专题04 立体几何(解析版)
第4讲 空间几何体与截面面积(解析版)-2021年新高考数学立体几何压轴小题专题突破

第4讲 空间几何体与截面面积一.选择题(共11小题)1.(2021•宜春模拟)已知点P 是单位正方体1111ABCD A B C D -的对角面11BB D D 上的一动点,过点P 作垂直于平面11BB D D 的直线,与正方体侧面相交于M 、N 两点.则BMN ∆的面积最大值为( )A B .12C D 【解析】解:由题意知,MN ⊥平面11BB D D ,其轨迹经过B ,1D 和侧棱1AA ,1CC 的中点E ,F ,如图,当MN 与EF 重合时,此时,BM BN ==,MN ==12BMN S ∆=; 当点M ,N 在平面1111A B C D 上时, 由题意知MN 与11A C 平行或重合, BMN ∆的面积的最大值为△11BAC 的面积,1112BA C S==;当M ,N 在平面ABCD 上时,由题意知MN 与AC 平行或重合, BMN ∆的面积的最大值为BAC ∆的面积,111122BAC S ∆=⨯⨯=;当M ,N 在平面11A ACC 上时,由题意得MN 与11A C 平行或重合, BMN ∆的面积的最大值为△11BAC 的面积,1112BA C S==.综上,BMN ∆. 故选:C .2.(2020秋•余姚市校级期中)单位正方体在一个平面内的投影面积的最大值和最小值分别为( )A 1B 1C ,1D 1 【解析】解:设正方体为ABCD A B C D ''''-投影最大的时候,是投影面α和面AB C '平行,三个面的投影为∴投影的面积1222AB CS'=== 投影面积的最小值为1. 故选:A .3.(2018•新课标Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )A B C D 【解析】解:正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面α所成的角都相等,如图:所示的正六边形平行的平面,并且正六边形时,α截此正方体所得截面面积的最大,,α截此正方体所得截面最大值为:26(2. 故选:A .4.(2021•温州一模)如图,直线l ⊥平面α,垂足为O ,正四面体ABCD 的棱长为4,C 在平面α内,B 是直线l 上的动点,则当O 到AD 的距离为最大时,正四面体在平面α上的射影面积为( )A .4+B .2C .4D .【解析】解:由题意,直线BC 与动点O 的空间关系:点O 是以BC 为直径的球面上的点,所以O 到AD 的距离为四面体上以BC 为直径的球面上的点到AD 的距离,最大距离为AD 到球心的距离(即BC 与AD 的公垂线)+半径2=.再考虑取得最大距离时四面体的投影情况,此时我们注意到AD 垂直平面OBC ,且平行平面α,故其投影是以AD 为底,O 到AD 的距离投影,即2)cos 452︒=+为高的等腰三角形,其面积14(242=⨯⨯=+ 故选:A .5.(2020•唐山模拟)在棱长为1的正方体1111ABCD A B C D -中,E ,F 分别为线段CD 和11A B 上的动点,且满足1CE A F =,则四边形1D FBE 所围成的图形(如图所示阴影部分)分别在该正方体有公共顶点的三个面上的正投影的面积之和( )A .有最小值32B .有最大值52C .为定值3D .为定值2【解析】解:依题意,设四边形1D FBE 的四个顶点在后面,上面,左面的投影点分别为D ',F ',B ',E ',则四边形1D FBE 在上面,后面,左面的投影分别如上图. 所以在后面的投影的面积为111S =⨯=后, 在上面的投影面积11S D E DE DE =''⨯=⨯=上,在左面的投影面积11S B E CE CE =''⨯=⨯=左,所以四边形1D FBE 所围成的图形(如图所示阴影部分)分别在该正方体有公共顶点的三个面上的正投影的面积之和112S S S S DE CE CD =++=++=+=后左上. 故选:D .6.(2021春•浙江月考)如图,棱长为2的正方体1111ABCD A B C D -的顶点A 在平面α上,棱1AA 与平面α所成的角为60︒,点1A 在平面α上的射影为O ,正方体1111ABCD A B C D -绕直线1AA 旋转,则当直线1A O 与1BC 所成角最小时,侧面11ABB A 在平面α上的投影面积为( )A .BC +D .2【解析】解:依题意,显然当平面11AA D D ⊥平面α时,能使直线1A O 与1BC 所成角最小,此时直线1A O ⊂平面11AA D D ,所以1AAO ⊂平面11AA D D , 因为AB ⊥平面11AA D D ,AO ⊂平面11AA D D ,1AA ⊂平面11AA D D ,所以AO AB ⊥,1AB AA ⊥, 又因为平面α⋂平面11ABB A AB =,A AB ∈,OA ⊂平面α,1AA ⊂平面11ABB A , 所以1A AO ∠为二面角1A AB O --的平面角, 又160A AO ∠=︒,所以平面11ABB A 在平面α上的投影面积111cos602222ABB A S S '=⨯︒=⨯⨯=. 故选:D .7.(2021•武汉模拟)某圆锥母线长为2最大值为( )A .2BCD .1【解析】解:如图所示,截面为SMN ∆,P 为MN 的中点,设(03)OP x x =<,2,SB OB ==,所以1SO =,SP MN =,故1122SMN S MN SP ∆=⋅⋅=,所以当1x =时,2SMN S ∆=,此时的截面面积最大. 故选:A .8.(2021春•河南月考)已知正四棱柱1111ABCD A B C D -中,1124BE BB ==,143AB AA =,则该四棱柱被过点1A ,C ,E 的平面截得的截面面积为( )A .B .36C .D .【解析】解:由题意可知,正四棱柱1111ABCD A B C D -中,1124BE BB ==,143AB AA =, 可得1118AA BB CC ===,2BE =,在1DD 上取一点F ,使得12D F =,如图所示,连结1A F ,CF ,可得1A F CE =且1//A F CE ,则四边形1A ECF 是平行四边形, 四棱柱被过点1A ,C ,E 的平面截得的截面为1A ECF ,由勾股定理可得,1A E CE===,1A C==所以2221111cos2A E CE ACA ECA E CE+-∠===⋅,所以1sin A EC∠=所以平行四边形1A ECF的面积为11sinA E CE A EC⋅⋅∠==故选:C.9.(2020秋•漯河期末)如图,已知四面体ABCD为正四面体,2AB=,E,F分别是AD,BC中点.若用一个与直线EF垂直,且与四面体的每一个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为()A.1BCD.2【解析】解:将四面体ABCD补成正方体AODP HBGC-,其示意图如图所示:已知EFα⊥,记平面α截该四面体得到的截面为四边形MNKL,由题意得,////NK AD ML,////KL BC MN,所以四边形MNKL为平行四边形,且易得2NK KL+=,因为AD BC⊥,所以NK KL⊥,故2()12MNKLNK KLS NK KL+=⋅=四边形,当且仅当1NK KL==时,取等号,故选:A.10.(2020秋•运城期末)已知正方体1111ABCD A B C D -的边长为3,M 为边AB 上靠近B 的三等分点,过M 且垂直于直线1BD 的平面被正方体所截的截面面积为( )A B C D .【解析】解:直线1BD 是正方体1111ABCD A B C D -的体对角线, 所以1BD ⊥平面1AB C ,因为过点M 的平面α与直线1BD 垂直, 所以平面//α平面1AB C ,因为M 为边AB 上靠近B 的三等分点, 所以平面α截正方体所得截面的面积119AB CS S=,因为正方体1111ABCD A B C D -的边长为3,所以11sin 602AB CS=⨯︒,所以过M 且垂直于直线1BD 的平面被正方体所截的截面面积为19S ==. 故选:A .11.(2020秋•乐山期末)在直四棱柱1111ABCD A B C D -中,底面四边形ABCD 为菱形,14AA =,2AB =,3ABC π∠=,E 为BC 中点,平面α过点E 且与平面1BDD 垂直,1//CC α,则α被此直四棱柱截得的截面面积为( )A .1B .2C .4D .6【解析】解:分别取AB ,11A B ,11B C 的中点F ,M ,N ,连接MF ,MN ,NE ,FE ,AC .由四边形ABCD 为菱形,知BD AC ⊥,再根据三角形的中位线定理,知//EF AC ,所以BD EF ⊥, 又因为1//EN CC ,因此BD EN ⊥. 又EFEN E =,EF ⊂平面EFMN ,EN ⊂平面EFMN ,故BD ⊥平面EFMN ,又BD ⊂平面1BDD ,则平面EFMN ⊥平面1BDD . 则EFMN 为矩形.由1EF =,4MF =,故截面面积为4. 故选:C .二.填空题(共11小题)12.(2020秋•赫山区校级月考)已知正三棱柱111ABC A B C -底面边长是10,高是12,过底面一边AB ,作与底面ABC 成60︒角的截面面积是【解析】解:设α与侧棱交于P ,取AB 的中点M ,连接PM ,根据题意可知60PMC ∠= 正三棱柱111ABC A B C -的底面边长为10CM ∴= 60PMC ∠=︒15PC ∴=高是12, ∴截面为梯形∴上底长为(1512)tan302-=,下底长为10,高为12sin 60=︒∴截面的面积是1(210)834832+=故答案为:.13.(2020秋•余姚市校级期中)正三棱柱111ABC A B C -中,底面边长和侧棱长都为2,过底面上一边AB 作平面α,使α与底面ABC 成60︒的二面角,则正三棱柱被平面α截得的截面面积为. 【解析】解:设α与侧棱交于P ,取AB 的中点F ,连接PF ,根据题意可知60PFC ∠=︒ 正三棱柱111ABC A B C -的底面边长为2CF ∴ 60PFC ∠=︒ 3PC ∴=侧棱长为2 ∴截面为梯形上底长为1(32)tan302-=,下底长为2,高为2sin 60︒,∴截面的面积是11(2)22⨯+=14.(2020秋•宣武区期末)如图所示,正三棱柱111ABC A B C -的底面边长为2,边底面的边AB 作一截面交侧棱1CC 于P 点,且截面与底面成60︒角,则截面PAB ∆的面积是【解析】解:取AB 的中点,连接PD ,根据题意可知60PDC ∠=︒ 正三棱柱111ABC A B C -的底面边长为2CD ∴=而60PDC ∠=︒PD ∴=∴截面PAB ∆的面积是122⨯⨯故答案为:15.(2020秋•浙江模拟)在棱长为1的正方体1111ABCD A B C D -中,若G 、E 分别为1BB ,11C D 的中点,点F 是正方形11ADD A 的中心,则四边形BGEF 在正方体六个面上的射影图形面积的最大值为12. 【解析】解:BGEF 在正方体的六个面上的射影有三种情况, 即在前后面上的射影,在左右面上的射影,在上下面上的射影, 这三种不同的情况下,只有在前后面上的射影正好占到一个面的一半, ∴射影到面积的最大值是12故答案为:12.16.正方体1111ABCD A B C D -的棱长为1,动点P ,Q 分别在棱BC ,1CC 上,过点A ,P ,Q 的平面截该正方体所得的截面记为S ,设BP x =,CQ y =,其中x ,[0y ∈,1],下列命题正确的是 ② .(写出所有正确命题的编号)①当0x =时,S 为矩形,其面积最大为1; ②当12x y ==时,S 为等腰梯形; ③当12x =,34y =时,S 为六边形.【解析】解:对于①,当0x =时,截面S 为矩形,且面积最大时为矩形11ABC D ,最大面积为1=①所示,∴①错误;对于②,当12x y ==时,S 为等腰梯形,如图②所示,∴②正确;对于③,当12x =,34y =时, 延长1DD 至N ,使112D N =,连接AN 交11A D 于S ,连接NQ 交11C D 于R ,连接SR , 可证//AN PQ ,由11NRD QRC ∆∆∽,可得1111::1:2C R D R C Q D N ==, 可得113C R =,此时的截面形状仍然上图所示的APQRS ,为五边形,如图③所示故③错误;综上,正确的命题是②. 故答案为:②.17.如图,1111ABCD A B C D -是棱长为a 的正方体,有下列说法: ①若点P 在1BDC ∆所在平面上运动,则三棱锥11P AB D -的体积为定值;②若点M 、N 、L 分别是棱11A B 、1A D 、1A A 上与端点不重合的三个动点,则MNL ∆必为锐角三角形; ③若点Q 为1A A 的中点,点G 为正方形1111A B C D (包含边界)内一个动点,且始终满足1GQ AC ⊥,则动点Q 的轨迹是以1A 为半径的一段圆弧; ④若M ∈线段1A C (除端点1A 、C 外),1A C ⊥平面α截正方体得到的截面是不同的多边形,则这些不同的2和. 其中说法正确的是 ①②④ (写出正确说法的序号)【解析】解:1111ABCD A B C D -是棱长为a 的正方体,①若点P 在1BDC ∆所在平面上运动,则三棱锥11P AB D -,底面11AB D 2,故三棱锥11P AB D -的体积为定值316a ,故正确;②若点M 、N 、L 分别是棱11A B 、1A D 、1A A 上与端点不重合的三个动点,则MNL ∆必为锐角三角形,故正确;③若点Q 为1A A 的中点,点G 为正方形1111A B C D (包含边界)内一个动点,且始终满足1GQ AC ⊥,则动点Q 的连接11A B ,11A D 中点的线段,故错误;④若M ∈线段1A C (除端点1A 、C 外),1A C ⊥平面α截正方体得到的截面是不同的多边形,则这些不同的多边形只能是三角形或六边形,当M 落在线段1A C 2和,故正确. 综上所述,正确的说法是:①④, 故答案为:①②④18.(2020•乌鲁木齐一模)如图,正方体1111ABCD A B C D -的棱长为1,有下列四个命题: ①1BC 与平面11BCD A 所成的角为30︒;②三棱锥1A A BD -与三棱锥11C A BD -的体积比为1:2;③过点A 作平面α,使得棱AB ,AD ,1AA 在平面α上的正投影的长度相等,则这样的平面α有且只有一个;④过1BD 作正方体的截面,设截面面积为S ,则S ; 上述四个命题中,正确命题的序号为 ①②③④【解析】解:如图所示,①1BC 与平面11BCD A 所成的角θ为锐角,满足:111sin 2OC BC θ===,30θ=︒,正确;②三棱锥1A A BD -的体积21111326=⨯⨯=,三棱锥11C A BD -的体积3111463=-⨯=,因此体积比1:2=,正确;③过点A 作平面α,使得棱AB ,AD ,1AA 在平面α上的正投影的长度相等,则这样的平面α有且只有一个,是经过点A 且与直线1AC 垂直的平面,正确.④过1BD 作正方体的截面,设截面面积为S ,截面为1BFD E ,建立空间直角坐标系. 设[0CF a =∈,1],(0B ,0,0),(1F ,0,)a ,1(1D ,1,1),设1FBD θ∠=为锐角.11cos ||||3BF BDBF BD θ⋅==⋅,则sinθ=, S∴==可得12a =时,S ,因此正确.上述四个命题中,正确命题的序号为①②③④. 故答案为:①②③④.19.(2020秋•海淀区校级期中)棱长为6的正方体1AC 的一个顶点A 在平面α内.(1)若正方体上与顶点A 共面的三个顶点B 、C 、D 到α的距离最大值为3,且对应点为C ,P 是正方体的其余四个顶点中的一个则P 到平面α距离可能是 ④⑤ . ①3;②4;③5;④6;⑤7;(填写出所有正确结论序号) (2)当1C A α⊥时,正方体α在面内正投影图形的面积为 .【解析】解:(1)如图,B 、D 、C 到平面α的距离分别为m 、n 、3,(,3)m n <, 分类讨论:①//BD α时,设点1A 到平面α的距离为1d ,根据三角形相似可得15d ==>,于是可得:点1C 到平面α的距离为2d ,可得238d =+>. 此时P 到平面α距离可能是6,7.②取其极限情况:假设顶点D 也在平面α内,此时//BC α, 此时点B 到α的距离也为3.可得:点1A ,1D 到α5>,点1B ,1C 到α的距离38+>. 此时P 到平面α距离可能是6,7.综上可得:P 到平面α距离可能是6,7,故为④,⑤.(2)由正方体的性质可得:1C A ⊥平面1BDA ,1C A ⊥平面11B CD ,当1C A α⊥时,∴平面1//BDA 平面11//B CD α,等边三角形1BDA 与等边三角形11B CD 在平面α内的投影都为等边三角形,由对称性可得:正方体α在面内正投影图形为正六边形,其面积26==故答案为:④⑤;.20.(2020秋•四川月考)已知正方体1111ABCD A B C D -的棱长为4,点E 为BC 中点,点F 为11A B 中点,若平面α过点F 且与平面1AEC 平行,则平面α截正方体1111ABCD A B C D -【解析】解:如图所示,取11A D 的中点G , 则平面1AEC 即为平面1AEC G ,过点F 作1GC 的平行线与11B C 交于点M ,则11B M =, 过点M 作1C E 的平行线与1BB 交于点N ,则12B N =,平面α截正方体1111ABCD A B C D -所得的截面为FMN ∆,且MF MN ==FN =,在FMN ∆中,1cos5FMN ∠==,所以sin FMN ∠=,故FMN ∆的面积为11sin 22S MF MN FMN =⋅⋅⋅∠==.21.(2020秋•寿光市校级月考)在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,PA ⊥底面ABCD ,PA .过点A 作与棱PC 垂直的平面α,则四棱锥P ABCD -截平面α所得截面的面积为. 【解析】解:作AM PC ⊥,垂足为M ,作MH PC ⊥,MF PC ⊥,则平面AFM H 即为平面α,底面ABCD 是边长为1的正方形,所以AC =,PA ⊥底面ABCD ,PA =,所以PC =,由等面积法可得1122PAC S AM ∆==,解得AM =,由对称性可得到//FH BD ,在PAC ∆中,PM PAPA PC =,所以2PA PM PC ==,又PC ,2PD ==,1CD =,所以222PC PD DC =+,故90PDC ∠=︒,在PDC ∆中,PH PMPC PD =,所以32PM PC PH PD ⋅===, 所以313224PH PD =⨯=,在PBD ∆中,34FH BD =,所以344FH BD ==,所以棱锥P ABCD -截平面α所得截面的面积为11224MAFH S AM FH =⋅⋅==..22.(2020秋•营口期末)直三棱柱111ABC A B C -的棱长均为,M 为AB 的中点,过点M 的平面截三棱柱111ABC A B C -的外接球,则所得的截面面积的取值范围为 [3π,7]π .【解析】解:依题意可知,三棱柱111ABC A B C -的外接球球心O 为上下底面的外接圆的圆心的连线的中点,如图所示:()i 当过点M 的平面过球心时,截得的截面圆最大,圆的半径即为球的半径.设上底面的外接圆半径为r ,则24r ==,所以2r =, 设三棱柱111ABC A B C -的外接球的半径为R ,则2227R r =+=,即R =. 所以截面圆最大为27R ππ=,()ii 当过点M 的平面垂直OM 时截面圆的面积最小,截面圆最小为23ππ=.所以所得的截面面积的取值范围为[3π,7]π. 故答案为:[3π,7]π.。
初中数学专题04几何最值存在性问题(解析版)

专题四几何最值的存在性问题【考题研究】在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。
从历年的中考数学压轴题型分析来看,经常会考查到距离或者两条线段和差最值得问题,并且这部分题目在中考中失分率很高,应该引起我们的重视。
几何最值问题再教材中虽然没有进行专题讲解,到却给了我们很多解题模型,因此在专题复习时进行压轴训练是必要的。
【解题攻略】最值问题是一类综合性较强的问题,而线段和(差)问题,要归归于几何模型:(1)归于“两点之间的连线中,线段最短”凡属于求“变动的两线段之和的最小值”时,大都应用这一模型.(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型.两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2).两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,P A与PB的差的最大值就是AB,此时点P在AB的延长线上,即P′.解决线段和差的最值问题,有时候求函数的最值更方便,建立一次函数或者二次函数求解最值问题.【解题类型及其思路】解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。
【典例指引】类型一【确定线段(或线段的和,差)的最值或确定点的坐标】【典例指引1】(2018·天津中考模拟)如图,在平面直角坐标系中,长方形OABC的顶点A、C分别在x轴、y轴的正半轴上.点B的坐标为(8,4),将该长方形沿OB翻折,点A的对应点为点D,OD与BC交于点E.(I)证明:EO=EB;(Ⅱ)点P是直线OB上的任意一点,且△OPC是等腰三角形,求满足条件的点P的坐标;(Ⅲ)点M是OB上任意一点,点N是OA上任意一点,若存在这样的点M、N,使得AM+MN最小,请直接写出这个最小值.【答案】(I)证明见解析;(Ⅱ)P的坐标为(4,2)或(55,455)或P(﹣55,﹣455)或(165,85);(Ⅲ)325.【解析】分析:(Ⅰ)由折叠得到∠DOB=∠AOB,再由BC∥OA得到∠OBC=∠AOB,即∠OBC=∠DOB,即可;(Ⅱ)设出点P坐标,分三种情况讨论计算即可;(Ⅲ)根据题意判断出过点D作OA的垂线交OB于M,OA于N,求出DN即可.详解:(Ⅰ)∵将该长方形沿OB翻折,点A的对应点为点D,OD与BC交于点E,∴∠DOB=∠AOB,∵BC∥OA,∴∠OBC=∠AOB,∴∠OBC=∠DOB,∴EO=EB;(Ⅱ)∵点B的坐标为(8,4),∴直线OB解析式为y=12 x,∵点P是直线OB上的任意一点,∴设P(a,12 a).∵O(0,0),C(0,4),∴OC=4,PO2=a2+(12a)2=54a2,PC2=a2+(4-12a)2.当△OPC是等腰三角形时,可分三种情况进行讨论:①如果PO=PC,那么PO2=PC2,则54a2=a2+(4-12a)2,解得a=4,即P(4,2);②如果PO=OC,那么PO2=OC2,则54a2=16,解得a=±855,即P(855,455)或P(-855,-455);③如果PC=OC时,那么PC2=OC2,则a2+(4-12a)2=16,解得a=0(舍),或a=165,即P(165,85);故满足条件的点P的坐标为(4,2)或(855,455)或P(-855,-455)或(165,85);(Ⅲ)如图,过点D作OA的垂线交OB于M,交OA于N,此时的M,N是AM+MN的最小值的位置,求出DN就是AM+MN的最小值.由(1)有,EO=EB,∵长方形OABC的顶点A,C分别在x轴、y轴的正半轴上,点B的坐标为(8,4),设OE=x,则DE=8-x,在Rt△BDE中,BD=4,根据勾股定理得,DB2+DE2=BE2,∴16+(8-x)2=x2,∴x=5,∴BE=5,∴CE=3,∴DE=3,BE=5,BD=4,∵S△BDE=12DE×BD=12BE×DG,∴DG=12=5 DE BDBE⨯,由题意有,GN=OC=4,∴DN=DG+GN=125+4=325.即:AM+MN的最小值为325.点睛:此题是四边形综合题,主要考查了矩形的性质,折叠的性质,勾股定理,等腰三角形的性质,极值的确定,进行分类讨论与方程思想是解本题的关键.【举一反三】(2020·云南初三)如图,抛物线y=ax2+bx+3经过点B(﹣1,0),C(2,3),抛物线与y轴的焦点A,与x轴的另一个焦点为D,点M为线段AD上的一动点,设点M的横坐标为t.(1)求抛物线的表达式;(2)过点M作y轴的平行线,交抛物线于点P,设线段PM的长为1,当t为何值时,1的长最大,并求最大值;(先根据题目画图,再计算)(3)在(2)的条件下,当t为何值时,△P AD的面积最大?并求最大值;(4)在(2)的条件下,是否存在点P,使△P AD为直角三角形?若存在,直接写出t的值;若不存在,说明理由.【答案】(1)y=﹣x2+2x+3;(2)当t=32时,l有最大值,l最大=94;(3)t=32时,△P AD的面积的最大值为278;(4)t 15 +.【解析】试题分析:(1)利用待定系数法即可解决问题;(2)易知直线AD解析式为y=-x+3,设M点横坐标为m,则P(t,-t2+2t+3),M(t,-t+3),可得l=-t2+2t+3-(-t+3)=-t2+3t=-(t-32)2+94,利用二次函数的性质即可解决问题;(3)由S△P AD=12×PM×(x D-x A)=32PM,推出PM的值最大时,△P AD的面积最大;(4)如图设AD的中点为K,设P(t,-t2+2t+3).由△P AD是直角三角形,推出PK=12AD,可得(t-32)2+(-t2+2t+3-32)2=14×18,解方程即可解决问题;试题解析:(1)把点B(﹣1,0),C(2,3)代入y=ax2+bx+3,则有30 4233 a ba b-+=⎧⎨++=⎩,解得12ab=-⎧⎨=⎩,∴抛物线的解析式为y=﹣x2+2x+3.(2)在y=﹣x2+2x+3中,令y=0可得0=﹣x2+2x+3,解得x=﹣1或x=3,∴D(3,0),且A(0,3),∴直线AD解析式为y=﹣x+3,设M点横坐标为m,则P(t,﹣t2+2t+3),M(t,﹣t+3),∵0<t<3,∴点M在第一象限内,∴l=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t=﹣(t﹣32)2+94,∴当t=32时,l有最大值,l最大=94;(3)∵S△P AD=12×PM×(x D﹣x A)=32PM,∴PM的值最大时,△P AD的面积中点,最大值=32×94=278.∴t=32时,△P AD的面积的最大值为278.(4)如图设AD的中点为K,设P(t,﹣t2+2t+3).∵△P AD 是直角三角形,∴PK =12AD , ∴(t ﹣32)2+(﹣t 2+2t +3﹣32)2=14×18, 整理得t (t ﹣3)(t 2﹣t ﹣1)=0, 解得t =0或3或15±, ∵点P 在第一象限, ∴t =1+5. 类型二 【确定三角形、四边形的周长的最值或符合条件的点的坐标】【典例指引2】(2020·重庆初三期末)如图,抛物线2y ax bx =+(0a >)与双曲线ky x=相交于点A 、B ,已知点A 坐标()1,4,点B 在第三象限内,且AOB ∆的面积为3(O 为坐标原点).(1)求实数a 、b 、k 的值;(2)在该抛物线的对称轴上是否存在点P 使得POB ∆为等腰三角形?若存在请求出所有的P 点的坐标,若不存在请说明理由.(3)在坐标系内有一个点M ,恰使得MA MB MO ==,现要求在y 轴上找出点Q 使得BQM ∆的周长最小,请求出M 的坐标和BQM ∆周长的最小值.【答案】(1)13a b =⎧⎨=⎩,4k =;(2)存在,1 1.5,2P ⎛-- ⎝⎭,2 1.5,2P ⎛⎫- ⎪ ⎪⎝⎭,3 1.5,22P ⎛--- ⎝⎭,4 1.5,2P ⎛-- ⎝⎭,()5 1.5,0.5P --;(3)12【解析】 【分析】(1)由点A 在双曲线上,可得k 的值,进而得出双曲线的解析式.设4,B m m ⎛⎫⎪⎝⎭(0m <),过A 作AP ⊥x 轴于P ,BQ ⊥y 轴于Q ,直线BQ 和直线AP 相交于点M .根据AOB AMB AOP QOB OPMQ S S S S S ∆∆∆∆=---矩形=3解方程即可得出k 的值,从而得出点B 的坐标,把A 、B 的坐标代入抛物线的解析式即可得到结论; (2)抛物线对称轴为 1.5x =-,设()1.5,P y -,则可得出2PO ;2OB ;2PB .然后分三种情况讨论即可; (3)设M (x ,y ).由MO =MA =MB ,可求出M 的坐标.作B 关于y 轴的对称点B '.连接B 'M 交y 轴于Q .此时△BQM 的周长最小.用两点间的距离公式计算即可. 【详解】(1)由()1,4A 知:k =xy =1×4=4, ∴4y x=. 设4,B m m ⎛⎫⎪⎝⎭(0m <). 过A 作AP ⊥x 轴于P ,BQ ⊥y 轴于Q ,直线BQ 和直线AP 相交于点M ,则S △AOP =S △BOQ =2.AOB AMB AOP QOB OPMQ S S S S S ∆∆∆∆=---矩形()()14414102AOP QOB m S S m m ∆∆⎛⎫⎛⎫=---+-⨯- ⎪ ⎪⎝⎭⎝⎭242224m m m ⎛⎫⎛⎫=--+--- ⎪ ⎪⎝⎭⎝⎭22m m=- 令:223m m-=, 整理得:22320m m +-=, 解得:112m =,22m =-. ∵m <0, ∴m =-2, 故()2,2B --.把A 、B 带入2y ax bx =+2424a ba b -=-⎧⎨=+⎩解出:13a b =⎧⎨=⎩,∴23y x x =+.(2)223( 1.5) 2.25y x x x =+=+- ∴抛物线23y x x =+的对称轴为 1.5x =-.设()1.5,P y -,则2294PO y =+,28OB =,()22124PB y =++.∵△POB 为等腰三角形, ∴分三种情况讨论: ①22PO OB =,即2984y +=,解得:2y =±,∴1 1.5,P ⎛- ⎝⎭,2P ⎛- ⎝⎭;②22PB OB =,即()21284y ++=,解得:22y =-±,∴3 1.5,2P ⎛-- ⎝⎭,4 1.5,2P ⎛-- ⎝⎭;③22PB OP =,即()2219244y y ++=+,解得:0.5y =- ∴()5 1.5,0.5P --; (3)设(),M x y .∵()1,4A ,()2,2B --,()0,0O ,∴222MO x y =+,()()22214MA x y =-+-,()()22222MB x y =+++.∵MO MA MB ==,∴()()()()222222221422x y x y x y x y ⎧+=-+-⎪⎨+=+++⎪⎩ 解得:11272x y ⎧=-⎪⎪⎨⎪=⎪⎩,∴117,22M ⎛⎫-⎪⎝⎭. 作B 关于y 轴的对称点B '坐标为:(2,-2). 连接B 'M 交y 轴于Q .此时△BQM 的周长最小.BQM C MQ BQ MB ∆=++MQ QB MB '=++=MB '+MB222211711722222222⎛⎫⎛⎫⎛⎫⎛⎫=--+++-+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()13461702=+.【名师点睛】本题是二次函数综合题.考查了用待定系数法求二次函数的解析式、二次函数的性质、轴对称-最值问题等.第(1)问的关键是割补法;第(2)问的关键是分类讨论;第(3)问的关键是求出M 的坐标. 【举一反三】(2019·重庆实验外国语学校初三)如图1,已知抛物线y =﹣23384x +x +3与x 轴交于A 和B 两点,(点A 在点B 的左侧),与y 轴交于点C . (1)求出直线BC 的解析式.(2)M 为线段BC 上方抛物线上一动点,过M 作x 轴的垂线交BC 于H ,过M 作MQ ⊥BC 于Q ,求出△MHQ 周长最大值并求出此时M 的坐标;当△MHQ 的周长最大时在对称轴上找一点R ,使|AR ﹣MR |最大,求出此时R 的坐标.(3)T 为线段BC 上一动点,将△OCT 沿边OT 翻折得到△OC ′T ,是否存在点T 使△OC ′T 与△OBC 的重叠部分为直角三角形,若存在请求出BT 的长,若不存在,请说明理由.【答案】(1)y =﹣34x +3;(2)R (1,92);(3)BT =2或BT =165.【解析】 【分析】(1)由已知可求A (﹣2,0),B (4,0),C (0,3),即可求BC 的解析式;(2)由已知可得∠QMH =∠CBO ,则有QH =34QM ,MH =54MQ ,所以△MHQ 周长=3QM ,则求△MHQ周长的最大值,即为求QM 的最大值;设M (m ,233384m m -++),过点M 与BC 直线垂直的直线解析式为243733812y x m m =--+,交点22972721,35025200100Q m m m m ⎛⎫+--+ ⎪⎝⎭,可求出()23=410MQ m m -+,当m =2时,MQ 有最大值65;函数的对称轴为x =1,作点M 关于对称轴的对称点M '(0,3),连接AM '与对称轴交于点R ,此时|AR ﹣MR |=|AR ﹣M 'R |=AM ',|AR ﹣MR |的最大值为AM ';求出AM '的直线解析式为332y x =+,则可求912R ⎛⎫⎪⎝⎭,; (3)有两种情况:当TC '∥OC 时,GO ⊥TC ';当OT ⊥BC 时,分别求解即可. 【详解】解:(1)令y =0,即2333084x x -++=,解得122,4x x =-=, ∵点A 在点B 的左侧 ∴A (﹣2,0),B (4,0), 令x =0解得y =3, ∴C (0,3),设BC 所在直线的解析式为y =kx +3, 将B 点坐标代入解得k =34- ∴BC 的解析式为y =-34x +3;(2)∵MQ ⊥BC ,M 作x 轴, ∴∠QMH =∠CBO , ∴tan ∠QMH =tan ∠CBO =34, ∴QH =34QM ,MH =54MQ ,∴△MHQ 周长=MQ +QH +MH =34QM +QM +54MQ =3QM ,则求△MHQ 周长的最大值,即为求QM 的最大值; 设M (m ,233384m m -++), 过点M 与BC 直线垂直的直线解析式为243733812y x m m =--+, 直线BC 与其垂线相交的交点22972721,35025200100Q m m m m ⎛⎫+--+ ⎪⎝⎭,∴()23=410MQ m m -+, ∴当m =2时,MQ 有最大值65, ∴△MHQ 周长的最大值为185,此时M (2,3), 函数的对称轴为x =1,作点M 关于对称轴的对称点M '(0,3),连接AM '与对称轴交于点R ,此时|AR ﹣MR |=|AR ﹣M 'R |=AM ', ∴|AR ﹣MR |的最大值为AM '; ∵AM '的直线解析式为y =32x +3, ∴R (1,92); (3)①当TC '∥OC 时,GO ⊥TC ', ∵△OCT ≌△OTC ', ∴3412=55OG ⨯=, ∴12655T ⎛⎫⎪⎝⎭, ∴BT =2;②当OT⊥BC时,过点T作TH⊥x轴,OT=125,∵∠BOT=∠BCO,∴3=1255cOo BOTHs∠=,∴OH=36 25,∴36482525 T⎛⎫ ⎪⎝⎭,∴BT=165;综上所述:BT=2或BT=165.【点睛】本题是一道综合题,考查了二次函数一次函数和三角形相关的知识,能够充分调动所学知识是解题的关键. 类型三【确定三角形、四边形的面积最值或符合条件的点的坐标】【典例指引3】(2019·甘肃中考真题)如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y轴交于点C.(1)求二次函数的解析式;(2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标;(3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标.【答案】(1)y=x2﹣4x+3;(2)点P(4,3)或(0,3)或(2,﹣1);(3)最大值为94,E(32,﹣34).【解析】【分析】(1)用交点式函数表达式,即可求解;(2)分当AB为平行四边形一条边、对角线,两种情况,分别求解即可;(3)利用S四边形AEBD=12AB(y D﹣y E),即可求解.【详解】解:(1)用交点式函数表达式得:y=(x﹣1)(x﹣3)=x2﹣4x+3;故二次函数表达式为:y=x2﹣4x+3;(2)①当AB为平行四边形一条边时,如图1,则AB=PE=2,则点P坐标为(4,3),当点P在对称轴左侧时,即点C的位置,点A、B、P、F为顶点的四边形为平行四边形,故:点P(4,3)或(0,3);②当AB是四边形的对角线时,如图2,AB中点坐标为(2,0)设点P的横坐标为m,点F的横坐标为2,其中点坐标为:22m+,即:22m+=2,解得:m=2,故点P(2,﹣1);故:点P(4,3)或(0,3)或(2,﹣1);(3)直线BC的表达式为:y=﹣x+3,设点E坐标为(x,x2﹣4x+3),则点D(x,﹣x+3),S四边形AEBD=12AB(y D﹣y E)=﹣x+3﹣x2+4x﹣3=﹣x2+3x,∵﹣1<0,故四边形AEBD面积有最大值,当x=32,其最大值为94,此时点E(32,﹣34).【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.【举一反三】(2019·内蒙古中考真题)如图,在平面直角坐标系中,已知抛物线22(0)y ax bx a =++≠与x 轴交于()1,0A -),()3,0B 两点,与y 轴交于点C ,连接BC .(1)求该抛物线的解析式,并写出它的对称轴;(2)点D 为抛物线对称轴上一点,连接CD BD 、,若DCB CBD ∠=∠,求点D 的坐标;(3)已知()1,1F ,若(),E x y 是抛物线上一个动点(其中12x <<),连接CE CF EF 、、,求CEF ∆面积的最大值及此时点E 的坐标.(4)若点N 为抛物线对称轴上一点,抛物线上是否存在点M ,使得以,,,B C M N 为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.【答案】(1)224233y x x =-++,对称轴1x =;(2)11,4D ⎛⎫ ⎪⎝⎭;(3)面积有最大值是4948,755,424E ⎛⎫⎪⎝⎭;(4)存在点M 使得以,,,B C M N 为顶点的四边形是平行四边形,()2,2M或104,3M ⎛⎫-⎪⎝⎭或102,3M ⎛⎫-- ⎪⎝⎭.【解析】 【分析】(1)将点A (-1,0),B (3,0)代入y =ax 2+bx +2即可;(2)过点D 作DG ⊥y 轴于G ,作DH ⊥x 轴于H ,设点D (1,y ),在Rt △CGD 中,CD 2=CG 2+GD 2=(2-y )2+1,在Rt △BHD 中,BD 2=BH 2+HD 2=4+y 2,可以证明CD =BD ,即可求y 的值;(3)过点E 作EQ ⊥y 轴于点Q ,过点F 作直线FR ⊥y 轴于R ,过点E 作FP ⊥FR 于P ,证明四边形QRPE是矩形,根据S △CEF =S 矩形QRPE -S △CRF -S △EFP ,代入边即可;(4)根据平行四边形对边平行且相等的性质可以得到存在点M 使得以B ,C ,M ,N 为顶点的四边形是平行四边形,点M (2,2)或M (4,- 103)或M (-2,-103); 【详解】解:(1)将点()()1,0,3,0A B -代入22y ax bx =++,可得24,33a b =-=, 224233y x x ∴=-++;∴对称轴1x =;(2)如图1:过点D 作DG y ⊥轴于G ,作DH x ⊥轴于H ,设点()1,D y ,()()0,2,3,0C B Q ,∴在Rt CGD ∆中,()222221CD CG GD y =+=-+, ∴在Rt BHD ∆中,22224BD BH HD y =+=+,在BCD ∆中,DCB CBD ∠=∠QCD BD ∴=,22CD BD ∴=()22214y y ∴-+=+ 14y ∴=,11,4D ⎛⎫∴ ⎪⎝⎭; (3)如图2:过点E 作EQ y ⊥轴于点Q ,过点F 作直线FR y ⊥轴于R ,过点E 作FP FR ⊥于P ,90EQR QRP RPE ︒∴∠=∠=∠=, ∴四边形QRPE 是矩形,CEF CRF EFP QRPE S S S S ∆∆∆=--Q 矩形,()()(),,0,2,1,1E x y C F Q ,111•222CEF S EQ QR EQ QC CR RF FP EP ∴=⋅-⨯⋅-⋅-V()()()()111121111222CEF S x y x y x y ∆∴=----⨯⨯---224233y x x =-++Q ,21736CEF S x x ∆∴=-+∴当74x =时,面积有最大值是4948,此时755,424E ⎛⎫⎪⎝⎭; (4)存在点M 使得以,,,B C M N 为顶点的四边形是平行四边形, 设()()1,,,N n M x y ,①四边形CMNB 是平行四边形时,1322x+=2x ∴=-102,3M ⎛⎫∴-- ⎪⎝⎭②四边形CNBM 时平行四边形时,3122x +=2x ∴=, ()2,2M ∴;③四边形CNNB 时平行四边形时,1322x+=, 4x ∴=,104,3M ⎛⎫∴- ⎪⎝⎭;综上所述:()2,2M 或104,3M ⎛⎫- ⎪⎝⎭或102,3M ⎛⎫--⎪⎝⎭; 【点睛】本题考查了待定系数法求二次函数解析式,二次函数的图象及性质,勾股定理,平行四边形的判定与性质,及分类讨论的数学思想.熟练掌握二次函数的性质、灵活运用勾股定理求边长、掌握平行四边形的判定方法是解题的关键.【新题训练】1.如图,直线y =5x +5交x 轴于点A ,交y 轴于点C ,过A ,C 两点的二次函数y =ax 2+4x +c 的图象交x 轴于另一点B .(1)求二次函数的表达式;(2)连接BC ,点N 是线段BC 上的动点,作ND ⊥x 轴交二次函数的图象于点D ,求线段ND 长度的最大值; (3)若点H 为二次函数y =ax 2+4x +c 图象的顶点,点M (4,m )是该二次函数图象上一点,在x 轴,y 轴上分别找点F ,E ,使四边形HEFM 的周长最小,求出点F 、E 的坐标.【答案】(1) y=-x2+4x+5;(2);(3) F (,0),E(0,).【解析】【分析】(1)先根据坐标轴上点的坐标特征由一次函数的表达式求出A,C两点的坐标,再根据待定系数法可求二次函数的表达式;(2)根据坐标轴上点的坐标特征由二次函数的表达式求出B点的坐标,根据待定系数法可求一次函数BC 的表达式,设ND的长为d,N点的横坐标为n,则N点的纵坐标为-n+5,D点的坐标为D(n,-n2+4n+5),根据两点间的距离公式和二次函数的最值计算可求线段ND长度的最大值;(3)由题意可得二次函数的顶点坐标为H(2,9),点M的坐标为M(4,5),作点H(2,9)关于y轴的对称点H1,可得点H1的坐标,作点M(4,5)关于x轴的对称点HM1,可得点M1的坐标连结H1M1分别交x轴于点F,y轴于点E,可得H1M1+HM的长度是四边形HEFM的最小周长,再根据待定系数法可求直线H1M1解析式,根据坐标轴上点的坐标特征可求点F、E的坐标.【详解】解:(1)∵直线y=5x+5交x轴于点A,交y轴于点C,∴A(-1,0),C(0,5),∵二次函数y=ax2+4x+c的图象过A,C两点,∴,解得,∴二次函数的表达式为y=-x2+4x+5;(2)如解图①,第2题解图①∵点B是二次函数的图象与x轴的交点,∴由二次函数的表达式为y=-x2+4x+5得,点B的坐标B(5,0),设直线BC解析式为y=kx+b,∵直线BC过点B(5,0),C(0,5),∴,解得,∴直线BC解析式为y=-x+5,设ND的长为d,N点的横坐标为n,则N点的坐标为(n,-n+5),D点的坐标为(n,-n2+4n+5),则d=|-n2+4n+5-(-n+5)|,由题意可知:-n2+4n+5>-n+5,∴d=-n2+4n+5-(-n+5)=-n2+5n=-(n-)2+,∴当n=时,线段ND长度的最大值是;(3)∵点M(4,m)在抛物线y=-x2+4x+5上,∴m=5,∴M(4,5).∵抛物线y=-x2+4x+5=-(x-2)2+9,∴顶点坐标为H(2,9),如解图②,作点H(2,9)关于y轴的对称点H1,则点H1的坐标为H1(-2,9);作点M(4,5)关于x轴的对称点M1,则点M1的坐标为M1(4,-5),连接H1M1分别交x轴于点F,y轴于点E,∴H1M1+HM的长度是四边形HEFM的最小周长,则点F,E即为所求的点.设直线H1M1的函数表达式为y=mx+n,∵直线H1M1过点H1(-2,9),M1(4,-5),∴,解得,∴y=-x+,∴当x=0时,y=,即点E坐标为(0,),当y=0时,x=,即点F坐标为(,0),故所求点F,E的坐标分别为(,0),(0,).2.(2019·江苏中考真题)如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合),直线l是经过点P的一条直线,把△ABC沿直线l折叠,点B的对应点是点B’.(1)如图1,当PB=4时,若点B’恰好在AC边上,则AB’的长度为_____;(2)如图2,当PB=5时,若直线l//AC,则BB’的长度为;(3)如图3,点P在AB边上运动过程中,若直线l始终垂直于AC,△ACB’的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线l变化过程中,求△ACB’面积的最大值.【答案】(1)4;(2)(3)面积不变,S△ACB’=(4)【解析】【分析】(1)证明△APB′是等边三角形即可解决问题;(2)如图2中,设直线l交BC于点E,连接B B′交PE于O,证明△PEB是等边三角形,求出OB即可解决问题;(3)如图3中,结论:面积不变,证明B B′//AC即可;(4)如图4中,当PB′⊥AC时,△ACB′的面积最大,设直线PB′交AC于点E,求出B′E即可解决问题.【详解】(1)如图1,∵△ABC为等边三角形,∴∠A=60°,AB=BC=CA=8,∵PB=4,∴PB′=PB=P A=4,∵∠A=60°,∴△APB′是等边三角形,∴AB′=AP=4,故答案为4;(2)如图2,设直线l交BC于点E,连接B B′交PE于O,∵PE∥AC,∴∠BPE=∠A=60°,∠BEP=∠C=60°,∴△PEB是等边三角形,∵PB=5,B、B′关于PE对称,∴BB′⊥PE,BB′=2OB,∴OB=PB·sin60°,∴BB,故答案为(3)如图3,结论:面积不变.过点B作BE⊥AC于E,则有BE=AB·sin60°=3843⨯=,∴S△ABC=1184322AC BE=⨯⨯g=163,∵B、B′关于直线l对称,∴BB′⊥直线l,∵直线l⊥AC,∴AC//BB′,∴S△ACB’=S△ABC=163;(4)如图4,当B′P⊥AC时,△ACB′的面积最大,设直线PB′交AC于E,在Rt△APE中,P A=2,∠P AE=60°,∴PE=P A·sin60°=3,∴B′E=B′P+PE=6+3,∴S△ACB最大值=12×(6+3)×8=24+43.【点睛】本题是几何变换综合题,考查了等边三角形的判定与性质,轴对称变换,解直角三角形,平行线的判定与性质等知识,理解题意,熟练掌握和灵活运用相关知识是解题的关键.3.(2019·湖南中考真题)如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y轴的正半轴上随之上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为212时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.【答案】(1)点C的坐标为(2,3;(2)OA=2;(3)OC的最大值为8,cos∠OAD 5.【解析】【分析】(1)作CE⊥y轴,先证∠CDE=∠OAD=30°得CE=12CD=2,DE2223CD CE-=OAD=30°知OD=12AD=3,从而得出点C坐标;(2)先求出S△DCM=6,结合S四边形OMCD=212知S△ODM=92,S△OAD=9,设OA=x、OD=y,据此知x2+y2=36,12xy=9,得出x2+y2=2xy,即x=y,代入x2+y2=36求得x的值,从而得出答案;(3)由M为AD的中点,知OM=3,CM=5,由OC≤OM+CM=8知当O、M、C三点在同一直线时,OC有最大值8,连接OC,则此时OC与AD的交点为M,ON⊥AD,证△CMD∽△OMN得CD DM CM ON MN OM==,据此求得MN=95,ON=125,AN=AM﹣MN=65,再由OA22ON AN+cos∠OAD=ANOA可得答案.【详解】(1)如图1,过点C作CE⊥y轴于点E,∵矩形ABCD中,CD⊥AD,∴∠CDE+∠ADO=90°,又∵∠OAD+∠ADO=90°,∴∠CDE=∠OAD=30°,∴在Rt△CED中,CE=12CD=2,DE22CD CE=3,在Rt△OAD中,∠OAD=30°,∴OD=12AD=3,∴点C的坐标为(2,3);(2)∵M为AD的中点,∴DM=3,S△DCM=6,又S四边形OMCD=212,∴S△ODM=92,∴S△OAD=9,设OA=x、OD=y,则x2+y2=36,12xy=9,∴x2+y2=2xy,即x=y,将x=y代入x2+y2=36得x2=18,解得x=2(负值舍去),∴OA=2;(3)OC的最大值为8,如图2,M为AD的中点,∴OM=3,CM22CD DM+5,∴OC≤OM+CM=8,当O、M、C三点在同一直线时,OC有最大值8,连接OC,则此时OC与AD的交点为M,过点O作ON⊥AD,垂足为N,∵∠CDM=∠ONM=90°,∠CMD=∠OMN,∴△CMD∽△OMN,∴CD DM CMON MN OM==,即4353ON MN==,解得MN=95,ON=125,∴AN=AM﹣MN=65,在Rt△OAN中,OA2265 5ON AN+=,∴cos∠OAD=5 ANOA=.【点睛】本题是四边形的综合问题,解题的关键是掌握矩形的性质、勾股定理、相似三角形的判定与性质等知识点.4.(2018·江苏中考真题)如图,在平面直角坐标系中,一次函数y=﹣23x+4的图象与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O 停止运动,点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=13秒时,点Q的坐标是;(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.【答案】(1)(4,0);(2)①当0<t≤1时,S =334t2;②当1<t≤43时,S =﹣394t2+18t;③当43<t≤2时,S =﹣3t2+12;(3)OT+PT的最小值为32【解析】【分析】(1)先确定出点A的坐标,进而求出AP,利用对称性即可得出结论;(2)分三种情况,①利用正方形的面积减去三角形的面积,②利用矩形的面积减去三角形的面积,③利用梯形的面积,即可得出结论;(3)先确定出点T的运动轨迹,进而找出OT+PT最小时的点T的位置,即可得出结论.【详解】(1)令y=0,∴﹣23x+4=0,∴x=6,∴A(6,0),当t=13秒时,AP=3×13=1,∴OP=OA﹣AP=5,∴P(5,0),由对称性得,Q(4,0);(2)当点Q在原点O时,OQ=6,∴AP=12OQ=3,∴t=3÷3=1,①当0<t≤1时,如图1,令x=0,∴y=4,∴B(0,4),∴OB=4,∵A(6,0),∴OA=6,在Rt△AOB中,tan∠OAB=2=3 OBOA,由运动知,AP=3t,∴P(6﹣3t,0),∴Q(6﹣6t,0),∴PQ=AP=3t,∵四边形PQMN是正方形,∴MN∥OA,PN=PQ=3t,在Rt△APD中,tan∠OAB=233 PD PDAP t==,∴PD=2t,∴DN=t,∵MN∥OA∴∠DCN=∠OAB,∴tan∠DCN=23 DN tCN CN==,∴CN=32t,∴S=S正方形PQMN﹣S△CDN=(3t)2﹣12t×32t=334t2;②当1<t≤43时,如图2,同①的方法得,DN=t,CN=32t,∴S=S矩形OENP﹣S△CDN=3t×(6﹣3t)﹣12t×32t=﹣394t2+18t;③当43<t≤2时,如图3,S=S梯形OBDP=12(2t+4)(6﹣3t)=﹣3t2+12;(3)如图4,由运动知,P(6-3t,0),Q(6-6t,0),∴M(6-6t,3t),∵T是正方形PQMN的对角线交点,∴T(6-93,22t t),∴点T是直线y=-13x+2上的一段线段,(-3≤x<6),同理:点N是直线AG:y=-x+6上的一段线段,(0≤x≤6),∴G(0,6),∴OG=6,∵A(6,0),∴AG2,在Rt△ABG中,OA=6=OG,∴∠OAG=45°,∵PN⊥x轴,∴∠APN=90°,∴∠ANP=45°,∴∠TNA=90°,即:TN⊥AG,∵T 正方形PQMN 的对角线的交点, ∴TN =TP , ∴OT +TP =OT +TN ,∴点O ,T ,N 在同一条直线上(点Q 与点O 重合时),且ON ⊥AG 时,OT +TN 最小, 即:OT +TN 最小,∵S △OAG =12OA ×OG =12AG ×ON , ∴ON =OA OGAGn =32. 即:OT +PT 的最小值为32【点睛】此题是一次函数综合题,主要考查了正方形的面积,梯形,三角形的面积公式,正方形的性质,勾股定理,锐角三角函数,用分类讨论的思想解决问题是解本题的关键,找出点T 的位置是解本题(3)的难点.5.(2020·江苏初三期末)已知二次函数223y x x =--+的图象和x 轴交于点A 、B ,与y 轴交于点C ,点P 是直线AC 上方的抛物线上的动点.(1)求直线AC 的解析式.(2)当P 是抛物线顶点时,求APC ∆面积. (3)在P 点运动过程中,求APC ∆面积的最大值. 【答案】(1)3y x =+;(2)3;(3)APC ∆面积的最大值为278. 【解析】 【分析】(1)由题意分别将x =0、y =0代入二次函数解析式中求出点C 、A 的坐标,再根据点A 、C 的坐标利用待定系数法即可求出直线AC 的解析式;(2)由题意先根据二次函数解析式求出顶点P ,进而利用割补法求APC ∆面积;(3)根据题意过点P 作PE y P 轴交AC 于点E 并设点P 的坐标为()2,23m m m --+(30m -<<),则点E的坐标为(),3+m m 进而进行分析. 【详解】解:(1) 分别将x =0、y =0代入二次函数解析式中求出点C 、A 的坐标为()0,3C ;()30A -,; 将()0,3C ;()30A -,代入223y x x =--+,得到直线AC 的解析式为3y x =+. (2)由223y x x =--+,将其化为顶点式为2(1)4y x =-++,可知顶点P 为(1,4)-, 如图P 为顶点时连接PC 并延长交x 轴于点G ,则有S APC S APG S ACG =-V V V ,将P 点和C 点代入求出PC 的解析式为3y x =-+,解得G 为(3,0), 所有S APC S APG S ACG =-V V V 11646312922=⨯⨯-⨯⨯=-=3;(3)过点P 作PE y P 轴交AC 于点E .设点P 的坐标为()2,23m m m --+(30m -<<),则点E 的坐标为(),3+m m ∴()2233PE m m m =--+-+2239324m m m ⎛⎫=--=-++ ⎪⎝⎭, 当32m =-时,PE 取最大值,最大值为94.∵()1322APC C A S PE x x PE ∆=⋅-=,∴APC ∆面积的最大值为278. 【点睛】本题考查待定系数法求一次函数解析式、二次函数图象上点的坐标特征、等腰三角形的性质、二次函数的性质以及解二元一次方程组,解题的关键是利用待定系数法求出直线解析式以及利用二次函数的性质进行综合分析.6.(2020·江苏初三期末)如图,抛物线265y ax x =+-交x 轴于A 、B 两点,交y 轴于点C ,点B 的坐标为()5,0,直线5y x =-经过点B 、C .(1)求抛物线的函数表达式;(2)点P 是直线BC 上方抛物线上的一动点,求BCP ∆面积S 的最大值并求出此时点P 的坐标; (3)过点A 的直线交直线BC 于点M ,连接AC ,当直线AM 与直线BC 的一个夹角等于ACB ∠的3倍时,请直接写出点M 的坐标.【答案】(1)265y x x =-+-;(2)1258S =,点P 坐标为515,24⎛⎫ ⎪⎝⎭;(3)点M 的坐标为7837,2323⎛⎫-⎪⎝⎭, 6055,2323⎛⎫- ⎪⎝⎭【解析】 【分析】(1)利用B (5,0)用待定系数法求抛物线解析式; (2)作PQ ∥y 轴交BC 于Q ,根据12PBC S PQ OB ∆=⋅求解即可; (3)作∠CAN =∠NAM 1=∠ACB ,则∠A M 1B =3∠ACB , 则∆ NAM 1∽∆ A C M 1,通过相似的性质来求点M 1的坐标;作AD ⊥BC 于D ,作M 1关于AD 的对称点M 2, 则∠A M 2C =3∠ACB ,根据对称点坐标特点可求M 2的坐标. 【详解】(1)把()5,0B 代入265y ax x =+-得253050a +-= 1a =-.∴265y x x =-+-;(2)作PQ ∥y 轴交BC 于Q ,设点()2,65P x x x -+-,则∵()5,0B∴OB =5, ∵Q 在BC 上,∴Q 的坐标为(x ,x -5),∴PQ =2(65)(5)x x x -+---=25x x -+, ∴12PBC S PQ OB ∆=⋅ =21(5)52x x -+⨯ =252522x x -+∴当52x =时,S 有最大值,最大值为1258S =,∴点P 坐标为515,24⎛⎫⎪⎝⎭. (3)如图1,作∠CAN =∠NAM 1=∠ACB ,则∠A M 1B =3∠ACB ,∵∠CAN =∠NAM 1, ∴AN =CN ,∵265y x x =-+-=-(x -1)(x -5),∴A 的坐标为(1,0),C 的坐标为(0,-5), 设N 的坐标为(a ,a -5),则∴2222(1)(5)(55)a a a a -+-=+-+,∴a =136, ∴N 的坐标为(136,176-), ∴AN 2=221317(1)()66-+-=16918,AC 2=26,∴22169113182636 ANAC=⨯=,∵∠NAM1=∠ACB,∠N M1A=∠C M1A,∴∆NAM1∽∆A C M1,∴11AMANAC CM=,∴21211336AMCM=,设M1的坐标为(b,b-5),则∴222236[(1)(5)]13[(55)]b b b b-+-=+-+,∴b1=7823,b2=6(不合题意,舍去),∴M1的坐标为7837(,)2323-,如图2,作AD⊥BC于D,作M1关于AD的对称点M2, 则∠A M2C=3∠ACB,易知∆ADB是等腰直角三角形,可得点D的坐标是(3,-2),∴M2横坐标=7860232323⨯-=,M2纵坐标=37552(2)()2323⨯---=-,∴M2的坐标是6055(,)2323-,综上所述,点M的坐标是7837(,)2323-或6055(,)2323-.【点睛】本题考查了二次函数与几何图形的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质及相似三角形的判定与性质,会运用分类讨论的思想解决数学问题.7.(2019·石家庄市第四十一中学初三)如图,在平面直角坐标系中,抛物线y=x(x﹣b)﹣与y轴相交于A点,与x轴相交于B、C两点,且点C在点B的右侧,设抛物线的顶点为P.(1)若点B与点C关于直线x=1对称,求b的值;(2)若OB=OA,求△BCP的面积;(3)当﹣1≤x≤1时,该抛物线上最高点与最低点纵坐标的差为h,求出h与b的关系;若h有最大值或最小值,直接写出这个最大值或最小值.【答案】(1)2(2)(3)h存在最小值,最小值为1【解析】【分析】(1)由点B与点C关于直线x=1对称,可得出抛物线的对称轴为直线x=1,再利用二次函数的性质可求出b值;(2)利用二次函数图象上点的坐标特征可求出点A的坐标,结合OA=OB可得出点B的坐标,由点B的坐标利用待定系数法可求出抛物线的解析式,由抛物线的解析式利用二次函数图象上点的坐标特征可求出点C的坐标,利用配方法可求出点P的坐标,再利用三角形的面积公式即可求出△BCP的面积;(3)分b≥2,0≤b<2,﹣2<b<0和b≤﹣2四种情况考虑,利用二次函数图象上点的坐标特征结合二次函数的图象找出h关于b的关系式,再找出h的最值即可得出结论.【详解】解:(1)∵点B与点C关于直线x=1对称,y=x(x﹣b)﹣=x2﹣bx﹣,∴﹣=1,解得:b=2.(2)当x=0时,y=x2﹣bx﹣=﹣,∴点A的坐标为(0,﹣).又∵OB=OA,∴点B的坐标为(﹣,0).将B(﹣,0)代入y=x2﹣bx﹣,得:0=+b﹣,解得:b=,∴抛物线的解析式为y=x2﹣x﹣.∵y=x2﹣x﹣=(x﹣)2﹣,∴点P的坐标为(,﹣).当y=0时,x2﹣x﹣=0,解得:x1=﹣,x2=1,∴点C的坐标为(1,0).∴S△BCP=×[1﹣(﹣)]×|﹣|=.(3)y=x2﹣bx﹣=(x﹣)2﹣﹣.当≥1,即b≥2时,如图1所示,y最大=b+,y最小=﹣b+,∴h=2b;当0≤<1,即0≤b<2时,如图2所示,y最大=b+,y最小=﹣﹣,∴h=1+b+=(1+)2;当﹣1<<0,﹣2<b<0时,如图3所示y最大=﹣b,y最小=﹣﹣,∴h=1﹣b+=(1﹣)2;当≤﹣1,即b≤﹣2时,如图4所示,y最大=﹣b+,y最小=b+,h=﹣2b.综上所述:h=,h存在最小值,最小值为1.【点睛】本题考查了二次函数的性质、二次函数图象上点的坐标特征、待定系数法求二次函数解析式、三角形的面积、二次函数图象以及二次函数的最值,解题的关键是:(1)利用二次函数的性质,求出b的值;(2)利用二次函数图象上的坐标特征及配方法,求出点B,C,P的坐标;(3)分b≥2,0≤b<2,﹣2<b<0和b≤﹣2四种情况,找出h关于b的关系式.8.(2020·江西初三期中)如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.。
20202021学年人教版必修二高一数学满分期末冲刺卷04立体几何初步难点解析版.docx

专题04立体几何初步(难点)_、单选题1.若尸是等边三角形ABC所在平面外一点,且PA = PB = PC,D, E,P分别是AB, BC, G4的中点,则下列结论中不正确的是()A.BC7/平面PDPB. DF ±平面C.平面PAE 1平面ABCD.平面PDF L平面ABC【答案】D【解析】由班//8C判断A,由与垂直,证明线面垂直,再结合平行线判断B,根据面面垂直的判定定理判断C,根据正棱锥的性质判断D. •.•P是等边三角形ABC所在平面外一点,且PA = PB = PC,D,E,F分别是AB,BC, C4的中点,:.DF//BC,•.DFu平面PDP,BC屯平面PDF,:.BC//平面PDF,故A正确;•.•PA = PB = PC, E是8C 中点,:.PELBC, AELBC,■■PE^\AE = E, PE,AEu平面PAE,..BC1平面F4E,•:DFHBC, :.DFA.平面B4E,故B 正确;•/BC±平面B4E,BCu平面ABC,平面PAE 1平面ABC,故C正确;^AEp\DF = O,连结PO,•.•。
不是等边三角形ABC的重心,..PO与平面ABC不垂直,平面PDP与平面ABC不垂直,故D错误.故选:D.p2.用斜二测画法画水平放置的A ABC的直观图,得到如图所示的等腰直角三角形VA'B'C.已知点O'是斜边3'。
'的中点,且A® = b则的边边上的高为()A. 1B. 2C. ^2D. 2A/2【答案】D【解析】1在直观图中AC // y'轴,可知原图形中AC//y轴,故ACIBC.AC = -AC,求直观图中AC的长即可求解...•直观图是等腰直角三角形AB'C , IB^AC 90 ,A l b = 1 - A At = 很,根据直观图中平行于V 轴的长度变为原来的一半,AA ABC的边上的高AC= 2 AV = 2很•故选D.【点睛】本题主要考查了斜二测直观图的画法,属于中档题.3.棱长为4的正方体密闭容器内有一个半径为1的小球,小球可在正方体容器内任意运动,则其不能到达的空间的体积为()22 4 13A. 32 ------ TCB. 48 — 12TTC. 28—兀D. 20 ---------------------------- 兀3 3 3【答案】A 【解析】由题可得小球在八个角不能到达的空间相当于边长为2的正方体中间挖掉一个半径为1的球的剩余部分,小球在12条边活动不到的空间相当于高为2,底面积为4的正四棱柱中间挖掉底面积为〃,高为2的圆柱剩下的部分,且有3个,由此可计算出体积.由题可得小球在八个角不能到达的空间相当于边长为2的正方体中间挖掉一个半径44为1的球的剩余部分,其体积为——4x13=8——71,33小球在12条边活动不到的空间相当于高为2,底面积为4的正四棱柱中间挖掉底面积为〃,高为2的圆柱剩下的部分,且有3个,则其体积为(4x2—2m)x3 = 24—6〃,( 4 A 22则小球不能到达的空间的体积为8 —a" +(24 —6万)=32-耳~〃.故选:A.【点睛】本题考查几何体体积的计算,解题的关键是得出小球在运动中不能到达的空间的结构特点.4,已知如图,六棱锥P-ABCDEF的底面是正六边形,平面ABCDEF.则下列结论不正确的是()P B" C D A. C£)〃平面已侦B. DF±平面以F C. CF〃平面/MB D. CF_L平面【答案】D【解析】A.根据CD//AF,由线面平行的判定定理判断;B.由PAL平面ABCDEF,得到PA±DF >易知DF±AF,再利用线面垂直的判定定理判断;C.根据CF//BA,再由线面平行的判定定理判断;D.易知以与AZ)成60。
专题04 半角模型巩固练习(基础)-冲刺中考几何专项复习(解析版)

半角模型巩固练习(基础)1. 在等腰Rt△ABC中,CA=CB,∠ACB=90º,O为AB的中点,∠EOF=45º,交CA于F,交BC的延长线于E.(1)求证:EF=CE+AF;(2)如图2,当E在BC上,F在CA的反向延长线上时,探究线段AF、CE、EF之间的数量关系,并证明.【解答】(1)见解析;(2)AF-EF=CE.【解析】(1)连接CO,过点O作OG⊥OF交BE于点G,如图所示:由题意可得△AOF≌△COG,∴OF=OG,∴△EOF≌△EOG,∴EF=EG,∴EF=EG=EC+CG=EC+AF;(2)AF-EF=CE.2. 如图,在四边形ABCD中,AB=AD,∠B+∠D=180º,E、F分别是边BC、CD上的点,且∠EAF =BAD,求证:EF=BE+FD.【解答】见解析【解析】如图,将△ADF顺时针旋转得到△ABG,使得AD与AB重合.∵旋转,∴△ADF≌△ABG,∴∠FAG=∠BAD,AF=AG,DF=GB,∵∠EAF=BAD,∴∠EAF=∠EAG,又∵AE=AE,∴△EAG≌△EAF,∴GE=EF,∵GE=GB+BE=DF+BE,∴EF=BE+FD.3. 如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,∠BDC=120º,以D为顶点作一个60º的角,使其两边分别交AB于M,交AC于N,连接MN,则△AMN的周长是多少?【解答】6【解析】∵△BDC是等腰三角形,且∠BDC=120º,∴∠BCD=∠DBC=30º,∵△ABC是边长为3的等边三角形,∴∠ABC=∠BAC=∠BCA=60º,∠DBA=∠DCA=90º,如图,延长AB至点F,使BF=CN.连接DF,在△BDF与△CND中,∴∠BDF=∠CDN,DF=DN,∵∠MDN=60º,∴∠BDM+∠CDN=60º,∴∠BDM+∠BDF=60º,在△DMN与△DMF中,∴MN=MF,∴△AMN的周长是:AM+AN+MN=AM+MB+BF+AN=AB+AC=6.4. 如图,在等边△ABC中,∠ABC与∠ACB的角平分线相交于点O,点E、F分别在线段AB、BC上,连接EO、FO,满足∠EOF=60º,连接EF.(1)①求证:OB=OC;②求∠BOC的度数;(2)求证:CF=BE+EF.【解答】(1)①见解析;②120º;(2)见解析.【解析】(1)①∵△ABC是等边三角形,∴∠ABC=∠ACB=60º,∵OB、OC分别平分∠ABC、∠ACB,∴∠OBC=∠OCB=30º,∴OB=OC;②∵∠OBC=∠OCB=30º,∴∠BOC=180º-∠OBC-∠OCB=120º.(2)如图,以点O为顶点,OF为一边,作∠FOG=60º交BC于点G.∵∠BOC=120º,∴∠BOF+∠COG=60º,∵∠EOF=60º,∴∠EOB+∠BOF=60º,∴∠COG=∠EOB,∵∠ABO=∠ABC=30º,∴∠EBO=∠OCG,∴△BOE≌△COG,∴OG=OE,BE=CG,又∵△OEF≌△OGF,∴EF=FG,∴CF=FG+CG,∴CF=EF+BE.5. 如图,在平面直角坐标系中,且.(1)求证:△ABC是等边三角形;(2)如图2,A、B两点在轴上、轴上的位置不变,在线段AB上有两动点M、N,满足∠MON=45º,试猜想线段BM、AN、MN之间的数量关系,并证明你的结论.【解答】(1)见解析;(2)【解析】(1),且,∴,,∴OA=OB=OC=4,∵∠AOB=∠BOC=90º,∴∠BCA=∠CBO=∠OBA=∠BAC=45º,∴BA=BC且∠CBA=90º,即△ABC是等腰直角三角形;(2)猜想:.∵OA=OB=4,∴∠AOB=90º,如图,将△BOM绕点O顺时针旋转90º得到△AOD,∴AD=BM,DO=MO,∠OAD=∠OBM=45º,且∠DOM=∠AOB=90º,∴∠AOD=∠BOM,∵∠MON=45º,∠AOB=90º,∴∠BOM+∠AON=45º,∴∠AOD+∠AON=45º,即∠DON=∠MON=45º,∴△DON≌△MON,∴DN=MN,∵∠OAD=∠OBM=∠BAO=45º,即∠NAD=90º,.6. 在四边形ABDC中,AC=AB,DC=DB,∠CAB=60º,∠CDB=120º,E是AC上一点,F是AB延长线上一点,且CE=BF.(1)试说明:DE=DF;(2)在图1中,若G在AB上且∠EDG=60º,试猜想CE、EG、BG之间的数量关系并证明;(3)若题中条件“∠CAB=60º,∠CDB=120º”改为“∠CAB=,∠CDB=,G在AB上,那么∠EDG满足什么条件时,(2)中的结论仍然成立?”(直接写结果,不需证明).【解答】(1)见解析;(2)CE+BG=EG;(3)当∠EDG=时,CE+BG=EC仍然成立.【解析】(1)在四边形ADBC中,有∠C+∠CAB+∠ABD+∠CDB=360º,∵∠CAB=60º,∠CDB=120º,∴∠C+∠ABD=180º,又∵∠ABD+∠DBF=180º,∴∠C=∠BDF,在△CDE与△BDF中,,∴△CDE≌△BDF(SAS),∴DE=DF;(2)如图,连接AD.在△ABD与△ACD中,∴∠BDA=∠CDA=∠CDB=60º,∵∠EDG=60º,∴∠CDE=∠ADG,∠ADE=∠BDG,由(1)可知△CDE≌△BDF,∴∠CDE=∠BDF,∴∠BDG+∠BDF=60º,即∠FDG=60º,∴∠EDG=∠FDG,在△DEG和△DFG中,∴EG=FG,又∵CE=BF,FG=BF+BG,∴CE+BG=EG;(3)要使CE+BG=EG仍然成立,则∠EDG=∠BDA=∠CDB,即∠EDG=,∴当∠EDG=时,CE+BG=EC仍然成立.。
专题04 几何压轴题-备战2022年中考数学满分真题模拟题分类汇编(广州专用)(解析版)

专题04 几何压轴题1.(2021•广州)如图,在菱形ABCD 中,60DAB ∠=︒,2AB =,点E 为边AB 上一个动点,延长BA 到点F ,使AF AE =,且CF 、DE 相交于点G .(1)当点E 运动到AB 中点时,证明:四边形DFEC 是平行四边形;(2)当2CG =时,求AE 的长;(3)当点E 从点A 开始向右运动到点B 时,求点G 运动路径的长度.【答案】(1)见解析;(2)34;(3)273【详解】(1)连接DF ,CE ,如图所示:,E 为AB 中点,12AE AF AB ∴==, EF AB ∴=,四边形ABCD 是菱形,//EF CD ∴,EF AB CD ==,∴四边形DFEC 是平行四边形.(2)作CH BH ⊥,设AE FA m ==,如图所示,,四边形ABCD 是菱形,//CD EF ∴,CDG FEG ∴∆∆∽, ∴CD EF CG FG =, 2FG m ∴=, 在Rt CBH ∆中,60CBH ∠=︒,2BC =, sin 60CH BC ︒=,3CH =, cos60BH BC︒=,1BH =, 在Rt CFH ∆中,22CF m =+,3CH =,3FH m =+,222CF CH FH =+,即(22)2(3)2(3)2m m +=++,整理得:32280m m +-=,解得:143m =,22m =-(舍去), ∴43AE =. (3)G 点轨迹为线段AG ,证明:如图,(此图仅作为证明AG 轨迹用),延长线段AG 交CD 于H ,作HM AB ⊥于M ,作DN AB ⊥于N ,四边形ABCD 是菱形,//BF CD ∴,DHG EGA ∴∆∆∽,HGC AGF ∆∆∽,∴AE AG DH HG =,AF AG HC HG =, ∴AE AF DH CH=, AE AF =,1DH CH ∴==,在Rt ADN ∆中,2AD =,60DAB ∠=︒.sin 60DN AD ∴︒=,3DN =.cos60AN AD ︒=,1AN =, 在Rt AHM ∆中,3HM DN ==,2AM AN NM AN DH =+=+=,3tan 2HAM ∠=, G 点轨迹为线段AG .G ∴点轨迹是线段AG .如图所示,作GH AB ⊥,四边形ABCD 为菱形,60DAB ∠=︒,2AB =,//CD BF ∴,2BD =,CDG FBG ∴∆∆∽,∴CD DG BF BG=,即2BG DG =, 2BG DG BD +==,43BG ∴=, 在Rt GHB ∆中,43BG =,60DBA ∠=︒, sin 60GH BG ︒=,233GH =, cos60BH BG ︒=,23BH =, 在Rt AHG ∆中,24233AH =-=,233GH =, 423282()2()2339AG =+=, 273AG ∴=. G ∴点路径长度为273. 2.(2019•广州)如图,等边ABC ∆中,6AB =,点D 在BC 上,4BD =,点E 为边AC 上一动点(不与点C 重合),CDE ∆关于DE 的轴对称图形为FDE ∆.(1)当点F 在AC 上时,求证://DF AB ;(2)设ACD ∆的面积为1S ,ABF ∆的面积为2S ,记12S S S =-,S 是否存在最大值?若存在,求出S 的最大值;若不存在,请说明理由;(3)当B ,F ,E 三点共线时.求AE 的长.【答案】(1)见解析;(2)见解析;(3)713- 【详解】(1)ABC ∆是等边三角形 60A B C ∴∠=∠=∠=︒ 由折叠可知:DF DC =,且点F 在AC 上60DFC C ∴∠=∠=︒DFC A ∴∠=∠//DF AB ∴;(2)存在,过点D 作DM AB ⊥交AB 于点M ,6AB BC ==,4BD =,2CD ∴=2DF ∴=,∴点F 在以D 为圆心,DF 为半径的圆上,且在ABC ∆内部,∴当点F 在DM 上时,ABF S ∆最小,4BD =,DM AB ⊥,60ABC ∠=︒23MD ∴=ABF S ∆∴的最小值16(232)6362=⨯⨯-=- ()12336363362S ∴=⨯⨯--=-+最大值 (3)如图,过点D 作DG EF ⊥于点G ,过点E 作EH CD ⊥于点H ,CDE ∆关于DE 的轴对称图形为FDE ∆2DF DC ∴==,60EFD C ∠=∠=︒GD EF ⊥,60EFD ∠=︒1FG ∴=,33DG FG == 222BD BG DG =+, 2163(1)BF ∴=++,131BF ∴=-13BG ∴=EH BC ⊥,60C ∠=︒2EC CH ∴=,332EH HC EC == GBD EBH ∠=∠,90BGD BHE ∠=∠=︒BGD BHE ∴∆∆∽∴DG EH BG BH= ∴3321362EC EC =- 131EC ∴=-713AE AC EC ∴=-=-3.(2021•广州模拟)如图,在四边形ABCD 中,60B ∠=︒,30D ∠=︒,AB BC =.(1)求A C ∠+∠的度数;(2)连接BD ,探究AD ,BD ,CD 三者之间的数量关系,并说明理由;(3)若1AB =,点E 在四边形ABCD 内部运动,且满足222AE BE CE =+,求点E 运动路径的长度.π【答案】(1)︒270;(2)见解析;(3)3【详解】(1)如图1中,在四边形ABCD中,360D∠=︒,30∠=︒,BA B C D∠+∠+∠+∠=︒,60∴∠+∠=︒-︒-︒=︒.3606030270A C(2)如图2中,结论:222=+.DB DA DC理由:连接BD.以BD为边向下作等边三角形BDQ∆.∠=∠=︒,60ABC DBQ∴∠=∠,ABD CBQ=,=,DB BQAB BCABD CBQ SAS∴∆≅∆,()∴=,A BCQ∠=∠,AD CQ∠+∠=∠+∠=︒,A BCD BCQ BCD270∴∠=︒,DCQ90222∴=+,DQ DC CQ=,DQ DB=,CQ DA222∴=+.DB DA DC(3)如图3中,连接AC,将ACE∆,连接RE.∆绕点A顺时针旋转60︒得到ABR则AER ∆是等边三角形,222EA EB EC =+,EA RE =,EC RB =,222RE RB EB ∴=+,90EBR ∴∠=︒,150RAE RBE ∴∠+∠=︒,210ARB AEB AEC AEB ∴∠+∠=∠+∠=︒,150BEC ∴∠=︒,∴点E 的运动轨迹在O 为圆心的圆上,在O 上取一点K ,连接KB ,KC ,OB ,OC , 180K BEC ∠+∠=︒,30K ∴∠=︒,60BOC ∠=︒,OB OC =,OBC ∴∆是等边三角形,1OB OC BC ∴===,∴点E 的运动路径6011803ππ==. 4.(2021•天河区一模)如图,ABC ∆中,120BAC ∠︒,AB AC =,点A 关于直线BC 的对称点为点D ,连接BD ,CD .(1)求证:四边形ABDC 是菱形;(2)延长CA 到E ,使得AB BE =.求证:22BC AC CE AC -⋅=;(3)在(2)小题条件下,可知E ,B ,D ,C 四点在同一个圆上,设其半径为a (定值),若BC kAB =,问k 取何值时,BE CE ⋅的值最大?【答案】见解析;【详解】(1)证明:如图1,连接AD ,交BC 于O ,A ,D 关于直线BC 对称,AD BC ∴⊥,OA OD =,AB AC =,OB OC ∴=,∴四边形ABDC 是菱形;(2)证明:解法一:如图2,延长AE 到F ,使EF BE =,连接BF ,AB BE =,AB BD CD AC BE EF ∴=====,BE CE EF CE CF ∴+=+=,AB AC =,ABC ACB ∴∠=∠,同理得EBF F ∠=∠,BAE BEA ∠=∠,BAE ABC ACB ∠=∠+∠,BEA EBF F ∠=∠+∠,ABC ACB EBF F ∴∠=∠=∠=∠,ABC BFC ∴∆∆∽, ∴BC AC CF BC =, 2()()BC AC CF AC CE EF AC CE AC ∴=⋅=⋅+=⋅+,即22BC AC CE AC -⋅=;解法二:如图3,过点B 作BP CE ⊥于P ,AB BE =,AP EP ∴=,且AB AC BE ==,Rt BPC ∆中,222BC BP CP =+,在Rt BPA ∆中,222BA BP AP =+,2222222222()()BC AC BC AB BP CP BP AP CP AP ∴-=-=+-+=-,22()()()CP AP CP AP CP AP CP EP AC CE AC -=+-=+⋅=⋅,22BC AC CE AC ∴-=⋅,即22BC AC CE AC -⋅=;(3)解:如图4,连接AD 交BC 于M ,作CD 的垂直平分线交DA 的延长线于G ,连接CG ,由题意得:CG DG a ==,设DM x =,则GM a x =-,120BAC ∠︒,∴当120BAC ∠=︒时,如图5,ABD ∆和ADC ∆是等边三角形,AB AD AC ∴==,∴当点A 为圆心,即点A 与G 重合,此时1cos602x CD a =⋅︒=, 02a x ∴<, 四边形ABCD 是菱形,BC AD ∴⊥,2BC CM =,由勾股定理得:2222()2CM a a x x ax =--=-+,22222CD x x ax ax =-+=,222448BC CM x ax ∴==-+,222BE CD ax ==,由22BC AC CE AC -⋅=,得2222222239482464()44BE CE BC AC BC BE x ax ax x ax x a a ⋅=-=-=-+-=-+=--+, 02a x<, ∴当12x a =时,BE CE ⋅有最大值,此时223BC a =,222AB BE a ==, 故223BC AB =,所以3BC AB =,故3k =时,BE CE ⋅的值最大.5.(2021•越秀区一模)如图,在四边形ABCD 中,90A ADC ∠=∠=︒,10AB AD ==,15CD =,点E ,F 分别为线段AB ,CD 上的动点,连接EF ,过点D 作DG ⊥直线EF ,垂足为G .点E 从点B 向点A 以每秒2个单位的速度运动,同时点F 从点D 向点C 以每秒3个单位的速度运动,当点E 运动到点A 时,E ,F 同时停止运动,设点E 的运动时间为t 秒.(1)求BC 的长;(2)当GE GD =时,求AE 的长;(3)当t 为何值时,CG 取最小值?请说明理由.【答案】(1)55;(2)52;(3)见解析【详解】(1)如图1,过点B 作BH CD ⊥于点H ,则四边形ADHB 是矩形,10AB =,15CD =,5CH ∴=,又10BH AD ==, 222210555BC BH CH ∴=+=+=; (2)过点G 作MN AB ⊥,如图2,//AB CD ,MN CD ∴⊥,DG EF ⊥,EG DG =,()EMG GND AAS ∴∆≅∆,MG DN ∴=,设DN a =,GN b =,则MG a =,ME b =,点E 从点B 向点A 以每秒2个单位的速度运动,同时点F 从点D 向点C 以每秒3个单位的速度运动,2BE t ∴=,102AE t =-,3DF t =,153CF t =-,AM DN =,AD MN =,10a b ∴+=,102a b t -=-,解得10a t =-,b t =,DG EF ⊥,GN DF ⊥,DGN GFN ∴∆∆∽,∴GN NF DN GN=, 2GN DN NF ∴=⋅,2210GN t NF DN t ∴==-, 又DF DN NF =+, 231010t t t t ∴=-+-, 解得55t =±,又03t ,55t ∴=-,10225AE t ∴=-=.(3)如图3,连接BD ,交EF 于点K ,//BE DF ,BEK DFK ∴∆∆∽,∴2233BK BE t DK DF t ===, 又10AB AD ==, 2102BD AB ∴==,3625DK BD ∴==, 取DK 的中点,连接OG ,DG EF ⊥,DGK ∴∆为直角三角形,1322OG DK ∴==, ∴点G 在以O 为圆心,32r =的圆弧上运动,连接OC ,OG ,由图可知CG OC OG -,当点G 在线段OC 上时取等号,AD AB =,90A ∠=︒,45ADB ∴∠=︒,45ODC ∴∠=︒,过点O 作OH DC ⊥于点H , 又32OD =,15CD =, 3OH DH ∴==, 12CH ∴=, 22317OC OH CH ∴=+=,则CG 的最小值为3(172)-,当O ,G ,C 三点共线时,过点O 作直线OR DG ⊥交CD 于点S , OD OG =,R ∴为DG 的中点,又DG GF ⊥,//OS GF ∴,∴点S 是DF 的中点,OC SC OG SF=, 32DS SF t ∴==,3152SC t =-, ∴31531723322t t -=, 23443t -∴=, 即当23443t -=时,CG 取得最小值为31732-. 6.(2021•天河区二模)如图,矩形ABCD 中,4AB =,8AD =,点E 是边AB 上的一点,点F 是边BC 延长线上的一点,且2AE CF =.连接AC ,交EF 于点O ,过E 作EP AC ⊥,垂足为P .(1)求证:DAE DCF ∆∆∽;(2)求证:OP 长为定值;(3)记AC 与DE 的交点为Q ,当14PQ OP =时,直接写出此时AP 的长.【答案】(1)见解析;(2)见解析;(3)6525- 【详解】(1)证明:在矩形ABCD 中,4AB CD ==,90DAE DCB ∠=∠=︒, 90DCF ∴∠=︒, DAE DCF ∴∠=∠,2AE CF =,8AD BC ==,∴2AE AD CF CD==, DAE DCF ∴∆∆∽;(2)证明:如图1,过点E 作//EG BC ,交AC 于点G ,90AEG B ∴∠=∠=︒,AGE ACB ∠=∠,EOG FOC ∆∆∽,在Rt ABC ∆中,4AB =,8BC =,224845AC ∴=+=,EP AC ⊥,90AEP BAC ∴∠+∠=︒,90CAD BAC ∠+∠=︒,AEP CAD ∴∠=∠,1tan tan tan tan 2CAD ACB AGE AEP ∴∠=∠=∠=∠=,即12CD AE AP PE AD EG EP PG ====, 2EG AE ∴=,2AE CF =,4EG CF ∴=,设(0)AP m m =>,(0)OC n n =>,则2PE m =,4PG m =,EOG FOC ∆∆∽,∴4EG OG CF OC==, 44OG OC n ∴==,4445AC AP PG OG OC m m n n ∴=+++=+++=,455m n ∴+=,165445OP PG OG m n ∴=+=+=, 所以OP 是一个定值;(3)如图2,11165454455PQ OP ==⨯=,由(2)知:(0)AP m m =>,5AE m =,//AE CD ,AEQ CDQ ∴∆∆∽,∴AE AQ CD CQ=, ∴4555445455m m m +=--,解得:6525m =±, 054m <<,4505m ∴<<, 6525AP ∴=-. 7.(2021•白云区一模)不在射线DA 上的点P 是边长为2的正方形ABCD 外一点(P 在AB 左侧),且满足45APB ∠=︒,以AP ,AD 为邻边作APQD .(1)如图,若点P 在射线CB 上,请用尺规补全图形;(2)若点P 不在射线CB 上,求PAQ ∠的度数;(3)设AQ 与PD 交点为O ,当APO ∆的面积最大时,求tan ADO ∠的值.【答案】(1)见解析;(2)︒45;(3)123+ 【详解】(1)如图1,以B 为圆心,AB 长为半径作弧,交射线CB 于点P ,连接BD ,//AD PB ,AD AB PB ==,∴四边形ADBP 是平行四边形,∴点Q 与点B 重合.(2)如图2,连接QA ,QC ,QB ,BD ,四边形APQD 是平行四边形,AP DQ ∴=,//PQ AD ,//AP QD ,180PAD ADQ ∴∠+∠=︒,90PAB ADQ ∴∠=︒-∠,90PAB ADQ QDC ∴∠=︒-∠=∠,又AP QD =,AB CD =,()PAB QDC SAS ∴∆≅∆,45APB DQC ∴∠=∠=︒,四边形ABCD 是正方形,45ABD DBC ∴∠=∠=︒,45CQD CBD ∴∠=∠=︒,∴点B ,点C ,点D ,点Q 四点共圆,90BCD BQD ∴∠=∠=︒,90BQD BAD ∴∠=∠=︒,∴点B ,点D ,点A ,点Q 四点共圆,45AQD ABD ∴∠=∠=︒,//AP QD ,45PAQ AQD ∴∠=∠=︒;(3)四边形APQD 是平行四边形, 14APO APQD S S ∆∴=, ∴当APQD 的面积最大时,APO ∆的面积取最大值,APQD S AD =⨯点P 到AD 的距离,∴当点P 到AD 的距离最大时,APQD 的面积最大,如图3,以AB 为斜边作等腰直角三角形ABE ,以E 为圆心,AE 为半径作ABP ∆的外接圆,延长CB 交E 于H ,过点E 作FE BH ⊥,交E 于P ,交DA 的延长线于F ,此时点P 到AD 的距离最大,EA EB =,90AEB ∠=︒,2AB =,45EAB ∴∠=︒,2AE =,45EAF ∴∠=︒,EF AF ⊥,45EAF FEA ∴∠=∠=︒,1AF EF ∴==,12PF ∴=+,()212APQD S AD PF ∴=⋅=⨯+最大,12142APQD APO S S ∆+∴==最大, 12tan 3FP ADO DF +∴∠==. 8.(2021•番禺区一模)如图,ABC ∆中,120A ∠=︒,AB AC =,过点A 作AO AC ⊥交BC 于点O .(1)求证:13BO BC =; (2)设AB k =.①以OB 为半径的O 交BC 边于另一点P ,点D 为CA 边上一点,且2CD DA =.连接DP ,求CPD S ∆.②点Q 是线段AB 上一动点(不与A 、B 合),连接OQ 在点Q 运动过程中,求2AQ OQ +的最小值.【答案】(1)见解析;(2)①2318CPD S k ∆=,②k 【详解】(1)证明:120A ∠=︒,AB AC =,30B C ∴∠=∠=︒,AO AC ⊥,90OAC ∴∠=︒,30BAO ∠=︒,BO AO ∴=,12AO CO =, 12BO CO ∴=, 13BO BC ∴=; (2)①如图:AB k =,AC k ∴=,Rt AOC ∆中,tanOA C AC =, 33OA k OB ∴==, 30C ∠=︒,2323OC OA k ∴==, 33CP OC OP OC OA k ∴=-=-=, 2CD DA =,3k DA ∴=,23DC k =, Rt AOD ∆中,33tan 333kAD AOD OA k ∠===, 30AOD ∴∠=︒,18060AOC OAC C ∠=︒-∠-∠=︒,30AOD DOP ∴∠=∠=︒,又OA OP =,OD OD =,()AOD POD SAS ∴∆≅∆,90DPO OAD ∴∠=∠=︒,DA DP =,3k DP ∴=, 213218CPD S CP DP k ∆∴=⋅=; ②以A 为顶点,AB 为一边,在ABC ∆外部作30BAN ∠=︒,过Q 作QN AN ⊥于N ,过O 作OM AN ⊥于M ,连接OQ ,如图:在Rt AQN ∆中,30BAN ∠=︒,12NQ AQ ∴=, 122()2AQ OQ AQ OQ +=+, 2AQ OQ ∴+最小,即是12AQ OQ +最小,故NQ OQ +最小,此时ON AN ⊥,Q 与Q '重合,N 与M 重合,OM 长度即是12AQ OQ +的最小值, 而由①知:33OA k =,60OAM OAB BAM ∠=∠+∠=︒, Rt AOM ∆中,sin OM OAM OA ∠=, sin 6033OMk ∴︒=,2k OM ∴=, ∴12AQ OQ +的最小值为2k , 2AQ OQ ∴+的最小值是k .9.(2021•花都区一模)如图,在Rt ABC ∆中,90C ∠=︒,8AC cm =,16BC cm =.(1)尺规作图:作AB 的垂直平分线DE 交AB 于点D ,交BC 于点E (保留作图痕迹,不要求写作法);(2)连接AE ,动点M ,N 分别从点A ,C 同时出发,均以每秒1cm 的速度分别沿AE 、CB 向终点E ,B 运动,是否存在某一时刻t 秒(010)t <<,使MNC ∆的面积S 有最大值?若存在,求S 的最大值;若不存在,请说明理由.【答案】见解析【详解】(1)如图,直线DE 即为所求作.(2)过点M 作MH EC ⊥于H . DE 垂直平分线段AB ,EA EB ∴=,设EA EB x ==cm ,则(16)EC x cm =-,在Rt ACE ∆中,222AE AC EC =+,2228(16)x x ∴=+-,解得10x =,//MH AC , ∴EM MH EA AC =, ∴10108t MH -=, 4(10)5MH t ∴=-, 2214225(10)2()1025552MNC S t t t t t ∆∴=⨯⨯-=-+=--+, 502-<, 52t ∴=时,MNC ∆的面积最大,最大值为10. 10.(2021•越秀区校级二模)已知ABC ∆,90ACB ∠=︒,4AC BC ==,D 是AB 的中点,P 是平面上的一点,且1DP =,连接CP(1)如图,当点P 在线段BD 上时,求CP 的长;(2)当BPC ∆是等腰三角形时,求CP 的长;(3)将点B 绕点P 顺时针旋转90︒得到点B ',连接AB ',求AB '的最大值.【答案】(1)3;(2)①13,②42+ 【详解】(1)如图1中,连接CD .在Rt ABC ∆中,90ACB ∠=︒,4AC BC ==,2242AB AC BC ∴=+=,AD DB =,1222CD AB ∴==,CD AB ⊥, 在Rt CDP ∆中,223PC PD CD =+=.(2)如图2中,1DP =,∴点P 在以点D 为圆心的D 上.①当PB PC =时,CD DB =,P ∴、D 都在线段BC 的垂直平分线上,设直线DP 交BC 于E .90PEC ∴∠=︒,2BE CE ==,90CDB ∠=︒, 122DE BC CE ∴===, 在Rt PCE ∆中,22PC EC PE =+,当P 在线段PD 上时,1PE DE DP =-=,22125PC =+=,当P 在线段ED 的延长线上时,3PE ED DP =+=,223213PC =+=.②当PC BC =时,221PC CD PD BC +=+<,PC BC ∴≠,此种情形不存在;③当PB BC =时,同理这种情形不存在;如图3中(3)如图4中,连接BB '.由旋转可知:PB PB =',90BPB ∠'=︒,45PBB ∴∠'=︒,2BB PB ∴'=,∴2BB PB'=, AC BC =,90ACB ∠=︒,45ABC ∴∠=︒,ABC PBB ∴∠=∠',ABB CBP ∴∠'=∠, 4224BA BC ==, ∴BA BB BC PB '=, ∴BA BC BB PB =', ABB CBP ∴∆'∆∽,∴2AB BA CP BC'==, 221PC CD DP +=+,∴点P 落在CD 的延长线与D 的交点处,PC 的值最大,2(221)42AB ∴'+=+.AB ∴'的最大值为42+.11.(2021•黄埔区二模)如图1,正方形ABCD 的对角线相交于点O ,延长OD 到点G ,延长OC 到点E ,使2OG OD =,2OE OC =,以OG ,OE 为邻边作正方形OEFG ,连接AG ,DE .(1)探究AG 与DE 的位置关系与数量关系,并证明;(2)固定正方形ABCD ,以点O 为旋转中心,将图1中的方形OEFG 逆时针转(0180)n n ︒<<得到正方形111OE F G ,如图2.①在旋转过程中,当190OAG ∠=︒时,求n 的值;②在旋转过程中,设点1E 到直线1AG 的距离为d ,着正方形ABCD 的边长为1,请直接写出d 的最大值与最小值,不必说明理由.【答案】(1)见解析;(2)①30n =;②见解析【详解】(1)AG DE ⊥,.AG DE =证明:如图1,延长ED 交AG 于点H ,点O 是正方形ABCD 两对角线的交点,OA OC OD ∴==,OA OD ⊥,90AOG DOE ∴∠=∠=︒,2OG OD =,2OE OC =,OG OE ∴=,在AOG ∆和DOE ∆中,OA OD AOG DOE OG OE =⎧⎪∠=∠⎨⎪=⎩,()AOG DOE SAS ∴∆≅∆,AG DE ∴=,AGO DEO ∠=∠,90AGO GAO ∠+∠=︒,90GAO DEO ∴∠+∠=︒,90AHE ∴∠=︒,AG DE ∴⊥,故AG DE ⊥,AG DE =;(2)①在旋转过程中,190OAG ∠=︒有两种情况:(Ⅰ)n 由0增大到90过程中,当190OAG ∠=︒时,11122OA OD OG OG ===, ∴在1Rt OAG ∆中,11sin 2OA AG O OG ∠==', 130AG O ∴∠=︒,OA OD ⊥,1OA AG ⊥,1//OD AG ∴,1130DOG AG O ∴∠=∠=︒,即30n =;(Ⅱ)n 由90增大到180过程中,当190OAG ∠=︒时,同理可求130BOG ∠=︒,118030150DOG ∴∠=︒-︒=︒,150n ∴=;综上所述,当190OAG ∠=︒时,30n =或150.②如图3,d 的最大值为116262222E H DE DH +=+=+=,如图4,d 的最小值为116262222E H DE DH -=-=-=. 理由如下:如图3、图4所示,连接11E G ,设直线1E D 交直线1AG 于H ,作正方形ABCD 的外接圆O ,仿照(1)的证明,可证得DE AG ⊥,即在旋转过程中,1190E HG ∠=︒保持不变,所以1d E H =. 在旋转过程中,1E H 的位置有以下两种情况:第一种情况,当1E H 在1OE G ∠内时,11145E G H OG A ∠=︒+∠,如图3所示,第二种情况:当1E H 在11OE G ∠外时,11145E G H OG A ∠=︒-∠,如图3所示, 1222OG OD BD AB ====,112E G ∴=.在Rt △11E HG 中,11111sin 2E H d E G H E G ∠==, 112sin d E G H ∴=∠, 所以,当11E G H ∠最大时,最大;当最小时,最小; 设点到的距离为,则, 由上式可知,当取最大值时,取最大值.在旋转过程中,当与相切,即时,取最大值.此时,取最大值,从而取最大值或最小值.由①可知,当时,,在(1)中,已证得,且,四边形为正方形,, , 的最大值为, 的最小值为 d 11E G H ∠d O 1AG m 1sin 2m OG A OG ∠=m 1OG A ∠1E D O 190OAG ∠=︒m 1OG A ∠11E G H ∠190OAG ∠=︒130OG A ∠=︒11AOG DOE ∆≅∆90AHD ∠=︒∴AODH 22DH AO ∴==221126(2)()22DE AG ∴==-=d ∴116262E H DE DH +=+=d 116262E H DE DH -=-=12.(2021•从化区一模)如图,四边形是矩形,点是对角线上一动点(不与点和点重合),连接,过点作交射线于点,连接,已知,,设的长为.(1)线段的最小值为 . (2)如图,当动点运动到的中点时,与的交点为,的中点为,求线段的长度;(3)当点在运动的过程中:①试探究是否会发生变化?若不改变,请求出大小;若改变,请说明理由;②当为何值时,是等腰三角形?ABCD P AC C A PB P PF PB ⊥DA F BF 33AD =3CD =CP x PB P AC AP BF G FP H GH P FBP ∠FBP ∠x AFP ∆【答案】(1);(2(3)见解析 【详解】(1)四边形是矩形,,,,,,,当时,最小,此时为斜边上的高,,即, ,; (2)如图:运动到的中点,,,中,, , 是等边三角形,,又,,,,是的垂直平分线,3323GH ∴=ABCD 33AD =3CD =3AB CD ∴==33BC AD ==90ABC D ∠=∠=︒226AC AB BC ∴=+=BP AC ⊥BP BP Rt ABC ∆AC 1122ABC S AB BC AC BP ∆∴=⋅=⋅3336BP ⨯=⨯332BP ∴=P AC 6AC =3AP AB ∴==Rt ABC ∆tan 3BC BAC AB∠==60BAC ∴∠=︒ABP ∴∆3AB BP ∴==90BAF BPF ∠=∠=︒BF BF =()BAF BPF HL ∴∆≅∆AF PF ∴=BF ∴AP是中点,是中点,, 是等边三角形,是中点,, 在中,, 得, , ; (3)①不会发生变化,,理由如下:过作于,交于,如图:,四边形是矩形,,,中,, ,中,, ,, ,, ,, 而,,G ∴AP H PF 12GH AF ∴=ABP ∆G AP 1302PBF PBA ∴∠=∠=︒Rt PBF ∆tan PF PBF BP ∠=tan303PF ∴︒=3PF 3AF ∴=32GH ∴=FBP ∠30FBP ∠=︒P MN AD ⊥M BC N MN AD ⊥ABCD MN BC ∴⊥3MN AB ==Rt ABC ∆3tan AB ACB BC ∠==30ACB ∴∠=︒Rt CPN ∆CP x =1sin302PN CP x ∴=⋅︒=3cos30CN CP x =⋅︒3332BN BC CN x ∴=-=-132PM MN PN x =-=-90BPF ∠=︒90FPM BPN PBN ∴∠=︒-∠=∠90PMF BNP ∠=∠=︒PMF BNP ∴∆∆∽, 在中,, , ;②当在右侧时,过作于,交于,如图:由①知:,,,,, , , , 中, 而,是等腰三角形,分三种情况:(一,则,解得(舍去), (二,则,解得(大于6,舍去)或(此时,舍去),(三,则,解得或与重合,舍去), 当在左侧时,如图: ∴13323332x PF PM BP BN x -===-Rt BPF ∆tan PF FBP BP∠=3tan 3FBP ∴∠=30FBP ∴∠=︒F A P MN AD ⊥M BC N PMF BNP ∆∆∽33PF BP =12PN x =333BN =132PM x =-∴3FM PN =36FM x ∴=23333AF AM FM BN FM x ∴=-=-=-Rt PFM ∆22222311()(3)39623PF FM PM x x x x =+=+-=-+6AP AC CP x =-=-AFP ∆)AP AF =263333x x -==33x =-)AP PF =216393x x x -=-+9x =92x =0AF =)AF PF =2213333933x x x -=-+3x =6(x P =A F A此时, 同理可得,综上所述,是等腰三角形,或.13.(2020•武汉模拟)在中,,线段绕点顺时针旋转得到线段,连接.(1)如图1,若,求证:平分;(2)如图2,若,①求的值; ②连接,当的面积为.【答案】(1)见解析;(2)①773,② 【详解】(1)证明:连接, 由题意知,,,是等边三角形,,又,,,,平分;(2)解:①连接,作等边三角形的外接圆,23333AF FM AM x =-=-33x =AFP ∆3x =33x =ABC ∆120ABC ∠=︒AC C 60︒CD BD AB BC =BD ABC ∠2AB BC =BD AC AD 3ABC S ∆=ABCD 93AD 60ACD ∠=︒CA CD =ACD ∴∆CD AD ∴=AB CB =BD BD =()ABD CBD SSS ∴∆≅∆CBD ABD ∴∠=∠BD ∴ABC ∠AD ACD O,,,点在上,,,,在上截取,使,则为等边三角形,,,又,,,,设,则,,过点作于,在中,,, , , 在中, , ,;②如图3,分别过点,作的垂线,垂足分别为,, 设,,,则由①知,,,在与中,,60ADC ∠=︒120ABC ∠=︒180ADC ABC ∴∠+∠=︒∴B O AD CD =∴AD CD =60CBD CAD ∴∠=∠=︒BD BM BM BC =BCM ∆60CMB ∴∠=︒120CMD CBA ∴∠=︒=∠CB CM =BAC BDC ∠=∠()CBA CMD AAS ∴∆≅∆MD AB ∴=1BC BM ==2AB MD ==3BD ∴=C CN BD ⊥N Rt BCN ∆60CBN ∠=︒30BCN ∴∠=︒1122BN BC ∴==33CN =52ND BD BN ∴=-=Rt CND ∆222235()()722CD CN DN =+=+=7AC ∴=∴377BD AC ==B D AC H Q 1CB =2AB =CH x =7AC =7AH x =-Rt BCH ∆Rt BAH ∆2222BC CH AB AH -=-即,解得,,,在中,,,为与的公共底,,,,,故答案为:.22212(7)x x-=--277x=2227211()77BH∴=-=Rt ADQ∆33217DQ AD==∴2127721BHDQ==AC ABC∆ACD∆∴27ABCACDS BHS DQ∆∆==32ABCS∆=734ACDS∆∴=37393244ABCDS∴=+=四边形93414.(2021•越秀区校级二模)如图1,已知正方形的边长为,点在边上,,连接,点、分别为、边上的点,且.(1)求点到的距离;(2)如图2,连接,当、、三点共线时,求的面积;(3)如图3,过点作于点,过点作于点,求的最小值.【答案】(1)1;(2)518;(3)见解析 【详解】(1)如图1中,过点作于.ABCD 42E BC 2BE =BD F G BD CD FG EF ⊥E BD AF A F G FDG ∆E EM BD ⊥M G GN BD ⊥N MN E EH BF ⊥H四边形是正方形,,,. 点到的距离为1.(2)如图2中,过点作的垂线分别交,于点,.,,共线,,,.设,且,,,, ,,即,ABCD 45DBC ∴∠=︒EH BD ⊥2sin 45212EHBE ∴=⋅︒=⨯=∴E BD F AD AD BC M N A F G 90EFG ∠=︒90AFE ∴∠=︒45ADF ∠=︒∴MF MD a ==AD MN =AM FN ∴=NFE AFM AFM MAF ∠+∠=∠+∠NFE MAF ∴∠=∠()AMF FNE AAS ∴∆≅∆MF EN ∴=32a a =-, ,, , .(3)如图3中,设,. 四边形是正方形,,,,,,,,, ,,,, ,,, 322a ∴=//FM DG ∴FM AM DG AD =∴32522242DG =1225DG ∴=112232182525DFG S ∆∴=⨯⨯=2CG y =MF x =ABCD 45CBD CDB ∴∠=∠=︒42CB CD ==28BD BC ∴==22DG y =EM BD ⊥GN BD ⊥90EMF EFG GNF ∴∠=∠=∠=︒4DN NG y ∴==-2BE =1BM EM ∴==7(4)3FN x y x y ∴=---=-+9090MFE GFN GFN FGN ∠+∠=︒∠+∠=︒MFE FGN ∴∠=∠EMF FNG ∴∆∆∽∴EM MF FN GN=, 整理得,△,,解得或,的最小值为,的最小值,观察图象可知,当的值最小时,的值最小,的最小值. 15.(2021•越秀区模拟)如图,四边形为矩形,,,点为边上一动点,过点作交直线于点,连接,.(1)若四边形为菱形,求的长;(2)若的面积为,求的面积; (3)当长为多少时,四边形周长有最小值?并求该最小值.【答案】(1)23;(2)42;(3)见解析 【详解】(1)四边形为菱形,,设, 四边形是矩形,, ,, , ; (2)四边形为矩形,∴134x x y y=-+-2(3)40x y x y -++-=02(3)4(4)0y y ∴+--425y -542y --y ∴25CG ∴852=-CG MN MN 81(942)422=---=ABCD 2AD =2CD =E AD E EF AC ⊥BC F CE AF AECF AE ABF ∆24CDE ∆AE AECF AECF AE EC ∴=AE EC x ==ABCD 90D ∴∠=︒222EC DE CD ∴=+222(2)(2)x x ∴=-+32x ∴=32AE ∴=ABCD,,, , ,即:, , , 在中,, ,, 是的垂直平分线,,由(1)可知:, , , ; (3)如图,过点作交的延长线于点,四边形为矩形,,,四边形是平行四边形,,,,,,在中,, , ,2AB CD ∴==2BC AD ==90B D ∠=∠=︒ABF ∆2∴122AB BF ⨯⨯1222BF =12BF ∴=13222CF BC BF ∴=-=-=Rt ABF ∆222213(2)()22AF AB BF =++AF CF ∴=EF AC ⊥EF ∴AC AE CE ∴=32AE CE ==AF CE ∴=Rt CDE Rt ABF(HL)∴∆≅∆24CDE ABF S S ∆∆∴==C //CM EF AD M ABCD //AD BC ∴90ADC ABC BAC ∠=∠=∠=︒∴CFEM EM CF ∴=CM EF =EF AC ⊥CM AC ∴⊥90ACM ∴∠=︒Rt ACD ∆22222(2)6AC AD CD ++tan CD CM CAD AD AC ∠==∴263CM ∴=, , ,即,,延长至,使,过点作于点,连接,过点作交于点, 在中,,四边形是矩形,,,,,四边形是平行四边形,,, 四边形周长,当、、三点共线时,最小,即四边形周长最小, 此时,,,△,, ,此时,,四边形周长最小值为,故当时,四边形周长最小值为6. 3EF CM ∴==cos ADACCAD AC AM ∠==22(6)32AC AM AD ∴===3AE EM +=3AE CF ∴+=CD C '2DC CD '==C E 'F FG AD ⊥G BG E //EH BG BC H Rt EFG ∆2222(3)(2)1EG EF FG =-=-=ABFG AF BG ∴=FBG FAG ∠=∠//BG EH //EG BH ∴BGEH EH BG AF ∴==CHE FBG ∠=∠AECF 3AE AF CF CE AE EM BG CE AM EH C E C E EH =+++=+++=++'=+'+∴C 'E H C E EH '+AECF C ED CHE FBG FAG ∠'=∠=∠=∠90C DE FGA ∠'=∠=︒C D FG '=∴()C DE FGA AAS '≅∆111()(21)222DE AG AD EG ∴==-=-=13222AE AD DE ∴=-=-=222213()(2)22CE DE CD =+=+=∴AECF 33262+⨯=32AE =AECF16.(2021•花都区三模)为等腰三角形,,点为所在平面内一点.(1)若,①如图1,当点在边上,,求证:; ②如图2,当点在外,,,,连接,求的长;(2)如图3,当点在外,且,以为腰作等腰三角形,,,直线交于点,求证:点是中点.【答案】(1)①见解析;②132;(2)见解析 【详解】证明:(1)①,, ,,, ,, ;②如图2,以,为边作等边,等边,以,为边作等边,等边,连接,过点作,交的延长线于, ABC ∆AB AC =D ABC ∆120BAC ∠=︒D BC BD AD =2DC BD =DABC ∆120ADB ∠=︒2AD =4BD =CD CD D ABC ∆90ADB ∠=︒AD ADE ∆DAE BAC ∠=∠AD AE =DE BC F F BC 120BAC ∠=︒AB AC =30ABC ACB ∴∠=∠=︒BD AD =30ABD BAD ∴∠=∠=︒90DAC ∴∠=︒2CD AD ∴=2CD BD ∴=AB AC ABH ∆ACH ∆AD BD ADE ∆BDG ∆GH E EN DG ⊥GD N和都是等边三角形,,,,,,,,,点,点,点三点共线,,和都是等边三角形,,,,,,,,,,,, , , .(2)连接,如图3所示:,,,, ,, 、、、四点共圆,,,BDG ∆ABH ∆4BD BG DG ∴===AB BH =60DBG ABH BGD ∠=∠=︒=∠ABD GBH ∴∠=∠()ADB HGB SAS ∴∆≅∆2AD GH ∴==120ADB BGH ∠=∠=︒180DGB BGH ∴∠+∠=︒∴G H D 426DH ∴=+=ADE ∆ACH ∆AC AH ∴=2AE AD DE ∠===60DAE CAH EDA ∠=∠=∠=︒DAC EAH ∴∠=∠()DAC EAH SAS ∴∆≅∆DC EH ∴=60BDG EDN ∠=∠=︒EN DG ⊥30DEN ∴∠=︒112ND DE ∴==33NE DN =7HN DH DN ∴=+=22349213EH EN NH ∴=+=+=213CD EH ∴==AF DAE BAC ∠=∠AD AE =AB AC =∴AD AE AB AC=ADE ABC ∴∆∆∽ADE ABC ∴∠=∠A ∴D B F 1801809090BFA ADB ∴∠=︒-∠=︒-︒=︒AF BC ∴⊥,,点是中点.17.(2021•越秀区校级四模)在一次数学探究活动中,李老师设计了一份活动单:已知线段,使用作图工具作,尝试操作后思考:(Ⅰ)这样的点唯一吗?(Ⅱ)点的位置有什么特征?你有什么感悟?“追梦”学习小组通过操作、观察、讨论后汇报:点的位置不唯一,它在以为弦的圆弧上(点、除外),,小华同学画出了符合要求的一条圆弧(如图.(1)小华同学提出了下列问题,请你帮助解决.①该弧所在圆的半径长为;②面积的最大值为;(2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形内部,我们记为,请你利用图1证明.(3)请你运用所学知识,结合以上活动经验,解决问题:如图2,已知矩形的边长,,点在直线的左侧,且.①求线段长的最小值;②若,求线段的长.【答案】(1)①2,②;(2)见解析;(3;②【详解】(1)解:①设为圆心,连接,,,,又,是等边三角形,,即半径为2,故答案为:2;AB AC=BF CF∴=∴F BC2BC=30BAC∠=︒AAA BCB C⋯1)ABC∆A'30BAC∠'>︒ABCD 2AB=3BC=P CD4tan3DPC∠=PB23PCD PADS S∆∆=PD32+975-3272244PD DF PF∴=+=+=O BO CO30BCA∠=︒60BOC∴∠=︒OB OC=OBC∴∆2OB OC BC∴===②以为底边,,当点到的距离最大时,的面积最大,如图,过点作的垂线,垂足为,延长,交圆于,以为底,则当与重合时,的面积最大,,,,,的最大面积为, 故答案为:;(2)证明:如图,延长,交圆于点,连接,点在圆上,,,,,即;(3)解:①如图,当点在上,且时, ,,, ,为定值, 连接,设点为中点,以点为圆心,为半径画圆, ABC ∆BC 2BC =∴A BC ABC ∆O BC E EO D BC A D ABC ∆1BE CE ∴==2DO BO ==223OE BO BE ∴=-=32DE ∴=+ABC ∴∆12(32)322⨯⨯+32+BA 'D CD D BDC BAC ∴∠=∠BAC BDC ACD ∠'=∠+∠'BAC BDC ∴∠'>∠BAC BAC ∴∠'>∠30BAC ∠'>︒P BC 32PC =90PCD ∠=︒2AB CD ==3AD BC ==4tan 3CD DPC PC ∴∠==PD Q PD Q 12PD当点在优弧上时,,连接,与圆交于, 此时即为的最小值,过点作,垂足为,点是中点,点为中点,即,,, , , 圆的半径为, ,即;②,,, , 中边上的高中边上的高,即点到的距离和点到的距离相等,点在的平分线上, 如图,过点作,垂足为,平分,, 为等腰直角三角形,又,,∴P CPD 4tan 3DPC ∠=BQ Q P 'BP 'BP Q QE BE ⊥E Q PD ∴E PC 112QE CD ==1324PE CE PC ===39344BE BC CE ∴=-=-=22974BQ BE QE ∴=+=2252PD CD PC =+=∴Q 155224⨯=975975444BP BQ P Q -∴'=-'=-=BP 975-3AD =2CD =23PCD PAD S S ∆∆=∴23CD AD =PAD ∴∆AD PCD =∆CD P AD P CD ∴P ADC ∠C CF PD ⊥F PD ADC ∠45ADP CDP ∴∠=∠=︒CDF ∴∆2CD =2CF DF ∴==, , . 18.(2020•广州一模)如图①,在四边形中,于点,,点为中点,为线段上的点,且(1)求证:平分;(2)若,连接,当四边形为平行四边形时,求线段的长;(3)若点为的中点,连接、(如图②,求证:.【答案】(1)见解析;(2)510;(3)见解析 【详解】(1)证明:如图①,,, 是的中点,,在中,,在中,, ,,是等腰直角三角形,,,,即平分; (2)解:设, 四边形是平行四边形, ,4tan 3CF DPC PF ∠==324PF ∴=3272244PD DF PF ∴=+=+=ABCD AC BD ⊥E AB AC BD ==M BC N AM MB MN =BN ABE ∠1BD =DN DNBC BC F AB FN FM )MFN BDC ∠=∠AB AC =ABC ACB ∴∠=∠M BC AM BC ∴⊥Rt ABM ∆90MAB ABC ∠+∠=︒Rt CBE ∆90EBC ACB ∠+∠=︒MAB EBC ∴∠=∠MB MN =MBN ∴∆45MNB MBN ∴∠=∠=︒45EBC NBE MAB ABN MNB ∠+∠=∠+∠=∠=︒NBE ABN ∴∠=∠BN ABE ∠BM CM MN a ===DNBC 2DN BC a ∴==在和中,,,,在中,由,可得:,解得:(负值舍去), ; (3)解:是的中点,在中,,,,,,即, ,.19.(2020•荔湾区一模)如图,在矩形中,,,点是边上的一动点,连接. (1)若将沿折叠,点落在矩形的对角线上点处,试求的长;(2)点运动到某一时刻,过点作直线交于点,将与分别沿与折叠,点与点分别落在点,处,若,,三点恰好在同一直线上,且,试求此时的长;(3)当点运动到边的中点处时,过点作直线交于点,将与分别沿与折叠,点与点重合于点处,请直接写出到的距离.ABN ∆DBN ∆AB DB NBE ABN BN BN =⎧⎪∠=∠⎨⎪=⎩()ABN DBN SAS ∴∆≅∆2AN DN a ∴==Rt ABM ∆222AM MB AB +=22(2)1a a a ++=1010a =±1025BC a ∴==F AB ∴Rt MAB ∆MF AF BF ==MAB FMN ∴∠=∠MAB CBD ∠=∠FMN CBD ∴∠=∠12MF MN AB BC ==MF MN BD BC=MFN BDC ∴∆∆∽MFN BDC ∴∠=∠ABCD 4AB =3BC =P AB DP DAP ∆DP A A 'AP P P PE BC E DAP ∆PBE ∆DP PE A B A 'B 'P A 'B '2A B ''=AP P AB P PG BC G DAP ∆PBG ∆DP PG A B F F BC【答案】(1)或;;(2)1或3;;(3)【详解】(1)四边形是矩形,,,,分两种情况:①当点落在对角线上时,如图1所示:设,在中,,,由折叠的性质得:,,,,,,在中,,即:,解得:, ; ②当点落在对角线上时,如图2所示: 由翻折性质可知:,,,, ,,, , 综上所述:的长为或; (2)①如图3所示:设,则,由折叠的性质得:,,,,解得:,;32941613ABCD 4AB CD ∴==3AD BC ==90ABC BCD CDA BAD ∠=∠=∠=∠=︒A BD AP x =Rt ADB ∆90BAD ∠=︒2222435BD AB AD ∴=+=+=AP PA x ='=3AD DA ='=90DA P BAD ∠'=∠=︒532BA BD DA ∴'=-'=-=90BA P ∠'=︒4BP AB AP x =-=-Rt BPA ∆'222BP PA BA ='+'222(4)2x x -=+32x =32AP ∴=A AC PD AC ⊥90PAC APD ∴∠+∠=︒90BAC BCA ∠+∠=︒APD BCA ∴∠=∠90DAP ABC ∠=∠=︒DAP ABC ∴∆∆∽∴AD AB AP BC=33944AD BC AP AB ⋅⨯∴===AP 3294AP x =4PB x =-PA PA x ='=4PB PB x ='=-2A B ''=42x x ∴--=1x =1PA ∴=②如图4所示:设,则,由折叠的性质得:,,,,,;综上所述,的长为1或3;(3)作于,如图5所示:则的长就是到的距离,由翻折的性质得:,,、、共线,设,则,,在中,,即:,解得, , ,, , , , 到的距离为.APx=4PB x =-PA PA x ='=4PB PB x ='=-2A B ''=(4)2x x ∴--=3x ∴=3PA ∴=PA FH CD ⊥H CH F BC 3AD DF ==BG FG =G F D BG FG x ==3DG DF FG x =+=+3CG BC BG x =-=-Rt GCD ∆222DG CD CG =+222(3)4(3)x x +=+-43x =413333DG ∴=+=//FH CG ∴DH DF CD DG=∴31343DH =3613DH ∴=361641313CH ∴=-=F ∴BC 161320.(2020•越秀区一模)如图所示,四边形为平行四边形,,,,且,点为直线上一动点,将线段绕点逆时针旋转得到线段,连接.(1)求平行四边形的面积;(2)当点、、三点共线时,设与相交于点,求线段的长;(3)求线段的长度的最小值.ABCD 13AD =25AB =DAB α∠=5cos 13α=E CD EA E αEF CF ABCD C B F EF AB G BG CF【答案】(1)300;(2);(3 【详解】解(1)如图1,作于点,将线段绕点逆时针旋转得到线段, ,,在中, ,且, ,, ; (2)如图2,延长至,作,,,过点作于点,由(1)知,,, 11722BG ∴=6613DK AB ⊥K EA E αEF AEF α∴∠=AE EF =Rt DAK ∆5cos cos 13AK DAK AD α∠===13AD =5AK ∴=222213512DK AD AK ∴=-=-=2512300ABCD S AB DK ∴=⨯=⨯=平行四边形CD H AHD α∠=AHD ADH α∠=∠=13AH AD ∴==A AM DH ⊥M 12AM =225DM AD AM ∴=-=10DH ∴=。
2020年高一高二数学百所名校好题分项解析汇编专题04 空间几何体的外接球与内切球(必修2)(原卷版)

高一数学(必修2)百所名校速递分项汇编专题04 空间几何体的外接球与内切球一、选择题1.【2017-2018学年辽宁省抚顺二中高一(上)期末】在三棱锥中,,,则该三棱锥的外接球的表面积为A.B.C.D.【答案】D∴外接球的表面积为S=4π×DG2=43π.故选:D.2.【黑龙江省实验中学2017-2018学年高一下学期期末】四面体中,,,,则此四面体外接球的表面积为A.B.C.D.【答案】A【解析】由题意,△BCD中,CB=DB=2,∠CBD=60°,可知△BCD是等边三角形,BF=∴△BCD的外接圆半径r==BE,FE=∵∠ABC=∠ABD=60°,可得AD=AC=,可得AF=∴AF⊥FB∴AF⊥BCD,∴四面体A﹣BCD高为AF=.设:外接球R,O为球心,OE=m可得:r2+m2=R2……①,()2+EF2=R2……②由①②解得:R=.四面体外接球的表面积:S=4πR2=.故选:A.3.【四川省泸州市泸化中学2017-2018学年高一5月月考】三棱柱中,,、、,则该三棱柱的外接球的表面积为( )A.4πB.6πC.8πD.10π【答案】C【解析】由题意得三棱柱为直三棱柱,且正好是长方体切出的一半,所以外接球半径为,,选C.4.【四川省泸州市泸化中学2017-2018学年高一5月月考】三棱柱中,,、、,则该三棱柱的外接球的体积( )A.B.C.D.【答案】B【解析】为直角三角形,斜边为,球心与该斜边的中点的连线垂直于平面,故球的半径,故球的体积为,故选B.5.【2018年人教A版数学必修二】棱长分别为2、、的长方体的外接球的表面积为()A.B.C.D.【答案】B【解析】设长方体的外接球半径为,由题意可知:,则:,该长方体的外接球的表面积为.本题选择B选项.6.【浙江省嘉兴市第一中学2018-2019学年高二上学期期中】在四面体中,,二面角的余弦值是,则该四面体外接球的表面积是()A.B.C.D.【答案】C【解析】取中点,连接,,平面,为二面角,在中,,,取等边的中心,作平面,过作平面,(交于),因为二面角的余弦值是,,,点为四面体的外接球球心,其半径为,表面积为,故选C.7.【安徽省黄山市屯溪第一中学2018-2019学年高二上学期期中考试】三棱锥P ABC中,PA⊥平面ABC,Q是BC边上的一个动点,且直线PQ与面ABC所成角的最大值为则该三棱锥外接球的表面积为( )A.B.C.D.【答案】C【解析】三棱锥P﹣ABC中,PA⊥平面ABC,直线PQ与平面ABC所成角为θ,如图所示;则sinθ==,且sinθ的最大值是,∴(PQ)min=2,∴AQ的最小值是,即A到BC的距离为,∴AQ⊥BC,∵AB=2,在Rt△ABQ中可得,即可得BC=6;取△ABC的外接圆圆心为O′,作OO′∥PA,∴=2r,解得r=2;∴O′A=2,取H为PA的中点,∴OH=O′A=2,PH=,由勾股定理得OP=R==,∴三棱锥P﹣ABC的外接球的表面积是S=4πR2=4×=57π.故答案为:C8.【广东省佛山市第一中学2018-2019学年高二上学期第一次段考】三棱锥的三视图如图所示,则该三棱锥外接球的体积为()A.B.C.D.【答案】A则球的半径R为,所以球的体积为.本题选择A选项.9.【内蒙古鄂尔多斯市第一中学2018-2019学年高二上学期期中考试】已知一个三棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的外接球体积为()A.B.C.D.【答案】C【解析】由三视图知几何体是一个侧棱与底面垂直的三棱锥,底面是斜边上的高为的等腰直角三角形,与底面垂直的侧面是个等腰三角形,底边长为,高为,故三棱锥的外接球与以棱长为的正方体的外接球相同,其直径为,半径为三棱锥的外接球体积为故选10.【四川省遂宁市2017-2018学年高二上学期教学水平监测】已知长方体中,,则长方体外接球的表面积为A.B.C.D.【答案】C11.【山西省朔州市应县第一中学2018-2019学年高二上学期期中考试】在三棱锥中,三侧面两两互相垂直,侧面的面积分别为,则此三棱锥的外接球的表面积为()A.B.C.D.【答案】A【解析】由题意得,侧棱两两垂直,设,则都是以为直角顶点的直角三角形,得,解之得,即,侧棱两两垂直,以为过同一顶点的三条棱作长方体,该长方体的对角线长为,恰好等于三棱锥外接球的直径,由此可得外接球的半径,可得此三棱锥外接球表面积为,故选A.12.【重庆市铜梁一中2018-2019学年高二10月月考】棱长分别为2,,的长方体的外接球的表面积为( )A.B.C.D.【答案】B13.【黑龙江省大庆中学2018-2019学年高二10月月考】长方体的三个相邻面的面积分别为2,3,6,则该长方体外接球的表面积为A.B.C.D.【答案】C【解析】设长方体的棱长分别为,则,所以,于是,设球的半径为,则,所以这个球面的表面积为.本题选择C选项.14.【重庆市万州三中2018-2019学年高二上学期第一次月考】已知一个表面积为44的长方体,且它的长、宽、高的比为3 21,则此长方体的外接球的体积为()A.B.C.D.【答案】D【解析】设长方体的长、宽、高分别为,则,解得,即,即长方体的棱长分别为,所以长方体的对角线长为,所以球的半径为,即,所以球的体积为,故选D.二、填空题15.【江西省赣州市十四县(市)2018-2019学年高二上学期期中联考】在三棱锥中,,,,,,则三棱锥的外接球的表面积为_______________.【答案】【解析】由题意,在三棱锥中,平面,以为长宽高构建长方体,则长方体的外接球是三棱锥的外接球,所以三棱锥的外接球的半径为,所以三棱锥的外接球的表面积为.16.【贵州省遵义市南白中学2018-2019学年高二上学期第一次月考】正四面体内切球半径与外接球半径之比为__________.【答案】【解析】由正四面体的对称性可得正四面体的内切球与外接球球心重合且在正四面体的高上,设正四面体的内切球与外接球球心为,正四面体的高为,将正四面体分成以为顶点,以四面体的四个面为底面的四个正四棱锥,这四个正四棱锥的底面积是正四面体的底面积,高为内切球的半径,设四面体外接球半径为,则,由四个正四棱锥的体积和等于正四面体的体积可得,故答案为.17.【山西省长治市第二中学2017-2018学年高二下学期期末考试】已知三棱锥中,,,则三棱锥的外接球的表面积为________________.【答案】【解析】如图:∵AD=2,AB=1,BD=,满足AD2+AB2=SD2∴AD⊥AB,又AD⊥BC,BC∩AB=B,∴AD⊥平面ABC,∵AB=BC=1,AC=,∴AB⊥BC,∴BC⊥平面DAB,∴CD是三棱锥的外接球的直径,∵AD=2,AC=,∴CD=,∴三棱锥的外接球的表面积为4π()2=6π.故答案为:6π18.【高二人教版必修2 第一章本章能力测评】已知正六棱柱的底面边长为4,高为6,则它的外接球的表面积为__________.【答案】【解析】根据正六棱柱的对称性可得,正六棱柱的体对角线就是球的直径,由高为,底面边长为,结合正六边形的性质,可得,即,所以外接球的表面积为,故答案为.19.【江西省南昌市第十中学2017-2018学年高二下学期期末考试】在三棱锥中,,,,,且三棱锥的体积为,则该三棱锥的外接球半径是_________【答案】3【解析】取的中点,连接,因为,,,,所以,且,所以平面,且是外接球的直径,设,所以为正三角形,则,则,解得.20.【山东省潍坊市2017-2018学年高二5月份统一检测】如图,在三棱锥中,平面,,,,则三棱锥外接球的表面积为__________.【答案】。
高考数学母题解密专题04 三视图附答案及解析(北京专版)

专题04 三视图【母题原题1】【2020年高考全国Ⅲ卷,理数】某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为( ).A .63B. 623+C. 123D. 1223+【答案】D【解析】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:()1322222sin 6012232S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+⎪⎝⎭【名师点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.【命题意图】能够识别三视图所表示的空间几何体,理解三视图和直观图的联系,并能进行转化,进而求出该几何体的表面积或体积.【命题规律】这类试题在考查题型上主要以选择题或填空题的形式出现,多为低档题,常见的命题角度:根据几何体的三视图,求该几何体的表面积或体积,熟练掌握三视图还原为直观图的方法(应牢记:长对正,宽相等,高平齐)及空间几何体的表面积与体积公式是关键.【答题模板】三视图问题的常见类型及解题策略:(1)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.(2)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线,不能看到的部分用虚线表示.(3)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(4)求几何体体积问题需先由三视图确定几何体的结构特征,判断是否为组合体,由哪些简单几何体构成,并准确判断这些几何体之间的关系,将其切割为一些简单的几何体,再求出各个简单几何体的体积,最后求出组合体的体积.【方法总结】1.线条的规则(1)能看见的轮廓线用实线表示;(2)不能看见的轮廓线用虚线表示.2.常见几何体的三视图3.空间几何体的直观图(1)斜二测画法及其规则对于平面多边形,我们常用斜二测画法画它们的直观图.斜二测画法是一种特殊的画直观图的方法,其画法规则是:①在已知图形中取互相垂直的x轴和y轴,两轴相交于点O.画直观图时,把它们画成对应的x′轴和y′轴,两轴相交于点O′,且使∠x′O′y′=45°(或135°),它们确定的平面表示水平面.②已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x′轴或y′轴的线段.③已知图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线段,长度为原来的一半.(2)用斜二测画法画空间几何体的直观图的步骤①在已知图形所在的空间中取水平平面,作互相垂直的轴Ox ,Oy ,再作Oz 轴使∠xOz =90°,且∠yOz =90°. ②画直观图时,把它们画成对应的轴O ′x ′,O ′y ′,O ′z ′,使∠x ′O ′y ′=45°(或135°),∠x ′O ′z ′=90°,x ′O ′y ′所确定的平面表示水平平面.③已知图形中,平行于x 轴、y 轴或z 轴的线段,在直观图中分别画成平行于x ′轴、y ′轴或z ′轴的线段,并使它们和所画坐标轴的位置关系与已知图形中相应线段和原坐标轴的位置关系相同.④已知图形中平行于x 轴或z 轴的线段,在直观图中保持长度不变,平行于y 轴的线段,长度变为原来的一半.⑤画图完成以后,擦去作为辅助线的坐标轴,就得到了空间图形的直观图. (3)直观图的面积与原图面积之间的关系 ①原图形与直观图的面积比为22SS =',即原图面积是直观图面积的22倍, ②直观图面积是原图面积的2=22倍. 4.旋转体的表面积圆柱(底面半径为r ,母线长为l )圆锥(底面半径为r ,母线长为l )圆台(上、下底面半径分别为r ′,r ,母线长为l )侧面展开图底面面积2π底S r =2π底S r =22,ππ上底下底S r S r ='=侧面面积2π侧S rl =π侧S rl =()π侧S l r r ='+表面积()2π表S r r l =+ ()π表S r r l =+()22π表S r r r l rl ='++'+5.多面体的表面积多面体的表面积就是各个面的面积之和,也就是展开图的面积. 棱锥、棱台、棱柱的侧面积公式间的联系:6.球的表面积和体积公式设球的半径为R ,它的体积与表面积都由半径R 唯一确定,是以R 为自变量的函数,其表面积公式为24πR ,即球的表面积等于它的大圆面积的4倍;其体积公式为34π3R .7.球的切、接问题(常见结论)(1)若正方体的棱长为a ,则正方体的内切球半径是12a ;正方体的外接球半径是32a ;与正方体所有棱相切的球的半径是22a . (2)若长方体的长、宽、高分别为a ,b ,h 22212a b h ++ (3)若正四面体的棱长为a 66;与正四面体所有棱相切的球的半径是24a . (4)球与圆柱的底面和侧面均相切,则球的直径等于圆柱的高,也等于圆柱底面圆的直径. (5)球与圆台的底面与侧面均相切,则球的直径等于圆台的高. 8.柱体、锥体、台体的体积公式几何体体积柱体柱体V Sh=(S为底面面积,h为高),2π圆柱V r h=(r为底面半径,h为高) 锥体13锥体V Sh=(S为底面面积,h为高),213π圆锥V r h=(r为底面半径,h为高) 台体(13)台体V S S S S h='+'+(S′、S分别为上、下底面面积,h为高),()223π1圆台V h r r r r='+'+(r′、r分别为上、下底面半径,h为高)9.柱体、锥体、台体体积公式间的关系10.必记结论(1)一个组合体的体积等于它的各部分体积之和或差;(2)等底面面积且等高的两个同类几何体的体积相等.1.(2020·北京高三二模)已知一个几何体的三视图如图所示,正(主)视图是由一个半圆弧和一个正方形的三边拼接而成的,俯视图和侧(左)视图分别为一个正方形和一个长方形,那么这个几何体的体积是( )A .12π+B .14π+C .18π+D .1+π2.(2020·北京高三一模)如图,一个简单空间几何体的三视图其主视图与侧视图都是边长为2的正三角形,俯视图轮廓为正方形,则此几何体的侧面积是A .443+B .12C .43D .83.(2019·北京清华附中高考模拟(文))如图,正方体1111ABCD A B C D -中,E 为棱1BB 的中点,用过点A 、E 、1C 的平面截去该正方体的下半部分,则剩余几何体的正视图(也称主视图)是( )A .B .C .D .4.(2020·北京人大附中昌平学校高三二模)某四棱锥的三视图如图所示,记S 为此棱锥所有棱的长度的集合,则( ).A .22S ∉,且23S ∉B .22S ∉,且23S ∈C .22S ∈,且23S ∉D .22S ∈,且23S ∈5.(2020·北京高三零模)某四棱锥的三视图如图所示,则该四棱锥的体积为( )A .23B .43C .2D .46.(2020·北京高三一模)某三棱锥的三视图如图所示,那么该三棱锥的表面中直角三角形的个数为()A.1 B.2 C.3 D.07.(2020·宁夏回族自治区银川一中高一期末)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12D.188.(2020·北京高三期末(文))某三棱锥的三视图如图所示,则该几何体的体积为( )A.43B.83C.4D.89.(2018·北京高二期中(文))某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是A.B.C.D.10.(2018·北京高三期中(文))已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于()A.1B.2C.2-1D.2+1 211.(2020·四川省眉山市彭山区第二中学高三其他(文))将正方形(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为()A.B.C.D.12.(2020·西安电子科技大学附属中学太白校区高一期末)某几何体的三视图如图所示,则它的体积是()A .283π-B .83π-C .82π-D .23π 13.(2020·北京高三一模)如图所示,某三棱锥的正(主)视图、俯视图、侧(左)视图均为直角三角形,则该三棱锥的体积为( )A .4B .6C .8D .1214.(2020·榆林市第二中学高三零模(文))将长方体截去一个四棱锥后得到的几何体如图所示,则该几何体的侧视图为( )A.B.C.D.15.(2020·北京高三月考)如图,网格纸上小正方形的边长均为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A.23B.43C.3D.3216.(2020·上海高三专题练习)若某空间几何体的三视图如图所示,则该几何体的体积是()A.13B.23C.1 D.217.(2020·北京高三二模)某三棱锥的三视图如图所示,则该三棱锥的体积是()A.6 B.8 C.12 D.24 18.(2020·浙江省高三其他)一个空间几何体的三视图如图所示,则其体积等于()A.66B.13C.12D.3219.(2020·四川省石室中学高三月考(理))某几何体的三视图如图所示(单位:cm) ,则该几何体的表面积(单位:cm2)是( )A.16 B.32 C.44 D.6420.(2020·浙江省高三其他)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:3cm)是()A.13π+B.123π+C.23π+D.123π+21.(2019·浙江省高三其他)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是( )A .28cmB .212cmC .()2452cm +D .()2454cm +22.(2018·北京高三专题练习(理))某四棱锥的三视图如图所示,则该四棱锥的最长的棱长度为( ).A .23B .32C .22D .223.(2020·北京高三月考)某三棱锥的三视图如图所示,则该三棱锥中最长的棱长为( )A 2B .2C .22D .324.(2010·北京高考真题(理))一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所示,则该几何体的俯视图为( )A.B.C.D.25.(2020·重庆市云阳江口中学校高三月考(文))某四棱锥的三视图如图所示,则该四棱锥的体积为()A.2 B.3 C.4 D.626.(2020·北京十五中高三一模)在正方形网格中,某四面体的三视图如图所示,如果小正方形网格的边长为1,那么该四面体最长棱的棱长为()A.25B.42C.6D.43 27.(2020·北京四中高三开学考试)某四棱锥的三视图如图所示,则该四棱锥的体积为()A.23B.43C.83D.328.(2020·湖南省湖南师大附中高三月考(文))某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A.1 B.2C .3D .429.(2020·北京八中高三月考)某几何体的三视图如图所示,则该几何体的体积是( )A .13B .23C .1D .230.(2020·北京高三月考(文))某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A .37cm 2B .37cm 3C .37cm 6D .37cm31.(2020·北京高三其他)某四面体的三视图如图所示,正视图,俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的四个面中面积最大的为()A.22B.23C.4D.2632.(2020·北京高三二模)某三棱锥的三视图如图所示,如果网格纸上小正方形的边长为1,那么该三棱锥的体积为()A.23B.43C.2 D.433.(2020·福建省福州第一中学高三其他(理))已知某几何体的三视图如图所示,则该几何体的体积为()A.83πB.103πC.6πD.3π34.(2020·定远县育才学校高三其他(文))某四棱锥的三视图如图所示,则该四棱锥的体积等于()A.23B.13C.12D.3435.(2020·北京高三一模)某三棱锥的三视图如图所示,则该三棱锥的四个面中,面积等于3的有()A.1个B.2个C.3个D.4个36.(2020·四川省泸县第一中学高三二模(理))某四棱锥的三视图如图所示,该四棱锥的表面积是()A.2025+B.1445+C.26D.1225+37.(2020·上海高三专题练习)一个棱锥的三视图如图,则该棱锥的全面积(单位:c2m)为( )A.48+122B.48+242C.36+122D.36+24238.(2020·上海高三专题练习)某四面体的三视图如图所示,该四面体四个面的面积中,最大的是()A.8 B.62C.10 D.8239.(2020·南昌市八一中学高二期中(理))某几何体的三视图如图所示,则这个几何体的体积等于()A.4B.6C.8D.1240.(2020·北京高三二模)如图所示,一个三棱锥的主视图和左视图均为等边三角形,俯视图为等腰直角三角形,则该棱锥的体积为()A 23B.43C43D.3解析附后专题04 三视图【母题原题1】【2020年高考全国Ⅲ卷,理数】某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为( ).A .63B. 623+C. 123D. 1223+【答案】D【解析】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:()1322222sin 6012232S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+⎪⎝⎭【名师点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.【命题意图】能够识别三视图所表示的空间几何体,理解三视图和直观图的联系,并能进行转化,进而求出该几何体的表面积或体积.【命题规律】这类试题在考查题型上主要以选择题或填空题的形式出现,多为低档题,常见的命题角度:根据几何体的三视图,求该几何体的表面积或体积,熟练掌握三视图还原为直观图的方法(应牢记:长对正,宽相等,高平齐)及空间几何体的表面积与体积公式是关键.【答题模板】三视图问题的常见类型及解题策略:(1)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.(2)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线,不能看到的部分用虚线表示.(3)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(4)求几何体体积问题需先由三视图确定几何体的结构特征,判断是否为组合体,由哪些简单几何体构成,并准确判断这些几何体之间的关系,将其切割为一些简单的几何体,再求出各个简单几何体的体积,最后求出组合体的体积.【方法总结】1.线条的规则(1)能看见的轮廓线用实线表示;(2)不能看见的轮廓线用虚线表示.2.常见几何体的三视图3.空间几何体的直观图(1)斜二测画法及其规则对于平面多边形,我们常用斜二测画法画它们的直观图.斜二测画法是一种特殊的画直观图的方法,其画法规则是:①在已知图形中取互相垂直的x轴和y轴,两轴相交于点O.画直观图时,把它们画成对应的x′轴和y′轴,两轴相交于点O′,且使∠x′O′y′=45°(或135°),它们确定的平面表示水平面.②已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x′轴或y′轴的线段.③已知图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线段,长度为原来的一半.(2)用斜二测画法画空间几何体的直观图的步骤①在已知图形所在的空间中取水平平面,作互相垂直的轴Ox ,Oy ,再作Oz 轴使∠xOz =90°,且∠yOz =90°. ②画直观图时,把它们画成对应的轴O ′x ′,O ′y ′,O ′z ′,使∠x ′O ′y ′=45°(或135°),∠x ′O ′z ′=90°,x ′O ′y ′所确定的平面表示水平平面.③已知图形中,平行于x 轴、y 轴或z 轴的线段,在直观图中分别画成平行于x ′轴、y ′轴或z ′轴的线段,并使它们和所画坐标轴的位置关系与已知图形中相应线段和原坐标轴的位置关系相同.④已知图形中平行于x 轴或z 轴的线段,在直观图中保持长度不变,平行于y 轴的线段,长度变为原来的一半.⑤画图完成以后,擦去作为辅助线的坐标轴,就得到了空间图形的直观图. (3)直观图的面积与原图面积之间的关系 ①原图形与直观图的面积比为22SS =',即原图面积是直观图面积的22倍, ②直观图面积是原图面积的2=22倍. 4.旋转体的表面积圆柱(底面半径为r ,母线长为l )圆锥(底面半径为r ,母线长为l )圆台(上、下底面半径分别为r ′,r ,母线长为l )侧面展开图底面面积2π底S r =2π底S r =22,ππ上底下底S r S r ='=侧面面积2π侧S rl =π侧S rl =()π侧S l r r ='+表面积()2π表S r r l =+ ()π表S r r l =+()22π表S r r r l rl ='++'+5.多面体的表面积多面体的表面积就是各个面的面积之和,也就是展开图的面积. 棱锥、棱台、棱柱的侧面积公式间的联系:6.球的表面积和体积公式设球的半径为R ,它的体积与表面积都由半径R 唯一确定,是以R 为自变量的函数,其表面积公式为24πR ,即球的表面积等于它的大圆面积的4倍;其体积公式为34π3R .7.球的切、接问题(常见结论)(1)若正方体的棱长为a ,则正方体的内切球半径是12a ;正方体的外接球半径是32a ;与正方体所有棱相切的球的半径是22a . (2)若长方体的长、宽、高分别为a ,b ,h 22212a b h ++ (3)若正四面体的棱长为a 66;与正四面体所有棱相切的球的半径是24a . (4)球与圆柱的底面和侧面均相切,则球的直径等于圆柱的高,也等于圆柱底面圆的直径. (5)球与圆台的底面与侧面均相切,则球的直径等于圆台的高. 8.柱体、锥体、台体的体积公式几何体体积柱体柱体V Sh=(S为底面面积,h为高),2π圆柱V r h=(r为底面半径,h为高) 锥体13锥体V Sh=(S为底面面积,h为高),213π圆锥V r h=(r为底面半径,h为高) 台体(13)台体V S S S S h='+'+(S′、S分别为上、下底面面积,h为高),()223π1圆台V h r r r r='+'+(r′、r分别为上、下底面半径,h为高)9.柱体、锥体、台体体积公式间的关系10.必记结论(1)一个组合体的体积等于它的各部分体积之和或差;(2)等底面面积且等高的两个同类几何体的体积相等.1.(2020·北京高三二模)已知一个几何体的三视图如图所示,正(主)视图是由一个半圆弧和一个正方形的三边拼接而成的,俯视图和侧(左)视图分别为一个正方形和一个长方形,那么这个几何体的体积是( )A .12π+B .14π+C .18π+D .1+π【答案】C【解析】根据几何体的三视图转换为直观图为:该几何体为一个棱长为1的正方体和一个底面半径为12,高为1的半个圆柱. 如图所示:所以:V 211111()11228ππ=⨯⨯+⨯⨯⨯=+. 2.(2020·北京高三一模)如图,一个简单空间几何体的三视图其主视图与侧视图都是边长为2的正三角形,俯视图轮廓为正方形,则此几何体的侧面积是A .443+B .12C .43D .8【答案】D 【解析】由三视图知:原几何体是一个正四棱锥,正四棱锥的底面边长为2,高为3,所以侧面的斜高为()23+1=2,所以该几何体的侧面积为1=224=82s ⨯⨯⨯. 3.(2019·北京清华附中高考模拟(文))如图,正方体1111ABCD A B C D -中,E 为棱1BB 的中点,用过点A 、E 、1C 的平面截去该正方体的下半部分,则剩余几何体的正视图(也称主视图)是( )A .B .C .D .【答案】A【解析】正方体1111ABCD A B C D -中,过点1,,A E C 的平面截去该正方体的上半部分后,剩余部分的直观图如图:则该几何体的正视图为图中粗线部分.4.(2020·北京人大附中昌平学校高三二模)某四棱锥的三视图如图所示,记S 为此棱锥所有棱的长度的集合,则( ).A .22S ,且3SB .22S ,且23SC .22S ,且23SD .22S ,且23S【答案】D 【解析】根据几何体的三视图转换为几何体为:该几何体为四棱锥体,如图所示:所以:2AB BC CD AD DE =====, 22AE CE ==,22(22)223BE =+=.故选:D..5.(2020·北京高三零模)某四棱锥的三视图如图所示,则该四棱锥的体积为( )A .23B .43C .2D .4【答案】B【解析】由三视图知该四棱锥是底面为正方形,且一侧棱垂直于底面,画出四棱锥的直观图,如图所示:则该四棱锥的体积为211421333ABCD V S PA =⋅=⨯⨯=正方形. 6.(2020·北京高三一模)某三棱锥的三视图如图所示,那么该三棱锥的表面中直角三角形的个数为( )A .1B .2C .3D .0【答案】C 【解析】由三视图还原原几何体如图,其中ABC ∆,BCD ∆,ADC ∆为直角三角形.∴该三棱锥的表面中直角三角形的个数为3.7.(2020·宁夏回族自治区银川一中高一期末)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A .6B .9C .12D .18【答案】B【解析】 13V Sh =,1163332=⨯⨯⨯⨯,9=.8.(2020·北京高三期末(文))某三棱锥的三视图如图所示,则该几何体的体积为( )A .43 B .83 C .4 D .8【答案】A【解析由三视图可知,该几何体是一个三棱锥,其底面为等腰直角三角形,且腰长为2,三棱柱的高为2,所以该三棱柱的体积为114 V222323 =⨯⨯⨯⨯=.9.(2018·北京高二期中(文))某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是A.B.C.D.【答案】D【解析】本题是组合体的三视图问题,由几何体的正视图和侧视图均如图所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A,B,C都可能是该几何体的俯视图,D不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩形.10.(2018·北京高三期中(文))已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于()A.1B2C2-1D.2+1 2【答案】C【解析】水平放置的正方体,当正视图为正方形时,其面积最小为1;当正视图为对角面时,其面积最大为2,因此满足棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积的范围是[1,2],因此,,A B D 皆有可能,而2112-<,11.(2020·四川省眉山市彭山区第二中学高三其他(文))将正方形(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为 ( )A .B .C .D .【答案】B【解析】由题意可知几何体前面在右侧的射影为线段,上面的射影也是线段,后面与底面的射影都是线段,轮廓是正方形,1AD 在右侧的射影是正方形的对角线,1B C 在右侧的射影也是对角线是虚线.如图B . 12.(2020·西安电子科技大学附属中学太白校区高一期末)某几何体的三视图如图所示,则它的体积是( )A .283π- B .83π-C .82π-D .23π 【答案】A【解析】根据已知的三视图想象出空间几何体,然后由几何体的组成和有关几何体体积公式进行计算. 由几何体的三视图可知几何体为一个组合体,即一个正方体中间去掉一个圆锥体,所以它的体积是3218222833V ππ=-⨯⨯⨯=-.13.(2020·北京高三一模)如图所示,某三棱锥的正(主)视图、俯视图、侧(左)视图均为直角三角形,则该三棱锥的体积为( )A .4B .6C .8D .12【答案】A 【解析】由三视图知,几何体是一个三棱锥1D BCD ,根据三棱锥的三视图的数据,设出三棱锥两两垂直的三条侧棱分别是4DC =,3BC =,12DD =,因此,三棱锥的体积是114324 32⨯⨯⨯⨯=.14.(2020·榆林市第二中学高三零模(文))将长方体截去一个四棱锥后得到的几何体如图所示,则该几何体的侧视图为()A.B.C.D.【答案】D【解析】将长方体截去一个四棱锥,得到的几何体,左向右看得到矩形,矩形对角线从左下角连接右上角,且对角线为虚线,故该几何体的侧视图为D15.(2020·北京高三月考)如图,网格纸上小正方形的边长均为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A .23B .43C .3D .32【答案】D【解析】根据三视图可知,该几何体的直观图为三棱锥P ABC -,如图可知3,1,==⊥AB BC AB BC ,点P 到平面ABC 的距离为3h =11331222△=⋅⋅=⋅⋅=ABC S AB BC 所以113333322△-=⋅⋅=⋅⋅=P ABC ABC V S h 16.(2020·上海高三专题练习)若某空间几何体的三视图如图所示,则该几何体的体积是()A .13B .23C .1D .2【答案】C【解析】由三视图可知:原几何体为三棱柱.所以体积为:.17.(2020·北京高三二模)某三棱锥的三视图如图所示,则该三棱锥的体积是( )A .6B .8C .12D .24【答案】B【解析】由三视图画出该三棱锥的直观图,如下图,三棱锥A BCD -中,AB ⊥底面BCD ,4AB =,BC CD ⊥,且4BC =,3CD =,所以该三棱锥的体积1114348332BCDV S AB =⋅=⨯⨯⨯⨯=. 故选:B.18.(2020·浙江省高三其他)一个空间几何体的三视图如图所示,则其体积等于()A.66B.13C.12D.32【答案】C【解析】由三视图可知,该几何体为三棱锥,如图,且高为3,∴该三棱锥的体积111133322V=⨯⨯=,故选:C.19.(2020·四川省石室中学高三月考(理))某几何体的三视图如图所示(单位:cm) ,则该几何体的表面积(单位:cm2)是( )A.16 B.32 C.44 D.64【答案】B【解析】由三视图还原原几何体如图,该几何体为三棱锥,底面是直角三角形,PA⊥底面ABC.⊥.则BC PC∴该几何体的表面积1(34543445)32S=⨯+⨯+⨯+⨯=.220.(2020·浙江省高三其他)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:3cm)是()A.13π+B.123π+C.23π+D.123π+【答案】B【解析】由三视图还原几何体的直观图,如下图:可得该几何体为一个四分之一的圆柱和一个三棱锥的组合体,所以该几何体的体积21211111243223 Vππ⨯⨯=+⨯⨯⨯⨯=+.故选:B.21.(2019·浙江省高三其他)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是( )A .28cmB .212cmC .()2452cm +D .()2454cm +【答案】D【解析】根据三视图可知,该几何体为正四棱锥.底面积为224⨯=.侧面的高为22215+=,所以侧面积为1425452⨯⨯⨯=.所以该几何体的表面积是()2454cm +. 22.(2018·北京高三专题练习(理))某四棱锥的三视图如图所示,则该四棱锥的最长的棱长度为( ).A .3B .32C .22D .2【答案】A【解析】由三视图可知其直观图,。
2023年高考数学二轮复习第一部分专题攻略专题四立体几何第一讲空间几何体的表面积与体积

专题四 立体几何第一讲 空间几何体的表面积与体积——小题备考微专题1 空间几何体的表面积和体积常考常用结论1.柱体、锥体、台体、球的表面积公式: ①圆柱的表面积S =2πr (r +l ); ②圆锥的表面积 S =πr (r +l );③圆台的表面积S =π(r ′2+r 2+r ′l +rl ); ④球的表面积S =4πR 2.2.柱体、锥体和球的体积公式: ①V 柱体=Sh (S 为底面面积,h 为高); ②V 锥体=13Sh (S 为底面面积,h 为高);③V 球=43πR 3.保 分 题1.[2022·山东枣庄三模]若圆锥的母线长为2,侧面积为2π,则其体积为( ) A .√6π B .√3π C .√63π D .√33π2.[2022·河北保定一模]圆柱的底面直径与高都等于球的直径,则球的表面积与圆柱的侧面积的比值为( )A .1∶1B .1∶2C .2∶1D .2∶33.[2022·湖北武汉二模]如图,在棱长为2的正方体中,以其各面中心为顶点构成的多面体为正八面体,则该正八面体的体积为( )A .2√23B .43 C .4√23D .83提分题例1 (1)[2022·河北张家口三模]如图,在三棱柱ABC A1B1C1中,过A1B1的截面与AC交于点D,与BC交于点E,该截面将三棱柱分成体积相等的两部分,则CDAC=()A.13B.12C.2−√32D.√3−12(2)[2022·湖南雅礼中学二模]某圆锥高为1,底面半径为√3,则过该圆锥顶点的平面截此圆锥所得截面面积的最大值为()A.2 B.√3C.√2D.1听课笔记:【技法领悟】1.求几何体的表面积及体积问题,可以多角度、多方位地考虑,熟记公式是关键.求三棱锥的体积,等体积转化是常用的方法,转化原则是其高易求,底面放在已知几何体的某一面上.2.求不规则几何体的体积,常用分割或补形的方法,将不规则几何体转化为规则几何体,易于求解.巩固训练11.[2022·山东菏泽一模]如图1,在高为h的直三棱柱容器ABC A1B1C1中,AB=AC=2,AB⊥AC.现往该容器内灌进一些水,水深为2,然后固定容器底面的一边AB于地面上,再将容器倾斜,当倾斜到某一位置时,水面恰好为A 1B 1C (如图2),则容器的高h 为( )A .3B .4C .4√2D .62.[2022·福建福州三模]已知AB ,CD 分别是圆柱上、下底面圆的直径,且AB ⊥CD ,O 1,O 分别为上、下底面的圆心,若圆柱的底面圆半径与母线长相等,且三棱锥A BCD 的体积为18,则该圆柱的侧面积为( )A .9πB .12πC .16πD .18π微专题2 与球有关的切、接问题常考常用结论1.球的表面积S =4πR 2,体积V =43πR 3.2.长方体、正方体的体对角线等于其外接球的直径. 3.n 面体的表面积为S ,体积为V ,则内切球的半径r =3VS .4.直三棱柱的外接球半径:R =√r 2+(L2)2,其中r 为底面三角形的外接圆半径,L 为侧棱长,如果直三棱柱有内切球,则内切球半径R ′=L2.5.正四面体中,外接球和内切球的球心重合,且球心在高对应的线段上,它是高的四等分点,球心到顶点的距离为外接球的半径R =√64a (a 为正四面体的棱长),球心到底面的距离为内切球的半径r =√612a ,因此R ∶r =3∶1.保 分 题1.[2022·广东深圳二模]已知一个球的表面积在数值上是它的体积的√3倍,则这个球的半径是( )A .2B .√2C .3D .√32.已知正四棱锥P ABCD 中,AB =√6,P A =2√3,则该棱锥外接球的体积为( )A.4π B.32π3C.16π D.16π33.[2022·天津红桥一模]一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1、√2、3,则此球的体积为________.提分题例2 (1)[2022·江苏苏州三模]《九章算术》卷第五《商功》中,有“贾令刍童,上广一尺,袤二尺,下广三尺,袤四尺,高一尺.”,意思是:“假设一个刍童,上底面宽1尺,长2尺;下底面宽3尺,长4尺,高1尺.”(注:刍童为上下底面为相互平行的不相似长方形,两底面的中心连线与底面垂直的几何体),若该几何体所有顶点在一球体的表面上,则该球体的体积为()立方尺A.√41πB.41π3D.3√41πC.41√41π6(2)[2022·山东泰安三模]如图,已知三棱柱ABC A1B1C1的底面是等腰直角三角形,AA1⊥底面ABC,AC=BC=2,AA1=4,点D在上底面A1B1C1(包括边界)上运动,则三棱锥D ABC 的外接球表面积的最大值为()π B.24πA.814C.243π D.8√6π16听课笔记:【技法领悟】1.确定球心的位置,弄清球的半径(直径)与几何体的位置和数量关系.2.求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.3.补成正方体、长方体、正四面体、正棱柱、圆柱等规则几何体.巩固训练21.已知圆柱的轴截面为正方形,其外接球为球O,球O的表面积为8π,则该圆柱的体积为()A.√22π B.√2πC.2π D.2√2π2.[2022·广东潮州二模]已知△ABC是边长为3的等边三角形,三棱锥P ABC全部顶点都在表面积为16π的球O的球面上,则三棱锥P ABC的体积的最大值为()A.√3B.3√32C.9√34D.√32专题四 立体几何第一讲 空间几何体的表面积与体积微专题1 空间几何体的表面积和体积保分题1.解析:设圆锥的底面半径为r ,高为h ,则πr ×2=2π,可得r =1,则h =√22−r 2=√3,因此,该圆锥的体积为V =13πr 2h =13π×12×√3=√33π. 答案:D2.解析:设球的半径为r ,依题意圆柱的底面半径也是r ,高是2r , 圆柱的侧面积=2πr ·2r =4πr 2 ,球的表面积为4πr 2 , 其比例为1∶1. 答案:A3.解析:该正八面体是由两个同底的正四棱锥组成,且正四棱锥的底面是边长为√2的正方形,棱锥的高为1,所以该正八面体的体积为2×13×√2×√2×1=43.答案:B提分题[例1] 解析:(1)由题可知平面A 1B 1ED 与棱柱上、下底面分别交于A 1B 1,ED , 则A 1B 1∥ED ,ED ∥AB , 显然CDE - C 1A 1B 1是三棱台,设△ABC 的面积为1,△CDE 的面积为S ,三棱柱的高为h , ∴12·1·h =13h (1+S +√S ), 解得√S =√3−12,由△CDE ∽△CAB ,可得CD AC =√S√1=√3−12. (2)如图,截面为△P AB ,设C 为AB 中点,设OC =x ,x ∈[0,√3),则AB =2√3−x 2,PC =√x 2+1,则截面面积S =12×2√3−x 2×√x 2+1=√−(x 2−1)2+4,则当x 2=1时,截面面积取得最大值为2. 答案:(1)D (2)A[巩固训练1]1.解析:在图1中V 水=12×2×2×2=4,在图2中,V 水=V ABC − A 1B 1C 1− V C − A 1B 1C 1=12×2×2×h -13×12×2×2×h =43h , ∴43h =4,∴h =3.答案:A2.解析:分别过A ,B 作圆柱的母线AE ,BF ,连接CE ,DE ,CF ,DF ,设圆柱的底面半径为r ,则三棱锥A - BCD 的体积为两个全等四棱锥C - ABFE 减去两个全等三棱锥A - CDE , 即2×13×r ×2r ×r -2×13×r ×12×2r ×r =23r 3=18,则r =3,圆柱的侧面积为2πr ×r =18π答案:D微专题2 与球有关的切、接问题保分题1.解析:设球的半径为R ,则根据球的表面积公式和体积公式, 可得,4πR 2=43πR 3×√3,化简得R =√3. 答案:D2.解析:正方形ABCD 的对角线长√6+6=2√3,正四棱锥的高为 √(2√3)2−(2√32)2=3,设外接球的半径为R ,则(3-R )2+(2√32)2=R 2⇒R =2, 所以外接球的体积为4π3×23=32π3.答案:B3.解析:长方体外接球的直径为√12+(√2)2+32=2√3,所以外接球半径为√3,所以球的体积为4π3×(√3)3=4√3π.答案:4√3π提分题[例2] 解析:(1)作出图象如图所示:由已知得球心在几何体的外部, 设球心到几何体下底面的距离为x , 则R 2=x 2+(52)2=(x +1)2+(√52)2,解得x =2,∴R 2=414, ∴该球体的体积V =4π3×(√412)3=41√41π6.(2)因为△ABC 为等腰直角三角形,AC =BC =2,所以△ABC 的外接圆的圆心为AB 的中点O 1, 且AO 1=√2,连接O 1与A 1B 1的中点E ,则O 1E ∥AA 1,所以O 1E ⊥平面ABC , 设球的球心为O ,由球的截面性质可得O 在O 1E 上, 设OO 1=x ,DE =t (0≤t ≤√2),半径为R , 因为OA =OD =R ,所以√2+x 2=√(4−x )2+t 2, 所以t 2=8x -14,又0≤t ≤√2, 所以74≤x ≤2,因为R 2=2+x 2,所以8116≤R 2≤6,所以三棱锥D -ABC 的外接球表面积的最大值为24π. 答案:(1)C (2)B [巩固训练2]1.解析:设外接球的半径为R ,圆柱底面圆的半径为r ,因为圆柱的轴截面为正方形,所以圆柱的高h =2r ,由球O 的表面积S =4πR 2=8π,得R =√2,又R = √(h2)2+r 2=√2r ,得r =1,所以圆柱的体积V =πr 2·2r =2πr 3=2π.答案:C2.解析:球O 的半径为R ,则4πR 2=16π,解得:R =2,由已知可得:S △ABC =√34×32=9√34,其中AE =23AD =√3,球心O 到平面ABC 的距离为√R 2−(√3)2=1, 故三棱锥P - ABC 的高的最大值为3, 体积最大值为13S △ABC ·3=9√34.答案:C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题04 立体几何1.【2019年高考全国Ⅰ卷理数】已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为A .B .C .D【答案】D【解析】解法一:,PA PB PC ABC ==Q △为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥I 平面PAC ,∴PB ⊥平面PAC ,APB PA PB PC ∴∠=90︒,∴===P ABC ∴-为正方体的一部分,2R ==即344π33R V R =∴=π==,故选D .解法二:设2PA PB PC x ===,,E F 分别为,PA AB 的中点,EF PB ∴∥,且12EF PB x ==,ABC Q △为边长为2的等边三角形,CF ∴=又90CEF ∠=︒,12CE AE PA x ∴===, AEC △中,由余弦定理可得()2243cos 22x x EAC x+--∠=⨯⨯,作PD AC ⊥于D ,PA PC =Q ,D \为AC 的中点,1cos 2AD EAC PA x ∠==,2243142x x x x+-+∴=,22121222x x x ∴+=∴==,,,PA PB PC ∴===又===2AB BC AC ,,,PA PB PC ∴两两垂直,2R ∴==2R ∴=,34433V R ∴=π==,故选D.【名师点睛】本题主要考查学生的空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决. 2.【2019年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内两条相交直线都与β平行是αβ∥的充分条件,由面面平行性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ∥的必要条件,故选B .【名师点睛】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,a b a b αβ⊂⊂∥,则αβ∥”此类的错误.3.【2019年高考全国Ⅲ卷理数】如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线 【答案】B【解析】如图所示,作EO CD ⊥于O ,连接ON ,BD ,易得直线BM ,EN 是三角形EBD 的中线,是相交直线.过M 作MF OD ⊥于F ,连接BF ,Q 平面CDE ⊥平面ABCD ,,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,MF ⊥平面ABCD ,MFB ∴△与EON △均为直角三角形.设正方形边长为2,易知12EO ON EN ===,,5,22MF BF BM ==∴=BM EN ∴≠,故选B .【名师点睛】本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角形.解答本题时,先利用垂直关系,再结合勾股定理进而解决问题.4.【2019年高考浙江卷】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V 柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:cm 3)是A .158B .162C .182D .324【答案】B【解析】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为264633616222++⎛⎫⨯+⨯⨯= ⎪⎝⎭.故故B.【名师点睛】本题首先根据三视图,还原得到几何体——棱柱,根据题目给定的数据,计算几何体的体积,常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查.易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心算.5.【2019年高考浙江卷】设三棱锥V –ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P –AC –B 的平面角为γ,则 A .β<γ,α<γB .β<α,β<γC .β<α,γ<αD .α<β,γ<β【答案】B【解析】如图,G 为AC 中点,连接VG ,V 在底面ABC 的投影为O ,则P 在底面的投影D 在线段AO 上,过D 作DE 垂直于AC 于E ,连接PE ,BD ,易得PE VG ∥,过P 作PF AC ∥交VG 于F ,连接BF ,过D 作DH AC ∥,交BG 于H ,则,,BPF PBD PED αβγ=∠=∠=∠,结合△PFB ,△BDH ,△PDB 均为直角三角形,可得cos cos PF EG DH BDPB PB PB PBαβ===<=,即αβ>; 在Rt △PED 中,tan tan PD PDED BDγβ=>=,即γβ>,综上所述,答案为B.【名师点睛】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.常规解法下易出现的错误有,不能正确作图得出各种角,未能想到利用“特殊位置法”,寻求简便解法.6.【2019年高考全国Ⅲ卷理数】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O —EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.【答案】118.8【解析】由题意得,214642312cm 2EFGH S =⨯-⨯⨯⨯=四边形, ∵四棱锥O −EFGH 的高为3cm , ∴3112312cm 3O EFGH V -=⨯⨯=. 又长方体1111ABCD A B C D -的体积为32466144cm V =⨯⨯=, 所以该模型体积为3214412132cm O EFGH V V V -=-=-=,其质量为0.9132118.8g ⨯=.【名师点睛】本题考查几何体的体积问题,理解题中信息联系几何体的体积和质量关系,从而利用公式求解.根据题意可知模型的体积为长方体体积与四棱锥体积之差进而求得模型的体积,再求出模型的质量即可.7.【2019年高考北京卷理数】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.【答案】40【解析】如图所示,在棱长为4的正方体中,三视图对应的几何体为正方体去掉棱柱1111MPD A NQC B -之后余下的几何体,则几何体的体积()3142424402V =-⨯+⨯⨯=. 【名师点睛】本题首先根据三视图,还原得到几何体,再根据题目给定的数据,计算几何体的体积.属于中等题.(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.8.【2019年高考北京卷理数】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________. 【答案】如果l ⊥α,m ∥α,则l ⊥m .【解析】将所给论断,分别作为条件、结论,得到如下三个命题: (1)如果l ⊥α,m ∥α,则l ⊥m ,正确;(2)如果l ⊥α,l ⊥m ,则m ∥α,不正确,有可能m 在平面α内; (3)如果l ⊥m ,m ∥α,则l ⊥α,不正确,有可能l 与α斜交、l ∥α. 故答案为:如果l ⊥α,m ∥α,则l ⊥m.【名师点睛】本题主要考查空间线面的位置关系、命题、逻辑推理能力及空间想象能力.将所给论断,分别作为条件、结论加以分析即可.9.【2019底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________. 【答案】π42=.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,一个底面的圆心为四棱锥底面的中心,故圆柱的高为1,圆柱的底面半径为12, 故圆柱的体积为21ππ124⎛⎫⨯⨯= ⎪⎝⎭. 【名师点睛】根据棱锥的结构特点,确定所求的圆柱的高和底面半径.注意本题中圆柱的底面半径是棱锥底面对角线长度的一半、不是底边棱长的一半.10.【2019年高考江苏卷】如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E −BCD的体积是 ▲ .【答案】10【解析】因为长方体1111ABCD A B C D -的体积为120,所以1120AB BC CC ⋅⋅=, 因为E 为1CC 的中点,所以112CE CC =, 由长方体的性质知1CC ⊥底面ABCD ,所以CE 是三棱锥E BCD -的底面BCD 上的高, 所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=. 【名师点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积.11.【2019年高考全国Ⅰ卷理数】如图,直四棱柱ABCD–A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求二面角A−MA 1−N 的正弦值.【答案】(1)见解析;(2)5. 【解析】(1)连结B 1C ,ME . 因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =12B 1C . 又因为N 为A 1D 的中点,所以ND =12A 1D . 由题设知A 1B 1=P DC ,可得B 1C =P A 1D ,故ME =P ND , 因此四边形MNDE 为平行四边形,MN ∥ED . 又MN ⊄平面EDC 1,所以MN ∥平面C 1DE . (2)由已知可得DE ⊥DA .以D 为坐标原点,DA uuu r的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz ,则(2,0,0)A ,A 1(2,0,4),2)M ,(1,0,2)N ,1(0,0,4)A A =-u u u r,1(12)A M =--u u u u r,1(1,0,2)A N =--u u u u r,(0,MN =u u u u r.设(,,)x y z =m 为平面A 1MA 的法向量,则1100A M A A ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u r m m ,所以2040x z z ⎧-+-=⎪⎨-=⎪⎩,.可取=m .设(,,)p q r =n 为平面A 1MN 的法向量,则100MN A N ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u ur ,.n n所以020p r ⎧=⎪⎨--=⎪⎩,.可取(2,0,1)=-n .于是cos ,||5⋅〈〉===‖m n m n m n , 所以二面角1A MA N --【名师点睛】本题考查线面平行关系的证明、空间向量法求解二面角的问题.求解二面角的关键是能够利用垂直关系建立空间直角坐标系,从而通过求解法向量夹角的余弦值来得到二面角的正弦值,属于常规题型.12.【2019年高考全国Ⅱ卷理数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B –EC –C 1的正弦值. 【答案】(1)证明见解析;(2【解析】(1)由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A , 故11B C ⊥BE .又1BE EC ⊥,所以BE ⊥平面11EB C .(2)由(1)知190BEB ∠=︒.由题设知Rt ABE △≌11Rt A B E △,所以45AEB ∠=︒, 故AE AB =,12AA AB =.以D 为坐标原点,DA u u u r的方向为x 轴正方向,||DA uuu r 为单位长,建立如图所示的空间直角坐标系D –xyz ,则C (0,1,0),B (1,1,0),1C (0,1,2),E (1,0,1),(1,0,0)CB =u u u r ,(1,1,1)CE =-u u u r,1(0,0,2)CC =u u u u r.设平面EBC 的法向量为n =(x ,y ,x ),则0,0,CB CE ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u ur n n 即0,0,x x y z =⎧⎨-+=⎩所以可取n =(0,1,1)--.设平面1ECC 的法向量为m =(x ,y ,z ),则10,0,CC CE ⎧⋅=⎪⎨⋅=⎪⎩u u u u ru u ur m m 即20,0.z x y z =⎧⎨-+=⎩ 所以可取m =(1,1,0). 于是1cos ,||||2⋅<>==-n m n m n m .所以,二面角1B EC C --的正弦值为2. 【名师点睛】本题考查了利用线面垂直的性质定理证明线线垂直以及线面垂直的判定,考查了利用空间向量求二角角的余弦值,以及同角的三角函数关系,考查了数学运算能力.13.【2019年高考全国Ⅲ卷理数】图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2. (1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B −CG −A 的大小.【答案】(1)见解析;(2)30o .【解析】(1)由已知得AD P BE ,CG P BE ,所以AD P CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,故AB ⊥平面BCGE . 又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE .(2)作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,所以EH ⊥平面ABC . 由已知,菱形BCGE 的边长为2,∠EBC =60°,可求得BH =1,EH.以H 为坐标原点,HC u u u r的方向为x 轴的正方向,建立如图所示的空间直角坐标系H –xyz ,则A (–1,1,0),C (1,0,0),G (2,0),CG u u u r =(1,0),AC u u u r=(2,–1,0).设平面ACGD 的法向量为n =(x ,y ,z ),则0,0,CG AC ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n即0,20.x x y ⎧+=⎪⎨-=⎪⎩ 所以可取n =(3,6,又平面BCGE 的法向量可取为m =(0,1,0),所以cos ,||||2⋅〈〉==n m n m n m . 因此二面角B –CG –A 的大小为30°.【名师点睛】本题是很新颖的立体几何考题,首先是多面体折叠问题,考查考生在折叠过程中哪些量是不变的,再者折叠后的多面体不是直棱柱,最后通过建系的向量解法将求二面角转化为求二面角的平面角问题,突出考查考生的空间想象能力.14.【2019年高考北京卷理数】如图,在四棱锥P –ABCD 中,PA ⊥平面ABCD ,AD ⊥CD ,AD ∥BC ,PA =AD =CD =2,BC =3.E 为PD 的中点,点F 在PC 上,且13PF PC =. (1)求证:CD ⊥平面PAD ; (2)求二面角F –AE –P 的余弦值; (3)设点G 在PB 上,且23PG PB =.判断直线AG 是否在平面AEF 内,说明理由.【答案】(1)见解析;(2)(3)见解析. 【解析】(1)因为PA ⊥平面ABCD ,所以PA ⊥CD . 又因为AD ⊥CD ,所以CD ⊥平面PAD . (2)过A 作AD 的垂线交BC 于点M .因为PA ⊥平面ABCD ,所以PA ⊥AM ,PA ⊥AD .如图建立空间直角坐标系A −xyz ,则A (0,0,0),B (2,-1,0),C (2,2,0),D (0,2,0),P (0,0,2).因为E 为PD 的中点,所以E (0,1,1).所以(0,1,1),(2,2,2),(0,0,2)AE PC AP ==-=u u u r u u u r u u u r.所以1222224,,,,,3333333PF PC AF AP PF ⎛⎫⎛⎫==-=+= ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r u u u r .设平面AEF 的法向量为n =(x ,y ,z ),则0,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n 即0,2240.333y z x y z +=⎧⎪⎨++=⎪⎩令z =1,则1,1y x =-=-.于是=(1,1,1)--n .又因为平面PAD 的法向量为p =(1,0,0),所以cos ,||⋅〈〉==‖n p n p n p . 由题知,二面角F −AE −P为锐角,所以其余弦值为3.(3)直线AG 在平面AEF 内.因为点G 在PB 上,且2,(2,1,2)3PG PB PB ==--u u ur ,所以2424422,,,,,3333333PG PB AG AP PG ⎛⎫⎛⎫==--=+=- ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r u u u r .由(2)知,平面AEF 的法向量=(1,1,1)--n .所以4220333AG ⋅=-++=u u u r n .所以直线AG 在平面AEF 内.【名师点睛】(1)由题意利用线面垂直的判定定理即可证得题中的结论;(2)建立空间直角坐标系,结合两个半平面的法向量即可求得二面角F −AE −P 的余弦值;(3)首先求得点G 的坐标,然后结合平面AEF 的法向量和直线AG 的方向向量即可判断直线是否在平面内.15.【2019年高考天津卷理数】如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,1,2AD AB AB AD AE BC ⊥====.(1)求证:BF ∥平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值; (3)若二面角E BD F --的余弦值为13,求线段CF 的长.【答案】(1)见解析;(2)49;(3)87. 【解析】依题意,可以建立以A 为原点,分别以AB AD AE u u u r u u u r u u u r,,的方向为x 轴,y 轴,z 轴正方向的空间直角坐标系(如图),可得(0,0,0),(1,0,0),(1,2,0),(0,1,0)A B C D ,(0,0,2)E .设(0)CF h h =>>,则()1,2,F h .(1)依题意,(1,0,0)AB =u u u r 是平面ADE 的法向量,又(0,2,)BF h =u u u r,可得0BF AB ⋅=u u u r u u u r ,又因为直线BF ⊄平面ADE ,所以BF ∥平面ADE .(2)依题意,(1,1,0),(1,0,2),(1,2,2)BD BE CE =-=-=--u u u r u u u r u u u r.设(,,)x y z =n 为平面BDE 的法向量,则0,0,BD BE ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u rn n 即0,20,x y x z -+=⎧⎨-+=⎩不妨令1z =, 可得(2,2,1)=n .因此有4cos ,9||||CE CE CE ⋅==-u u u ru u u r u u u r n n n .所以,直线CE 与平面BDE 所成角的正弦值为49. (3)设(,,)x y z =m 为平面BDF 的法向量,则0,0,BD BF ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u rm m 即0,20,x y y hz -+=⎧⎨+=⎩不妨令1y =,可得21,1,h ⎛⎫=-⎪⎝⎭m .由题意,有||1cos ,||||3⋅〈〉===m n m n m n ,解得87h =.经检验,符合题意.所以,线段CF 的长为87.【名师点睛】本小题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.16.【2019年高考江苏卷】如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1; (2)BE ⊥C 1E .【答案】(1)见解析;(2)见解析.【解析】(1)因为D ,E 分别为BC ,AC 的中点, 所以ED ∥AB .在直三棱柱ABC−A 1B 1C 1中,AB ∥A 1B 1, 所以A 1B 1∥ED .又因为ED ⊂平面DEC 1,A 1B 1⊄平面DEC 1,所以A 1B 1∥平面DEC 1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC . 因为三棱柱ABC−A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC . 又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .【名师点睛】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.17.【2019年高考浙江卷】(本小题满分15分)如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【答案】(1)见解析;(2)35. 【解析】方法一:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC , 所以,A 1E ⊥平面ABC ,则A 1E ⊥BC . 又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F . 所以BC ⊥平面A 1EF .因此EF ⊥BC .(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形. 由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形. 由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1, 所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角).不妨设AC =4,则在Rt △A 1EG 中,A 1E ,EG由于O 为A 1G 的中点,故12A G EO OG ===所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 方法二:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E –xyz .不妨设AC =4,则A 1(0,0,B1,0),1B,3,22F ,C (0,2,0).因此,3(,22EF =u u u r,(BC =u u u r .由0EF BC ⋅=u u u r u u u r得EF BC ⊥. (2)设直线EF 与平面A 1BC 所成角为θ. 由(1)可得1=(10)=(02BC A C -u u u r u u u u r,,,. 设平面A 1BC 的法向量为n ()x y z =,,, 由100BC A C ⎧⋅=⎪⎨⋅=⎪⎩u u u rn n,得00y y ⎧+=⎪⎨=⎪⎩, 取n (11)=,故||4sin |cos |=5|||EF EF EF θ⋅==⋅u u u ru u u r u u u r ,n n n |, 因此,直线EF 与平面A 1BC 所成的角的余弦值为35. 【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.18.【云南省昆明市2019届高三高考5月模拟数学试题】已知直线l ⊥平面α,直线m ∥平面β,若αβ⊥,则下列结论正确的是 A .l β∥或l β⊄ B .//l m C .m α⊥ D .l m ⊥【答案】A【解析】对于A ,直线l ⊥平面α,αβ⊥,则l β∥或l β⊂,A 正确;对于B ,直线l ⊥平面α,直线m ∥平面β,且αβ⊥,则//l m 或l 与m 相交或l 与m 异面,∴B 错误;对于C ,直线m ∥平面β,且αβ⊥,则m α⊥或m 与α相交或m α⊂或m α∥,∴C 错误; 对于D ,直线l ⊥平面α,直线m ∥平面β,且αβ⊥,则//l m 或l 与m 相交或l 与m 异面,∴D 错误. 故选A .【名师点睛】本题考查了空间平面与平面关系的判定及直线与直线关系的确定问题,也考查了几何符号语言的应用问题,是基础题.19.【陕西省2019届高三年级第三次联考数学试题】已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为A.4B .34 C.4D .54【答案】B【解析】如图,设BC 的中点为D ,连接1A D 、AD 、1A B , 易知1A AB ∠即为异面直线AB 与1CC 所成的角(或其补角). 设三棱柱111ABC A B C -的侧棱与底面边长均为1,则AD =112A D =,1A B =由余弦定理,得2221111cos 2A A AB A B A AB A A AB+-∠=⋅111322114+-==⨯⨯. 故应选B.【名师点睛】本题主要考查了异面直线所成角的求解,通过平移找到所成角是解这类问题的关键,若平移不好作,可采用建系,利用空间向量的运算求解,属于基础题.解答本题时,易知1A AB ∠即为异面直线AB 与1CC 所成的角(或其补角),进而通过计算1ABA △的各边长,利用余弦定理求解即可. 20.【四川省宜宾市2019届高三第三次诊断性考试数学试题】如图,边长为2的正方形ABCD 中,,E F 分别是,BC CD 的中点,现在沿,AE AF 及EF 把这个正方形折成一个四面体,使,,B C D 三点重合,重合后的点记为P ,则四面体P AEF -的高为A .13B .23C .34D .1【答案】B【解析】如图,由题意可知PA PE PF ,,两两垂直,∴PA ⊥平面PEF , ∴11111123323PEF A PEF V S PA -=⋅=⨯⨯⨯⨯=△, 设P 到平面AEF 的距离为h ,又2111321212112222AEF S =-⨯⨯-⨯⨯-⨯⨯=△, ∴13322P AEF hV h -=⨯⨯=,∴123h =,故23h =, 故选B .【名师点睛】本题考查了平面几何的折叠问题,空间几何体的体积计算,属于中档题.折叠后,利用A PEF P AEF V V --=即可求得P 到平面AEF 的距离.21.【广东省深圳市高级中学2019届高三适应性考试(6月)数学试题】在三棱锥P ABC -中,平面PAB ⊥平面ABC ,ABC △是边长为6的等边三角形,PAB △是以AB 为斜边的等腰直角三角形,则该三棱锥外接球的表面积为_______. 【答案】48π【解析】如图,在等边三角形ABC 中,取AB 的中点F ,设等边三角形ABC 的中心为O ,连接PF ,CF ,OP .由6AB =,得23AO BO CO CF OF ===== PAB Q △是以AB 为斜边的等腰角三角形,PF AB ∴⊥,又平面PAB ⊥平面ABC ,PF ∴⊥平面ABC ,PF OF ∴⊥,OP ==则O 为棱锥P ABC -的外接球球心,外接球半径R OC ==∴该三棱锥外接球的表面积为(24π48π⨯=,故答案为48π.【名师点睛】本题主要考查四面体外接球表面积,考查空间想象能力,是中档题. 要求外接球的表面积和体积,关键是求出球的半径.求外接球半径的常见方法有:①若三条棱两两垂直,则用22224R a b c =++(,,a b c 为三条棱的长);②若SA ⊥面ABC (SA a =),则22244R r a =+(r 为ABC △外接圆半径);③可以转化为长方体的外接球;④特殊几何体可以直接找出球心和半径. 22.【2019北京市通州区三模数学试题】如图,在四棱柱1111ABCD A B C D -中,侧棱1A A ABCD ⊥底面,AB AC ⊥,1AB =,12,AC AA AD CD ===E 为线段1AA 上的点,且12AE =.(1)求证:BE ⊥平面1ACB ;(2)求二面角11D AC B --的余弦值;(3)判断棱11A B 上是否存在点F ,使得直线DF ∥平面1ACB ,若存在,求线段1A F 的长;若不存在,说明理由.【答案】(1)见解析;(2;(3)见解析. 【解析】(1)因为1A A ABCD ⊥底面, 所以1A A AC ⊥. 又因为AB AC ⊥, 所以AC ⊥平面11ABB A , 又因为BE ⊂平面11ABB A , 所以AC ⊥BE . 因为112AE ABAB BB ==,∠EAB =∠ABB 1=90°, 所以1Rt Rt ABE BB A △∽△. 所以1ABE AB B ∠=∠. 因为1190BAB AB B ∠+∠=︒, 所以190BAB ABE ∠+∠=︒. 所以BE ⊥1AB . 又1AC AB A =I , 所以BE ⊥平面1ACB .(2)如图,以A 为原点建立空间直角坐标系,依题意可得111(0,0,0),(0,1,0),(2,0,0),(1,2,0),(0,0,2),(0,1,2),(2,0,2),A B C D A B C -11(1,2,2),(0,0,)2D E -.由(1)知,1(0,1,)2EB u u u r =-为平面1ACB 的一个法向量,设(,,)x y z =n 为平面1ACD 的法向量.因为1(1,2,2),(2,0,0)AD AC u u u u r u u u r=-=,则10,0,AD AC ⎧⋅=⎪⎨⋅=⎪⎩u u u u u u u r r n n 即220,20,x y z x -+=⎧⎨=⎩不妨设1z =,可得(0,1,1)=n .因此cos ,||||EB EB EB u u u r u u u r u u u r n n n ×<>=. 因为二面角11D AC B --为锐角, 所以二面角11D AC B --. (3)设1A F a =,则(0,,2)F a ,(1,2,2)DF a u u u r=-+.1(1,2,2)(0,1,)2102DF EB a a u u u r u u u r ?-+?=+-=,所以1a =-(舍).即直线DF 的方向向量与平面1ACB 的法向量不垂直, 所以,棱11A B 上不存在点F ,使直线DF ∥平面1ACB .【名师点睛】本题主要考查线面垂直与平行、以及二面角的问题,熟记线面垂直的判定定理以及空间向量的方法求二面角即可,属于常考题型.(1)根据线面垂直的判定定理,直接证明,即可得出结论成立;(2)以A 为原点建立空间直角坐标系,由(1)得到1(0,1,)2EB u u u r =-为平面1ACB 的一个法向量,再求出平面1ACD 的一个法向量,求两向量夹角的余弦值,即可得出结果; (3)先设1A F a =,用向量的方法,由0DF EBu u u r u u u r?求出a 的值,结合题意,即可判断出结论.【扫描二维码关注更多精彩★玩转高中数学研讨】。