1.MATLAB概述
学习Matlab(Matlab概述)

日日行,不怕千万里;时时学,不怕千万卷。
第一讲 Matlab概述1.1 Matlab的历程和影响Matlab一词是Matrix Laboratory(矩阵实验室)的缩写。
20世纪70年代后期,时任美国新墨西哥大学计算机科学系主任的Cleve Moler教授为减轻学生编程负担,为学生设计了一组调用LINPACK和EISPACK库程序的“通俗易用”的接口,此即用Fortran编写的萌芽状态的Matlab。
经过几年的校际流传,在Little的推动下,Little、Steve、Bangert合作,于1984年成立了Math Works公司,并把Matlab正式推向市场。
这时的Matlab内核已采用C语言编写,而除了原有的数值计算功能外,还新增加了数据视图功能。
自从Matlab以商品形式出现后,仅短短几年,就以其良好的开放性和运行的可靠性,使原先控制领域里的封闭式软件包纷纷淘汰,而改以Matlab为平台加以重建。
在进入20世纪90年代的时候,已经成为国际公认的标准计算软件。
在欧美大学里,诸如数理统计、自动控制、数字信号处理、模拟与数字通讯、时间序列分析、动态系统仿真等课程的教科书把Matlab作为一项重要的学习内容。
这几乎成了20世纪90年代教科书与旧版书籍的区别性标志。
Matlab是本科、硕士、博士生必须掌握的基本工具。
在国际学术界,Matlab已经被确认为准确、可靠的科学计算标准软件。
在许多国际一流刊物上,尤其是信息科学刊物,都可以看到Matlab的应用。
Matlab将数值分析、矩阵运算、信号处理、图形功能和系统仿真融为一体,使用户在易学易用的环境中求解问题,如同书写数学公式一样,避免了传统复杂的专业编程。
MathWorks公司对Matlab的优点描述是“计算、可视化及编程一体化”。
在设计研究单位和工业部门,被认为是进行高效研究、开发的首选工具。
1.2 Matlab的特点Matlab有不同于其它高级语言的特点,它被称为第四代计算机语言。
MATLAB概述

4.图形功能强大
MATLAB中数据的可视化非常简单。例如,在“>>”提示符下 执行 fplot (‘x^2’,[-10,10])命令,即可绘制 y x2在( -10,10) 区间中的曲线,如图7-2所示。
图7-2
5.功能强大的工具箱是MATLAB的另一特色
MATLAB主要包含两部分内容,一是包含数百个内部函数的 核心部分,二是各种功能强大的工具箱,用户可直接借助这些工 具箱来执行一些专业性很强的数据计算、数据分析、数据通信等 工作。
图7-1
2.运算符和库函数非常丰富
首先,由于MATLAB是由C语言编写的,因此,它提供了几 乎和C语言一样多的运算符;其次,由于MATLAB提供了高达数 百个工程中要用到的数学函数(如矩阵运算、数值运算与数据 分析、符号运算、概率统计等),从而使用户得以避开复杂的 编程工作。
3.适用性广
MATLAB既支持结构化程序设计(如具有for循环、while循环、 break语句和if语句等),又支持面向对象编程特性(如支持类、对 象等)
经济数学
MATLAB概述
MATLAB的特点
MATLAB的操作界面
1.1 MATLAB的特点
1.语言简洁紧凑,使用方便灵活
MATLAB最突出的特点就是简洁,它用更直观的、符合人们思 维习惯的代码代替了其他高级语言(如C语言和FORTRAN)中的语 句或冗长的代码。
如图7-1所示,我们只 需要首先创建一个矩阵变 量,然后执行 x=rref(A) 求A的最简矩阵,则方程 组的解就求出来了。
1.2 MATLAB的操作界面
MATLAB的操作界面主要由标题栏、菜单栏、工作空间 (Workspace)、命令窗口(Command Window)和命令历史 (Command History)等部分组成,如图7-3所示。其中,工作空间、 命令窗口和命令历史这三个区域的功能及用途如下
Matlab介绍入门知识

Matlab介绍入门知识1. Matlab简介MATLAB的含义是矩阵实验室(MATRIX LABORATORY),主要用于方便矩阵的存取,其基本元素是无须定义维数的矩阵.MATLAB自问世以来,就是以数值计算称.MATLAB进行数值计算的基本单位是复数数组(或称阵列),这使得MATLAB高度“向量化”.经过十几年的完善和扩充,现已发展成为线性代数课程的标准工具.由于它不需定义数组的维数,并给出矩阵函数、特殊矩阵专门的库函数,使之在求解诸如信号处理、建模、系统识别、控制、优化等领域的问题时,显得大为简捷、高效、方便,这是其它高级语言所不能比拟的.MATLAB中包括了被称作工具箱(TOOLBOX)的各类应用问题的求解工具.工具箱实际上是对MATLAB进行扩展应用的一系列MATLAB函数(称为M文件),它可用来求解各类学科的问题,包括信号处理、图象处理、控制系统辨识、神经网络等.随着MATLAB版本的不断升级,其所含的工具箱的功能也越来越丰富,因此,应用范围也越来越广泛,MATLAB 提供的工具箱已覆盖信号处理、系统控制、统计计算、优化计算、神经网络、小波分析、偏微分方程、模糊逻辑、动态系统模拟、系统辨识和符号运算等领域.当前它的使用范围涵盖了工业、电子、医疗、建筑等各行各业.MATLAB中包括了图形界面编辑GUI,让使用者也可以象VB、VC、VJ、DELPHI等那样进行一般的可视化的程序编辑.在命令窗口(matlab command window)键入simulink,就出现(SIMULINK) 窗口.以往十分困难的系统仿真问题,用SIMULINK只需拖动鼠标即可轻而易举地解决问题,这也是近来受到重视的原因所在.MATLAB 语言由美国 The MathWorks 开发,最早是由C.Moler用Fortran语言编写的,用来方便地调用LINPACK和EISPACK矩阵代数软件包的程序.后来他创立了MATHHWORKS公司,对MATLAB作了大量的、坚持不懈的改进.Cleve B.Moler是The MathWork公司的主席和首席科学家.曾任密歇系教授.他在两个计算机硬件制造商Intel公司的Hypercube组织和Arden Computers 公司工作了五年.他的主要专业兴趣在于数值分析和科学计算.他是MATLAB软件的创始者,也是著名的矩阵计算软件包LINPACK和EISPACK的著作这一,已撰写了三本有相关数值方法的教材.同时,他在SIAM(美国工业与应用数学学会)历任期刊编辑、委员会成员和副总裁,并从1996年开始担任理事会成员.2. Matlab入门知识Matlab变量名是以字母开头,后接字母、数字或下划线的字符序列,最多63个字符.在MATLAB中,变量名区分字母的大小写.赋值语句:变量=表达式或表达式其中表达式是用运算符将有关运算量连接起来的式子,其结果是一个矩阵.clear命令用于删除MATLAB工作空间中的变量.who和whos这两个命令用于显示在MATLAB工作空间中已经驻留的变量名清单.who命令只显示出驻留变量的名称,whos在给出变量名的同时,还给出它们的大小、所占字节数及数据类型等信息.利用MAT文件可以把当前MATLAB工作空间中的一些有用变量长久地保留下来,扩展名是.mat.MAT文件的生成和装入由save和load命令来完成.常用格式为:save 文件名 [变量名表] [-append][-ascii]load 文件名 [变量名表] [-ascii]其中,文件名可以带路径,但不需带扩展名.mat,命令隐含一定对.mat文件进行操作.变量名表中的变量个数不限,只要内存或文件中存在即可,变量名之间以空格分隔.当变量名表省略时,保存或装入全部变量.-ascii选项使文件以ASCII格式处理,省略该选项时文件将以二进制格式处理.save命令中的-append选项控制将变量追加到MAT文件中.(1) 向量的创建用步长生成法:数组=初值:步长(增量):终值>> a=1:0.5:3a =1.0000 1.50002.0000 2.50003.0000用linspace生成:数组=linspace(初值,终值,等分点数目)>> b=linspace(1,3,5)b =1.0000 1.50002.0000 2.50003.0000列向量用分号(;)作为分行标记:>> c=[1;2;3;4;]c =1234若不想输出结果,在每一条语句后用分号作为结束符,若留空或用逗号结束,则在执行该语句后会把结果输出来.>> a+b;>> a+bans =2 3 4 5 6(2) 矩阵的创建直接输入:最简单的建立矩阵的方法是从键盘直接输入矩阵的元素.具体方法如下:将矩阵的元素用方括号括起来,按矩阵行的顺序输入各元素,同一行的各元素之间用空格或逗号分隔,不同行的元素之间用分号分隔.>> A=[1 2 3;4 5 6;2 3 5]A =1 2 34 5 62 3 5利用矩阵函数创建:>> B=magic(3)%魔方阵B =8 1 64 9 2>> C=hilb(3)%3阶Hilbert矩阵C =1.0000 0.5000 0.33330.5000 0.3333 0.25000.3333 0.2500 0.2000Matlab中用%引导注释其它创建矩阵函数还有:eye(m,n):生成m行n列单位矩阵.zeros(m,n):生成m行n列全零矩阵.ones(m,n):生成全1矩阵.rand(m,n):生成随机矩阵.rand:生成一个随机数.diag(A):取A的对角线元素.tril(A):取A的下三角元素.triu(A):取A的上三角元素.hilb(n):生成n维Hilbert矩阵.randn(n):产生均值为0,方差为1的标准正态分布随机矩阵.vander(V):生成以向量V为基础向量的范得蒙矩阵.invhilb(n): 求n阶的希尔伯特矩阵的逆矩阵.toeplitz(x,y): 生成一个以x为第一列,y为第一行的托普利兹矩阵compan(p): 生成伴随矩阵, p是一个多项式的系数向量,高次幂系数排在前,低次幂排在后.pascal(n): 生成一个n阶帕斯卡矩阵.compan: 生成伴随矩阵(3) 矩阵运算MATLAB的基本算术运算有:+(加)、-(减)、*(乘)、/(右除)、\(左除)、^(乘方).加法:>> A+Bans =9 3 97 10 136 12 7减法:>> B-Aans =7 -1 3-1 0 12 6 -3乘法:>> A*Bans =71 83 7145 62 43除法:>> magic(3)/hilb(3)ans =1.0e+003 *0.2160 -1.1760 1.14000.0570 -0.4080 0.4500-0.2280 1.2240 -1.1400在MATLAB中,有一种特殊的运算,因为其运算符是在有关算术运算符前面加点,所以叫点运算.点运算符有.*、./、.\和.^.两矩阵进行点运算是指它们的对应元素进行相关运算,要求两矩阵的维参数相同.>> A.*Bans =8 2 1812 25 428 27 10MATLAB提供了6种关系运算符:<(小于)、<=(小于或等于)、>(大于)、>=(大于或等于)、==(等于)、~=(不等于).>> A>Bans =0 1 01 0 00 0 1MATLAB提供了3种逻辑运算符:&(与)、|(或)和~(非).在逻辑运算中,确认非零元素为真,用1表示,零元素为假,用0表示.设参与逻辑运算的是两个标量a和b,那么,a&b a,b全为非零时,运算结果为1,否则为0.a|b a,b中只要有一个非零,运算结果为1.~a 当a是零时,运算结果为1;当a非零时,运算结果为0.3. 矩阵操作和矩阵函数矩阵通过下标引用矩阵的元素,矩阵元素的序号就是相应元素在内存中的排列顺序.在MATLAB中,矩阵元素按列存储,先第一列,再第二列,依次类推.(1) 矩阵拆分利用冒号表达式获得子矩阵.A(:,j)表示取A矩阵的第j列全部元素;A(i,:)表示A矩阵第i行的全部元素;A(i,j)表示取A矩阵第i行、第j列的元素.A(i:i+m,:)表示取A矩阵第i~i+m行的全部元素;A(:,k:k+m)表示取A矩阵第k~k+m列的全部元素,A(i:i+m,k:k+m)表示取A矩阵第i~i+m行内,并在第k~k+m列中的所有元素.此外,还可利用一般向量和end运算符来表示矩阵下标,从而获得子矩阵.end表示某一维的末尾元素下标.(2) 利用空矩阵删除矩阵的元素在MATLAB中,定义[]为空矩阵.给变量X赋空矩阵的语句为X=[].(3) 矩阵的转置转置运算符是单撇号(‘).(4) 矩阵的旋转利用函数rot90(A,k)将矩阵A旋转90o的k倍,当k为1时可省略.(5) 矩阵的左右翻转对矩阵实施左右翻转是将原矩阵的第一列和最后一列调换,第二列和倒数第二列调换,…,依次类推.MATLAB对矩阵A实施左右翻转的函数是fliplr(A).(6) 矩阵的上下翻转MATLAB对矩阵A实施上下翻转的函数是flipud(A).(7) 方阵A的逆矩阵inv(A)>> A=magic(3)A =8 1 63 5 74 9 2>> B=inv(A)B =0.1472 -0.1444 0.0639-0.0611 0.0222 0.1056-0.0194 0.1889 -0.1028>> A*Bans =1.0000 0 -0.0000-0.0000 1.0000 00.0000 0 1.0000(8) 方阵的行列式>> det(A)ans =-360(9) 矩阵的迹>> C=trace(A)C =15(10) 一些常用的基本初等三角函数三角函数:sin(x),cos(x),tan(x)反三角函数:asin(x),acos(x),atan(x)指数函数:exp(x)自然对数:log(x)常用对数:log10(x)以2为底的对数:log2(x)开平方:sqrt(x)绝对值:abs(x)计算一般函数值:eval(f)求虚部函数: imag(x)求实部函数: real(x)角相位函数:angle(x)共轭复数函数:conj(x)沿零方向取整:fix (x)舍入取整:round(x)沿负无穷大方向取整:floor (x)沿正无穷大方向取整:ceil(x)求除法的余数: rem符号函数:sign(x)最大公约数:gcd()4. 图形可视化(1) 二维绘图指令plotplot函数的基本调用格式为:plot(x,y,)其中x和y为长度相同的向量,分别用于存储x坐标和y坐标数据.plot(x)plot函数最简单的调用格式.当x是实向量时,以该向量元素的下标为横坐标,元素值为纵坐标画出一条连续曲线.实际上是绘制折线图.plot(x1,y1,x2,y2,…,xn,yn)当输入参数都为向量时,x1和y1,x2和y2,…,xn和yn分别组成一组向量对,每一组向量对的长度可以不同.每一向量对可以绘制出一条曲线,可以在同一坐标内绘制出多条曲线.plotyy(x1,y1,x2,y2)绘制出具有不同纵坐标标度的两个图形.hold on/off保持原有图形还是刷新原有图形,不带参数的hold命令在两种状态之间进行切换.plot(x1,y1,选项1,x2,y2,选项2,…,xn,yn,选项n)设置曲线样式进行绘图.选项字段见下表:(2) 图形标注:title('图形名称'):图形标题xlabel('x轴说明')ylabel('y轴说明')text(x,y,'图形说明')legend('图例1','图例2',…)gtext('用鼠标确定位置的字符说明')(3) 坐标控制axisaxis([xmin xmax ymin ymax zmin zmax])axis函数功能丰富,常用的格式还有:axis equal:纵、横坐标轴采用等长刻度.axis square:产生正方形坐标系(缺省为矩形).axis auto:使用缺省设置.axis off:取消坐标轴.axis on:显示坐标轴.grid on/off:网格开/关box on/off:加/不加边框线上述命令示例如下:>> x=1:length(peaks);>> plot(x,peaks);>> box on;>> title('绘制混合图形');>> xlabel('X轴');>> ylabel('Y轴');绘制图像为:05101520253035404550-8-6-4-2246810绘制混合图形X 轴Y 轴(4) 二维数值函数的专用绘图函数fplotfplot(functionname,[a,b],tol,选项)其中functionname 为函数名,以字符串形式出现,[a,b]为绘图区间,tol 为相对允许误差,其系统默认值为2e-3.选项定义与plot 函数相同.>> fplot(@(x)[tan(x),sin(x),cos(x)], 2*pi*[-1 1 -1 1]);-6-4-20246-6-4-2246(5) 二维符号函数曲线专用命令ezplotf = f(x)时:ezplot(f):在默认区间-2π<x<2π绘制f = f(x)的图形.ezplot(f, [a,b]):在区间a<x<b 绘制f = f(x)的图形f = f(x,y)时:ezplot(f):在默认区间-2π<x<2π和-2π<y<2π绘制f(x,y) = 0的图形.ezplot(f, [xmin,xmax,ymin,ymax]):在区间xmin<x<xmax 和ymin<y<ymax 绘制f(x,y) = 0的图形ezplot(f, [a,b]):在区间a<x<b 和a<y< b 绘制f(x,y) = 0的图形若x = x(t),y = y(t):ezplot(x,y):在默认区间0<t<2π绘制x=x(t)和y=y(t)的图形.ezplot(x,y, [tmin,tmax]):在区间tmin < t < tmax 绘制x=x(t)和y=y(t)的图形>> figure;ezplot('cos(tan(pi*x))',[ 0,1]);00.10.20.30.40.50.60.70.80.91-1-0.50.51x cos(tan( x))(6) 图形窗口的分割subplotsubplot(m,n,p)该函数将当前图形窗口分成m ×n 个绘图区,即每行n 个,共m 行,区号按行优先编号,且选定第p 个区为当前活动区.在每一个绘图区允许以不同的坐标系单独绘制图形.(7) 其他坐标系下的二维数据曲线图对数坐标图形:semilogx(x1,y1,选项1,x2,y2,选项2,…)semilogy(x1,y1,选项1,x2,y2,选项2,…)loglog(x1,y1,选项1,x2,y2,选项2,…)极坐标图polar:polar(theta,r,选项)其中theta 为极坐标极角,r 为极坐标矢径,选项的内容与plot 函数相似. 二维统计分析图:bar(x,y,选项):条形图stairs(x,y,选项):阶梯图stem(x,y,选项):杆图fill(x1,y1,选项1,x2,y2,选项2,…):填充图(8) 三维曲线plot3plot3(x1,y1,z1,选项1,x2,y2,z2,选项2,…,xn,yn,zn,选项n)其中每一组x,y,z 组成一组曲线的坐标参数,选项的定义和plot 函数相同.当x,y,z 是同维向量时,则x,y,z 对应元素构成一条三维曲线.当x,y,z 是同维矩阵时,则以x,y,z 对应列元素绘制三维曲线,曲线条数等于矩阵列数.>> t=0:0.1:8*pi;>> plot3(sin(t),cos(t),t);-11(9) 产生三维数据在MATLAB 中,利用meshgrid 函数产生平面区域内的网格坐标矩阵.其格式为:[X,Y]=meshgrid(x,y);语句执行后,矩阵X 的每一行都是向量x ,行数等于向量y 的元素的个数,矩阵Y 的每一列都是向量y ,列数等于向量x 的元素的个数.(10) 绘制三维曲面的函数surf 函数和mesh 函数的调用格式为:mesh(x,y,z,c)surf(x,y,z,c)一般情况下,x,y,z 是维数相同的矩阵.x,y 是网格坐标矩阵,z 是网格点上的高度矩阵,c 用于指定在不同高度下的颜色范围.(11) 标准三维曲面sphere 函数的调用格式为:[x,y,z]=sphere(n)cylinder 函数的调用格式为:[x,y,z]= cylinder(R,n)MATLAB 还有一个peaks 函数,称为多峰函数,常用于三维曲面的演示.(12) 其他三维绘图指令介绍bar3函数绘制三维条形图,常用格式为bar3(y)bar3(x,y)stem3函数绘制离散序列数据的三维杆图,常用格式为:stem3(z)stem3(x,y,z)pie3函数绘制三维饼图,常用格式为:pie3(x)fill3函数等效于三维函数fill,可在三维空间内绘制出填充过的多边形,常用格式为:fill3(x,y,z,c)5. 程序控制结构(1)数据的输入:A=input(提示信息,选项)其中提示信息为一个字符串,用于提示用户输入什么样的数据.如果在input 函数调用时采用's'选项,则允许用户输入一个字符串.(2)数据的输出:disp(输出项)(3)程序的暂停:pause(延迟秒数)如果省略延迟时间,直接使用pause,则将暂停程序,直到用户按任一键后程序继续执行. 若要强行中止程序的运行可使用Ctrl+C命令.(4)单分支if语句:if 条件语句组end当条件成立时,则执行语句组,执行完之后继续执行if语句的后继语句,若条件不成立,则直接执行if语句的后继语句.(5) 双分支if语句:if 条件语句组1else语句组2end当条件成立时,执行语句组1,否则执行语句组2,语句组1或语句组2执行后,再执行if语句的后继语句.(6) 多分支if语句:if 条件1语句组1elseif 条件2语句组2……elseif 条件m语句组melse语句组nend语句用于实现多分支选择结构.(7)switch语句:switch 表达式case 表达式1语句组1case 表达式2语句组2……case 表达式m语句组motherwise语句组nend(8)try语句语句格式为:try语句组1catch语句组2endtry语句先试探性执行语句组1,如果语句组1在执行过程中出现错误,则将错误信息赋给保留的lasterr变量,并转去执行语句组2.(9)for语句for语句的格式为:for 循环变量=表达式1:表达式2:表达式3循环体语句end其中表达式1的值为循环变量的初值,表达式2的值为步长,表达式3的值为循环变量的终值.步长为1时,表达式2可以省略.for语句更一般的格式为:for 循环变量=矩阵表达式循环体语句end执行过程是依次将矩阵的各列元素赋给循环变量,然后执行循环体语句,直至各列元素处理完毕.(10)while语句while语句的一般格式为:while (条件)循环体语句end其执行过程为:若条件成立,则执行循环体语句,执行后再判断条件是否成立,如果不成立则跳出循环.(11)break语句和continue语句与循环结构相关的语句还有break语句和continue语句.它们一般与if语句配合使用.break语句用于终止循环的执行.当在循环体内执行到该语句时,程序将跳出循环,继续执行循环语句的下一语句.continue语句控制跳过循环体中的某些语句.当在循环体内执行到该语句时,程序将跳过循环体中所有剩下的语句,继续下一次循环.(12)循环的嵌套如果一个循环结构的循环体又包括一个循环结构,就称为循环的嵌套,或称为多重循环结构.(13)函数文件的基本结构函数文件由function语句引导,其基本结构为function 输出形参表=函数名(输入形参表)注释说明部分函数体语句其中以function开头的一行为引导行,表示该M文件是一个函数文件.函数名的命名规则与变量名相同.输入形参为函数的输入参数,输出形参为函数的输出参数.当输出形参多于一个时,则应该用方括号括起来.(14)函数调用函数调用的一般格式是:[输出实参表]=函数名(输入实参表)注意的是,函数调用时各实参出现的顺序、个数,应与函数定义时形参的顺序、个数一致,否则会出错.函数调用时,先将实参传递给相应的形参,从而实现参数传递,然后再执行函数的功能.在MATLAB中,函数可以嵌套调用,即一个函数可以调用别的函数,甚至调用它自身.一个函数调用它自身称为函数的递归调用.(15)函数参数的可调性在调用函数时,MATLAB用两个永久变量nargin和nargout分别记录调用该函数时的输入实参和输出实参的个数.只要在函数文件中包含这两个变量,就可以准确地知道该函数文件被调用时的输入输出参数个数,从而决定函数如何进行处理.(16)全局变量与局部变量全局变量用global命令定义,格式为:global 变量名(17)程序调试Debug菜单项:该菜单项用于程序调试,需要与Breakpoints菜单项配合使用.Breakpoints菜单项:该菜单项共有6个菜单命令,前两个是用于在程序中设置和清除断点的,后4个是设置停止条件的,用于临时停止M文件的执行,并给用户一个检查局部变量的机会,相当于在M文件指定的行号前加入了一个keyboard命令.调试命令:除了采用调试器调试程序外,MATLAB还提供了一些命令用于程序调试.命令的功能和调试器菜单命令类似,具体使用方法请读者查询MATLAB帮助文档.例1.1 计算sin x ,[0,]4x π∈. 解:创建符号函数:>> syms x;>>f=sym('sin(x)')f =sin(x)展开至7阶泰勒级数:>> h=taylor(f,8,0)h =x-1/6*x^3+1/120*x^5-1/5040*x^7求泰勒级数在0.5x =处的函数值:>> subs(h,x,0.5)ans =0.479425533234127也可以通过内联函数来求解:>>H=inline(h)H =Inline function:H(x) = x-1./6.*x.^3+1./120.*x.^5-1./5040.*x.^7 >>feval(H,0.5)ans =0.479425533234127例 1.2 计算积分值1011I dx x=+⎰. 解:解法一:( 符号法):>> I=int('1/(1+x)','x',0,1)I =log(2)解法二 :(数值法):>>x=0:0.2:1; %将[0,1]等分为4等份>>f=1./(1+x); %分别计算每一个等分点的函数值>>I=0;>>for i=1:5I=I+(f(i)+f(i+1))/2*0.2; %将每一小曲边的梯形累加起来作为积分值end>> vpa(I,9) %取结果的小数精度为9位小数ans =.695634921例 1.30)a >的值.解:解法一(符号法):>> A=sym('a');>> sqrt(A)ans =a^(1/2)解法二(数值法):按以下迭代公式迭代计算近似值:11(),0,1,2,...2k k ka x x k x +=+= 建立函数文件msqrt.mfunction x=msqrt(x0,a)%用迭代法近似计算平方根%x0为初始迭代值,a 为开平方数format long ;x=zeros(20,1);x(1)=x0;for i=2:20x(i)=1/2*(x(i-1)+a/x(i-1));enddisp(x);02x =:>> msqrt(2,3);2.0000000000000001.7500000000000001.7321428571428571.7320508100147271.7320508075688771.7320508075688771.7320508075688771.7320508075688771.7320508075688771.7320508075688771.7320508075688771.7320508075688771.7320508075688771.7320508075688771.7320508075688771.7320508075688771.7320508075688771.7320508075688771.7320508075688771.732050807568877上述结果为迭代过程计算的中间结果,分析数据可知迭代收敛速度快,只需四次计算即可计算出较为准确的数值.例1.4 计算11759760-,视已知数为精确数,用4位浮点数计算.解:直接在Matlab中输入式子:>> 1/759-1/760ans =1.7336e-006若先转化为浮点数再运算可得:>> a=1/759,b=1/760,a-ba =0.0013b =0.0013ans =1.7336e-006可见Matlba在计算时,数据结构都取为双精度而提高了运算准确度.若以符号运算计算之,有:>> a=sym('1/759'),b=sym('1/760'),c=a-ba =1/759b =1/760c =1/576840可见符号运算准确但耗费运算时间.例1.5 解方程21810x x-+=.解:符号法解方程:>> x=solve('x^2-18*x+1','x')x =9+4*5^(1/2)9-4*5^(1/2)将结果保留小数点6位:>> vpa(x,6)ans =17.9443.5572e-11.2 Matlab中数值计算精度1. Matlab中有三种运算精度,它们分别为数值算法、符号算法和可控精度算法,将它们分别介绍如下:(1)数值算法把每个数取为16位,计算按浮点运算进行,它是运算速度最快的一种算法.(2)符号算法把每个数都变为符号量,运算按有理量计算进行,它的优点是能够得到精确结果,缺点是占用空间大,并且运算速度最慢.(3)可控精度算法介于上述两种算法之间,它能够使运算在可控的精度下进行计算.2. Matlab的数据显示格式,列表如下:format并不影响matlab如何计算和存储变量的值.对浮点型变量的计算,即单精度或双精度,按合适的浮点精度进行,而不论变量是如何显示的.对整型变量采用整型数据.整型变量总是根据不同的类(class)以合适的数据位显示.3. Matlab的特殊变量ans :对最近输入的反应computer :当前计算机类型eps :浮点精度flops :计算浮点操作次数,现已不再常用i :虚部单位inf :无穷大inputname :输入参数名j :虚部单位nan :非数值nargin :输入参数的数目nargout :输出参数的数目(用户定义函数)pi :圆周率realmax :最大正浮点数realmin :最小正浮点数vararginvarargout :返回参数数目(matlab函数)cputime:CPU工作时间。
第一章MATLAB概述

第一章MATLAB概述通过本章了解MA TLAB的基本知识,学会下载、安装和使用MA TLAB,掌握利用MA TLAB进行基本运算的方法,初步了解MA TLAB中各种数据类型及数学函数并学会使用MA TLAB的帮助。
第一节MATLAB简介随着计算机的迅猛发展,出现了各种计算机编程语言。
每种语言都具有各自的优点与不足之处。
MA TLAB作为其中的一种编程语言在矩阵运算、数值计算、符号运算、图形处理和建模仿真等方面的优势而脱颖而出。
MA TLAB、Mathematica和Maple作为数学专业三大编程语言各自具有各自的特点。
本人通过对MA TLAB多年的学习发现其以下几个特点:1)强大的数值运算功能:MA TLAB中提供了大量的数学、统计、最优化及工程方面的函数,这些函数使用起来简单易懂。
与此同时编程者也可以结合这些函数编写出自己所需要的各类函数,从而实现解决复杂问题的目的。
2)强大的图像处理功能:计算机中的图形大部分以点阵形式存储,它们通常是三维矩阵,每一点需有三组数据,它们分别是横向距离、纵向距离及该点的颜色信息。
MA TLAB不仅可以读写图像而且还可以对图像进行处理。
3)高级而简单的程序环境:MA TLAB不仅具有结构化的控制语句,又有面向对象的编程特性。
利用MA TLAB编程非常简单,变量的定义、使用及输入输出较为简单,语法限制不严格,可移植性好。
4)丰富的工具箱与模块集:MA TLAB具有功能强劲的工具箱,不仅具有大量的数学优化函数,同时还有许多特殊的应用领域所需的函数供编程者使用。
第二节MATLAB的下载、安装及使用本书当中我们将主要介绍MA TLAB7.0,如果没有特殊说明一律按照MA TLAB7.0看待。
1.2.1 MATLAB的下载正版软件下载:大家可以到网站/上购买正版MA TLAB或使用免费版本。
中文免费软件下载:大家可以到网站/soft/20080305/2828.html下载MA TLAB7.0,本软件的大小约为1GB,如果网速过慢请购买软件使用。
第1章 MATLAB基本知识

1.2.3 MATLAB的M文件
MATLAB的M文件有两种形式:文本文件和函数文件。 M文件可以通过M文件
编辑器建立完成,
即通过MATLAB命令窗
口的File菜单下的New
命令建立M-File。 M文件编辑器窗口如图 1-4所示。
图1-4 M文件编辑器
1. 文本文件 例如,在 ( , ) 间绘制建立一个正弦函数图形 在M文件编辑器中输入以下程序:
S2=b+c+d
S3=a-b-d
程序如下:
Function[s1,s2,s3]=abcdyunsuan(a,b,c,d) S1=a+b+c; S2=b+c+d; S3=a-b-d; 该函数文件的文件名应是? 如何使用该函数?
例:设计一个函数文件,实现S=a+b+c-d的运算
3.M文件的管理
文件管理命令与功能
命令名 cd x=cd cd path delete wq dir matlabroot 实现功能 显示当前目录 返回当前工作目录到目录x 改变目录到path 删除文件wq.m 列出当前目录的文件 返回到matlab根目录
path
type wq what
显示或修改matlab的搜索路径
在命令窗口显示wq.m文件 显示当前目录的M文件和MAT文件
>> a=5, ↙ 执行后显示: a= 5 >> b=6; ↙ >> c=a*b 执行后显示: c= 30
1. 变量
变量的命名:
变量名必须以字母开头,之后可以是任意字母、 数字或下划线(不能超过19个字符)
变量名区分字母的大小写 变量中不能包含有标点符号
matlab ppt课件

使用GUI来控制其他应用程序或软件的功能,例如打开文件、保存数据、调整参数等。
应用程序控制面板
07
matlab在信号处理中的应用
信号的定义与分类
信号是传递或携带信息的物理量,可以是离散的或连续的,单通道或多通道的。
信号处理的含义
信号处理是对信号进行变换、分析和解释的过程,以适应不同的应用需求。
matlab ppt课件
matlab简介matlab基础知识matlab矩阵运算matlab数据分析matlab科学计算matlab图形界面设计matlab在信号处理中的应用
contents
目录
01
matlab简介
MATLAB诞生于美国,作为方便易用的科学计算工具,它被引入到数值计算领域。
1980年代初期
02
matlab基础知识
01
在MATLAB中,用户可以通过命令行输入命令,进行计算、绘图等操作。
命令行交互
02
用户可以通过编写脚本文件,保存一组相关的命令,以供多次使用。
脚本文件
03
用户可以编写函数文件,实现特定功能的代码块,并在命令行或脚本文件中调用。
函数文件
单元数组
单元数组是一种灵活的数据类型,可以包用于设置组件的激活状态,例如使按钮可点击或不可点击。
通过编写回调函数,可以定义当用户与组件交互时要执行的操作。
uimenu
uiactive
uicontrol
1
2
3
使用GUI接收数据,通过图形呈现数据信息,例如绘制曲线图或散点图。
数据可视化
通过GUI接收用户输入的参数,调用算法进行处理,并将结果显示在GUI上。
03
matlab矩阵运算
《MATLAB概述》课件

MATL A B将继续扩展其功能和性能,以满足不断变化的科学计算和工程应用需求。
ห้องสมุดไป่ตู้
2 解方程
3 统计分析
MATL A B可以用于求 解代数方程组、微分 方程和偏微分方程等 不同类型的数学方程。
MATL A B提供了各种 统计分析工具,如描 述统计、假设检验、 回归分析和时间序列 分析等。
MATLAB的图形显示功能
1 绘制二维图形
MATL A B可以创建各种类型的二维图形,如折线图、散点图和柱状图等,以可视化数据。
工程领域
MATL A B在工程领域被广泛应用于模型建立、系统仿真和数据分析等方面。
科学研究领域
MATL A B用于科学研究中的数据分析、信号处理、图像处理、深度学习等领域。
教育领域
教学机构使用MATL A B进行数学建模、算法设计和科学实验的开展。
MATLAB的基本操作
1 MATLAB的系统环境
MATL A B包括命令窗口、编辑窗口、工作区、当前文件夹和命令历史记录等部分。
2 MATLAB界面介绍
用户可以通过菜单栏、工具栏和侧边栏等方式与MATL A B进行交互。
3 MATLAB的应用程序
MATL A B提供了许多应用程序,如数据编辑器、图像处理器和信号分析器,以帮助用户 快速完成任务。
MATLAB的数学计算功能
1 矩阵操作
MATL A B提供了丰富 的矩阵运算和线性代 数功能,包括矩阵乘 法、矩阵分解和特征 值计算等。
Sim ulink
Simulink是MATL AB的附加模块,用于建模、仿真和分析动态系统,如控制系统和通信系统。
MATLAB在实际应用中的案例探讨
Matlab简介PPT课件

矩阵运算与线性代
03
数应用
矩阵创建和操作方法介绍
01
直接输入法
通过直接输入矩阵元素来创建矩阵,例如`A = [1 2 3; 4 5 6; 7 8 9]`。
02
函数生成法
利用Matlab内置函数生成特定矩阵,如`zeros()`生成全零矩阵,
`ones()`生成全一矩阵,`eye()`生成单位矩阵等。
错误处理方法
根据错误信息提示,检查代码相关部分, 修正错误;对于复杂问题,可采用逐步缩 小范围的方法进行排查。
综合性程序设计案例剖析
案例选择
挑选具有代表性的综合性程序设计案例 ,如数值计算、信号处理、图像处理等
。
代码实现
详细讲解案例的代码实现过程,包括 算法设计、数据结构选择、函数编写
等。
案例分析
Matlab实现
使用Matlab内置函数进行最优化问题求解,如`fmincon`、`ga`等。
偏微分方程数值解法
01
偏微分方程基本概 念
包含未知函数及其偏导数的方程 。
02
偏微分方程数值解 法
有限差分法、有限元法、谱方法 等。
03
Matlab实现
使用Matlab内置函数或工具箱进 行偏微分方程数值求解,如PDE Toolbox等。
分析案例涉及的知识点、难点及解决 方案,引导学生深入理解并掌握相关 知识。
结果展示与讨论
展示案例运行结果,并引导学生进行 讨论,分析程序优缺点及改进方向。
课程设计或项目实践指导
选题建议
根据学生兴趣和专业背景,提供课程设计或项目实践的选题建议,如 控制系统设计、信号处理应用等。
实践指导
指导学生进行需求分析、方案设计、代码编写、测试调试等实践环节 ,培养学生解决实际问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。