重金属铜镉胁迫下植物响应的研究进展

合集下载

植物对重金属胁迫的适应性反应

植物对重金属胁迫的适应性反应

植物对重金属胁迫的适应性反应植物生长和发育受到外部环境的影响,其中包括大气、水土、重金属等物质因素。

重金属是指密度大于5g/cm3的金属或金属loid,如铅(Pb)、镉(Cd)、铬(Cr)等。

它们都是在自然界中存在的元素或元素结合物,但在部分程度上会对生物体产生毒性影响,植物也不例外。

那么,植物对重金属胁迫的适应性反应是什么呢?这要从重金属对植物产生的胁迫和植物对胁迫的响应等两方面来谈。

重金属对植物的胁迫在一定程度上,重金属是植物必须获取的微量元素。

植物将各种重金属离子转化成其所需的微量物质。

但是,如果重金属的浓度过高,就会给植物生长、发育、代谢等过程带来伤害和障碍。

通常,植物对重金属胁迫主要表现在以下几个方面:1. 抗氧化系统的激活高浓度的重金属会促进氧自由基的生成,引起氧化应激反应。

植物通过调节抗氧化酶的表达,如过氧化物酶、超氧化物歧化酶、抗坏血酸过氧化物酶等等,来减缓氧化损伤。

2. 质膜的改变当植物体内重金属元素浓度增大时,一部分重金属离子会钙离子、钾离子一起进入细胞质,破坏平衡的电荷比例,导致细胞质酸化以及细胞膜、质壁发生调整和修复。

同时,植物细胞壁的改变也是重要机制之一。

阳离子类金属离子在植物细胞膜的作用下能够拦截那些阴离子,从而减少了重金属的损害。

3. 利用引物、配位子等物质的解毒机制重金属离子离子很容易结合在官能团上,植物体内的引物、配位子或硫酸盐、脯氨酸、谷胱甘肽等物质可以配合重金属元素,起到溶解和解毒作用。

4. 吸收和转输的调整植物对重金属离子的吸收主要是通过根。

在重金属环境中,植物会降低对重金属的吸收,同时增加对养分的吸收和利用,来适应重金属的胁迫环境。

植物上部的细胞也会减少重金属的转运,促进重金属离子在根系堆积和分布,每个细胞的重金属含量达到衡量的均衡水平。

植物对胁迫的响应植物对胁迫的响应也就是植物的抵御能力。

受胁迫无处避惧,仍然能够生长、繁衍,既是植物的适应性反应,也是其生存持续的需要。

重金属污染对植物生长和土壤质量的影响及其修复对策

重金属污染对植物生长和土壤质量的影响及其修复对策

重金属污染对植物生长和土壤质量的影响及其修复对策随着工业的发展、城市的扩大以及人口的增加,环境污染已经成为一个越来越严重的问题。

其中,重金属污染是一种较为严重的污染,不仅对人类健康造成威胁,同时也会对生态环境带来重大影响。

本文将重点讨论重金属污染对植物生长和土壤质量的影响及其修复对策。

一、重金属污染对植物生长的影响重金属对植物生长的影响是多方面的。

一方面,重金属可能滞留在植物的根系和叶片中,使得植物无法吸取和利用必需的营养元素。

例如,镉会与铁结合形成不溶性的络合物,影响植物吸收铁,导致植物缺铁性质,从而妨碍植物正常的生长和发育。

另一方面,重金属污染还可能破坏植物的生理和代谢过程,引起植物的毒性反应。

例如,铜和锌的高浓度可能导致植物的氧化还原状态失衡,从而破坏细胞膜结构和蛋白质,使植物失去正常的代谢活动,最终导致植物死亡。

二、重金属污染对土壤质量的影响重金属污染不仅对植物生长造成危害,同时还会对土壤质量造成不利影响。

重金属的长期积累可能导致土壤酸化、生物降解能力下降、土壤水分利用率下降等问题的出现。

重金属污染还可能导致土壤微生物群落的变化,从而影响土壤有机质的分解、氮循环和磷循环等生态过程。

此外,重金属对土壤微生物和土壤动物的生理和生态效应也会对土壤生态系统功能带来威胁。

三、重金属修复的对策为了解决重金属污染对植物生长和土壤质量的影响,需要采取有效的修复对策。

目前常见的重金属修复技术包括生物修复、化学修复和物理修复等。

生物修复指的是通过植物、微生物或动物等进行修复,属于自然修复的范畴。

化学修复则是借助化学技术进行修复,例如利用石灰、活性炭等材料进行中和、吸附重金属。

物理修复则是通过物理力学的方法进行修复,例如土壤深耕、覆盖、加压反渗透、土壤电化学修复等。

不同的修复技术有着不同的优劣势,因此应根据具体情况进行综合考虑。

四、结论综上所述,重金属污染对植物生长和土壤质量的影响是不可忽视的。

为了保护生态环境和人类健康,需要采取有效的重金属修复对策。

重金属镉(Cd)在植物体内转运途径研究进展

重金属镉(Cd)在植物体内转运途径研究进展

57
亡[1]。 植物各器官对重金属 Cd 的富集能力不同, 通常是根>茎>叶>花>果实, 重金属 Cd 可以通过 植物生物富集作用进入食物链, 对人体造成伤 害, 如引起慢性中毒和诱发癌症等[2-3]。
重金属 Cd 对植物产生毒害作用的关键在于 其被根系吸收并运往地上部, 这一系列的过程受 到植物自身及其外部环境的影响, 如土壤重金属 Cd 浓度、 pH 值、 温度等。 重金属 Cd 进入植物 根部时势必会受到根部外皮层、 皮层、 内皮层、 木质部、 韧皮部的影响, 而重金属 Cd 从根部运 往地上部又要通过茎木质部和韧皮部, 直到进入 叶片。 本研究拟对重金属 Cd 进入植物根部以及 运往地上部的机理研究进展进行综述, 以期为重 金属 Cd 污染防治提供理论依据。 1 植物对重金属 Cd 的吸收
计划项目 《多种新型生物肥料产品生产菌种及技术研究》 (18222906D) 作者简介: 宋瑜(1983- ), 男, 甘肃玉门人, 兰州大学草学专业博士研究生在读, 讲师, 主要从事土壤生态与修复方面的研究工作。
2019 年第 3 期
宋 瑜 马艳华 唐希望等 重金属镉 (Cd) 在植物体内转运途径研究进展
(1. 河北环境工程学院 秦皇岛市农村生态环境重点实验室, 河北 秦皇岛 066102; 2. 河北科技师范学院, 河北 秦皇岛 066004)
摘 要: 对Cd在植物体内的转运途径进行了综述。 二价金属离子与重金属Cd离子竞争特异性
离子通道会影响植物对重金属Cd的吸收, 这种影响与植物基因型、 土壤溶液金属离子的种类
第 29 卷第 3 期 2019 年 6 月
中国环境管理干部学院学报 JOURNAL OF EMCC
Vol.29 No.3 June 2019

重金属镉污染对玉米种子萌发及幼苗生长的影响

重金属镉污染对玉米种子萌发及幼苗生长的影响

化学农药和无机磷肥的使用以及废水废气的排放加剧了耕作土壤中金属离子的污染程度,农作物被动吸收土壤中重金属。

这样Cd 2+ 就通过食物链进入人体,对人类的健康造成很大的威胁[1,2]。

铜对植物的伤害首先会表现在种子的萌发和幼苗生长的变化上,种子萌发时期的生长状况直接影响作物以后的生长和产量。

因此,研究种子在萌发阶段受重金属污染的影响显得尤为重要,而目前关于铜对种子萌发和幼苗生理生态作用的研究报道尚不多见[2~8]。

为了探讨铜胁迫对植物幼苗的生态效应,本文以玉米为试验材料,研究了不同浓度铜处理对种子萌发及幼苗生长和某些生理特性的影响,以期反映铜胁迫下幼苗的变化,为污染生态学的研究和预防玉米早期铜伤害提供理论依据。

1 材料与方法1.1 供试材料供试验玉米品种为龙单13,种子由黑龙江省农科院玉米所培育。

试剂氯化铜(CdCl 2)为分析纯。

1.2 方法选均匀一致的玉米种子,先用0.1%hgCl 2消毒10min,再用无茵水仲洗3~5次,置(30 1)C 光照培养箱中催芽241,将其整齐地排列在直径为15Gm 铺有滤纸的培养皿中,每皿10粒,用含有不同浓度Cd 2+的hoagland 营养液培养。

Cd 2+浓度(按氯化铜中Cd 2+计算)每升毫克数分别为0、5,10,15,30,50,100,120,对照用去离子水培养,试验采用完全随机排列。

每个处理与对照均为3个重复,置室温下B然光照发芽。

1.3 萌发指标测定玉米种子萌发的发芽势为处理后4d 测定,培养7d 后,统计发芽率。

待玉米长出真叶(培养15d )时,将幼苗取出,用蒸馏水仲洗5~6次,开始测定幼苗生长状况。

分别测量苗高与根长,并剪取根、茎、叶,在105C 杀青30min 后于65C 下烘至恒重,称取根系和地上部干物质重。

2 结果与讨论2.1 Cd 2+胁迫对玉米种子萌发的影响Cd 2+是在低浓度下就显示毒性的元素。

它对玉米种子萌发的胁迫作用从实验结果(表1)可知,对玉米发芽率来讲,当Cd 2+浓度为5~15mg/L 时,对玉米种子萌发有刺激作用;当Cd 2+浓度重金属镉污染对玉米种子萌发及幼苗生长的影响李国良(黑龙江省农业科学院玉米研究所,黑龙江哈尔滨150086)摘要:研究不同浓度镉!Cd 2+"胁迫对玉米萌发及幼苗生长影响,结果表明,当Cd 2+浓度为5~15mg/L 时,Cd 2+可以促进玉米种子的萌发#提高玉米的发芽势和发芽率#促进玉米芽与幼根的生长$当Cd 2+的浓度高于50mg/L 时,明显抑制种子萌发和幼苗生长%关键词: 镉#玉米#种子萌发#幼苗Effect of Cadmium on maize seeds germination and seedling growthLI Guo-liang (academy of agricuIturaI Science,Harbin 150086,China)Abstract : The effects of Cd2+in different concentration rations on the germination of maize seeds and the growth of seedIing were studied.It was shown that Cd2+raised germination percentage,the bud growth and root growth when Cd2+IeveI was range from 5mg/L to 15mg/L.High IeveI Cd2+that its concentration was higher than 50mg/L was harmfuI to the germination and growth of maize.Key words:cadmium;maize;seed germination;seedIing为30mg/L 时对发芽率影响不大,发芽势与对照一样;而当Cd 2+浓度增大到50mg/L 以上时,玉米种子的萌发率则随Cd 2+浓度的增大而减小,即显著或极显著地抑制种子的萌发。

内生菌协助水稻缓解重金属胁迫和积累研究进展

内生菌协助水稻缓解重金属胁迫和积累研究进展

江苏农业学报(JiangsuJ.ofAgr.Sci.)ꎬ2023ꎬ39(3):859 ̄872http://jsnyxb.jaas.ac.cn付思远ꎬ彭玉林ꎬ黄水明ꎬ等.内生菌协助水稻缓解重金属胁迫和积累研究进展[J].江苏农业学报ꎬ2023ꎬ39(3):859 ̄872.doi:10.3969/j.issn.1000 ̄4440.2023.03.028内生菌协助水稻缓解重金属胁迫和积累研究进展付思远ꎬ㊀彭玉林ꎬ㊀黄水明ꎬ㊀郭达伟ꎬ㊀李忠金ꎬ㊀江丽芳ꎬ㊀江㊀巍ꎬ㊀陈萍萍(龙岩市农业科学研究所ꎬ福建龙岩364000)收稿日期:2022 ̄06 ̄15基金项目:福建省科技计划项目(2020N0075㊁2022N0050)作者简介:付思远(1993-)ꎬ男ꎬ吉林榆树人ꎬ硕士ꎬ研究实习员ꎬ主要研究方向为农业微生物资源开发与利用ꎮ(E ̄mail)fusiyuan19940821@163.com通讯作者:陈萍萍ꎬ(E ̄mail)pingpingchen1982@163.comꎻ彭玉林ꎬ(E ̄mail)pyl2010@163.com㊀㊀摘要:㊀稻田土壤重金属污染是引起环境和食品安全问题的主要原因之一ꎮ土壤中重金属的过量积累给水稻的生长发育㊁稻米产量和品质造成负面影响ꎬ并会导致重金属进入食物链ꎮ内生菌与宿主具有稳定的互利共生关系ꎬ一些有益内生菌能够提高水稻产量和重金属抗性ꎮ本文总结了抗重金属内生菌改善水稻重金属胁迫和减少植株重金属积累的机制ꎬ最后针对内生菌在农业中的研究与应用提出了几点展望ꎮ关键词:㊀内生菌ꎻ水稻ꎻ重金属ꎻ缓解胁迫中图分类号:㊀Q945.78㊀㊀㊀文献标识码:㊀A㊀㊀㊀文章编号:㊀1000 ̄4440(2023)03 ̄0859 ̄14Researchprogressofendophytesinalleviatingheavymetalstressandac ̄cumulationinriceFUSi ̄yuanꎬ㊀PENGYu ̄linꎬ㊀HUANGShui ̄mingꎬ㊀GUODa ̄weiꎬ㊀LIZhong ̄jinꎬ㊀JIANGLi ̄fangꎬ㊀JIANGWeiꎬ㊀CHENPing ̄ping(LongyanInstituteofAgriculturalSciencesꎬLongyan364000ꎬChina)㊀㊀Abstract:㊀Heavymetalpollutioninpaddysoilsisoneofmainconcernscausingsomeoftheenvironmentalandfoodsafetyproblems.Excessaccumulationofheavymetalsinsoilhasanegativeimpactonthegrowthanddevelopmentꎬyieldandqualityofriceꎬandwillmakeheavymetalsenterthefoodchain.Endophyteshaveastablemutualismrelationshipwiththeirhosts.Itiswellknownthatplantgrowth ̄promotingendophytes(PGPEs)enhancericeproductivityandresistancetoheavymetalstress.Thispapersummarizedthemechanismsofheavymetalresistant ̄PGPEsinimprovingheavymetalstressandreducingtheaccumulationofthesemetalsinrice.Finallyꎬsomeprospectsforresearchandapplicationofendophytesinagriculturewereputforward.Keywords:㊀endophytesꎻriceꎻheavymetalsꎻstressalleviation㊀㊀重金属(或类金属)是具有高相对原子质量㊁高密度特性的天然化学元素ꎬ其含量超过一定阈值时对细胞有毒害作用[1]ꎮ稻田土壤中的砷(As)㊁镉(Cd)㊁铅(Pb)㊁汞(Hg)㊁铜(Cu)等重金属含量高于旱地土壤[2]ꎮ水稻是人类的主要粮食作物之一ꎬ稻田重金属污染不仅会降低稻谷的产量和质量ꎬ还会导致重金属被水稻吸收累积ꎬ威胁人类健康[3]ꎮ传统农业通过加强农业管理(如灌溉㊁施肥和轮作)或使用化学钝化剂进行重金属污染防治[4 ̄7]ꎮ这些方法在一定程度上可以钝化重金属ꎬ但所用材料昂贵且耗时ꎬ可能带来二次污染ꎮ所以ꎬ应寻求更有效的方法缓解水稻重金属胁迫和积累以保障粮食安全ꎮ有益内生菌是指生活在植物组织内部而不会引起疾病的一类原核或真核微生物ꎬ其占据宿主的根㊁茎㊁叶㊁种子等不同生态位[8]ꎮ研究结果[9 ̄10]表明ꎬ某些抗重金属有益内生菌能够改变重金属的生物有效性减轻其对植物的毒害ꎬ重金属的生物有效性与958重金属的存在形态直接相关ꎬ重金属的毒性取决于其在土壤中的生物有效性[11])ꎮ当植物处于生物和非生物胁迫下ꎬ定殖于植物组织中的内生菌不易受环境因子影响ꎬ与寄主植物的互利共生关系更加稳固ꎬ对宿主产生的有利影响通常大于根际微生物[12 ̄14]ꎮ有益内生菌在修复土壤污染和保障农产品安全方面发挥效用ꎬ其通过提高重金属生物有效性㊁增加植物的生物量㊁酸化根际环境㊁增加根系表面积等机制强化植物对土壤重金属的吸收ꎬ辅助植物修复被重金属污染的土壤[15 ̄16]ꎬ但此类内生菌可能会增加作物可食用部位的重金属含量ꎮ最近研究结果表明ꎬ一些内生菌既能缓解水稻重金属胁迫ꎬ又能降低水稻植株地上部和籽粒中的重金属积累ꎬ使稻米生产更加安全[17 ̄18]ꎮ长期以来ꎬ关于内生菌辅助植物修复被重金属污染的土壤的研究进展已有许多全面的综述[19 ̄22]ꎮ然而ꎬ还没有文章回顾内生菌缓解水稻重金属胁迫和积累的机制ꎮ本文对现有国内外文献进行了总结和归纳(表1㊁表2)ꎬ阐述了内生菌协助水稻缓解重金属胁迫和积累的作用机制ꎬ并针对多抗型内生菌菌种资源的发掘及合成菌群的研究应用提出展望ꎬ以期为内生菌进一步的深入研究和实际应用提供理论依据与参考ꎮ表1㊀缓解水稻重金属胁迫和积累的典型内生细菌Table1㊀Typicalendophyticbacteriaforalleviatingheavymetalstressandaccumulationinrice菌种名称宿主来源及分离部位促生特性水稻品种名称重金属元素试验方式调控效果文献来源芽孢杆菌属(Bacillusko ̄reensisstrain181 ̄22)水稻(OryzasativaL.)ꎻ根㊀㊀㊀㊀-中旱35镉土培盆栽增加旱稻鲜质量和干质量ꎻ降低植株和籽粒的镉含量[23]解淀粉芽孢杆菌(BacillusamyloliquefaciensRWL ̄1)水稻(OryzasativaL.)ꎻ种子产生赤霉素和有机酸㊀㊀-铜基质盆栽增加水稻株高㊁鲜质量㊁干质量和根长ꎻ降低根部㊁地上部铜的含量[24]~[26]鞘氨醇单胞菌属(Sphin ̄gomonassp.C40)水稻(OryzasativaL.)ꎻ种子产生生长素㊁铁载体㊁精氨酸脱羧酶C两优513镉水培盆栽增加水稻生物量以及根部㊁地上部㊁籽粒干质量ꎻ降低地上部和籽粒中镉含量[27]成团泛菌(Pantoeaag ̄glomeransTm02)蒲公英(TaraxacummongolicumHand. ̄Mazz.)ꎻ茎产生生长素ꎻ溶磷ꎻ固氮扬稻6号镉水培盆栽增加水稻株高㊁干质量㊁每穗粒数ꎻ降低籽粒㊁地上部的镉含量[28]嗜麦芽寡养单胞菌(Stenotrophomonasmalto ̄philiaR5 ̄5)水稻(OryzasativaL.)ꎻ种子产生铁载体ꎻ溶磷ꎻ固氮黄华占镉水培盆栽促进水稻生长ꎻ降低根和地上部的镉含量[29]㊁[30]台湾贪铜菌(CupriavidustaiwanensisKKU2500 ̄3)含羞草(Mimosapu ̄dicaLinn.)ꎻ根瘤㊀㊀㊀㊀-Phitsanulok2㊁泰国茉莉香米镉水培盆栽增加水稻根长㊁干质量㊁粒质量和产量ꎻ降低籽粒中镉含量[31]㊁[32]根瘤菌属(Rhizobiumlar ̄rymooreiS28)水稻(OryzasativaL.)ꎻ种子产生生长素㊁铁载体㊁精氨酸脱羧酶C两优513镉土培盆栽增加水稻根㊁地上部㊁籽粒生物量ꎻ降低地上部和籽粒中镉含量[33]沙雷氏菌(Serratialique ̄faciensF2)水稻(OryzasativaL.)ꎻ种子产生生长素㊁铁载体隆两优华占砷土培盆栽增加水稻根㊁地上部㊁籽粒干质量ꎻ降低水稻籽粒中砷含量[34]假单胞菌(Pseudomonassp.)㊁苏云金芽孢杆菌(Bacillusthuringiensis)㊁短小芽孢杆菌(Bacilluspumilus)水稻(OryzasativaL.)ꎻ-产生铁载体PathumThani1砷土培盆栽单接种配施风化褐煤促进水稻生长ꎻ降低籽粒中砷含量[35]巨大芽孢杆菌(BacillusmegateriumH3)杂交狼尾草(Pennis ̄etumamericanumˑP.purpureum)ꎻ根产生生长素㊁铁载体武运23镉土培盆栽增加水稻籽粒生物量ꎻ降低根部㊁地上部㊁籽粒中镉含量[36]阿氏芽孢杆菌(BacillusaryabhattaiT61)-ꎻ土壤ꎬ具内生性产生生长素㊁铁载体ꎻ溶磷728B㊁内香1B镉土培盆栽ꎻ大田试验促进水稻根生长ꎻ降低籽粒的镉含量[37]㊁[38]蕈状芽孢杆菌(BacillusparamycoidesHNR ̄4)㊁阿氏芽孢杆菌(Bacillusaryabhattai7NZ ̄3)水稻(OryzasativaL.)ꎻ种子产生生长素㊁铁载体㊁1 ̄氨基环丙烷 ̄1 ̄羧酸脱氨酶ꎻ溶磷C两优188镉基质盆栽共接种增加水稻根长和株高ꎻ降低根部和地上部的镉含量[39]-表示文献中未报道ꎮ068江苏农业学报㊀2023年第39卷第3期表2㊀缓解水稻重金属胁迫和积累的典型内生真菌Table2㊀Typicalendophyticfungiforalleviatingheavymetalstressandaccumulationinrice菌种名称宿主来源及分离部位促生特性水稻品种名称重金属元素试验方法调控效果文献来源稻镰状瓶霉(Falciphoraoryzae)疣粒野生稻(Oryzagranulate)ꎻ根内㊀㊀-甬优1504㊁浙粳88镉培养基共培养ꎻ大田试验增加水稻株高㊁生物量㊁大田产量ꎻ降低籽粒的镉含量[40]㊁[41]印度梨形孢(Piriformosporaindica)牧豆树[Prosopisjuli ̄flora(Swartz)DC.]㊁印度枣(Ziziphusincur ̄vaRoxb.)ꎻ根际土壤ꎬ具内生性㊀㊀-IR64砷㊁镉砷:水培盆栽ꎻ镉:土培盆栽砷胁迫下接种增加水稻株高和干质量ꎻ镉胁迫下接种增加水稻根长㊁株高㊁鲜质量ꎬ增加根部镉含量ꎬ降低地上部镉含量[42]~[44]小丛壳属(Glomerellasp.JP4)盐地碱蓬(Suaedasal ̄sa)ꎻ叶产生生长素㊁赤霉素㊁细胞分裂素辽兴1号镉水培盆栽增加水稻株高㊁根长㊁干质量ꎻ增加根部镉含量ꎬ降低地上部的镉含量[45]㊁[46]根内根孢囊霉(Rhizophagusintraradices)-ꎻ-ꎬ具内生性㊀㊀-旱优3号㊁郑旱9号镉土培盆栽ꎻ水培盆栽增加旱稻生物量㊁株高㊁根长㊁产量ꎻ降低地上部㊁根部㊁籽粒的镉含量[47]~[51]根内根孢囊霉(Rhizophagusintraradices)-ꎻ-ꎬ具内生性㊀㊀-旱稻3号砷土培盆栽降低旱稻籽粒的总砷㊁无机砷含量[52]摩西管柄囊霉(Funneliformismosseae)㊁根内根孢囊霉(Rhizophagusintraradices)-ꎻ-ꎬ具内生性㊀㊀-北稻4号镉土培盆栽单接种皆能增加水稻生物量ꎻ增加根部镉含量ꎬ降低地上部镉含量[53]摩西管柄囊霉(Funneliformismosseae)-ꎻ-ꎬ具内生性㊀㊀-郑旱9号㊁旱优73㊁旱优3号镉土培盆栽ꎻ水培盆栽增加旱稻根㊁地上部干质量ꎻ降低地上部㊁根部㊁籽粒的镉含量[47]㊁[49]㊁[51]㊁[54]变形球囊霉(Glomusversi ̄forme)-ꎻ-ꎬ具内生性㊀㊀-旱优3号镉水培盆栽ꎻ土培盆栽提高旱稻生物量和产量ꎻ降低根部㊁地上部㊁籽粒中镉含量[55]㊁[56]摩西球囊霉(GlomusmosseaeBGCBJ05A)㊁幼套球囊霉(GlomusetunicatumBGCXJ04B)艾蒿(ArtemisiaargyiLévl.etVan.)㊁苦豆子(SophoraalopecuroidesL.)ꎻ根际土壤ꎬ具内生性㊀㊀-镇糯20汞土培盆栽共接种增加水稻生物量㊁株高ꎻ降低根部㊁地上部和籽粒的总汞含量和甲基汞含量[57]~[59]摩西球囊霉(Glomusmosse ̄ae)-ꎻ-ꎬ具内生性㊀㊀-91B3铅土培盆栽增加旱稻生物量ꎻ降低地上部和地下部的铅含量[60]地球囊霉(Glomusgeospo ̄rum)㊁摩西球囊霉(Glomusmosseae)-ꎻ-ꎬ具内生性㊀㊀-中旱221砷土培盆栽混合接种增加旱稻产量ꎻ降低植株的砷含量[61]摩西球囊霉(GlomusmosseaeBGCXJ01)新疆韭(Alliumflavi ̄dumLedeb.)ꎻ根际土壤ꎬ具内生性㊀㊀-嘉花1号铜土培盆栽增加水稻地上部㊁根部生物量ꎻ降低地上部㊁根部的铜含量[59]㊁[62]地球管孢囊霉(Funneliformisgeosporum)-ꎻ-ꎬ具内生性㊀㊀-中旱221砷土培盆栽减少旱稻根系对亚砷酸盐㊁砷酸盐和一甲基胂酸的吸收[63]地球囊霉(GlomusgeosporumBGCHUN02C)㊁变形球囊霉(GlomusversiformeBGCGD01B)㊁摩西球囊霉(Glo ̄musmosseaeBGCGD01A)蜈蚣草(PterisvittataL.)ꎻ根际土壤ꎬ具内生性㊀㊀-中旱221砷土培盆栽单接种增加旱稻产量㊁生物量ꎻ降低籽粒㊁根部砷含量[59]㊁[64]变形球囊霉(Glomusversi ̄forme)㊁摩西球囊霉(Glomusmosseae)㊁透光球囊霉(Glo ̄musdiaphanum)-ꎻ-ꎬ具内生性㊀㊀-91B3㊁277铜㊁锌㊁铅㊁镉土培盆栽混合污染下单接种皆能减少铜㊁锌㊁铅㊁镉从旱稻根部至地上部的转运(除丛枝菌根真菌的定殖加强了品种277的铜转运)[65]根内球囊霉(Glomusintrara ̄dicesBGCAH01)白茅[Imperatacylin ̄drica(L.)Beauv.]㊁狗牙草(Sedumsarmento ̄sumBunge)㊁双穗雀稗[Paspalumpaspaloides(Michx.)Scribn.]ꎻ根际土壤ꎬ具内生性㊀㊀-日本晴砷土培盆栽增加水稻生物量ꎻ降低地上部亚砷酸盐含量[59]㊁[66]-表示文献中未报道ꎮ168付思远等:内生菌协助水稻缓解重金属胁迫和积累研究进展1㊀内生菌缓解水稻重金属胁迫的机制1.1㊀调节水稻激素平衡重金属胁迫会打破植物内源激素平衡[67]ꎮ在重金属胁迫下脱落酸(AbscisicacidꎬABA)和茉莉酸(JasmonicacidꎬJA)的含量增加ꎬ导致气孔导度降低㊁叶片衰老㊁叶绿素合成减缓㊁光合作用减弱ꎬ抑制植物生长[24ꎬ68 ̄69]ꎮ赤霉素(GibberellinsꎬGAs)对种子萌发㊁生长发育具有重要作用ꎬ其通过增强抗氧化系统[70]㊁调节激素平衡[71]等机制缓解重金属胁迫ꎮShahzad等[24]研究发现ꎬ铜胁迫下接种产GA的内生芽孢杆菌(BacillusamyloliquefaciensRWL ̄1)有助于降低水稻内源ABA和JA的含量ꎬ促进水稻生长ꎮ接种产GA内生真菌(Glomerellasp.JP4)明显改善了镉胁迫下水稻的抗氧化系统[45 ̄46]ꎮ内源水杨酸(SalicylicacidꎬSA)对于重金属胁迫的应答机制尚不明确ꎬ但水稻在镉和镍胁迫下ABA含量升高㊁SA含量降低ꎬABA对SA表现出拮抗作用ꎻ接种内生肠杆菌(EnterobacterludwigiiSAK5)和微小杆菌(ExiguobacteriumindicumSA22)后ꎬ水稻内源ABA含量降低㊁SA含量升高ꎬ植株生长状况明显改善[17]ꎮ重金属胁迫诱导乙烯(EthyleneꎬET)过量产生ꎬ导致过氧化氢(H2O2)积累和细胞凋亡ꎬ抑制根的发育[72 ̄73]ꎮ1 ̄氨基环丙烷 ̄1 ̄羧酸(1 ̄aminocyclopropane ̄1 ̄carboxylicacidꎬACC)脱氨酶可以将ET的前体ACC水解为氨和α ̄酮丁酸来促进根系生长ꎬ降低ET含量[74]ꎮ接种产ACC脱氨酶内生假单胞菌(PseudomonasstutzeriA1501)降低了镉㊁铜㊁锌㊁镍等胁迫下水稻内源ET含量ꎬ促进了水稻生长ꎻ进一步进行基因组分析ꎬ结果表明ꎬPseudomonasstutz ̄eriA1501携带1个编码ACC脱氨酶的acdS基因ꎬacdS基因突变后ꎬ突变体丧失了ACC脱氨酶活性ꎬ在重金属胁迫下促进水稻生长的能力丧失ꎬ表明产ACC脱氨酶是内生菌缓解水稻重金属胁迫的一种重要机制[72]ꎮ此外ꎬ产吲哚乙酸(IndoleaceticacidꎬIAA)内生菌通过以下两方面缓解植物重金属胁迫:一是刺激细胞伸长和分裂促进根系生长ꎬ使植物获得更强的养分吸收能力[19ꎬ75]ꎮ如镉胁迫下接种产IAA内生沙雷氏菌(Serratiasp.AI001)和克雷伯氏菌(Klebsiellasp.AI002)ꎬ增加了水稻不定根和侧根的数量[76]ꎮ二是诱导宿主生理变化来增强植物抗性和适应性[77 ̄78]ꎮ如IAA诱导抗氧化酶产生ꎬ从而增强抗氧化系统[73]ꎮ再如ꎬ根系分泌物通过螯合根际或质外体中的金属离子从而阻止金属离子进入细胞ꎬ这是植物应对重金属胁迫的重要策略ꎮIAA能够激活植物的细胞壁ꎬ刺激根系分泌物产生[79 ̄80]ꎮ接种Liu等[81]分离的产IAA和ACC脱氨酶内生肠杆菌(Enterobactersp.SE ̄5)显著提升了镉胁迫下水稻的IAA含量和ACC脱氨酶活性ꎬ提高了水稻种子发芽率㊁幼苗成活率㊁株高㊁根长㊁叶绿素含量和鲜质量ꎮ综上所述ꎬ重金属胁迫下ꎬ内生菌通过分泌外源植物激素(如IAA㊁GA等)和调节水稻内源激素(如IAA㊁ABA㊁JA㊁SA㊁ET等)平衡来降低应激激素对水稻生长发育的不利影响ꎬ增强水稻抗氧化系统的作用ꎬ缓解重金属胁迫ꎬ促进植株生长发育ꎮ一些内生菌还能分泌细胞分裂素(CK)ꎬ但国内外关于CK ̄内生菌 ̄水稻 ̄重金属胁迫之间相互作用的研究仍然较少ꎮ1.2㊀增强水稻光合作用重金属胁迫会严重减弱水稻光合作用ꎬ接种内生菌能够增强水稻光合作用ꎮFv/Fm表示光系统Ⅱ(PhotosystemIIꎬPSII)的光能转化效率ꎬFv/Fo表示光系统Ⅱ的潜在活性[82]ꎮ铅胁迫下水稻幼苗叶绿素a㊁叶绿素b含量降低ꎬ净光合速率(Pn)降低ꎬ蒸腾速率(E)减弱ꎬFv/Fm㊁Fv/Fo值分别低于0 8和4 0ꎬ表明光系统II的功能被抑制ꎮ接种内生真菌Sordariomycetessp.EF0801后ꎬFv/Fm和Fv/Fo分别提高到0.8和4.0以上ꎬ增加了光合色素含量ꎬ提高了Pn和Eꎬ有效维持了PSII的正常生理功能ꎬ光合强度得到提升[83 ̄84]ꎮ汞胁迫下水稻SPAD值(代表叶绿素含量)显著降低ꎬ接种内生真菌CurvulariageniculataP1和Aspergillussp.A31提高了SPAD值㊁Fv/Fm㊁Fv/Foꎬ光合效率增强ꎬ水稻株高和干质量显著增加[85]ꎮ砷胁迫时水稻接种印度梨形孢(Pirifor ̄mosporaindica)使水稻叶绿素含量恢复到正常水平[42]ꎮ研究发现ꎬ在砷酸盐或亚砷酸盐胁迫下ꎬ接种丛枝菌根真菌(ArbuscularmycorrhizalfungiꎬAMF)异形根孢囊霉(RhizophagusirregularisDAOM197198)提高了旱稻叶绿素含量㊁水分利用效率㊁碳同化率㊁气孔导度和蒸腾速率ꎬ提升了PSII的最大量子产率与实际量子产率㊁电子传输速率ꎬ促进了旱稻生长[86]ꎮ此外ꎬ植物体内高含量糖有助于增强光合作用以抵抗铜胁迫ꎬ接种内生菌RWL ̄1显著提高了铜胁迫下水稻碳水化合物(葡萄糖㊁蔗糖㊁果糖和棉子糖)的含量[24]ꎮ综上所述ꎬ内生菌通过增强光268江苏农业学报㊀2023年第39卷第3期合作用促进了水稻在重金属胁迫下的生长发育ꎮ1.3㊀增加水稻氨基酸和蛋白质的含量氨基酸是蛋白质(包括各种酶㊁受体㊁某些激素)生物合成的基本单位ꎬ植物中的氨基酸调控有利于改善防御系统[26ꎬ87]ꎮ接种内生菌BacillusamyloliquefaciensRWL ̄1提高了正常环境和铜胁迫下水稻幼苗中天冬氨酸㊁谷氨酸㊁丙氨酸等13种氨基酸的含量ꎬ其中大多数氨基酸是其他代谢物的前体或中间产物ꎬ有助于增强水稻对重金属的耐受性[24ꎬ87]ꎮZhou等[23]的研究结果表明ꎬ接种内生芽孢杆菌(Bacilluskoreensis181 ̄22)显著提高了镉胁迫下旱稻的总蛋白质含量ꎮ以上研究结果表明ꎬ内生菌通过提升水稻氨基酸和蛋白质的含量协助水稻抵御重金属胁迫ꎬ但重金属胁迫下内生菌提高水稻氨基酸㊁蛋白质含量的机制还有待研究ꎮ1.4㊀增强水稻抗氧化系统重金属诱导脂质过氧化ꎬ破坏细胞内自由基产生和被清除之间的平衡ꎬ从而产生大量活性氧(Re ̄activeoxygenspeciesꎬROS)ꎬROS会迅速与核酸㊁蛋白质㊁脂质和氨基酸等生物分子反应ꎬ导致细胞功能障碍和细胞损伤[88 ̄89]ꎮ内生菌可以提高水稻抗氧化酶和非酶抗氧化剂水平ꎬ降低ROS和丙二醛(MDA)的含量[84ꎬ90 ̄91]ꎮ研究发现ꎬ镉胁迫下旱稻MDA含量升高ꎬ接种内生菌Bacilluskoreensis181 ̄22使MDA含量下降到正常水平[23]ꎮShahzad等[24]的研究结果表明ꎬ铜胁迫会损害水稻抗氧化系统ꎬ接种内生菌BacillusamyloliquefaciensRWL ̄1显著提升了过氧化物酶(POD)㊁多酚氧化酶(PPO)等的活性和还原型谷胱甘肽(GSH)的含量ꎮ铅胁迫下水稻体内POD和过氧化氢酶(CAT)的活性下降ꎬ接种内生真菌Sordariomycetessp.EF0801后超氧化物歧化酶(SOD)㊁POD㊁CAT活性均增强[84]ꎮ砷胁迫下水稻幼苗根部还原型抗坏血酸(AsA)㊁还原型谷胱甘肽含量显著下降ꎬ氧化型谷胱甘肽(GSSG)㊁脱氢抗坏血酸(DHA)含量增加ꎬAsA/DHA和GSH/GSSG降低ꎻ印度梨形孢接种使参与AsA ̄GSH循环的谷胱甘肽还原酶(GR)㊁单脱氢抗坏血酸还原酶(MDAR)㊁脱氢抗坏血酸还原酶(DHAR)的活性升高ꎬ增加了GSH和AsA的含量ꎬAsA/DHA和GSH/GSSG升高ꎬ增强了水稻对氧化应激的耐受性[42]ꎮ镉胁迫下接种碱蓬内生真菌Glomerellasp.JP4也提高了水稻AsA和GSH的含量ꎬ增强了SOD㊁POD㊁GR㊁CAT的活性ꎬ降低了H2O2和MDA的含量[45]ꎮLi等[51]研究发现ꎬ镉胁迫下接种AMF(Rhizophagusintraradi ̄cesꎬRi)降低了旱稻ROS水平ꎬ提升了GSH含量和谷胱甘肽过氧化物酶(GPX)活性ꎬ促进了旱稻生长ꎮ接种AMF(GlomusversiformeꎬGv)还可以上调镉胁迫下旱稻根系过氧化物酶基因的表达ꎬ提高了旱稻的镉胁迫抗性[56]ꎮ接种印度梨形孢显著降低了镉胁迫下水稻根部ROS的积累ꎬ减少了根部细胞死亡[44]ꎮ此外ꎬ重金属胁迫会使细胞产生有毒化合物甲基乙二醛(MethylglyoxalꎬMG)ꎬ其会对脂质㊁蛋白质㊁DNA㊁RNA造成严重损害ꎬ并诱导H2O2积累[92 ̄93]ꎮ乙二醛酶(GLY)是MG的生理解毒酶系统ꎬ能够将细胞内具有糖基化毒性的MG转化为无毒的乳酸盐排到细胞外[94]ꎮ砷胁迫导致水稻MDA㊁MG含量以及GLYI㊁GLYII活性升高ꎬ接种印度梨形孢进一步提高了GLYI和GLYII的活性ꎬ降低了MDA和MG的含量ꎬ减少了MG对细胞的毒害ꎬ增强了水稻对砷的耐受性[42]ꎮ综上所述ꎬ重金属胁迫下内生菌可以提高水稻抗氧化酶活性ꎬ改善AsA ̄GSH循环的氧化还原状态ꎬ增强GLY循环系统ꎬ减轻了水稻氧化应激以促进植株生长ꎮ1.5㊀促进水稻对营养元素的吸收重金属会干扰水稻根系对营养元素的吸收和分配ꎬ造成营养缺乏和养分失衡ꎬ导致水稻生长迟缓[95 ̄96]ꎮ研究发现ꎬ随着铅离子含量的增加ꎬ水稻根中钾(K)㊁钙(Ca)㊁镁(Mg)㊁磷(P)㊁铁(Fe)㊁锌(Zn)和锰(Mn)等营养元素的含量降低ꎬ内生真菌Sordariomycetessp.EF0801的接种促进了根部对营养元素的吸收和向地上部的运输ꎬ使幼苗叶片中上述离子含量显著增加ꎬ有助于维持铅胁迫下水稻的光合作用和酶促反应[97]ꎮ同样ꎬ镉胁迫下接种内生成团泛菌(PantoeaagglomeransTm02)促进了Mn㊁Ca㊁Fe㊁Mg等离子向籽粒的转运ꎬ增加养分的同时减少了镉向籽粒的转运[28]ꎮ产铁载体内生菌促进水稻对铁和其他微量元素的吸收利用[98]ꎮ接种产铁载体内生菌Pseudomonassp.㊁Bacillusthuringien ̄sis㊁B.pumilus使砷胁迫下水稻根部铁含量升高[35]ꎮ砷胁迫下会增加水稻幼苗根中铁含量ꎬ但减少了铁向地上部的转运ꎬ接种印度梨形孢上调了水稻铁转运相关基因(OsIRO2㊁OsFRDL1㊁OsYSL1)的表达ꎬ显著增加了地上部的铁含量ꎬ有利于叶绿素合成和光合作用[42]ꎮ有些内生菌还可以通过生物固氮为重368付思远等:内生菌协助水稻缓解重金属胁迫和积累研究进展金属胁迫下的水稻提供必需的氮素营养[28ꎬ30ꎬ99]ꎮ土壤中的有效磷含量较低ꎬ不能满足植物需求[100]ꎮ具有溶磷功能的内生菌能够将难溶性磷转化为可溶性磷供重金属胁迫下的水稻吸收利用[28ꎬ30ꎬ37 ̄39]ꎮAMF在促进水稻磷吸收方面具有重要作用ꎮ多项研究结果表明ꎬ铜㊁铅㊁镉㊁砷等重金属胁迫下ꎬAMF接种能够增加水稻植株的磷含量ꎬ有利于水稻营养物质合成以抵抗重金属胁迫[55 ̄56ꎬ61ꎬ64ꎬ101]ꎮ综上所述ꎬ内生菌通过溶磷㊁固氮㊁产生铁载体㊁上调营养元素吸收和营养转运相关基因的表达等机制加强水稻对营养元素的吸收和运输ꎬ从而促进水稻在重金属胁迫下生长ꎮ2㊀内生菌降低水稻地上部和籽粒重金属积累的作用机制2.1㊀胞内积累和胞外吸附固定重金属内生细菌通过主动运输和区域化作用将重金属吸收进细胞内ꎬ也可由分泌的胞外聚合物在细胞外富集重金属ꎬ降低其流动性[77]ꎮ氢离子与金属离子存在竞争吸附位点ꎬ碱性环境能够加强土壤和细胞表面对重金属的吸附[102]ꎮ一些兼性内生细菌可以提高环境pH值ꎬ如ꎬ兼性内生沙雷氏菌(Serratialiq ̄uefaciensF2)通过提高发酵液pH值加强自身对砷的胞外富集和胞内积累ꎬ砷胁迫下接种Serratialiq ̄uefaciensF2加强了根表面和土壤对砷的固定ꎬ减少了水稻对砷的吸收和砷向籽粒的转移ꎬ最终籽粒砷含量低于欧洲水稻籽粒中最大允许砷含量(0 2mg/kg)[34]ꎮ内生真菌利用细胞壁㊁中央大液泡㊁菌丝体㊁孢子等特殊结构固定重金属[103]ꎮ镉胁迫下接种印度梨形孢使水稻根部的菌丝体和孢子中积累了大量镉ꎬ阻止镉离子向地上部转运[44]ꎮ深色有隔内生真菌稻镰状瓶霉(FalciphoraoryzaeEU63669)是典型的镉离子生物过滤器ꎬ接种水稻后大量的镉以黑色沉积物和颗粒的形式在其液泡和厚壁孢子中被固定ꎬ阻止镉转移至地上部ꎬ降低了籽粒镉含量[40]ꎮ植物细胞壁主要由多糖和蛋白质组成ꎬ含有羧基㊁羟基㊁氨基和醛基等潜在配体ꎬ这些配体可以参与离子交换㊁吸附㊁络合㊁沉淀和结晶等各项反应ꎬ有效结合重金属阳离子并限制其在细胞膜上的转运[104 ̄106]ꎮ植物在根细胞壁中隔离重金属是缓解原生质体重金属胁迫和抑制重金属转运的机制之一[104ꎬ107]ꎮ多项研究发现AMF可以影响水稻中的重金属亚细胞分布ꎮGao等[48]的研究结果表明ꎬAMF可以改变旱稻根细胞壁的化学性质ꎬ镉胁迫下ꎬ接种Rhizophagusintraradices提高了根部细胞壁中果胶㊁半纤维素1和木质素的含量ꎬ观察到更多羟基和羧基ꎬ根细胞壁的果胶和半纤维素1中镉含量增加ꎬ进而显著降低旱稻地上部的镉含量ꎮZhang等[62]的研究结果表明ꎬ铜胁迫下接种AMF(GlomusmosseaeꎬGm)可使菌根中糖醛酸的含量增加ꎬ有利于增强菌根对铜的吸附ꎬ菌根细胞壁果胶和半纤维素1中的铜含量增加了约5倍ꎬ最终水稻地上部铜含量显著降低ꎮLi等[49]的研究结果表明ꎬ在低镉胁迫(<0 05mmol/L)下接种Rhizophagusintraradices和摩西管柄囊霉(FunneliformismosseaeꎬFm)提高了旱稻根部细胞壁组分中镉含量ꎬ高镉胁迫(ȡ0 05mmol/L)下提高了液泡中镉含量ꎬ而细胞器组分镉含量显著降低ꎬ缓解了旱稻镉胁迫ꎬ减少了地上部镉积累ꎮ上述研究结果皆表明由内生菌介导的胞外吸附和胞内积累可以将重金属固定ꎬ从而减弱重金属向地上部的转运ꎬ但AMF影响水稻根部重金属亚细胞分布的机制还有待研究ꎮ2.2㊀降低重金属的生物有效性碱性环境有利于重金属沉淀的形成和稳定[102]ꎮ镉胁迫下接种兼性内生细菌Pantoeaagglo ̄meransTm02提高了土壤pH值并降低镉的生物有效性ꎬ减少水稻对镉的吸收和转运ꎬ降低水稻籽粒㊁茎秆中的镉含量[28]ꎮ内生巨大芽孢杆菌(BacillusmegateriumH3)和华氏新根瘤菌(Neorhizobiumhua ̄utlenseT1 ̄17)共接种可以提高水稻根系土壤的pH值ꎬ在低镉胁迫下增加铁锰氧化物结合态镉含量ꎬ高镉胁迫下增加有机物结合态镉和硫化镉的含量ꎬ减少水稻对镉的吸收ꎬ所产精米符合大米镉限量国际标准(0.2mg/kg以下)[36]ꎮ多胺是氨基酸脱羧过程中产生的一类碱性化合物ꎬ能够提高周围环境的pH值ꎬ最常见的多胺包括腐胺㊁亚精胺和精胺[108 ̄110]ꎮ研究发现ꎬ使用外源多胺降低了水稻对镉的吸收[111]ꎮ某些细菌可以产生精氨酸脱羧酶(ADC)从而分泌多胺[109ꎬ112]ꎮCheng等[27]分离的产ADC内生鞘氨醇单胞菌(Sphingomonassp.C40)为兼性内生菌ꎬ其发酵液的多胺含量和pH值在镉胁迫下显著提高ꎬ接种后诱导镉胁迫下水稻幼苗多胺合成酶相关基因(OsSPDS㊁OsSPMS1和OsSAMDC1)表达显著上调ꎬ根际土壤和根内的亚精胺㊁精胺含量增加ꎬ468江苏农业学报㊀2023年第39卷第3期土壤中铁锰氧化物结合态镉含量增加ꎬ水稻地上部镉积累量显著降低ꎮ镉胁迫下ꎬ产ADC兼性内生根瘤菌(RhizobiumlarrymooreiS28)发酵液的pH值和腐胺质量浓度升高ꎬ接种后显著提高了水稻分蘖期和成熟期土壤pH值和有机质含量ꎬ降低了根际土壤有效态镉含量和镉转移系数(TFꎬ表示植物对重金属的转运能力)ꎬ增加了成熟期根际土壤中碳酸盐和有机物结合态镉的含量ꎬ使水稻根部㊁地上部㊁籽粒中镉含量皆降低[33]ꎮ但产ADC内生菌的研究目前仅限于水稻镉胁迫ꎬ对其他重金属胁迫的应用研究较少ꎮ内生菌分泌的铁载体也可与Cd2+㊁Cu2+㊁Pb2+㊁As3+㊁As5+等多种重金属离子结合[113]ꎮ研究发现ꎬ与铁载体结合的Fe3+更容易进入细胞ꎬ与铁载体结合的有毒金属离子不能有效地进入细胞ꎬ从而降低重金属的生物有效性[114]ꎮ有机酸通过与重金属形成复合物㊁诱导植物产生根系分泌物㊁溶解磷酸盐释放磷元素并形成不溶性重金属磷酸盐等多种机制降低重金属的生物有效性ꎬ内生细菌Bacillusamyloliq ̄uefaciensRWL ̄1具有分泌柠檬酸㊁琥珀酸㊁丙酸和乙酸等多种有机酸的能力ꎬ接种后显著降低了水稻根部和地上部的铜含量[25]ꎮ铅胁迫下接种内生真菌Sordariomycetessp.EF0801诱导水稻根系产生苹果酸㊁酒石酸㊁乳酸和草酸等有机酸ꎬ缓解了水稻铅胁迫[97]ꎮ金属硫蛋白(MetallothioneinsꎬMTs)是一类低分子量㊁半胱氨酸含量异常丰富的短肽ꎬ其巯基( ̄SH)能够螯合重金属[115]ꎮ镉胁迫下接种变形球囊霉上调了旱稻菌根中MTs合成相关基因的表达ꎬ降低了旱稻地上部镉含量[56]ꎮ无机硫化物也可与重金属反应生成不溶性金属硫化物[32]ꎮ内生台湾贪铜菌(CupriavidustaiwanensisKKU2500 ̄3)能够分泌MTs和无机硫化物ꎬ镉胁迫下其发酵液中硫化镉含量升高ꎬ降低了发酵液中有效镉的含量ꎬ接种后显著降低了水稻籽粒镉含量[32]ꎮAMF通过改变重金属的生物有效性降低镉在菌根中的迁移率和毒性ꎬ如高镉胁迫(ȡ0 05mmol/L)下ꎬ接种AMF的旱稻菌根中有效态镉(无机镉和水溶性镉)的含量显著低于未接种AMF的旱稻ꎬ无效态镉(果胶酸盐结合态镉㊁蛋白质结合态镉㊁不溶性和残留镉)占比高[49]ꎮLuo等[50]研究发现ꎬAMF接种提高了旱稻在开花期㊁成熟期根际土壤中无效态镉的比例ꎬ与籽粒中镉含量呈负相关ꎬ这表明旱稻开花期和成熟期是AMF限制籽粒积累镉的关键时期ꎮ植物在细胞质中将重金属与植物螯合素(PhytochelatinsꎬPCs)螯合以降低其生物有效性ꎬ并将螯合物转运至液泡ꎬ这是缓解重金属胁迫与积累的一种重要机制ꎮOs ̄PCS1和OsPCS2是水稻合成PCs的2个主要基因ꎬ有助于提高水稻对砷和镉的耐受性[116]ꎮ研究发现ꎬ砷胁迫上调了水稻根中OsPCS1和OsPCS2的表达ꎻ接种印度梨形孢进一步显著上调了OsPCS1和OsPCS2的表达ꎬ增加了PCs的合成ꎬ砷被PCs螯合后转移至根部液泡区隔化ꎬ从而减少了砷向地上部的转运[42]ꎮ综上所述ꎬ内生菌通过降低重金属的生物有效性减少水稻对重金属的吸收和转运ꎬ缓解了水稻重金属胁迫ꎬ减少了植株地上部和籽粒重金属积累ꎮ2.3 调控水稻对重金属的吸收和转运基因的表达根是植物吸收土壤重金属的第一个部位ꎬ许多重要的重金属吸收和转运基因在根部表达ꎮ水稻根系可以通过硅酸盐和磷酸盐转运蛋白质吸收和转运As3+㊁As5+[117]ꎮ水稻硅酸盐转运基因OsLsi1参与砷的吸收ꎬOsLsi6在将砷/硅转运出木质部并向地上部再分配过程中起关键作用ꎬOsLsi2参与砷向中柱的运输且将其转运到地上部ꎬ磷酸盐转运基因OsPT4参与砷的吸收[35ꎬ42ꎬ118 ̄119]ꎮ砷胁迫下ꎬ水稻幼苗根部OsLsi1㊁OsLsi2㊁OsLsi6基因表达上调ꎻ接种印度梨形孢后ꎬ显著下调了OsLsi2基因的表达ꎬ减少了砷向地上部的转运ꎬ地上部砷含量显著降低[42]ꎮ砷胁迫下水稻接种AMF(GlomusintraradicesBGCAH01)显著下调了OsLsi1㊁OsLsi2基因的表达ꎬ菌根对砷的吸收效率下降ꎬ大部分亚砷酸盐在根部被固定从而阻止其转移到地上部[66]ꎮRujira等[35]的研究结果表明ꎬ水稻OsLsi1㊁OsLsi2㊁OsPT4基因在砷胁迫下表达上调ꎬ根㊁枝㊁叶㊁穗枝㊁壳和籽粒中的砷积累显著增加ꎻ单接种内生细菌假单胞菌㊁苏云金芽孢杆菌㊁短小芽孢杆菌及配施风化褐煤皆能显著下调OsLsi1㊁OsLsi2㊁OsPT4基因表达ꎬ籽粒砷含量低于大米砷限量国际标准(0.2mg/kg)ꎮ植物重金属三磷酸腺苷酶(HeavymetalATPasesꎬHMAs)家族在金属转运方面发挥重要作用[120]ꎬ其中OsHMA2负责将镉/锌从根部转运到地上部ꎬOsHMA3负责将镉运输到根部大液泡中区隔化[121 ̄122]ꎮOsHMA3基因的过表达可以增加水稻根部镉积累ꎬ减少地上部的镉积累[123]ꎮ镉胁迫下水稻接种内生菌C40显著下调了OsHMA2568付思远等:内生菌协助水稻缓解重金属胁迫和积累研究进展。

重金属对植物种子发芽的影响研究

重金属对植物种子发芽的影响研究

重金属对植物种子发芽的影响研究植物是地球上最重要的生物之一,它们能够吸收阳光和水分,将二氧化碳转化为氧气,并为其他生物提供食物和生态系统服务。

然而,随着工业化的持续发展和人类活动的增加,地球上的环境污染问题也日益严重。

重金属污染是其中的一种,对植物种子发芽及其生长发育产生了严重的影响。

本文将探讨重金属对植物种子发芽的影响,并介绍一些减轻重金属污染的方法。

一、重金属污染的来源和危害重金属是指比铁、铜、铝等轻金属密度大、原子量较大的金属元素。

重金属污染主要来自于工业、农业、交通等人类活动产生的废水、废气和固体废弃物。

这些重金属很容易被植物吸收,进入到食物链的上层。

重金属对植物种子发芽影响很大,它们可以通过根、叶、果实等方式进入植物体内,从而影响植物生长发育,还可能对人类健康造成影响。

不同的重金属污染对植物种子的影响也各不相同。

例如,镉、铅、汞等元素对植物种子发芽和生长具有极大的影响。

二、重金属对植物种子发芽的影响1. 镉元素镉元素是一种常见的重金属,会对植物的种子萌发和夜视能力产生极大的负面影响。

镉在植物种子中可以抑制蛋白合成、阻碍生长以及破坏野生动物类群的食物来源。

这种元素对以种子为食的物种有着非常危险的影响。

2. 铅元素铅在环境中广泛存在,会捕获植物中重要的生长因子,从而抑制植物种子的发芽和生长。

另外,铅还会引起植物凋落,降低根和茎的生长速度,增加了植物的死亡率。

这对植物的生长和生态系统规律造成了很大的负面影响。

3. 汞元素汞元素也是一种常见的重金属,在植物种子中有很大的毒性。

汞会抑制植物的光合作用和生长,对植物纤维组织的形成有影响。

在动物体内,汞还可以蓄积并对动物的肝、肾和神经系统产生损害。

三、减轻重金属污染的方法重金属污染对植物种子的影响很大,因此需要采取措施来减轻污染程度。

1. 污水处理污水处理是一种重要的减轻重金属污染的方法,可以有效地降低工业和城市废水中的重金属浓度。

这些废水可通过化学沉淀、离子交换、吸附和生物处理等技术来净化。

植物对重金属镉的响应及其耐受机理


累积会 导致 叶绿体及 色素 解体 、 加非光 化学猝 灭并 降低光合 效率 增
; d 还强 烈抑 制气 孔 开放 , 低 浓度 的 C。 极
c 就可 以减少 由光诱 导 的气 孔 开放 , d+ 这可 能 与 c 。 扰 K c 。 保 卫 细胞 中脱 落 酸 ( b c i ai , A) d 干 、 a 及 a si c c AB s d
状 ,] 11 。研究 表明 , d 23 C 在 植物不 同部位 累积 , 毒 害效 应有 所不 同 。 其
1 1 C 。 根 中的 累 积 及 其 生 长 抑 制 作 用 . d 在
C 对植 物 的毒害作 用首先 表现在 根部 , d一 如抑制 苏格 兰松 ( iu leti) 尖细 胞 的伸 长并 使 得根 尖细 P n s y vsr 根 s s 胞 的木 质化 速度加快 和导致 斑 叶芒 ( sa tu ies ) 部变 短 变粗口 Mi nh s n ni 根 c s s 等 。这是 由于 C 破 坏根 尖 细胞 d
维普资讯
8 4~ 9 1




第1 7卷
第5 期
1 / 08 0 2 0
A CT A PRA TA CUITU R AE N 1 SI CA
V o1 7, .1 No. 5
植 物对 重 金属 镉 的响应 及 其 耐 受机 理
宋 瑜 , 糅 , 宗英 , 晓娟 金 曹 王
抗 氧化 反应 及 其 基 因 表 达 , 膜 和 液 泡转 运 蛋 白促 进 C 运 输 和 隔 离 的 基 因调 控 。 质 d 关键词 : ; 受性 ; 镉 耐 响应 ; 植物 修 复 中图 分 类 号 : 4 Q9 6 文献 标 识 码 : A 文 章 编 号 : 0 45 5 ( 0 8 0 — 0 4 0 1 0 — 7 9 2 0 ) 50 8 — 8

大型水生植物修复重金属污染水体研究进展

大型水生植物修复重金属污染水体研究进展一、概述随着工业化和城市化的快速发展,大量重金属通过工业废水、农业径流等途径进入水体,造成水体重金属污染日益严重。

重金属污染不仅破坏水生态系统的平衡,还对人类健康构成严重威胁。

寻求有效的水体重金属污染修复技术成为当前环境保护领域的研究热点。

大型水生植物作为一种天然的生物修复工具,因其具有生长速度快、生物量大、吸收重金属能力强等特点,在水体重金属污染修复中展现出巨大的应用潜力。

本文综述了近年来大型水生植物在修复重金属污染水体方面的研究进展,包括大型水生植物的种类、重金属吸收机制、影响因素以及实际应用效果等方面,以期为水体重金属污染的生物修复提供理论支持和实践指导。

1. 重金属污染水体的现状及其危害随着工业化、城市化的飞速发展,重金属污染已成为全球性的环境问题。

重金属,如铅、镉、汞、铬、铜、镍等,或其化合物在环境中的异常浓度,可造成水质下降或恶化,对生态环境和人类健康构成严重威胁。

我国的水体重金属污染现状尤为严峻,地表水源如河流、湖泊及水库中均存在不同程度的重金属污染,其中以汞、镉、铬和铅的污染最为严重。

重金属污染水体的主要来源包括矿山开采及选矿废水、冶炼工业废气废水、电镀、仪表、涂料、玻璃、化工等企业的排放,以及地表径流和农田排水等。

这些途径导致重金属元素通过各种方式进入水体,如颗粒态的存在、迁移与转化,以及多种价态的化学变化等。

重金属的复杂性和毒性使其在水体中的存在具有长期性和累积性,对人类和生态环境造成深远影响。

重金属污染水体的危害主要表现在以下几个方面:重金属元素进入生物体后,常与酶蛋白结合,破坏酶的活性,影响生物正常的生理活动,导致神经系统、呼吸系统、消化系统和排泄系统等功能异常,引发慢性中毒甚至死亡。

重金属可被水生生物摄取,并在体内形成毒性更大的重金属有机化合物,进一步加剧其毒性。

重金属通过食物链的逐级放大,最终进入高等动物乃至人体中,引发各种健康问题,尤其对儿童的影响更为显著,可能导致免疫力低下、注意力不集中、智商下降、身体发育迟缓等症状。

铜、锌、镉胁迫下玉米幼苗金属硫蛋白的响应


物体产生毒害… , 重金属胁迫对植物 的伤害 以及植
物在此 胁 迫 下 产 生 的 防 卫 机 制 的研 究 具 有 重 要 意 义 j 。有关 重 金 属 污 染 对 植 物 的伤 害 研 究 已有 不
少 的报 道 , 但 往 往 局 限于 提供依据。
第 1 3卷
第1 3期
2 0 1 3年 5月







Vo 1 .1 3 No. 1 3 Ma y 2 01 3
1 6 7 1 —1 8 1 5 ( 2 0 1 3 ) 1 3 - 3 5 5 9 — 0 4
S c i e n c e T e c h n o l o g y a n d E n g i n e e r i n g
c u “、 c ( 0 . 0 5 、 0 . 5 、 1 . 0 、 2 . 0 、 4 . 0 、 8 . 0 、 1 6 . 0 m mo l / L ) 胁迫下, 采 用 电感 耦合 等 离子体 ( I C P — MS ) 测 定 玉米 叶金属 硫 蛋 白
( M T ) 的诱 导合 成量。随着金属离子浓度 的升高 , M T的含量 呈现先 升高后 下降 的趋 势。锌 、 铜、 镉胁迫 浓度 分别 为 8 . 0 , 0 . 0 5 和0 . 5 m m o l / L时, 玉米叶片 中 M T含量最 高, 当铜 、 镉离子浓度大 干 2 mm o l / L浓度 时, 玉米 出现 了一定程 度 的死 亡。研 究结
果表 明玉米可作为锌、 铜、 镉污染 的标 志物。
关键词
锌铜镉
胁迫
玉米
金属硫 蛋 白 B
中图法分类号
¥ 5 1 3 ;

镉胁迫对蔬菜生长影响及蔬菜抗镉育种研究进展

1 . 1 C d 对蔬菜形态及生物产量的影 响 当C A 在植 物体 内积 累到一 定浓 度时 , 植 物就会
普 遍 表 现 出根 系短 小 变 褐 、 侧根少 、 茎生长缓慢 、 叶 片 变
物 叶绿体膜解体 , 片层 结构 弥散 , 叶绿体 结构 的改 变使
其 光 合 作 用减 弱[ ~ 。C d还会 对 植 物 的 蒸 腾 作 用 产 生 不 利影响 , 如抑 制 气 孔 开 放 , 极 低浓度 的 C d 。 就 可 以减 少
等 、 姚 晓 惠[ ” 研 究得 出 C d处理 下 植 株 体 内叶绿 素 a / b
C d 对蔬菜生长 的影响 、 蔬菜抗/ 耐 C d等方 面研究 进行
总结 的基 础 上 , 对蔬菜 C d污 染 防 治 的研 究 进 展 进 行 了 阐述 , 并 对 该 领 域 今 后 工 作 的重 点 进 行 了 展 望 , 以 期 为 今后 更 深 入 研 究 提供 基 础 依 据 。
进 展进 行 了 阐述 , 并 对 该 领 域 今 后 工 作 的 重 点 进 行 了展 望 , 以 期 为 今 后 更 深 入 研 究提 供 基 础
依据。
关键 词 : 镉; 胁迫 ; 耐性 ; 植 物修 复 中图分 类号 : S 6 3 文 献标 识码 : A 文 章编 号 : 1 0 0 1 -0 0 0 9 ( 2 0 1 3 ) 2 3 一O l 9 0 一O 4 镉( ( 、 d ) 是 一 种毒 性 很 强 的重 金 属 , 且 属 于 蓄 积 性 毒 物 。 由于 人类 活 动 造 成 的蔬 菜 种 植 地 区水 体 和 土 壤 的

专题综述 ・
北方 园艺 2 0 1 3 ( 2 3 ) : 1 9 0 ~ 1 9 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重金属铜镉胁迫下植物响应的研究进展
植物生长和发育受到环境因素的影响,其中包括重金属胁迫。

重金属胁迫对植物的生长、代谢和抗性都有着不同程度的影响。

铜和镉属于常见的重金属元素,它们在环境中的
污染问题越来越严重。

因此,研究铜镉胁迫下植物响应的机制及其调节因子,对探索植物
适应环境的生理和分子机制具有重要意义。

本文将就铜镉胁迫下植物响应的研究进展做一
简要综述。

一、铜镉胁迫对植物生长和代谢的影响
1. 生长方面
重金属铜镉入侵植物体内,对植物生长发育产生负面影响。

不同植物对铜镉的耐性不同,但是低浓度的铜镉胁迫下可促进植物生长,而高浓度铜镉胁迫则抑制植物生长。

这是
因为铜镉胁迫下,植物生长和发育的生理过程产生了多方面的负面影响,包括叶柄伸长抑制、叶面积减少、根系生长受限、根毛损伤等。

2. 代谢方面
铜和镉的胁迫下,植物代谢产生了多方面的调整和改变,包括抗氧化、光合作用和生
理响应等。

a. 抗氧化
重金属胁迫会导致机体内多种反应性氧(ROS)的积累,如超氧阴离子自由基(O2^-)、过氧化氢(H2O2)等。

ROS的过剩可引起脂质过氧化、蛋白质氧化、DNA降解等反应,从而引起细胞损伤。

植物抗氧化酶系统包括超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化物还原酶(GR)、抗坏血酸过氧化物酶(APX)等。

这些酶可以清除体内ROS物质,达到减轻重金属胁迫下氧化损伤的效果。

b. 光合作用
铜镉胁迫可以导致叶绿体的数目减少,叶片逐渐变薄,从而降低进一步降低光合作用
效率。

同时,铜镉胁迫会导致叶片中来自电子传递链的反式电子传递(RET)的机制增加。

RET是指由于退化的光合作用电子传递链中的损失而导致通过氧化还原系统产生几个电子
而非单个电子的紫外线光合成电子传递的过程。

RET的增加会产生过多的ROS,因此加速
氧化。

c. 生理响应
铜镉胁迫下,植物还可产生多方面的生理响应。

比较常见的有细胞壁硬化和黄色素合成。

细胞壁硬化是指植物在遭受重金属胁迫时,由于形成细胞壁的多醣在一定程度上缺失,
遭受损伤。

植物会引起细胞壁增厚,提高其抗压能力。

而黄色素合成主要是由于叶绿素分
解生成的底物被用于黄体素生产,这是植物在遭受压力时的一种应激保护响应。

铜镉胁迫下,植物响应和适应环境的过程中,潜在的调控分子机制包括了基因表达调控、蛋白质修饰、信号转导和代谢物响应等。

下面将简要介绍一些重要的调控分子。

1. 基因表达调控
在植物铜镉胁迫下,基因表达调控是一种重要的响应机制。

对于镉胁迫,植物中一些
蛋白质家族、GST家族和ATP酶家族等基因会被激活,而虽在铜胁迫下则主要激活锌指蛋白、转录因子和ATP酶家族等基因。

这些基因的表达可调节多个信号通路和代谢通路的功能,为植物适应铜镉胁迫提供重要的帮助。

2. 蛋白质修饰
蛋白质修饰是一种广泛存在于细胞信号转导系统中的现象。

它包括了丝氨酸/苏氨酸
蛋白激酶(MAPK)、Ca2+可调蛋白酶等。

当植物受到铜镉胁迫时,蛋白质修饰可以向植物
细胞传递信号,从而调节细胞内代谢,形成植物适应环境的反应。

3. 信号转导
植物受到重金属胁迫时往往会激活多个信号转导通路,如Ca2+信号转导、ROS信号转导、ABA、生长素等激素信号转导通路。

这些通路共同参与植物适应铜镉环境的机制调控。

4. 代谢物响应
与生长素等植物激素有着密切关系的代谢物,如蛋白酶、多糖等,在铜镉胁迫下也能
发挥调控作用。

这些代谢物的协同参与,调控能动性,促进植物获得重铜镉的品质控制。

总之,铜镉胁迫是威胁植物健康的重要因素之一,对植物生长、代谢甚至是植物种群
的稳定性产生了直接或间接的影响。

了解铜镉胁迫下植物的响应机制和调节分子,有助于
增强植物的耐受能力,为创造环境友好型农业和生产健康食品提供有益参考。

相关文档
最新文档