛⎭⎪⎫-1,12上单调递增,⎝ ⎛⎭⎪⎫12,1上单调递减,因此当k =12时,|PA |·|PQ |取得最大值2716.角度二 利用基本不等式求最值(2020·浙江省名校协作体联考)若椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,线段F 1F 2被抛物线y 2=2bx 的焦点F分成了3∶1的两段.(1)求椭圆的离心率;(2)过点C (-1,0)的直线l 交椭圆于不同的两点A ,B ,且AC →=2CB →,当△AOB 的面积最大时,求直线l 的方程.【解】(1)由题意知,c +b2=3⎝⎛⎭⎪⎫c -b 2,所以b =c ,a 2=2b 2,所以e =ca=1-⎝ ⎛⎭⎪⎫b a 2=22. (2)设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为x =ky -1(k ≠0),因为AC →=2CB →,所以(-1-x 1,-y 1)=2(x 2+1,y 2),即2y 2+y 1=0,①由(1)知,a 2=2b 2,所以椭圆方程为x 2+2y 2=2b 2.由⎩⎪⎨⎪⎧x =ky -1x 2+2y 2=2b 2,消去x ,得(k 2+2)y 2-2ky +1-2b 2=0,所以y 1+y 2=2kk 2+2,②由①②知,y 2=-2k k 2+2,y 1=4kk 2+2,因为S △AOB =12|y 1|+12|y 2|,所以S △AOB =3·|k |k 2+2=3·12|k |+|k |≤32·12|k |·|k |=324,当且仅当|k |2=2,即k =±2时取等号,此时直线l 的方程为x =2y -1或x =-2y -1. 角度三 利用判别式构造不等关系求范围已知椭圆的一个顶点为A (0,-1),焦点在x 轴上,中心在原点.若右焦点到直线x -y +22=0的距离为3.(1)求椭圆的标准方程;(2)设直线y =kx +m (k ≠0)与椭圆相交于不同的两点M ,N .当|AM |=|AN |时,求m 的取值范围.【解】 (1)依题意可设椭圆方程为x 2a2+y 2=1,则右焦点F (a 2-1,0),由题设|a 2-1+22|2=3,解得a 2=3.所以所求椭圆的方程为x 23+y 2=1.(2)设P (x P ,y P ),M (x M ,y M ),N (x N ,y N ),P 为弦MN 的中点,由⎩⎪⎨⎪⎧y =kx +m ,x 23+y 2=1, 得(3k 2+1)x 2+6mkx +3(m 2-1)=0, 因为直线与椭圆相交,所以Δ=(6mk )2-4(3k 2+1)×3(m 2-1)>0⇒m 2<3k 2+1.①所以x P =x M +x N2=-3mk 3k 2+1,从而y P =kx P +m =m3k 2+1,所以k AP =y P +1x P =-m +3k 2+13mk,又因为|AM |=|AN |,所以AP ⊥MN ,则-m +3k 2+13mk =-1k,即2m =3k 2+1.②把②代入①,得m 2<2m ,解得0<m <2; 由②得k 2=2m -13>0,解得m >12.综上,m的取值范围是⎝ ⎛⎭⎪⎫12,2.范围、最值问题的求解策略(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决.(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下五个方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围; ②利用已知参数的范围,求新参数的范围,解这类问题的关键是在两个参数之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;④利用基本不等式求出参数的取值范围;⑤利用函数的值域的求法,确定参数的取值范围. 1.如图,设抛物线y 2=2px (p >0)的焦点为F ,抛物线上的点A 到y 轴的距离等于|AF |-1.(1)求p 的值;(2)若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x 轴交于点M .求M 的横坐标的取值范围.解:(1)由题意可得,抛物线上的点A 到焦点F 的距离等于点A 到直线x =-1的距离,由抛物线的定义得p2=1,即p =2.(2)由(1)得,抛物线方程为y 2=4x ,F (1,0),可设A (t 2,2t ),t ≠0,t ≠±1.因为AF 不垂直于y 轴,可设直线AF :x =sy +1(s ≠0),由⎩⎪⎨⎪⎧y 2=4x x =sy +1,消去x 得y 2-4sy -4=0,故y 1y 2=-4,所以B ⎝ ⎛⎭⎪⎫1t2,-2t .又直线AB 的斜率为2t t 2-1,故直线FN 的斜率为-t 2-12t.从而得直线FN :y =-t 2-12t (x -1),直线BN :y =-2t ,所以N ⎝ ⎛⎭⎪⎫t 2+3t 2-1,-2t .设M (m ,0),由A ,M ,N 三点共线得2tt 2-m=2t +2tt 2-t 2+3t 2-1,于是m =2t 2t 2-1=2+2t 2-1.所以m <0或m >2.经检验,m <0或m >2满足题意.综上,点M 的横坐标的取值范围是(-∞,0)∪(2,+∞).2.(2020·杭州中学高三月考)如图,以椭圆x 2a 2+y 2=1的右焦点F 2为圆心,1-c 为半径作圆F 2(其中c 为已知椭圆的半焦距),过椭圆上一点P 作此圆的切线,切点为T .(1)若a =54,P 为椭圆的右顶点,求切线长|PT |;(2)设圆F 2与x 轴的右交点为Q ,过点Q 作斜率为k (k >0)的直线l 与椭圆相交于A ,B 两点,若OA ⊥OB ,且|PT |≥32(a -c )恒成立,求直线l 被圆F 2所截得弦长的最大值.解:(1)由a =54得c =34,则当P 为椭圆的右顶点时|PF 2|=a -c =12,故此时的切线长|PT |= |PF 2|2-(1-c )2=34.(2)当|PF 2|取得最小值时|PT |取得最小值,而|PF 2|min =a -c , 由|PT |≥32(a -c )恒成立,得(a -c )2-(1-c )2≥32(a-c ),则34≤c <1.由题意知Q 点的坐标为(1,0),则直线l 的方程为y =k (x -1),代入x 2a2+y 2=1,得(a 2k 2+1)x 2-2a 2k 2x +a 2k 2-a 2=0, 设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=2a 2k 2a 2k 2+1,x 1x 2=a 2k 2-a2a 2k 2+1,可得y 1y 2=k 2[x 1x 2-(x 1+x 2)+1]=k 2(1-a 2)a 2k 2+1,又OA ⊥OB ,则x 1x 2+y 1y 2=k 2-a 2a 2k 2+1=0⇒k =a ,可得直线l 的方程为ax -y -a =0,圆心F 2(c ,0)到直线l 的距离d =|ac -a |a 2+1,半径r =1-c , 则直线l 被圆F 2所截得弦长s =2(1-c )2-a 2(1-c )2a 2+1=2(1-c )c 2+2,设1-c =t ,则0<t ≤14,又1s =123t 2-2t +1=12 3⎝ ⎛⎭⎪⎫1t -132+23,则当t =14时1s 的最小值为412,即当c =34时s 的最大值为24141.圆锥曲线中的探索性问题(2020·温州中学高三模拟)设直线l 与抛物线x 2=2y 交于A ,B 两点,与椭圆x 24+y 23=1交于C ,D 两点,直线OA ,OB ,OC ,OD (O 为坐标原点)的斜率分别为k 1,k 2,k 3,k 4,若OA ⊥OB .(1)是否存在实数t ,满足k 1+k 2=t (k 3+k 4),并说明理由; (2)求△OCD 面积的最大值.【解】 设直线l 方程为y =kx +b ,A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4).联立y =kx +b 和x 2=2y , 得x 2-2kx -2b =0,则x 1+x 2=2k ,x 1x 2=-2b ,Δ=4k 2+8b >0. 由OA ⊥OB ,所以x 1x 2+y 1y 2=0,得b =2. 联立y =kx +2和3x 2+4y 2=12,得 (3+4k 2)x 2+16kx +4=0,所以x 3+x 4=-16k 3+4k 2,x 3x 4=43+4k 2.由Δ2=192k 2-48>0,得k 2>14.(1)因为k 1+k 2=y 1x 1+y 2x 2=k ,k 3+k 4=y 3x 3+y 4x 4=-6k ,所以k 1+k 2k 3+k 4=-16.即存在实数t =-16,满足k 1+k 2=-16(k 3+k 4).(2)根据弦长公式|CD |=1+k 2|x 3-x 4|,得 |CD |=43·1+k 2·4k 2-13+4k2,根据点O 到直线CD 的距离公式,得d =21+k2, 所以S △OCD =12|CD |·d =43·4k 2-13+4k2,设4k 2-1=t >0,则S △OCD =43tt 2+4≤3,所以当t =2,即k =±52时,S △OCD 的最大值为 3.探索性问题的求解策略(1)探索性问题通常采用“肯定顺推法”,将不确定性问题明朗化.其步骤为假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.(2)反证法与验证法也是求解探索性问题常用的方法.(2020·温州十五校联合体联考)如图,已知抛物线C 1:y 2=2px (p >0),直线l 与抛物线C 1相交于A ,B 两点,且当倾斜角为60°的直线l 经过抛物线C 1的焦点F 时,有|AB |=13.(1)求抛物线C 1的方程;(2)已知圆C 2:(x -1)2+y 2=116,是否存在倾斜角不为90°的直线l ,使得线段AB 被圆C 2截成三等分?若存在,求出直线l 的方程;若不存在,请说明理由.解:(1)当倾斜角为60°的直线l 经过抛物线C 1的焦点F 时,直线l 的方程为y =3(x -p2),联立方程组⎩⎪⎨⎪⎧y =3(x -p 2)y 2=2px,即3x 2-5px +34p 2=0,所以|AB |=5p 3+p =13,即p =18,所以抛物线C 1的方程是y 2=14x .(2)假设存在直线l ,使得线段AB 被圆C 2截成三等分,令直线l 交圆C 2于C ,D ,设直线l 的方程为x =my +b ,A (x 1,y 1),B (x 2,y 2),由题意知,线段AB 与线段CD 的中点重合且有|AB |=3|CD |,联立方程组⎩⎪⎨⎪⎧4y 2=x x =my +b,即4y 2-my -b =0,所以y 1+y 2=m 4,y 1y 2=-b 4,x 1+x 2=m 24+2b ,所以线段AB 的中点坐标M 为(m 28+b ,m8),即线段CD的中点为(m 28+b ,m8),又圆C 2的圆心为C 2(1,0),所以kMC 2=m8m 28+b -1=-m ,所以m 2+8b -7=0,即b =78-m 28,又因为|AB |=1+m 2·m 216+b =141+m 2·14-m 2,因为圆心C 2(1,0)到直线l 的距离d =|1-b |1+m2,圆C 2的半径为14, 所以3|CD |=6116-(1-b )21+m 2=343-m 2(m 2<3), 所以m 4-22m 2+13=0,即m 2=11±63, 所以m =±11-63,b =33-24,故直线l 的方程为x =±11-63y +33-24.[基础题组练]1.已知椭圆E 的中心在坐标原点,左、右焦点F 1,F 2在x 轴上,离心率为12,在其上有一动点A ,A 到点F 1距离的最小值是1.过A ,F 1作一个平行四边形,顶点A ,B ,C ,D 都在椭圆E 上,如图所示.(1)求椭圆E 的方程;(2)判断▱ABCD 能否为菱形,并说明理由.解:(1)依题,令椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),c 2=a 2-b 2(c >0),所以离心率e =c a =12,即a =2c .令点A 的坐标为(x 0,y 0),所以x 20a 2+y 2b2=1,焦点F 1(-c ,0),即|AF 1|=(x 0+c )2+y 20 =x 20+2cx 0+c 2+b 2-b 2x 20a2=c 2a 2x 20+2cx 0+a 2=|c ax 0+a |, 因为x 0∈[-a ,a ],所以当x 0=-a 时,|AF 1|min =a -c , 由题a -c =1,结合上述可知a =2,c =1,所以b 2=3, 于是椭圆E 的方程为x 24+y 23=1.(2)由(1)知F 1(-1,0),直线AB 不能平行于x 轴,所以令直线AB 的方程为x =my -1,设A (x 1,y 1),B (x 2,y 2),联立方程⎩⎪⎨⎪⎧3x 2+4y 2-12=0x =my -1,得(3m 2+4)y 2-6my -9=0,所以y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4.连接OA ,OB ,若▱ABCD 是菱形,则OA ⊥OB ,即OA →·OB →=0,于是有x 1x 2+y 1y 2=0,又x 1x 2=(my 1-1)(my 2-1)=m 2y 1y 2-m (y 1+y 2)+1,所以有(m2+1)y 1y 2-m (y 1+y 2)+1=0,得到-12m 2-53m 2+4=0,可见m 没有实数解,故▱ABCD 不能是菱形.2.(2020·金华十校第二期调研)已知抛物线C :y =x 2,点P (0,2),A ,B 是抛物线上两个动点,点P 到直线AB 的距离为1.(1)若直线AB 的倾斜角为π3,求直线AB 的方程;(2)求|AB |的最小值. 解:(1)设直线AB 的方程:y =3x +m ,则|m -2|1+()32=1,所以m =0或m =4,所以直线AB 的方程为y =3x 或y =3x +4.(2)设直线AB 的方程为y =kx +m ,则|m -2|1+k 2=1,所以k 2+1=(m -2)2.由⎩⎪⎨⎪⎧y =kx +m y =x2,得x 2-kx -m =0,所以x 1+x 2=k ,x 1x 2=-m ,所以|AB |2=()1+k 2[()x 1+x 22-4x 1x 2]=()1+k 2()k 2+4m =()m -22()m 2+3,记f (m )=()m -22(m 2+3),所以f ′(m )=2(m-2)(2m 2-2m +3),又k 2+1=()m -22≥1,所以m ≤1或m ≥3,当m ∈(]-∞,1时,f ′(m )<0,f (m )单调递减, 当m ∈[)3,+∞时,f ′(m )>0,f (m )单调递增,f (m )min =f (1)=4,所以|AB |min =2.3.(2020·宁波市高考模拟)已知椭圆方程为x 24+y 2=1,圆C :(x -1)2+y 2=r 2.(1)求椭圆上动点P 与圆心C 距离的最小值;(2)如图,直线l 与椭圆相交于A ,B 两点,且与圆C 相切于点M ,若满足M 为线段AB 中点的直线l 有4条,求半径r 的取值范围.解:(1)设P (x ,y ),|PC |=(x -1)2+y 2=34x 2-2x +2=34(x -43)2+23,由-2≤x ≤2,当x =43时,|PC |min =63. (2)当直线AB 斜率不存在且与圆C 相切时,M 在x 轴上,故满足条件的直线有2条;当直线AB 斜率存在时,设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),由⎩⎪⎨⎪⎧x 214+y 21=1x224+y 22=1,整理得y 1-y 2x 1-x 2=-14×x 1+x 2y 1+y 2,则k AB =-x 04y 0,k MC =y 0x 0-1,k MC ×k AB =-1,则k MC ×k AB =-x 04y 0×y 0x 0-1=-1,解得x 0=43,由M 在椭圆内部,则x 204+y 2<1,解得y 20<59,由r 2=(x 0-1)2+y 20=19+y 20,所以19<r 2<23,解得13<r <63.所以半径r 的取值范围为(13,63) .4.已知椭圆x 22+y 2=1上两个不同的点A ,B关于直线y =mx +12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点). 解:(1)由题意知m ≠0,可设直线AB 的方程为y =-1mx +b .由⎩⎪⎨⎪⎧x 22+y 2=1,y =-1m x +b消去y ,得⎝ ⎛⎭⎪⎫12+1m 2x 2-2b m x +b 2-1=0.因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m2>0.①将线段AB 的中点M ⎝ ⎛⎭⎪⎫2mb m 2+2,m 2b m 2+2代入直线方程y =mx +12解得b =-m 2+22m2.②由①②得m <-63或m >63.(2)令t =1m ∈⎝ ⎛⎭⎪⎪⎫-62,0∪⎝⎛⎭⎪⎪⎫0,62, 则|AB |=t 2+1·-2t 4+2t 2+32t 2+12,且O 到直线AB 的距离d =t 2+12t 2+1.设△AOB 的面积为S (t ),所以S (t )=12|AB |·d =12-2⎝⎛⎭⎪⎫t 2-122+2≤22, 当且仅当t 2=12时,等号成立.故△AOB 面积的最大值为22.5.(2020·湘中名校联考)如图,曲线C 由上半椭圆C 1:y 2a 2+x 2b 2=1(a >b >0,y ≥0)和部分抛物线C 2:y =-x 2+1(y ≤0)连接而成,C 1与C 2的公共点为A ,B ,其中C 1的离心率为32.(1)求a ,b 的值;(2)过点B 的直线l 与C 1,C 2分别交于点P ,Q (均异于点A ,B ),是否存在直线l ,使得以PQ 为直径的圆恰好过点A ,若存在,求出直线l 的方程;若不存在,请说明理由.解:(1)在C 1,C 2的方程中,令y =0,可得b =1,且A (-1,0),B (1,0)是上半椭圆C 1的左、右顶点.设C 1的半焦距为c ,由c a =32及a 2-c 2=b 2=1得a =2.所以a =2,b =1.(2)由(1)知,上半椭圆C 1的方程为y 24+x 2=1(y ≥0).易知,直线l 与x 轴不重合也不垂直,设其方程为y =k (x -1)(k ≠0),代入C 1的方程,整理得(k 2+4)x 2-2k 2x +k 2-4=0.(*)设点P 的坐标为(x P ,y P ), 因为直线l 过点B ,所以x =1是方程(*)的一个根.由根与系数的关系,得x P =k 2-4k 2+4,从而y P =-8kk 2+4,所以点P的坐标为⎝ ⎛⎭⎪⎫k 2-4k 2+4,-8k k 2+4.同理,由⎩⎪⎨⎪⎧y =k (x -1)(k ≠0),y =-x 2+1(y ≤0)得点Q 的坐标为(-k -1,-k 2-2k ).所以AP →=2k k 2+4(k ,-4),AQ →=-k (1,k +2). 因为AP ⊥AQ ,所以AP →·AQ →=0, 即-2k2k 2+4[k -4(k +2)]=0. 因为k ≠0,所以k -4(k +2)=0,解得k =-83.经检验,k =-83符合题意.故直线l 的方程为y =-83(x -1).6.(2020·学军中学高三模拟)已知椭圆x 2a2+y 2=1(a >1),过直线l :x =2上一点P 作椭圆的切线,切点为A ,当P 点在x 轴上时,切线PA 的斜率为±22.(1)求椭圆的方程;(2)设O 为坐标原点,求△POA 面积的最小值.解:(1)当P 点在x 轴上时,P (2,0),PA :y =±22(x -2),⎩⎪⎨⎪⎧y =±22(x -2)x 2a 2+y 2=1⇒(1a 2+12)x 2-2x +1=0, Δ=0⇒a 2=2,椭圆方程为x 22+y 2=1.(2)设切线为y =kx +m ,设P (2,y 0),A (x 1,y 1),则⎩⎪⎨⎪⎧y =kx +m x 2+2y 2-2=0⇒(1+2k 2)x 2+4kmx +2m 2-2=0⇒Δ=0⇒m 2=2k 2+1,且x 1=-2km 1+2k 2,y 1=m 1+2k2,y 0=2k +m ,则|PO |=y 20+4,PO 的直线为y =y 02x ⇒A 到直线PO 距离d =|y 0x 1-2y 1|y 20+4, 则S △POA =12|PO |·d =12|y 0x 1-2y 1|=12|(2k +m )-2km 1+2k 2-2m1+2k2|=|1+2k 2+km 1+2k 2m |=|k +m |=|k +1+2k 2|, 所以(S -k )2=1+2k 2⇒k 2+2Sk -S 2+1=0,Δ=8S 2-4≥0⇒S ≥22,此时k =±22,所以△POA 面积的最小值为22.[综合题组练]1.(2020·浙江高考冲刺卷)已知椭圆E :x 2a 2+y 2b2=1(a >b >0),点F ,B 分别是椭圆的右焦点与上顶点,O 为坐标原点,记△OBF 的周长与面积分别为C 和S .(1)求CS的最小值;(2)如图,过点F 的直线l 交椭圆于P ,Q 两点,过点F 作l 的垂线,交直线x =3b 于点R ,当C S取最小值时,求|FR ||PQ |的最小值.解:(1)△OBF 的周长C =b 2+c 2+b +c .△OBF 的面积S =12bc .C S =b 2+c 2+b +c 12bc=2b 2+c 2+b +c bc ≥2·2bc +2bc bc =2+22,当且仅当b =c 时,CS的最小值为2+2 2.(2)由(1)得当且仅当b =c 时,CS 的最小值为2+2 2.此时椭圆方程可化为x 22c 2+ y 2c2=1.依题意可得过点F 的直线l 的斜率不能为0,故设直线l 的方程为x =my +c .联立⎩⎪⎨⎪⎧x =my +c x 2+2y 2=2c2,整理得(2+m 2)y 2+2mcy -c 2=0.y 1+y 2=-2mc 2+m 2,y 1y 2=-c 22+m 2,|PQ |=1+m2(y 1+y 2)2-4y 1y 2=1+m 2×8c 2(m 2+1)2+m2=22c ×m 2+1m 2+2.当m =0时,PQ 垂直横轴,FR 与横轴重合,此时|PQ |=2c ,|FR |=3b -c =2c ,|FR ||PQ |=2c2c= 2.当m ≠0时,设直线FR :y =-m (x -c ),令x =3c 得R (3c ,-2mc ),|FR |=2c m 2+1,|FR ||PQ |=2c m 2+1×m 2+222c (m 2+1)=m 2+22m 2+1 =22(m 2+1+1m 2+1)>22×2=2,综上所述:当且仅当m =0时,|FR ||PQ |取最小值为 2.2.(2020·杭州市第一次高考数学检测)设点A ,B 分别是x ,y 轴上的两个动点,AB =1.若AC →=λBA →(λ>0).(1)求点C 的轨迹Γ;(2)过点D 作轨迹Γ的两条切线,切点分别为P ,Q ,过点D 作直线m 交轨迹Γ于不同的两点E ,F ,交PQ 于点K ,问是否存在实数t ,使得1|DE |+1|DF |=t|DK |恒成立,并说明理由.解:(1)设A (a ,0),B (0,c ),C (x ,y ),则BA →=(a ,-c ),AC →=(x -a ,y ).由AB =1得a 2+c 2=1,所以⎩⎪⎨⎪⎧x -a =λay =-λc,消去a ,c ,得点C 的轨迹Γ为x 2(λ+1)2+y 2λ2=1.(2)设点E ,F ,K 的横坐标分别为x E ,x F ,x K ,设点D (s ,t ),则直线PQ 的方程为s(λ+1)2x +tλ2y =1. 设直线m 的方程:y =kx +b ,所以t =ks +b .计算得x K =1-tλ2b s (λ+1)2+tλ2k .将直线m 代入椭圆方程,得⎝ ⎛⎭⎪⎫k 2λ2+1(λ+1)2x 2+2kb λ2x +b 2λ2-1=0,所以x E +x F =-2kbλ2(λ+1)2+k 2,x E x F =b 2-λ2λ2(λ+1)2+k 2,所以|DK ||DE |+|DK ||DF |=|x D -x K ||x D -x E |+|x D -x K ||x D -x F |=⎪⎪⎪⎪⎪⎪⎪⎪s -1-t λ2b s (λ+1)2+t λ2k ·|2x D -(x F +x E )||x 2D -x D (x F +x E )+x F x E | =2.验证当m 的斜率不存在时成立.故存在实数t =2,使得1|DE |+1|DF |=t |DK |恒成立.。
数学一轮复习第九章解析几何9.6双曲线学案理
9。
6双曲线必备知识预案自诊知识梳理1.双曲线的定义平面内与两个定点F1,F2的等于非零常数(小于|F1F2|)的点的轨迹叫作双曲线。
这两个定点叫作,两焦点间的距离叫作.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a〉0,c>0,且a,c为常数.(1)若a c,则点M的轨迹是双曲线;(2)若a c,则点M的轨迹是两条射线;(3)若a c,则点M不存在.2.标准方程(1)中心在坐标原点,焦点在x轴上的双曲线的标准方程为x2 x2−x2x2=1(a>0,b〉0);(2)中心在坐标原点,焦点在y轴上的双曲线的标准方程为x2 x2−x2x2=1(a>0,b>0)。
3。
双曲线的性质标准方程x2a2−y2b2=1(a〉0,b〉0)y2a2−x2b2=1(a〉0,b〉0)图形续表标准方程x2a2−y2b2=1(a>0,b〉0)y2a2−x2b2=1(a>0,b〉0)性质范围x≥a或x≤-a,y∈Ry≤—a或y≥a,x∈R 对称性对称轴:,对称中心:顶点A1,A2A1,A2渐近线y=±xxx y=±xxx离心率e=xx,e∈(1,+∞)a,b,c的关系c2=实虚轴线段A1A2叫作双曲线的实轴,它的长|A1A2|=;线段B1B2叫作双曲线的虚轴,它的长|B1B2|=;a叫作双曲线的实半轴长,b叫作双曲线的虚半轴长1.过双曲线x2a2−y2b2=1(a>0,b〉0)上一点M(x0,y0)的切线方程为x0xa2−y0yb2=1.2.双曲线x2a2−y2b2=1(a>0,b〉0)的左、右焦点分别为F1,F2,点P(x0,y0)为双曲线上任意一点,且不与点F1,F2共线,∠F1PF2=θ,则△F1PF2的面积为b2xxxθ2。
3。
若点P(x0,y0)在双曲线x2a2−y2b2=1(a〉0,b〉0)内,则被点P所平分的中点弦的方程为x0xa2−y0yb2=x02a2−y02b2。
2023版高考数学一轮总复习第七章平面解析几何第六讲双曲线课件
【变式训练】 1.过双曲线 x2-y42=1 的左焦点 F1 作一条直线 l 交双曲 线左支于 P,Q 两点,若|PQ|=4,F2 是双曲线的右焦点, 则△PF2Q 的周长是________.
解析:由题意,得|PF2|-|PF1|=2,|QF2|-|QF1|=2. ∵|PF1|+|QF1|=|PQ|=4,∴|PF2|+|QF2|-4=4, ∴|PF2|+|QF2|=8.∴△PF2Q的周长是|PF2|+|QF2|+|PQ| =8+4=12.
3.通过圆锥曲线与方程的学习,曲线的要求比椭圆要低.以
进一步体会数形结合的思想 选择题、填空题为主
1.双曲线的概念 平面内与两个定点 F1,F2 的距离的差的绝对值等于非 零常数(小于|F1F2|)的点的轨迹叫做双曲线. 这两个定点叫做双曲线的焦点,两焦点间的距离叫做
双曲线的焦距.
集合 P={M|||MF1|-|MF2||=2a,0<2a<|F1F2|},|F1F2|= 2c,其中 a,c 为常数且 a>0,c>0.
B.x2-y32=1
C.5x2-3y2=1
D.x22-y62=1
答案:B
考点一 双曲线的定义
[例 1](1)(2020 年浙江)已知点 O(0,0),A(-2,0),B(2,0). 设点 P 满足|PA|-|PB|=2,且 P 为函数 y=3 4-x2图象上 的点,则|OP|=( )
22 A. 2
质 对称性
对称轴:坐标轴 对称中心:原点
(续表)
标准方程 ax22-by22=1(a>0,b>0) ay22-bx22=1(a>0,b>0)
顶点
性 渐近线 质
离心率
A1(-a,0),A2(a,0) y=±bax
2020版高考数学一轮(新课改省份专用)复习(讲义)第八章解析几何第一节直线与方程
第一节 直线与方程突破点一 直线的倾斜角与斜率、两直线的位置关系[基本知识]1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0.(2)范围:直线l 倾斜角的范围是[0,π). 2.直线的斜率公式(1)定义式:若直线l 的倾斜角α≠π2,则斜率k =tan_α.(2)两点式:P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1. 3.两条直线平行与垂直的判定[基本能力]一、判断题(对的打“√”,错的打“×”)(1)根据直线的倾斜角的大小不能确定直线的位置.( ) (2)坐标平面内的任何一条直线均有倾斜角与斜率.( ) (3)直线的倾斜角越大,其斜率就越大.( )(4)当直线l 1和l 2斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.( ) (5)如果两条直线l 1与l 2垂直,则它们的斜率之积一定等于-1.( ) 答案:(1)√ (2)× (3)× (4)× (5)× 二、填空题1.过点M (-1,m ),N (m +1,4)的直线的斜率等于1,则m 的值为________. 答案:12.若直线l 1:(a -1)x +y -1=0和直线l 2:3x +ay +2=0垂直,则实数a 的值为________.答案:343.(2019·湖南百所中学检测)若直线l 1:ax +y -1=0与l 2:3x +(a +2)y +1=0平行,则a 的值为________.答案:14.直线x +(a 2+1)y +1=0的倾斜角的取值范围是________. 答案:⎣⎢⎡⎭⎪⎫3π4,π[全析考法]考法一 直线的倾斜角与斜率1.直线都有倾斜角,但不一定都有斜率,二者的关系具体如下:2.在分析直线的倾斜角和斜率的关系时,要根据正切函数k =tan α的单调性,如图所示:(1)当α取值在⎣⎢⎡⎭⎪⎫0,π2内,由0增大到π2⎝ ⎛⎭⎪⎫α≠π2时,k 由0增大并趋向于正无穷大;(2)当α取值在⎝ ⎛⎭⎪⎫π2,π内,由π2⎝ ⎛⎭⎪⎫α≠π2增大到π(α≠π)时,k 由负无穷大增大并趋近于0.解决此类问题,常采用数形结合思想.[例1] (1)(2019·江西五校联考)已知直线l 与两条直线y =1,x -y -7=0分别交于P ,Q 两点,线段P Q 的中点坐标为(1,-1),那么直线l 的斜率是( )A.23 B.32 C .-23D .-32(2)(2019·张家口模拟)直线l 经过A (2,1),B (1,-m 2)(m ∈R)两点,则直线l 的倾斜角α的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,π4B.⎝ ⎛⎭⎪⎫π2,πC.⎣⎢⎡⎭⎪⎫π4,π2D.⎝⎛⎦⎥⎤π2,3π4[解析] (1)设P (a,1),Q(b ,b -7),则⎩⎪⎨⎪⎧a +b 2=1,1+b -72=-1,解得⎩⎪⎨⎪⎧a =-2,b =4,所以P (-2,1),Q(4,-3),所以直线l 的斜率k =1---2-4=-23,故选C.(2)直线l 的斜率k =tan α=1+m 22-1=m 2+1≥1,所以π4≤α<π2.[答案] (1)C (2)C [方法技巧]求直线倾斜角范围的注意事项直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎢⎡⎭⎪⎫0,π2与⎝ ⎛⎭⎪⎫π2,π两种情况讨论.由正切函数图象可以看出,当α∈⎣⎢⎡⎭⎪⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝ ⎛⎭⎪⎫π2,π时,斜率k∈(-∞,0).考法二 两直线的位置关系 两直线位置关系的判断方法 (1)已知两直线的斜率存在①两直线平行⇔两直线的斜率相等且坐标轴上的截距不相等; ②两直线垂直⇔两直线的斜率之积为-1. (2)已知两直线的斜率不存在若两直线的斜率不存在,当两直线在x 轴上的截距不相等时,两直线平行;否则两直线重合.[例2] (1)(2019·武邑中学月考)已知过两点A (-3,m ),B (m,5)的直线与直线3x +y -1=0平行,则m 的值为( )A .3B .7C .-7D .-9(2)(2019·安徽六安四校联考)设m ∈R ,则“m =0”是“直线l 1:(m +1)x +(1-m )y -1=0与直线l 2:(m -1)x +(2m +1)y +4=0垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] (1)由题可知,5-mm +3=-3,解得m =-7,故选C.(2)由直线l 1与l 2垂直可得(m +1)(m -1)+(1-m )·(2m +1)=0,解得m =0或m =1.所以“m =0”是“直线l 1:(m +1)x +(1-m )y -1=0与直线l 2:(m -1)x +(2m +1)y +4=0垂直”的充分不必要条件.故选A.[答案] (1)C (2)A [方法技巧]由一般式方程确定两直线位置关系的方法到斜率不存在的特殊情况.同时还要注意x ,y 的系数不能同时为零这一隐含条件.[集训冲关]1.[考法一]已知直线过A (2,4),B (1,m )两点,且倾斜角为45°,则m =( ) A .3 B .-3 C .5D .-1解析:选A ∵直线过A (2,4),B (1,m )两点,∴直线的斜率为m -41-2=4-m .又∵直线的倾斜角为45°,∴直线的斜率为1,即4-m =1,∴m =3.故选A.2.[考法一、二]已知倾斜角为θ的直线l 与直线x +2y -3=0垂直,则cos 2θ的值为( )A.35 B .-35C.15D .-15解析:选B 由题意得-12·tan θ=-1,∴tan θ=2,cos 2θ=1-tan 2θ1+tan 2θ=1-41+4=-35,故选B. 3.[考法二]若直线l 1:ax -(a +1)y +1=0与直线l 2:2x -ay -1=0垂直,则实数a =( )A .3B .0C .-3D .0或-3解析:选D ∵直线l 1与直线l 2垂直,∴2a +a (a +1)=0,整理得a 2+3a =0, 解得a =0或a =-3.故选D.4.[考法二]设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的( )A .充分必要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件解析:选C 当a =1时,直线l 1:x +2y -1=0与直线l 2:x +2y +4=0的斜率都是-12,截距不相等,∴两条直线平行,故前者是后者的充分条件;当两条直线平行时,得a 1=2a +1≠-14,解得a =-2或a =1,∴后者不能推出前者,∴前者是后者的充分不必要条件.故选C.突破点二 直线的方程[基本知识]直线方程的五种形式[基本能力]一、判断题(对的打“√”,错的打“×”)(1)经过定点A (0,b )的直线都可以用方程y =kx +b 表示.( )(2)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( )(3)不经过原点的直线都可以用x a +yb=1表示.( ) 答案:(1)× (2)√ (3)× 二、填空题1.过点M (3,-4),且在两坐标轴上的截距相等的直线的方程为______________. 答案:4x +3y =0或x +y +1=02.(2019·开封模拟)过点A (-1,-3),斜率是直线y =3x 斜率的-14的直线方程为____________.答案:3x +4y +15=03.已知三角形的三个顶点A (-5,0),B (3,-3),C (0,2),则BC 边上中线所在的直线方程为____________.解析:由已知,得BC 的中点坐标为⎝ ⎛⎭⎪⎫32,-12,且直线BC 边上的中线过点A ,则BC 边上中线的斜率k =-113,故BC 边上的中线所在直线方程为y +12=-113⎝ ⎛⎭⎪⎫x -32,即x +13y +5=0.答案:x +13y +5=0[全析考法]考法一 求直线方程[例1] (2019·湖北十堰模拟)已知菱形ABCD 的顶点A ,C 的坐标分别为A (-4,7),C (6,-5),BC 边所在直线过点P (8,-1).求:(1)AD 边所在直线的方程; (2)对角线BD 所在直线的方程. [解] (1)k BC =-5--6-8=2,∵AD ∥BC ,∴k AD =2.∴AD 边所在直线的方程为y -7=2(x +4), 即2x -y +15=0. (2)k AC =-5-76--=-65.∵菱形的对角线互相垂直,∴BD ⊥AC ,∴k BD =56.∵AC 的中点(1,1),也是BD 的中点,∴对角线BD 所在直线的方程为y -1=56(x -1),即5x -6y +1=0.[方法技巧]求直线方程的注意事项(1)在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.(2)对于点斜式、截距式方程使用时要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应先判断截距是否为零).考法二 与直线方程有关的最值问题[例2] (1)已知直线x +a 2y -a =0(a 是正常数),当此直线在x 轴,y 轴上的截距和最小时,正数a 的值是( )A .0B .2 C. 2D .1(2)若直线x -2y +b =0与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( )A .[-2,2]B .(-∞,-2]∪[2,+∞)C .[-2,0)∪(0,2]D .(-∞,+∞)[解析] (1)直线x +a 2y -a =0(a 是正常数)在x 轴,y 轴上的截距分别为a 和1a,此直线在x 轴,y 轴上的截距和为a +1a≥2,当且仅当a =1时,等号成立.故当直线x +a 2y -a=0在x 轴,y 轴上的截距和最小时,正数a 的值是1,故选D.(2)令x =0,得y =b 2,令y =0,得x =-b ,所以所求三角形面积为12⎪⎪⎪⎪⎪⎪b 2|-b |=14b 2,且b ≠0,因为14b 2≤1,所以b 2≤4,所以b 的取值范围是[-2,0)∪(0,2].[答案] (1)D (2)C [方法技巧]与直线方程有关的最值问题的解题思路(1)借助直线方程,用y 表示x 或用x 表示y ; (2)将问题转化成关于x (或y )的函数;(3)利用函数的单调性或基本不等式求最值.[集训冲关]1.[考法一]已知直线l 过点P (1,3),且与x 轴,y 轴的正半轴所围成的三角形的面积等于6,则直线l 的方程是( )A .3x +y -6=0B .x +3y -10=0C .3x -y =0D .x -3y +8=0解析:选A 设直线l 的方程为x a +yb=1(a >0,b >0). 由题意得⎩⎪⎨⎪⎧1a +3b =1,12ab =6,解得a =2,b =6.故直线l 的方程为x 2+y6=1,即3x +y -6=0.故选A.2.[考法一]过点M (-3,5)且在两坐标轴上的截距互为相反数的直线方程为_________. 解析:当直线过原点时,直线方程为y =-53x ;当直线不过原点时,设直线方程为x a +y-a=1(a ≠0), 即x -y =a (a ≠0),把(-3,5)代入,得a =-8, 所以直线方程为x -y +8=0.故所求直线方程为y =-53x 或x -y +8=0.答案:y =-53x 或x -y +8=03.[考法二]已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,实数a =________.解析:直线l 1可写成a (x -2)=2(y -2),直线l 2可写成2(x -2)=a 2(2-y ),所以直线l 1,l 2恒过定点P (2,2),直线l 1的纵截距为2-a ,直线l 2的横截距为a 2+2,所以四边形的面积S =12×2×(2-a )+12×2×(a 2+2)=a 2-a +4=⎝ ⎛⎭⎪⎫a -122+154.当a =12时,面积最小.答案:12突破点三 直线的交点、距离与对称问题[基本知识]1.两条直线的交点2.三种距离|P 1P 2|=x 2-x 12+y 2-y 12[基本能力]一、判断题(对的打“√”,错的打“×”)(1)若两直线的方程组成的方程组有唯一解,则两直线相交.( ) (2)点P (x 0,y 0)到直线y =kx +b 的距离为|kx 0+b |1+k2.( ) (3)直线外一点与直线上一点的距离的最小值就是点到直线的距离.( )(4)若点A ,B 关于直线l :y =kx +b (k ≠0)对称,则直线AB 的斜率等于-1k,且线段AB的中点在直线l 上.( )答案:(1)√ (2)× (3)√ (4)√ 二、填空题1.已知点(a,2)(a >0)到直线l :x -y +3=0的距离为1,则a 的值为________. 答案:2-12.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2间的距离为________.答案:8233.当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在第________象限.答案:二4.(2018·忻州检测)在平面直角坐标系中,点(0,2)与点(4,0)关于直线l 对称,则直线l 的方程为______________.答案:2x -y -3=0[全析考法]考法一 距离问题[例1] (2019·北京西城期中)已知直线l 经过点P (-2,1). (1)若点Q(-1,-2)到直线l 的距离为1,求直线l 的方程; (2)若直线l 在两坐标轴上截距相等,求直线l 的方程.[解] (1)当直线l 的斜率不存在时,即直线l 的方程为x =-2,符合要求; 当直线l 的斜率存在时,设直线l 的方程为y -1=k (x +2), 整理得kx -y +2k +1=0,Q(-1,-2)到直线l 的距离d =|-k +2+2k +1|k 2+-2=|k +3|k 2+1=1,解得k =-43,所以直线l 的方程为4x +3y +5=0.(2)由题知,直线l 的斜率k 一定存在且k ≠0,故可设直线l 的方程为kx -y +2k +1=0,当x =0时,y =2k +1,当y =0时,x =-2k +1k,∴2k +1=-2k +1k ,解得k =-1或-12,即直线l 的方程为x +2y =0或x +y +1=0. [方法技巧]1.解决与点到直线的距离有关的问题应熟记点到直线的距离公式,若已知点到直线的距离求直线方程,一般考虑待定斜率法,此时必须讨论斜率是否存在.2.求两条平行线间的距离要先将直线方程中x ,y 的对应项系数转化成相等的形式,再利用距离公式求解.也可以转化成点到直线的距离问题.考法二 对称问题[例2] 已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (3)直线l 关于点A (-1,-2)对称的直线l ′的方程. [解] (1)设A ′(x ,y ),由题意知⎩⎪⎨⎪⎧y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413.所以A ′⎝ ⎛⎭⎪⎫-3313,413. (2)在直线m 上取一点M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上.设M ′(a ,b ),则⎩⎪⎨⎪⎧ 2×a +22-3×b +02+1=0,b -0a -2×23=-1.解得M ′⎝ ⎛⎭⎪⎫613,3013. 设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧ 2x -3y +1=0,3x -2y -6=0,得N (4,3).又因为m ′经过点N (4,3),所以由两点式得直线m ′的方程为9x -46y +102=0.(3)设P (x ,y )为l ′上任意一点,则P (x ,y )关于点A (-1,-2)的对称点为P ′(-2-x ,-4-y ),因为P ′在直线l 上,所以2(-2-x )-3(-4-y )+1=0,即2x -3y -9=0.[方法技巧]1.中心对称问题的两种类型及求解方法2.轴对称问题的两种类型及求解方法[集训冲关]1.[考法一]“C =2”是“点(1,3)到直线x +3y +C =0的距离为3”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析:选B 若点(1,3)到直线x +3y +C =0的距离为3,则有|1+3+C |12+32=3,解得C =2或C =-10,故“C =2”是“点(1,3)到直线x +3y +C =0的距离为3”的充分不必要条件,故选B.2.[考法二]直线3x -4y +5=0关于x 轴对称的直线的方程是( )A .3x +4y +5=0B .3x +4y -5=0C .-3x +4y -5=0D .-3x +4y +5=0解析:选A 在所求直线上任取一点P (x ,y ),则点P 关于x 轴的对称点P ′(x ,-y )在已知的直线3x -4y +5=0上,所以3x -4(-y )+5=0,即3x +4y +5=0,故选A.3.[考法一]已知l 1,l 2是分别经过A (1,1),B (0,-1)两点的两条平行直线,当l 1,l 2间的距离最大时,则直线l 1的方程是________________.解析:当直线AB 与l 1,l 2垂直时,l 1,l 2间的距离最大.因为A (1,1),B (0,-1),所以k AB =-1-10-1=2,所以两平行直线的斜率为k =-12,所以直线l 1的方程是y -1=-12(x -1),即x +2y -3=0.答案:x +2y -3=04.[考法二]若直线l 与直线2x -y -2=0关于直线x +y -4=0对称,则直线l 的方程为________________.解析:由⎩⎪⎨⎪⎧ 2x -y -2=0,x +y -4=0,得⎩⎪⎨⎪⎧ x =2,y =2,即两直线的交点坐标为(2,2),在直线2x -y-2=0上取一点A (1,0),设点A 关于直线x +y -4=0的对称点的坐标为(a ,b ),则⎩⎪⎨⎪⎧ b a -1=1,a +12+b 2-4=0,解得⎩⎪⎨⎪⎧ a =4,b =3,即点A 关于直线x +y -4=0的对称点的坐标为(4,3),则直线l 的方程为y -23-2=x -24-2,整理得x -2y +2=0. 答案:x -2y +2=0。
高三数学一轮总复习第九章平面解析几何第二节两直线的位置关系课件理ppt版本
[即时应用] (2016·苏州检测)已知三条直线2x-y-3=0,4x-3y- 5=0和ax+y-3a+1=0相交于同一点P. (1)求点P的坐标和a的值; (2)求过点(-2,3)且与点P的距离为2 5的直线方程.
(2)设所求直线为 l,当直线 l 的斜率不存在时,直线 l 的
方 当程 直解为 线:xl(=的1)由-斜率 224,xx存此--在时y3-y时点-3,=5P=设0与,0直,直线线解ll的得的斜距xy==率离1为2为,,k4,,不合题意. 则直所线以l点的P方的程坐为标y-为3(2=,1k).(x+2), 即 kx-y+2k+3=0. 点 P将 得到点a直=P线2的. l坐的标距(离2,1)d代=入|2k直-线1k+2a+x2+k1+y-3|=3a2+15=,0,可 解得 k=2,
第二节 两直线的位置关系
1.两条直线平行与垂直的判定 (1)两条直线平行: ①对于两条不重合的直线l1,l2,若其斜率分别为k1,k2,则
有l1∥l2⇔ k1=k2 . ②当直线l1,l2不重合且斜率都不存在时,l1∥l2.
(2)两条直线垂直: ①如果两条直线l1,l2的斜率存在,设为k1,k2,则有l1⊥l2
线平行,则实数m的值是________. 解析:由题意可知 kAB=4m-+m2=-2,所以 m=-8. 答案:-8
2.已知直线l:y=3x+3,那么直线x-y-2=0关于直线l
对称的直线方程为__________.
解析:由
x-y-2=0, 3x-y+3=0,
得交点坐标P -52,-92 .又直
住,在解答填空题时,建议多用比例式来解答.
考点二 距离问题 重点保分型考点——师生共研
[典例引领] 已知A(4,-3),B(2,-1)和直线l:4x+3y-2=0, 在坐标平面内求一点P,使|PA|=|PB|,且点P到直线l 的距离为2.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题:《解析几何》的一轮复习分析与指导学校:人大附中主讲人:吴中才一、专题内容分析(一)本专题知识体系的梳理本专题内容在高中数学中衔接几何与代数,充分体现了数形结合,重点研究如何用代数方法解决几何问题,如何在代数与几何之间实现问题与解答的转化.从学习者的角度来看,解析几何的学习需要培养数形结合的思想、较强的运算能力和一定的几何与代数的转化能力;从教学者的角度来看,解析几何的教学除了遵循学习者的要求外,还需要重视常规与规范的训练.本专题的知识体系结构为:(二)本专题中研究的核心问题本专题研究的核心问题是如何用代数语言表示几何元素,进而用解析方法(坐标法)解决几何问题.因而,首先要复习直线、圆、圆锥曲线的方程,然后要用方程研究直线与圆、直线与圆锥曲线的位置关系,能够在数和形之间相互转化,综合运用几何方法与解析方法解决几何问题.解析法是借助代数方法解决几何问题的一种方法,解决几何就是利用坐标方法解决几何问题过程中形成的一门学科,它对贯穿代数与几何起着十分重要的作用.(三)本专题蕴含的核心观点、思想和方法解析几何是几何学的一个分支,是通过坐标法运用代数工具研究几何问题的一门学科,它把形与数有机地结合起来.一方面,将几何问题代数化------用代数的语言描述几何要素及其关系,进而将几何问题转化为代数问题;另一方面,将代数问题几何化------分析代数语言的几何含义,使代数语言更直观、更形象地表达出来.解析几何的核心观点就是用恰当运用代数的方法解决几何问题,基本思想是数形结合思想,核心方法是坐标法.数形结合思想和坐标法是统领全局的,解析几何就是在坐标系的基础上,用代数的方法研究几何问题一门学科.用解析法研究几何图形的性质,须先将几何图形置于坐标系下,让“形”与“数”对应起来,将“形”进行翻译转化:把点转化为坐标、把曲线转化为方程,把题目中明显的或隐含的解题所需要的一切几何特征,用数式和数量关系表示出来.用图可以简略表示为:例如,直角三角形ABC 中,CB >CA ,点D 、E 分别在边CA 、CB 上,且满足BE =CA ,AD =CE ,AE 与BD 交于点F ,求∠AFD 的度数.D CB二、典型考题解构虽然解析法可以少想多算,甚至以算代想,但是如果能够合理适当运用几何关系,则可以减少运算量.例1. 【2013高考北京理第19题】已知A ,B ,C 是椭圆W :2214x y +=上的三个点,O 是坐标原点.(1)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积;(2)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由.这道题实质上是研究四边形OABC 的形状有没有可能是菱形,如果是,它的面积是多少?由于只有当B 为椭圆W 的顶点时,四边形才可能成为菱形,其它情况均不可能成为菱形,因而设计出两个问题:一是特殊情况(B 为右顶点)求菱形面积,一是一般情况(B 不是顶点)探究四边形OABC 是否可能为菱形.其中渗透了分类思想,考查了反证法,几何特征的代数化,运算能力等.点 坐标 曲线 方程几何特征数式和数量关系从备考者的角度看,本题的解答需要我们具备以下储备:菱形的几何特征的选择及其代数化,反证法,代数运算能力.特别是第(2)题究竟选择菱形的什么几何特征入手对后续的代数运算有较大的影响.因此,在复习教学中,我们应当做好以下几个环节:(1)落实解析几何的基础知识:包括直线方程与斜率,圆与圆锥曲线的方程和性质,点、直线、圆和圆锥曲线之间的位置关系,等等.(2)适当复习几何图形的几何特征:包括角分线的性质、直线垂直、线段平分、点共线、线共点、线段相等、面积相等、特殊四边形的性质与判定等等.(3)总结几种题型的研究方法:包括弦长与面积等度量问题、探究问题、存在性问题、最值问题、定点问题、定值问题、共点问题、共线问题等等.(4)适当渗透数学思想方法:包括数形结合思想、解析思想、方程思想、函数思想、不等式方法等等.附1:【2014海淀一模19】已知,A B是椭圆22+=上两点,点M的坐标为(1,0).:239C x y∆为等边三角形时,求AB的长;(Ⅰ)当,A B两点关于x轴对称,且MAB∆不可能为等边三角形.(Ⅱ)当,A B两点不关于x轴对称时,证明:MAB附2:【2015朝阳一模理19】(题见“教学资源”)例2. 【2015海淀一模第19题】(题见“教学资源”)第(Ⅱ)题的解答思路对学生来说不太自然.如果要证“不存在”这样的菱形,学生可能会想到按答案思路去找矛盾.但问是否存在,对学生而言,很可能会想到用t和m表示出C点坐标,再利用AC⊥BD将t消去,最终得到m的一元二次方程.再看看m在范围内是否有解.三、教学目标的分析与定位通过平面解析几何的学习,体会用代数方法处理几何问题的思想、进一步体会数形结合的思想方法,是本章最根本的思想教学目标.结合课标要求与北京市考纲要求,本专题的重点内容有:直线平行与垂直的条件,直线的几种方程形式,距离公式,圆的标准方程,直线与圆的位置关系,椭圆与抛物线的定义、标准方程与性质,直线与圆锥曲线的位置关系(主要是直线与椭圆的位置关系).在平面直角坐标系中建立直线、圆与圆锥曲线的方程,运用代数方法研究它们的几何性质及其相互间的位置关系,这是本章学习的核心内容和重点知识目标.解析几何把数学的两个基本对象——形和数有机地联系起来,这就使得坐标法的作用更加明显,这对于人们发现新结论也具有重大意义.我们在用坐标法解决几何的过程中,除了将“形”翻译为“数”和将“数”翻译为“形”这两个环节外,还有一个关键环节就是代数运算,这也是很多学生的弱点.因此,通过具体问题的解答示范与训练,培养学生数形结合的思维习惯,形成用代数方法解决几何问题的能力和一定的代数运算能力,是本章最突出的能力教学目标.以下是具体内容的课标要求和北京市高考考试说明的要求:(一)课标要求1. 直线和圆的方程(1)直线与方程①在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素.②理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式.③能根据斜率判定两条直线平行或垂直.④根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系.⑤能用解方程组的方法求两直线的交点坐标.⑥探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.(2)圆与方程①回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程与一般方程.②能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系.③能用直线和圆的方程解决一些简单的问题.(3)在平面解析几何初步的学习过程中,体会用代数方法处理几何问题的思想.(4)空间直角坐标系①通过具体情境,感受建立空间直角坐标系的必要性,了解空间直角坐标系,会用空间直角坐标系刻画点的位置.②通过表示特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索并得出空间两点间的距离公式.2. 圆锥曲线与方程(1)圆锥曲线①了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用.②经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质.③了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质.④能用坐标法解决一些与圆锥曲线有关的简单几何问题(直线与圆锥曲线的位置关系)和实际问题.⑤通过圆锥曲线的学习,进一步体会数形结合的思想.(2)曲线与方程结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步感受数形结合的基本思想.四、教学实施建议解析几何的教学要立足引导学生数形结合,将几何关系与代数运算有机结合,学习解决问题的通法,避免单纯地进行题型归类和将解答过程模式化.既要培养学生的转化能力和运算能力,又要引导学生理解其中的方程思想与函数思想.针对具体的教学,有如下几点建议:1、切实掌握基础知识按课标要求与高考考试说明的要求,落实基础知识的复习. 2、切实形成基本运算能力解析几何题一般都涉及到直线与圆锥曲线的综合问题,因而联立直线与圆锥曲线的方程,消元得一元二次方程,根据韦达定理写出根与系数的关系,计算判别式,这些都是基本的运算量,也是研究解析几何问题的一般基础.教学时,要学生通过训练形成基本运算能力.3、掌握一些常见的几何关系与几何特征的代数化 ①线段的中点:坐标公式 ②线段的长:弦长公式③三角形面积: 21底×高,正弦定理面积公式④夹角:向量夹角;两角差正切;余弦定理;正弦定理面积公式⑤面积之比,线段之比:面积比转化为线段比,线段比转化为坐标差之比 ⑥三点共线:利用向量或相似转化为坐标差之比 ⑦垂直平分:两直线垂直的条件及中点坐标公式 ⑧点关于直线的对称,点关于点,直线关于直线对称 ⑨直线与圆的位置关系⑩等腰三角形,平行四边形,菱形,矩形,正方形,圆等图形的特征4、重视基本解题思路的归纳与整理但不要模式化,学会把不同类型的几何问题转化成代数形式.例3.【2015高考新课标2,理20】已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M . (Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; 本题涉及到弦的中点,可以用“点差法”证明,也可以用韦达定理进行证明.例4.【2014北京理19】已知椭圆22:24C x y +=. (1)求椭圆C 的离心率.(2)设O 为原点,若点A 在椭圆C 上,点B 在直线2y =上,且OA OB ⊥,求直线AB 与圆222x y +=的位置关系,并证明你的结论.第(2)题考查直线与圆的位置关系,虽然A 、B 两点都在运动变化,但本题的解答思路属于常规思路,只需研究圆心到直线的距离与半径的关系.例5.【2012北京理19】已知曲线C: 22(5)(2)8()m x m y m R -+-=∈ (1)若曲线C 是焦点在x 轴的椭圆,求m 的范围;(2)设4m =,曲线C 与y 轴的交点为A,B (点A 位于点B 的上方),直线4y kx =+与曲线C 交于不同的两点M,N,直线1y =与直线BM 交于点G 求证:A,G,N 三点共线.第(1)题考查曲线方程的分类,第(2)题考查三点共线.三点共线常转化为向量,欲证A G N ,,三点共线,只需证AG u u u r ,AN u u u r共线,再结合韦达定理即可证,或证0AG AN k k -=.例6.【2015北京理19】已知椭圆2222:1(0)x y C a b a b+=>>,点(0,1)P 和点(,)A m n (0)m ≠都在椭圆C 上,直线PA 交x 轴于点M .(Ⅰ)求椭圆C 的方程,并求点M 的坐标(用,m n 表示);(Ⅱ)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:y 轴上是否存在点Q ,使得OQM ONQ ∠=∠?若存在,求点Q 的坐标;若不存在,说明理由.第(Ⅱ)题属于存在性探究问题,将OQM ONQ ∠=∠利用三角形相似转化为||||||||OM OQ OQ ON =进行求解,或直接用三角形表示两个角的正切.例7.【2016北京理19】已知椭圆C :22221+=x y a b (0a b >>)的离心率为2,(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1. (1)求椭圆C 的方程;(2)设P 的椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N. 求证:BM AN ⋅为定值.第(2)题考查了定值问题,基本方法就是将|AN|与|BM|分别表示出来,计算其积为定值.用什么量来表示呢?这就涉及到选择参数的问题,可以设()00,P x y ,也可以设()2cos ,sin P θθ.当然,本题还有一个整体求解问题也是一个小难点.例8.【2016全国I 卷】)设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围. 第(Ⅱ)题考查取值范围问题,将四边形的面积转化为某一个变量的函数(设直线的斜率为k ),通过求函数的值域求得范围.5、要重视解题过程中思想方法的提炼与运用 ①坐标法:坐标法是解析几何的基本方法,要能够在具体问题中写出相关点的坐标、直线的方程、圆的方程、圆锥曲线的方程,并用坐标与方程研究几何问题.②方程思想:解析几何的求解问题基本都转化为求解方程问题,一般地,未知数的个数和方程(或题中独立条件)的个数一样.另外,有些探究性问题也常常转化为对方程解的讨论.③函数思想:对于圆锥曲线上一些动点,在变化过程中会引入一些相互联系、相互制约的量,从而使一些线段的长度及a 、b 、c 、e 之间构成函数关系,函数思想在处理这类问题时就很有效.从另一视角看,当题中独立条件的个数少于未知数的个数时,所研究的问题就会转化为某一个或几个未知数的函数问题.④分类讨论:解析几何问题常常需要分类讨论,例如涉及到直线的斜率是否存在,涉及到最值问题中某个参数是否为0,以及几何背景中某一位置关系是否具有多种可能,等等。