【人教版】七年级数学下册:6.2 立方根 1教案

合集下载

人教版数学七年级下册6.2立方根教学设计

人教版数学七年级下册6.2立方根教学设计
-已知一个立方体的体积为64立方厘米,求其边长。
2.能力提升题:
-计算√27、√64、√125的值,并说明它们分别对应哪个整数的立方。
-如果一个立方体的体积是1000立方厘米,求其表面积。
3.实践应用题:
-生活中有哪些物体的体积可以用立方根来表示?请举例说明。
-利用立方根的概念,设计一个实际问题的解决方案,并解释其原理。
2.提高题:计算带分数的立方根,如√2.5、√4.5等。
3.应用题:解决实际问题,如已知一个立方体的体积,求其边长。
4.拓展题:研究立方根的性质,如证明一个数的立方根唯一性。
(五)总结归纳
在总结归纳环节,我会带领学生回顾本节课所学内容,并进行以下归纳:
1.立方根的定义:一个数的立方根,就是使得这个数等于其立方的那个数。
(二)过程与方法
1.通过引入生活中的实际例子,激发学生学习立方根的兴趣,引导学生主动探究立方根的性质和计算方法。
2.采用小组合作、讨论交流等形式,培养学生独立思考、合作解决问题的能力。
3.设计丰富的练习题,巩固学生对立方根知识的掌握,提高学生的运算速度和准确率。
4.引导学生运用类比、联想等方法,将立方根与已学的平方根、算术平方根等知识进行联系,形成知识体系。
1.请举例说明立方根在生活中的应用。
2.请思考立方根与平方根的联系和区别。
3.如何计算一个数的立方根?请给出具体步骤。
要求学生在规定时间内进行讨论,并选派代表进行汇报。我在此过程中进行巡回指导,解答学生的疑问。
(四)课堂练习
在课堂练习环节,我会设计以下四类题目,帮助学生巩固所学知识:
1.基础题:计算简单立方根,如√8、√27等。
4.拓展探究题:
-研究立方根的性质,例如:证明一个数的立方根唯一性,讨论立方根的有界性。

数学人教版七年级下册6.2立方根(第一课时)教案

数学人教版七年级下册6.2立方根(第一课时)教案

6.2立方根(第一课时)教案一、教学目标知识与技能:1、了解立方根的概念,初步学会用根号表示一个数的立方根,让学生体会一个数的立方根的唯一性.2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根,分清一个数的立方根与平方根的区别。

3、能用有理数估计一个无理数的大致范围,使学生形成估算的意识,培养学生的估算能力。

过程与方法1、帮助学生了解数的立方根的概念和性质,会用三次根号表示数的立方根,让学生体会一个数的立方根的惟一性.2、帮助学生了解开立方运算与立方运算之间的互逆关系,掌握用立方运算求一个数的立方根的方法,帮助学生了解用计算器求某些数的立方根的方法..3、帮助学生认识平方根与立方根的区别.情感、态度与价值观1、通过立方根的学习,认识数学与人类生活的密切联系,激发学生的学习兴趣.2、通过探究活动,锻炼克服困难的意志,增强自信心,激发学生的探索热情.二、教学重难点教学重点:了解数的立方根的概念和性质,会用三次根号表示数的立方根,用立方运算求一个数的立方根.教学难点:用立方运算求一个数的立方根,认识平方根与立方根的区别.三、教学方法:讨论比较法、讲练结合,合作,交流,探究.四、教学用具:多媒体、黑板、粉笔五、教学过程:Ⅰ、复习师:请同学们回忆上节课我们是怎样定义平方根的?它的符号怎么表示?生:如果a x =2,那么x 叫做a 的平方根(或二次方根)。

符号表示:“a ±”其中0≥a 师:昨天我们还学习了一种新的运算,是什么运算呢?它是怎么定义的?生:开立方:求一个数a 的平方根的运算,叫做开平方。

↔平方(互为逆运算)师:那么平方根有什么样的性质呢?生:正数有两个平方根,它们是互为相反数;0的平方根还是0;负数没有平方根。

Ⅱ、设计情境,导入新课问题1:要制作一种容积为327m 的正方体形状的包装箱,这种包装箱的棱长应该是多少?你是怎么知道的?设这种包装箱的棱长为m x ,则3x =27.这就是求一个数,使它的立方等于27.因为33=27, 所以x=3. 即这种包装箱的边长应为3 m.本题是已知一个数x 的立方,求这个数的值,而平方根是已知一个数的平方,求这个数,从而学生可以类比平方根的概念归纳出立方根的概念。

人教版数学七年级下册第19课时《6.2立方根(1)》教案

人教版数学七年级下册第19课时《6.2立方根(1)》教案

人教版数学七年级下册第19课时《6.2立方根(1)》教案一. 教材分析《6.2立方根(1)》是人教版数学七年级下册的教学内容,本节课主要让学生掌握立方根的概念、性质和运算法则。

通过学习,学生能理解和掌握立方根的定义,会运用立方根解决一些实际问题。

教材通过引入立方根的概念,引导学生探究立方根的性质和运算法则,培养学生的逻辑思维能力和数学运算能力。

二. 学情分析学生在七年级上学期已经学习了实数的概念,对有理数、无理数有一定的了解。

在此基础上,学生需要进一步理解立方根的概念,并掌握立方根的性质和运算法则。

学生的学习兴趣较高,但部分学生可能对抽象的数学概念理解起来有一定困难,需要教师耐心引导和讲解。

三. 教学目标1.理解立方根的概念,掌握立方根的性质和运算法则。

2.能运用立方根解决一些实际问题,提高学生的数学应用能力。

3.培养学生的逻辑思维能力和数学运算能力,提高学生的数学素养。

四. 教学重难点1.立方根的概念和性质。

2.立方根的运算法则。

3.运用立方根解决实际问题。

五. 教学方法采用启发式教学法、案例教学法和小组合作学习法。

通过引入生活实例,激发学生的学习兴趣;引导学生主动探究立方根的性质和运算法则,培养学生的逻辑思维能力和数学运算能力;小组讨论,提高学生的合作意识和团队精神。

六. 教学准备1.准备相关的教学PPT和多媒体素材。

2.准备练习题和实际问题,用于巩固和拓展学生的知识。

3.准备黑板和粉笔,用于板书。

七. 教学过程1.导入(5分钟)通过一个生活实例引入立方根的概念,如“一个正方体的体积是27立方厘米,求这个正方体的棱长。

”引导学生思考,激发学生的学习兴趣。

2.呈现(10分钟)讲解立方根的定义,引导学生理解立方根的概念。

如“一个数的立方根,就是另一个数,使得这个数的三次方等于另一个数。

”通过PPT和板书,呈现立方根的性质和运算法则,让学生直观地感受和理解。

3.操练(10分钟)进行一些立方根的运算练习,让学生巩固所学知识。

七年级数学下册 6.2 立方根(1)教案 (新版)新人教版-(新版)新人教版初中七年级下册数学教案

七年级数学下册 6.2 立方根(1)教案 (新版)新人教版-(新版)新人教版初中七年级下册数学教案

立方根(第1课时)教学目标1.了解立方根的概念,会用根号表示数的立方根.2.了解开方与乘方互为逆运算,会用立方运算求某些数的立方根,会用计算器求立方根.3.能用有理数估计一个无理数(立方根)的大致X围.教学重点立方根的概念与性质及求法.教学难点立方根的概念与性质及求法.教学内容一、复习导入复习上节内容,导入新课的教学.二、新课教学1. 问题要制作一种容积为27 m3的正方体形状的包装箱,这种包装箱的棱长应该是多少?设这种包装箱的边长为x m,则x3=27.这就是求一个数,使它的立方等于27.因为33=27,所以x=3.因此这种包装箱的棱长应为3 m.归纳:一般地,如果一个数的立方等于a,这个数叫做a的立方根或三次方根,这就是说,如果x3=a,那么x叫做a的立方根.2. 探究根据立方根的意义填空,你能发现正数、0、负数的立方根各有什么特点吗?因为23=8,所以8的立方根是( );因为( )3,所以0.064的立方根是( );因为( )3=0,所以0的立方根是( );因为( )3=-8,所以-8的立方根是( );因为( )3=-278,所以-278的立方根是( ). 归纳:正数的立方根是正数,负数的立方根是负数,0的立方根是0,任何数都有唯一的立方根. 类似与平方根,一个数a 的立方根,用符号“3a ”表示,读作“三次根号a ”,其中a 叫被开方数,3叫根指数,不能省略,若省略表示平方.3. 探究 因为38=,-38=,所以为38-38; 因为327=,-327=,所以为327-327.利用开立方和立方互为逆运算关系,求一个数的立方根,就可以利用这种互逆关系,检验其正确性,求负数的立方根,可以先求出这个负数的绝对值的立方根,再取其相反数,一般地,3a =-3a .三、课堂小结1.立方根和开立方的定义.2.正数、0、负数的立方根的特征.3.立方根与平方根的异同.四、布置作业教学反思:。

初中数学人教新版七年级下册6.2 立方根 1优秀教案

初中数学人教新版七年级下册6.2 立方根 1优秀教案

初中数学人教新版七年级下册实用资料 6.2 立方根1.了解立方根的概念及性质,会用根号表示一个数的立方根;(重点)2.了解开立方与立方是互逆运算,会用开立方运算求一个数的立方根.(难点)一、情境导入填空并回答问题:(1)( )3=0.001;(2)( )3=-2764; (3)( )3=0;(4)若正方体的棱长为a ,体积为8,根据正方体的体积公式得a 3=8,那么a 叫做8的什么呢?二、合作探究探究点一:立方根的概念及性质【类型一】 立方根的概念及性质立方根等于本身的数有________个.解析:在正数中,31=1,在负数中,3-1=-1,又30=0,∴立方根等于本身的数有1,-1,0.故填3.方法总结:不论正数、负数还是零,都有立方根.【类型二】 立方根与平方根的综合问题已知x -2的平方根是±2,2x +y +7的立方根是3,求x 2+y 2的算术平方根.解析:根据平方根、立方根的定义和已知条件可知x -2=4,2x +y +7=27,从而解出x ,y ,最后代入x 2+y 2,求其算术平方根即可.解:∵x -2的平方根是±2,∴x -2=4,∴x =6.∵2x +y +7的立方根是3,∴2x +y +7=27.把x =6代入解得y =8,∴x 2+y 2=62+82=100.∴x 2+y 2的算术平方根为10.方法总结:本题先根据平方根和立方根的定义,运用方程思想列方程求出x ,y 的值,再根据算术平方根的定义求出x 2+y 2的算术平方根.【类型三】 立方根的实际应用已知球的体积公式是V =43πr 3(r 为球的半径,π取3.14),现已知一个小皮球的体积是113.04cm 3,求这个小皮球的半径r .解析:将公式变形为r 3=3V 4π,从而求r . 解:由V =43πr 3,得r 3=3V 4π,∴r =33V 4π.∵V =113.04cm 3,π取3.14,∴r ≈33×113.044×3.14=327=3(cm).答:这个小皮球的半径r 约为3cm.方法总结:解此题的关键是灵活应用球的体积公式,并将公式适当变形.探究点二:开立方运算求下列各式的值:(1)-3343; (2)31027-5; (3)-3-8÷214+(-1)100. 解:(1)-3343=-7;(2)31027-5=3-12527=-53; (3)-3-8÷214+(-1)100=2÷94+1=2÷32+1=2×23+1=73. 方法总结:做开平方或开立方运算时,一般都是利用它们的定义去掉根号;当被开方数不是单独一个数时,则需先将它们进行化简,再进行开方运算.三、板书设计1.每个数a 都只有一个立方根,记为“3a ”,读作“三次根号a ”.2.正数的立方根是正数;0的立方根是0;负数的立方根是负数.3.求一个数a 的立方根的运算叫做开立方,其中a 叫做被开方数.开立方与立方互为逆运算.本节课让学生应用类比法学习立方根的概念、性质和运算.学生在以后的数学学习中,要注意渗透类比的思维方式,让学生在学习新知识的同时巩固已学的知识,并通过新旧对比更好地掌握知识。

七年级数学下册 6.2 立方根(第1课时)教案 (新版)新人教版

七年级数学下册 6.2 立方根(第1课时)教案 (新版)新人教版
6.2 立方根(第 1 课时)
课题 备课日期
年月日
课型
新授
了解立方根的概念;
掌握立方根的特性,会用符号表示一个数的立方根; 知识与技能
会求一个立方数的立方根.
教 从实际问题出发,揭示立方根概念,领会立方根的求法
过程与方法 学
使学生进一步体验立方与开立方的互逆关系,培养学生逆向思维解

决问题的习惯.
情感态度
检测本节课
三、课堂训练
的教学效果,
1.-27 的立方根是
.
及时反馈
2.如果 0.2 是 x 的立方根,那么= .
学生谈本节
3.整数 a 是整数 b 的平方根,又是整数 c 的立方根,且 c 是 b 的 2 倍, 课学到的知
则 a=____;b=____;c=____.
识以及解题
4.64 的立方根的算术平方根是______.
(8)一个自然数的算术平方根是 a,那么与这个自然数相邻的下一个自然 数的平方根是____________;立方根是____________. 六、教学效果追忆:
五、作业设计
课本 80 页: 1、2、3、5、6、7
补充:
(1)1 的平方根是____;立方根为____;算术平方根为____.
(2)平方根是它本身的数是____.
(3)立方根是其本身的数是____. (4)算术平方根是其本身的数是________. (5) 的立方根为________. (6) 的平方根为________. (7) 的立方根为________ .
体会
5.8 的立方是 8 的立方根的______倍.
6.下列说法正确的是( )
A. 27 的立方根是±3 B.的立方根是

人教版数学七年级下册6.2.1立方根教案设计

立方根教课目的1、认识立方根的观点,初步学会用根号表示一个数的立方根,让学生领会一个数的立方根的独一性.2、认识开立方与立方互为逆运算,会用立方运算求某些数的立方根,分清一个数的立方根与平方根的差别。

3、能用有理数预计一个无理数的大概范围,使学生形成估量的意识,培育学生的估量能力,会用计算器计算立方根要点、难点要点:认识数的立方根的观点和性质,会用三次根号表示数的立方根,用立方运算求一个数的立方根.难点:用立方运算求一个数的立方根,认识平方根与立方根的差别.教课过程一、复习请同学们回想上节课我们是如何定义平方根的?它的符号怎么表示?生:假如x2a,那么x叫做a的平方根(或二次方根)。

符号表示:“a”此中a0(教师板书)师:昨天我们还学习了一种新的运算,是什么运算呢?它是怎么定义的?生:开立方:求一个数a的平方根的运算,叫做开平方。

平方(互为逆运算)师:那么平方根有什么样的性质呢?生:正数有两个平方根,它们是互为相反数;0的平方根仍是0;负数没有平方根。

设计企图:经过对平方根的复习,能够增添学生对平方根的印象,同时,教师也能经过学生复习过程的表现,间接认识学生对知识的掌握程度,也能让学生再学习完立方根的新知识后,更好的对这两个观点进行比较。

二、情形导入问题1:要制作一种容积为27m3的正方体形状的包装箱,这类包装箱的棱长应当是多少?你是怎么知道的?设这类包装箱的棱长为xm,则x3=27.这就是求一个数,使它的立方等于27.由于33=27,所以x=3.即这类包装箱的边长应为3m.三、研究新知此题是已知一个数x的立方,求这个数的值,而平方根是已知一个数的平方,求这个数,从而学生能够类比平方根的观点概括出立方根的观点。

师:对照平方根的定义,你能概括出立方根的定义是什么吗?学生讨论思虑,教师指引概括观点:观点概括:假如一个数的立方等于a,这个数叫做a的立方根(也叫做三次方根),即假如x3a,那么x叫做a的立方根(教师板书)师:所以,在上边问题中,由于3327,所以3是27近似开平方的运算,我们也能够定义出开立方运算:的立方根。

(初一数学教案)人教版初中七年级数学下册第6章实数6.2立方根教学设计

6.2 立方根第1课时一、教学目标【知识与技能】1.了解立方根的概念,会用根号表示一个数的立方根.2.会用立方运算求一个数的立方根,了解开立方与立方互为逆运算.3.了解立方根的性质.4.区分立方根与平方根的不同.【过程与方法】1.经历对立方根的探究过程,在探究中学会解决立方根的一些基本方法和策略.2.在学习了平方根的基础上,学生经历用类比的方法学习立方根的有关知识,领会类比思想.3.通过对立方根性质的探究,在探究中培养学生的逆向思维能力和分类讨论的意识.【情感态度与价值观】1.在立方根概念、符号、运算及性质的探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神.2.学生通过对实际问题的解决,体会数学的实用价值.二、课型新授课三、课时第1课时 共1课时 四、教学重难点 【教学重点】立方根的概念、求法和性质. 【教学难点】立方根的求法,立方根与平方根的联系及区别. 五、课前准备教师:课件、三角尺、直尺等. 学生:三角尺、铅笔、练习本. 六、教学过程(一)导入新课(出示课件2) 填空并回答问题: (1)( )3=0.001; (2)( )3=-2764;(3)( )3=0;(4)若正方体的棱长为a ,体积为8,根据正方体的体积公式得a 3=8,那么a 叫做8的什么呢?(二)探索新知1.出示课件4-7,探究立方根的概念和性质教师问:如图所示, 二阶魔方由几个小立方体构成呢?学生答:二阶魔方由8个小立方体构成.教师问:三阶魔方由几个小立方体构成呢?学生答:三阶魔方由27个小立方体构成.教师问:四阶魔方由几个小立方体构成呢?学生答:四阶魔方由64个小立方体构成.教师问:如果一个魔方由27个小立方体构成,它应该是几阶魔方?学生答:解:设这个魔方为x 阶,则: x3 =27. 因为33 =27, 所以x =3.即这个魔方为3阶魔方.教师问:因为3的立方等于27,那么3就叫做27的立方根.想一想:什么数的立方等于-27?学生答:(-3)3=-27,因为-3的立方等于-27,那么-3就叫做-27的立方根.总结点拨:(出示课件8)立方根的定义一般地,如果一个数的立方等于a,这个数就叫做a的立方根或三次方根.教师问:思考:如何表示一个数的立方根?师生一起解答:一个数a的立方根可以表示为:根指数被开方数读作:三次根号 a其中a是被开方数,3是根指数,3不能省略.教师出示问题:完成下表:填一填:教师依次展示学生答案:如下表所示:总结点拨:(出示课件10)立方根的性质:一个正数有一个正的立方根;一个负数有一个负的立方根,零的立方根是零.教师强调:1.立方根是它本身的数有1, -1, 0;2.平方根是它本身的数只有0.考点1:求一个数的立方根求下列各数的立方根.(出示课件11)(1) 27 (2)-27 (3) 127 (4)-0.064 (5) 0师生共同讨论后解答: 教师依次展示学生解答过程:学生1解:(1)∵33=27,∴27的立方根是3,即 √273=3 .学生2解:(2)∵(-3)3=-27,∴-27的立方根是-3,即 √−273=-3 .学生3解:(3)∵(13)3=127,∴127的立方根是13,即 √1273=13.学生4解:(4)∵(-0.4)3=-0.064,∴-0.064的立方根是-0.4,即 √−0.0643=-0.4 .学生5解:(5)∵03=0,∴0的立方根是0,即 √03=0 . 出示课件13,学生自主练习后口答,教师订正. 2.出示课件14-15,探究立方根的性质 教师出示问题:完成下面的问题: 因为√−83= _______;-√83=_________. 学生答:√−83= __-2_____;-√83=____-2_____. 教师问:所以可以得到:√−83和-√83有何关系呢?学生答:所以√−83 = -√83. 教师问:完成下面的问题:因为√−273= _______;-√273=_________. 所以√−273______ -√273.学生答:因为√−273= __-3_____;-√273=___-3______. 所以√−273___=___ -√273.教师问:你能从上述问题中总结出互为相反数的两个数a 与-a 的立方根的关系吗?学生答:互为相反数的数的立方根也互为相反数.即:√−a 3= -√a 3.教师问:完成下面的问题:√233 = _______;√(−2)33=_________. √433= _______;√(−3)33=_________.√033= _______.教师依次展示学生答案: 学生1答:√233= ___2____;√(−2)33=___-2______. 学生2答:√433 = ___4____;√(−3)33=___-3______.学生3答:√033= ___0____. 教师总结如下:√233= ___2____;√(−2)33=___-2______.√433= ___4____;√(−3)33=___-3______.√033= ___0____.教师问:观察上边的问题,你得到了什么规律? 学生答:规律:对于任何数a 都有√a 33=a. 教师出示问题:完成下面的问题:(√83)3= _______;(√−83)3==_________. (√273)3= _______;(√−273)3==_________. (√03 )3= _______. 教师依次展示学生答案:学生1答:(√83)3= ___8____;(√−83)3=___-8______. 学生2答:(√273)3= __27_____;(√−273)3==___-27____. 学生3答:(√03 )3= ___0____. 教师总结如下:解答如下:(√83)3= ___8____;(√−83)3=___-8______. (√273)3= __27_____;(√−273)3==___-27______. (√03 )3= ___0____.教师问:观察上边的问题,你得到了什么规律? 学生答:规律:对于任何数a 都有(√a 3)3=a. 3.出示课件16,探究立方根的有关计算教师问:类似开平方运算,求一个数的立方根的运算叫作“开立方”.观察下面的问题,开立方和立方是什么关系呢?学生答:“开立方”与“立方”互为逆运算. 考点2:立方根的计算求下列各式的值:(出示课件17) (1)√643;(2)-√183;(3)√−27643学生独立思考后,师生共同分析后解答. 教师依次展示学生解答过程: 学生1解:(1)√643=4; 学生2解:(2)-√183 =-12;学生3解:(3)√−27643=-34.出示课件18,学生自主练习后口答,教师订正.教师总结:平方根与立方根的区别和联系(出示课件19)4.出示课件20,探究利用计算器求立方根教师问:由于一个数的立方根可能是无限不循环小数,所以我们可以利用计算器求一个数的立方根或它的近似值.请同学们完成下面的题目:用计算器求下列各数的立方根:343,-1.331.教师依次展示学生解答过程:学生1显示:7 所以:√3433=7.学生1答:解:显示:-1.1所以:√−1.3313=-1.1.教师强调:不同的计算器的按键方式可能有所差别! 出示课件21,学生自主练习,教师给出答案。

人教版七年级下册数学教学设计(教案):6.2立方根(1)

(2)思考正数、0、负数的立方根各有什么特点?并追问一个正数有几个立方根?一个负数有几个立方根?零的立方根是什么?(学生独立探究,再小组合作交流,给出立方根的性质)
(3)尝试用符号给出数a的立方根的表示方法.( 并问a可以取什么数?)
五、巩固新知 例1 (1)求下列各数的平方根: ;1;0
(2)求下列各数的立方根 ,1,0,-1,-343,-0.729
坝陵中学教师课时备课
总课时:
教学内容
6.2立方根(1)
课型
新授课
教学目标
1、了解立方根的概念,初步学会用根号表示一个数的立方根;
2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根;
3、让学生体会一个数的立方根的惟一性;
4、分清一个数的立方根与平方根的区别;
5、使学生理解“两个互为相反数的立方根的关系,即 .
6、渗透特殊一般-特殊的思想方法。
教学重点
立方根的概念和求法
教学难点
立方根与平方根的区别
教法设计
运用多媒体课件,讲述法、讨论法、问题探究法相结合
教具准备
课件


过程
一、情境导入要制作一种容积为27 m3的正方体形状的包装箱,这种包装箱的边长应该是多少?
在学生充分讨论ቤተ መጻሕፍቲ ባይዱ基础上教师给出解决问题的过程:
二、试一试
八、布置作业课本第52页习题第1、3、5、6题
板书设计
6.2立方根(1)
1、定义
2、例题
3、立方根的特征:
课后反思
例2求下列各式的值
(1) ; (2) ; (3)
(4) ;(5) ; (6)
(7)
请学生思考数的平方根与数的立方根有什么区别与联系呢?(学生小组讨论后,请学生相互补充.)

人教版数学七年级下册6.2《立方根》教案

人教版数学七年级下册6.2《立方根》教案一. 教材分析《立方根》是人教版数学七年级下册第六章第二节的内容,本节课主要让学生掌握立方根的概念,理解立方根的性质,学会求一个数的立方根。

通过本节课的学习,培养学生观察、思考、归纳的能力,为后续学习四次根式打下基础。

二. 学情分析学生在六年级时已经学习了平方根的概念和性质,对求一个数的平方根已经有一定掌握。

但是,立方根与平方根虽然在概念和性质上有相似之处,也有很大区别。

因此,在教学过程中,要引导学生正确理解立方根的概念,把握立方根与平方根的联系与区别。

三. 教学目标1.知识与技能:理解立方根的概念,掌握立方根的性质,学会求一个数的立方根。

2.过程与方法:通过观察、思考、归纳,培养学生探索数学问题的能力。

3.情感态度与价值观:培养学生对数学的兴趣,激发学生学习数学的积极性。

四. 教学重难点1.重点:立方根的概念和性质,求一个数的立方根。

2.难点:立方根与平方根的联系与区别。

五. 教学方法1.情境教学法:通过生活实例引入立方根的概念,激发学生的学习兴趣。

2.启发式教学法:引导学生观察、思考、归纳立方根的性质,培养学生探索数学问题的能力。

3.小组合作学习:分组讨论,培养学生的团队协作能力。

六. 教学准备1.课件:制作与教学内容相关的课件,以便于展示和讲解。

2.黑板:准备黑板,用于板书重要知识点和示例。

3.练习题:准备一定数量的练习题,用于巩固所学知识。

七. 教学过程1. 导入(5分钟)通过生活实例引入立方根的概念。

例如,一个正方体的体积是27立方厘米,求这个正方体的棱长。

引导学生思考正方体的棱长与体积的关系,从而引出立方根的概念。

2. 呈现(10分钟)讲解立方根的性质,与平方根进行对比,让学生理解立方根与平方根的联系与区别。

通过PPT展示立方根的性质,让学生观察、思考、归纳。

3. 操练(10分钟)让学生独立完成一些求立方根的练习题,巩固所学知识。

教师在旁边巡回指导,解答学生的疑问。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.2 立方根
1.了解立方根的概念及性质,会用根号表示一个数的立方根;(重点)
2.了解开立方与立方是互逆运算,会用开立方运算求一个数的立方根.(难点)
一、情境导入
填空并回答问题:
(1)( )3=0.001;
(2)( )3=-2764
; (3)( )3=0;
(4)若正方体的棱长为a ,体积为8,根据正方体的体积公式得a 3=8,那么a 叫做8的
什么呢?
二、合作探究
探究点一:立方根的概念及性质
【类型一】 立方根的概念及性质
立方根等于本身的数有________个.
解析:在正数中,31=1,在负数中,
3-1=-1,又30=0,∴立方根等于本身的数
有1,-1,0.故填3.
方法总结:不论正数、负数还是零,都有立方根.
【类型二】 立方根与平方根的综合问题
已知x -2的平方根是±2,2x +y +7的立方根是3,求x 2+y 2的算术平方根.
解析:根据平方根、立方根的定义和已知条件可知x -2=4,2x +y +7=27,从而解出
x ,y ,最后代入x 2+y 2,求其算术平方根即可.
解:∵x -2的平方根是±2,∴x -2=4,∴x =6.∵2x +y +7的立方根是3,∴2x +y +7
=27.把x =6代入解得y =8,∴x 2+y 2=62+82=100.∴x 2+y 2的算术平方根为10.
方法总结:本题先根据平方根和立方根的定义,运用方程思想列方程求出x ,y 的值,
再根据算术平方根的定义求出x 2+y 2的算术平方根.
【类型三】 立方根的实际应用
已知球的体积公式是V =4
3
πr 3(r 为球的半径,π取3.14),现已知一个小皮球的体积是113.04cm 3,求这个小皮球的半径r .
解析:将公式变形为r 3=3V 4π
,从而求r . 解:由V =43πr 3,得r 3=3V 4π,∴r =33V 4π.∵V =113.04cm 3,π取3.14,∴r ≈33×113.044×3.14
=327=3(cm).
答:这个小皮球的半径r 约为3cm.
方法总结:解此题的关键是灵活应用球的体积公式,并将公式适当变形.
探究点二:开立方运算
求下列各式的值:
(1)-3
343; (2)31027-5; (3)-3-8÷214
+(-1)100. 解:(1)-3343=-7;
(2)31027-5=3-12527=-53
; (3)-3-8÷214+(-1)100=2÷94+1=2÷32+1=2×23+1=73
. 方法总结:做开平方或开立方运算时,一般都是利用它们的定义去掉根号;当被开方数不是单独一个数时,则需先将它们进行化简,再进行开方运算.
三、板书设计
1.每个数a 都只有一个立方根,记为“3a ”,读作“三次根号a ”.
2.正数的立方根是正数;0的立方根是0;负数的立方根是负数. 3.求一个数a 的立方根的运算叫做开立方,其中a 叫做被开方数.开立方与立方互为逆运算.
本节课让学生应用类比法学习立方根的概念、性质和运算.学生在以后的数学学习中,要注意渗透类比的思维方式,让学生在学习新知识的同时巩固已学的知识,并通过新旧对比更好地掌握知识。

相关文档
最新文档