锂离子电池负极材料-天然石墨改性研究

锂离子电池负极材料-天然石墨改性研究
锂离子电池负极材料-天然石墨改性研究

石墨作为锂离子电池负极材料

石墨作为锂离子电池负极材料 锂离子电池是指以两种不同的能够可逆地嵌入及脱出锂离子的嵌锂化合物分别作为电池正极和负极的二次电池体系。充电时,锂离子从正极脱嵌,通过电解质和隔膜,嵌入到负极中;放电时则相反,锂离子从负极脱嵌,通过电解质和隔膜,嵌入到正极中。 锂离子电池的负极是由负极活性物质、粘合剂和添加剂混合制成糊状胶合剂均匀涂抹在铜箔两侧,经干燥、滚压而成。 石墨由于具备电子电导率高、锂离子扩散系数大、层状结构在嵌锂前后体积变化小、嵌锂容量高和嵌锂电位低等优点,成为目前主流的商业化锂离子电池负极材料。 石墨的嵌锂机理 石墨导电性好,结晶程度高,具有良好的层状结构,十分适合锂离子的反复嵌入-脱嵌,是目前应用最广泛、技术最成熟的负极材料。锂离子嵌入石墨层间后,形成嵌锂化合LixC6(0≤x≤1),理论容量可达372mAh/g(x=1),反应式为:xLi++6C+xe-→LixC6 锂离子嵌入使石墨层与层之间的堆积方式由ABAB变为AAAA,如下图所示。

●石墨的改性处理 由于石墨层间距(d002≤0.34nm)小于石墨嵌锂化合物LixC6的晶面层间距(0.37nm),致使在充放电过程中,石墨层间距改变,易造成石墨层剥落、粉化,还会发生锂离子与有机溶剂分子共同嵌入石墨层及有机溶剂分解,进而影响电池循环性能。 通过石墨改性,如在石墨表面氧化、包覆聚合物热解炭,形成具有核-壳结构的复合石墨,可以改善石墨的充放电性能,提高比容量。 ●其它负极材料 石墨是目前主流的商业化锂电负极材料,但由于石墨本身结构特性的制约,石墨负极材料的发展也遇到了瓶颈,比如比容量已经到达极限、不能满足大型动力电池所要求的持续大电流放电能力等。因此业界也开始把目光投向非石墨类材料,比如硬碳和其它非碳材料(氧化锡、硅碳合金、钛酸锂等)。 江苏凤谷节能科技有限公司专注于节能环保产品设计研发,主要从事高效燃烧器及控制系统的研发与应用,可提供设计、制造、成套配套、安装调试、人员培训等总承包服务的专业公司;凤谷节能科技在喷嘴的设计研发和产品开发方面拥有丰富的经验。 凤谷节能科技通过并购无锡市大禾机械有限公司进入到化工行业的细分领域,主要产品包括机械消泡器、清釜机、汽水混合器等化工设备及配件。

年产5000吨锂离子电池负极材料石墨化项目可行性研究报告

年产5000吨锂离子电池负极材料石墨化项目可行性研究报告 编制单位:北京中投信德国际信息咨询有限公司 高级工程师:高建

目录 第一章项目总论 (1) 1.1项目概况 (1) 1.1.1项目名称 (1) 1.1.2建设单位 (1) 1.1.3拟建设地点 (1) 1.1.4建设内容与规模 (1) 1.1.5项目性质 (2) 1.1.6项目总投资及资金筹措 (2) 1.1.7建设期 (3) 1.2编制依据和原则 (4) 1.2.1编制依据 (4) 1.2.2编制原则 (4) 1.2.3编制范围 (5) 1.3主要技术经济指标 (6) 1.4可行性研究结论 (7) 第二章项目建设背景及必要性分析 (9) 2.1项目建设背景 (9) 2.2项目建设的必要性概述 (13) 2.2.1本项目的符合国家新能源产业发展的需求 (13) 2.2.2本项目的建设,符合国家产业政策 (14) 2.2.3项目是当地居民脱贫致富和增加就业的需要 (14) 2.2.4项目具有良好的社会效益 (14) 第三章项目市场分析与预测 (16) 3.1锂电池负极材料市场分析 (16) 3.2锂电池负极材料的分类、用途及发展趋势 (17) 3.3市场定位 (18) 3.4市场竞争力分析 (18) 第四章项目整体规划分析 (21) 4.1建设规模 (21) 4.2产品方案 (21) 第五章项目选址及建设条件 (23) 5.1项目选址 (23) 5.1.1项目建设地点 (23) 5.1.2项目用地性质及权属 (23) 5.1.3场地状况 (23) 5.2建设条件分析 (23) 5.2.1交通、能源供应条件 (23) 5.2.2施工条件 (24) 5.2.3公用设施条件 (24) 第六章技术方案、设备方案与工程方案 (25) 6.1技术方案 (25) 6.1.1 技术方案选择的原则 (25) 6.1.2项目实施的技术方案 (25) 6.2设备方案 (26) 6.2.1设备选型原则 (26) 6.2.2设备方案 (26)

全面解读锂离子电池石墨负极材料

全面解读锂离子电池石墨负极材料 锂离子电池,又称为摇椅电池,他的主要组成部分是正极、负极、隔膜及电解液。当前锂离子动力电池正极一般采用尖晶石型LiMn2O4或镍基层状氧化物,负极以石墨为主,电解液为含LiPF6 的碳酸酯(EC,EMC)有机溶液。LiMn2O4是一种被认为最安全的材料,也是最廉价的正极材料,已经被多种型号的动力电池采用。Li(NiCo)O2 容量高,但安全性能较差,需通过掺杂改性并限制其使用电压等手段来改善其安全性能;从整车安全和电池成本考虑,磷酸铁锂LiFePO4 安全性好、寿命长是最适合在汽车动力电池上应用的锂离子电池正极材料。 锂离子电池能量密度在很大程度上取决于负极材料,从锂离子电池实现商业化到现在,所用的负极材料最成熟,应用最广的是碳材料,其中最主要的依然是石墨。石墨具有六元环碳网层状结构,碳碳之间是SP2 杂化的,层层之间是分子作用力连接。石墨中存在两种不同的晶体结构:六面体石墨(2H)和菱面体石墨(3R)。2H相具有ABABA特征堆积,3R 相的堆积结构则是ABCABC。两种相可以相互转变,2H相是热力学稳定,在石墨中较多,约占总体的五分之四在锂离子电池负极材料中,天然石墨和人造石墨一直是使用最大的负极材料,但是人造石墨由于在生产过程中需要高温处理,使其生产成本大幅提高并对环境产生不利影响,相对于人造石墨而言,天然石墨有很多优点,它的成本低、结晶程度高,提纯、粉碎、分级技术成熟,充放电电压平台低,理论比容量高等,这些为其在锂离子电池行业的应用奠定了良好的基础。 天然石墨分无定形石墨(土状石墨或微晶石墨)和鳞片石墨两种。理论容量为372 mAh/g。无定形石墨纯度低,石墨晶面间距(d002)为0.336 nm。主要为2H晶面排序结构,即石墨层按ABAB顺序排,单个微晶之间的取向呈现各项异性,但经过加工,微晶颗粒相互之间有一定的交互作用,形成块状或颗粒状的粒子时具有各向同性性质。且形成的块状颗粒容易粉碎成形状较好的颗粒。 在锂离子嵌入脱嵌过程中体积变化小,结构相对稳定,但是可逆比容量仅260 mAh/g,不可逆比容量在100 mAh/g 以上。鳞片石墨的结晶度高,片层结构单元化大,具有明显的

锂离子电池石墨负极材料的优点和缺点

锂离子电池石墨负极材料的优点和缺点 一、石墨定义: 1、石墨是元素碳的一种同素异形体,每个碳原子的周边连结着另外三个碳原子(排列方式呈蜂巢式的多个六边形)以共价键结合,构成共价分子。 2、由于每个碳原子均会放出一个电子,那些电子能够自由移动,因此石墨属于导电体。石墨是其中一种最软的矿物,它的用途包括制造铅笔芯和润滑剂。 二、石墨的特殊性质: 1、导电性:石墨的导电性比一般非金属矿高一百倍。石墨能够导电是因为石墨中每个碳原子与其他碳原子只形成3个共价键,每个碳原子仍然保留1个自由电子来传输电荷。 2、导热性:导热性超过钢、铁、铅等金属材料。导热系数随温度升高而降低,甚至在极高的温度下,石墨成绝热体。 3、耐高温性:石墨的熔点为3850±50℃,沸点为4250℃,即使经超高温电弧灼烧,重量的损失很小,热膨胀系数也很小。石墨强度随温度提高而加强,在2000℃时,石墨强度提高一倍。 4、润滑性:石墨的润滑性能取决于石墨鳞片的大小,鳞片越大,摩擦系数越小,润滑性能越好。由于其润滑性,在超细研磨里难度很高,使用叁星飞荣立式砂磨机可以研磨到纳米级别细度。 5、化学稳定性:石墨在常温下有良好的化学稳定性,能耐酸、耐碱和耐有机溶剂的腐蚀。 6、可塑性:石墨的韧性好,可碾成很薄的薄片。 7、抗热震性:石墨在常温下使用时能经受住温度的剧烈变化而不致破坏,温度突变时,石墨的体积变化不大,不会产生裂纹。 .

三、石墨的中国产地: 1、我国以鸡西市恒山区密山市柳毛乡为最大的产地。以及省的七台河市、鹤岗市和双鸭山市等。 2、省莱西市为我国石墨重要产地之一。 3、省磐石市也是石墨产地之一。 4、乌拉特中旗高勒图矿区发现全国最大晶质石墨单体矿。 5、省煤田地质局一九四队在洋县发现3条石墨矿带。 四、石墨世界著名产地: 1、纽约Ticonderoga。 2、马达加斯加。 3、斯里兰卡(Ceylon)。 五、石墨分类: 1、天然石墨:石墨的工艺特性主要决定于它的结晶形态。结晶形态不同的石墨矿物,具有不同的工业价值和用途。 2、人造石墨:广义上,一切通过有机炭化再经过石墨化高温处理得到的石墨材料均可称为人造石墨,如炭纤维、热解炭、泡沫石墨等。而狭义上的人造石墨通常指以杂质含量较低的炭质原料为骨料、煤沥青等为粘结剂,经过配料、混捏、成型、炭化和石墨化等工序制得的块状固体材料,如石墨电极、等静压石墨等。 人造石墨就成型方式通常可分为:振动成型,挤压成型,模压成型,等静压成型。 3、块状石墨:块状石墨又叫致密结晶状石墨。此类石墨结晶明显晶体肉眼可见。颗粒直 .

负极材料综述

锂电负极材料综述 1、概述 锂电负极材料需具备可逆地脱/嵌锂离子,这类材料要求具有以下要求: ①正负极的电化学位差大,从而可获得高功率电池; ②锂离子的嵌入反应自由能变化小; ③锂离子的可逆容量大,理离子嵌入量的多少对电极电位影响不大,这样可以保证电池稳定的工作电压; ④高度可逆嵌入反应,良好的电导率,热力学稳定的同时还不与电解质发生反应; ⑤循环性好,具有较长循环寿命; ⑥锂离子在负极的固态结构中具有高扩散速率; ⑦材料的结构稳定、制作工艺简单、成本低。 2、负极材料介绍 目前锂离子二次电池的负极材料主要有两大类:碳负极材料和非碳(金属氧化物)材料。 2.1 碳负极材料 碳材料对锂的电位比较低,一般小于1V,是较理想的负极材料,也是人们探索研究最多的一种材料,目前己商业化的锂离子电池所用的负极材料几乎均是碳材料。

锂电池中具实用价值和应用前景的碳主要有三种:(1)高度石墨化的碳;(2)软碳和硬碳;(3)碳纳米材料。 2.1.1石墨类碳负极材料 石墨类碳负极材料具有以下特点:导电性好,结晶度较高,具有良好的层状结构,适合锂的嵌入脱嵌;充放电比容量可达300 mAh/g 以上,充放电效率在90%以上,不可逆容量低于50 mAh/g;锂在石墨中脱嵌反应发生在0~0.25V左右(Vs.Li+/Li),具有良好的充放电电位平台。它分为人造石墨和天然石墨。 石墨类负极材料具体分类图 人造石墨是将易石墨化炭(如沥青焦炭)在N2气氛中于1900~2800℃经高温石墨化处理制得。常见人造石墨有中间相碳微球(MCMB)、石墨化碳纤维。MCMB的优点:球状颗粒,便于紧密堆积可制成高密度电极;光滑的表面,低比表面积,可逆容量高;球形片层结构,便于锂离子在球的各个方向迁出,可以大倍率充放电。应用

锂离子电池石墨负极材料的优点和缺点

锂离子电池石墨负极材料的优点和缺点

锂离子电池石墨负极材料的优点和缺点 一、石墨定义: 1、石墨是元素碳的一种同素异形体,每个碳原子的周边连结着另外三个碳原子(排列方式呈蜂巢式的多个六边形)以共价键结合,构成共价分子。 2、由于每个碳原子均会放出一个电子,那些电子能够自由移动,因此石墨属于导电体。石墨是其中一种最软的矿物,它的用途包括制造铅笔芯和润滑剂。 二、石墨的特殊性质: 1、导电性:石墨的导电性比一般非金属矿高一百倍。石墨能够导电是因为石墨中每个碳原子与其他碳原子只形成3个共价键,每个碳原子仍然保留1个自由电子来传输电荷。 2、导热性:导热性超过钢、铁、铅等金属材料。导热系数随温度升高而降低,甚至在极高的温度下,石墨成绝热体。 3、耐高温性:石墨的熔点为3850±50℃,沸点为4250℃,即使经超高温电弧灼烧,重量的损失很小,热膨胀系数也很小。石墨强度随温度提高而加强,在2000℃时,石墨强度提高一倍。 4、润滑性:石墨的润滑性能取决于石墨鳞片的大小,鳞片越大,摩擦系数越小,润滑性能越好。由于其润滑性,在超细研磨里难度很高,使用叁星飞荣立式砂磨机可以研磨到纳米级别细度。 5、化学稳定性:石墨在常温下有良好的化学稳定性,能耐酸、耐碱和耐有机溶剂的腐蚀。 6、可塑性:石墨的韧性好,可碾成很薄的薄片。

7、抗热震性:石墨在常温下使用时能经受住温度的剧烈变化而不致破坏,温度突变时,石墨的体积变化不大,不会产生裂纹。 三、石墨的中国产地: 1、我国以黑龙江鸡西市恒山区密山市柳毛乡为最大的产地。以及黑龙江省的七台河市、鹤岗市和双鸭山市等。 2、山东省莱西市为我国石墨重要产地之一。 3、吉林省磐石市也是石墨产地之一。 4、内蒙古乌拉特中旗高勒图矿区发现全国最大晶质石墨单体矿。 5、陕西省煤田地质局一九四队在陕西洋县发现3条石墨矿带。 四、石墨世界著名产地: 1、纽约Ticonderoga。 2、马达加斯加。 3、斯里兰卡(Ceylon)。 五、石墨分类: 1、天然石墨:石墨的工艺特性主要决定于它的结晶形态。结晶形态不同的石墨矿物,具有不同的工业价值和用途。

石墨负极材料

1.负极材料企业 杉杉、BTR、长沙海容(摩根)、汕头诚翔、湖南辉宇、青岛大华、远东、弘光、红顶、金卡本、瑞富特、华容、斯诺、湖南星光、余姚宏远、北京创亚、佛山三高、大阪石墨、长沙星城、金润、江苏镇江华邦能源材料有限公司 目前在国内,负极材料领先企业主要包括深圳贝特瑞、上海杉杉和长沙海容。 而在全球范围内,负极材料的市场份额主要集中在日本日立、日本精工碳素、JFE日本钢铁、三菱、中国贝特瑞、杉杉股份6大厂家2.碳负极材料分类 锂电池中具实用价值和应用前景的碳主要有三种:(1)高度石墨化的碳;(2)软碳和硬碳;(3)碳纳米材料。 2.1石墨类碳负极材料(动力电池负极普遍用该种材料)

人造石墨(主流产品)是将易石墨化炭(如沥青焦炭)在N2气氛中于1900~2800℃经高温石墨化处理制得。常见人造石墨有中间相碳微球(MCMB)、石墨化碳纤维。MCMB的优点是可逆容量高、可大倍率充放电,应用方向为动力电池和倍率电池。缺点:价格略高、容量略低,在高容量和超高容量型产品中处于劣势(经常进行掺杂等改性手段制成高端产品)。 天然石墨一般都以天然石墨矿石出现。在锂电应用中需要提纯为含碳在91~99%的高碳石墨,多以常用化学方法提纯。天然石墨由于表面有较高的活性点,比表面高,不能直接用作负极材料,需要做表面改性处理。优点:嵌锂电化学容量高;放电电压平台平稳;来源广泛,加工工艺成熟,制造成本低;加工性能优秀。缺点:与电解液相容性差,电解液分解,SEI膜不稳定;溶剂共嵌入,石墨层剥离,循环稳定性差,衰减快,电池鼓胀;辊压造成各粒子晶体c轴平行且垂直板面,空隙小,大倍率充放电效率低。 3.碳负极材工艺流程

石墨负极材料项目可行性报告

石墨负极材料项目可行性报告 规划设计/投资分析/产业运营

石墨负极材料项目可行性报告 负极是锂电池的主要组成部分,它是由负极活性物质、粘合剂和添加 剂混合制成糊状均匀涂抹在铜箔两侧,经干燥、滚压而成。我们所谈的负 极材料主要指的是负极活性物质。负极可分为碳材料和非碳材料两大类, 碳材料包括人造石墨、天然石墨、中间相碳微球和硬碳软碳等,非碳材料 包括硅基材料、锡基材料和钛酸锂等。 该石墨负极材料项目计划总投资15248.38万元,其中:固定资产投资12738.50万元,占项目总投资的83.54%;流动资金2509.88万元,占项目 总投资的16.46%。 达产年营业收入19120.00万元,总成本费用15233.02万元,税金及 附加273.93万元,利润总额3886.98万元,利税总额4697.05万元,税后 净利润2915.24万元,达产年纳税总额1781.82万元;达产年投资利润率25.49%,投资利税率30.80%,投资回报率19.12%,全部投资回收期6.73年,提供就业职位413个。 坚持“实事求是”原则。项目承办单位的管理决策层要以求实、科学 的态度,严格按国家《建设项目经济评价方法与参数》(第三版)的要求,在全面完成调查研究基础上,进行细致的论证和比较,做到技术先进、可

靠、经济合理,为投资决策提供可靠的依据,同时,以客观公正立场、科学严谨的态度对项目的经济效益做出科学的评价。 ......

石墨负极材料项目可行性报告目录 第一章申报单位及项目概况 一、项目申报单位概况 二、项目概况 第二章发展规划、产业政策和行业准入分析 一、发展规划分析 二、产业政策分析 三、行业准入分析 第三章资源开发及综合利用分析 一、资源开发方案。 二、资源利用方案 三、资源节约措施 第四章节能方案分析 一、用能标准和节能规范。 二、能耗状况和能耗指标分析 三、节能措施和节能效果分析 第五章建设用地、征地拆迁及移民安置分析 一、项目选址及用地方案

锂电池负极材料的研究进展

锂离子电池负极材料研究进展介绍 来源:中国燃料电池网时间:2015-09-08 09:11 编辑:周奕 我国能源生产量和消费量均已居世界前列,但在能源供给和利用形式上存在着一系列突出问题,如能源结构不合理、能源利用效率不高、可再生能源开发利用比例低、能源利用安全水平有待进一步提高。总体上讲,我国能源工业大而不强,与发达国家相比,在技术创新能力方面还存在较大差距。因此,提高能源利用效率,调整能源结构,开发和利用可再生能源将是我国能源发展的必然选择。为了解决我国能源工业所面临的难题,寻求替代传统化石燃料的可再生绿色能源显得尤为迫切。与此同时,随着人们环保意识的日益增强和对资源利用率的关注,可充电电池逐渐成为研究的焦点,而锂原电池的成功应用大大推动了锂离子电池的研究和发展,使锂离子电池成为关注的重点。 1锂离子电池发展状况 锂电池最早出现于1958年,20世纪70年代开始进入实用化[2]。由于具有重量轻、体积小、安全性好、工作电压高、能量密度高、使用寿命长等优点成为近年来最受关注的储能器件之一。随着世界全面步入信息时代,电子化和信息化己经成为各个领域的共同发展趋势,锂离子电池也被越来越多地应用于多个方面。医疗上,锂离子电池可以为心脏起搏器、助听器等设备供能,对于病人更安全、更便捷;交通上,锂离子电池己经被广泛应用于电动单车、电动汽车上;军事上,锂离子电池可为电磁武器充能,为小型定位系统供能,甚至作为潜艇等大型作战设备的备用动力源;航天上,锂离子电池可作为航天器及各种仪器设备的电力补充单元。 电池按工作性质可以分为一次电池和二次电池[3]。一次电池是指不可循环使用的电池,如碱锰电池、锌锰电池等。二次电池指可以多次充放电、循环使用的电池,如先

石墨负极改性研究

石墨负极的改性研究 黄文达, 汤帅 摘要:以石墨本身的物理化学性质为探究起点,概述了石墨作为锂离子电池负极材料的常用改性方法,如表面氧化还原处理、包覆法、非金属与金属掺杂法、机械研磨法等。总结分析了石墨负极改性前后的可逆容量Q R、大电流放电特性、循环性能等电化学性能变化情况。 关键词:石墨;锂离子电池;改性方法;电化学性能 环境污染、能源危机日渐成为人们关注的焦点。就在电池领域中,干电池(一次电池)、Ni-Cr电池、铅酸蓄电池等,其所产生的MnO2、HgO、Cr、沥青烟气、Pb、酸雾等都给环境造成了非常严重的污染。紧随着在ZEV法案(汽车尾气零排放法案)的颁布与实施,更加推动了人们对新能源的开发力度,其中以锂离子蓄电池倍受关注。锂离子电池作为一种绿色环保电池,其负极材料一直是研究的重点课题,因为它是获得更安全、更高比能量电池的途径。目前负极材料主要是碳基材料,包括石墨化碳材料(人造石墨、天然石墨、石焦油、碳黑、碳纤维等)及其高温处理得到的无定形碳两大类。而石墨以资源丰富、价格低廉、可逆容量高Q R(理论值372mA?h/g),充放电压平台低、无电压滞后、优良导电性等特点,迅速受到广泛研究。为探索我国天然石墨应用于锂离子电池的新技术,这无疑具有极其重大的社会经济效益。 1 石墨的结构性质 石墨具有六边形的层状晶体结构,每层中碳原子以σ键和π键相连,而层层之间又靠范德华力相结合。石墨这种层间力作用小且层间距较大(0.3354nm)结构,使得一些原子、基团或离子容易插入层间形成石墨层间化合物(GICs),因此做为负极材料具有很高的比能量。 2 石墨作为锂离子蓄电池负极材料的缺点 (1)与电解液相溶性差,且对其选择性高 在首次充放电过程中锂和碳形成的插入化合物在电解液中很不稳定,其很容易与电解液(非质子极性溶剂)发生反应,其生成物一小部分溶于电解液中,而另一部分则在负极与电解液表面形成SEI膜(固体电解液膜)。SEI膜能阻止电解液分子继续共插入石墨负极,从而终止了对负极的不可逆影响,也大大提高了电池的使用寿命。但是,在石墨表面形成的SEI膜往往致密度不高、厚度不均匀、缺乏弹性、易破裂等不足。电解液分子既而会对其进行修补,这样将造成Li+插入负极阻抗增

四种锂电池负极材料的PK

四种锂电池负极材料的PK 作者:中国储能网新闻中心来源:电池中国网发布时间:2016-8-8 18:46:00 中国储能网讯:负极材料作为锂电池四大组成材料之一,在提高电池 的容量以及循环性能方面起到了重要作用,处于锂电池产业中游的核心环节。调研显示,2015年中国负极材料产量7.28万吨,同比增长42.7%,国内产值为38.8亿元,同比增长35.2%。这标志着锂电池负极材料市场 迎来了发展的春天。 负极材料分类众多,其中石墨类碳材料一直处于负极材料的主流地位。编辑总结发现,近日受到追捧的石墨烯概念、业内使用较为普遍的人工石墨、性能稳定的中间相碳微球以及有“新大陆”之称的硅碳复合材料,在 负极材料领域形成了“四方争霸”的局面。下面就让编辑带大家了解一下 这“四方霸主”的厉害吧。 独占一方的石墨烯 石墨烯是由碳原子构成的只有一层原子厚度的二维晶体,因为质地薄、硬度大且电子移动速度快而被科学家广泛推崇,并冠以“新材料之王”的

美誉。尽管这位“王者”优异的化学性能被新能源市场所看好,但是至今 为止依然停留在“概念化”的阶段。 如果将石墨烯用作锂电负极材料的话,需要独立的上下游产业链、昂 贵的价格还有复杂的工艺,这让众多负极材料厂商望而却步。尽管如此, 国内依然有一些企业砥砺前行,目前中国安宝、大富科技以及贝特瑞等知 名企业已经开始布局石墨烯产业。 但是,行业内关于石墨烯用作负极材料的质疑也在不断发酵,有人认 为石墨烯的振实和压实密度都非常低,又加之成本昂贵,作为电池负极材 料前景十分渺茫。但是鉴于它的热潮还在持续,说它是“一方霸主”也不 为过。 控制“主场”的人工石墨 目前负极材料主要以天然石墨和人造石墨为主,这两种石墨各有优劣。湖州创亚总经理胡博表示:“天然石墨克容量较高、工艺简单、价格便宜,但吸液及循环性能差一些;人造石墨工艺复杂些、价格贵些,但循环及安 全性能较好。通过各种手段的技术改进,这两种石墨负极材料都可以‘扬 长避短’,但就目前来看,人造石墨用于动力电池上占据一定的优势”。 而这一说法也在市场中得到了印证。相关媒体调研数据显示,今年第 一季度中国天然石墨产量4770吨,同比增长16.3%;人造石墨出货15160吨,同比增长110.5%。从以上数据来看,人造石墨出货量远高于天然石墨,而造成这一现象的重要原因,是今年以来市场对动力电池的强 劲需求。 性能稳定的中间相碳微球 中间相碳微球具有高度有序的层面堆积结构,是典型的软碳,石墨化 程度较高,结构稳定,电化学性能优异。据中咨网研究部统计数据显示,2012年中国负极材料出货量为27650吨,其中天然石墨出货量占比59%,人造石墨30%,石墨化中间碳微球8%。就此说来,中间相碳微球是仅次于天然石墨和人工石墨的第三大主流碳类负极材料。

经典-天然石墨与人造石墨的区别

天然石墨与人造石墨负极材料辨别方法剖析 锂离子电池发展20年来,理论与学术界均未对锂离子电池用碳(石墨类)负极材料:天然石墨和人造石墨负极材料的辨别方法进行深入剖析,并明确科学的辨别与判定方法,因此行业出现了天然石墨和人造石墨负极材料边界不清,鱼龙混杂的现象,给材料的合理、有效使用造成了极大影响。 天然石墨负极材料系采用天然鳞片晶质石墨,经过粉碎、球化、分级、纯化、表面等工序处理制得,其高结晶度是天然形成的。而人造石墨负极材料是将易石墨化碳如石油焦、针状焦、沥青焦等在一定温度下煅烧,再经粉碎、分级、高温石墨化制得,其高结晶度是通过高温石墨化形成的。正是由于两者在原料和制备工艺上存在本质的差别,使其在微观形貌、晶体结构、电化学性能、加工性能上存在明显差异。为了统一标准、科学辨别、正确判定天然与人造石墨负极材料,现将经过多年探索、反复验证、切实可行的科学辨别方法公之于众: 1、天然石墨与人造石墨负极材料微观形貌差异——SEM剖面分析法 天然石墨负极材料SEM剖面图人造石墨负极材料SEM剖面图 在微观结构上,天然石墨是层状结构,其SEM剖面图中保留了鳞片石墨的层状结构,片状结构间有大量空隙存在;而人造石墨负极材料为焦类、中间相类在高温石墨化过程中,晶体结构按ABAB结构重新排列,并聚合收缩,其内部致密、无缝隙。 2、天然石墨与人造石墨负极材料晶体结构差异——X射线衍射法

从晶体结构看,天然石墨负极材料结晶度高,在XRD图谱上其(002)晶面衍射峰角度更高,层状结构完整、层间距小、取向性(I002/I110)明显,从43-45度对应的(101)晶面衍射峰位置及46-47度的对应的(012) 晶面衍射峰位置,可以看出天然石墨存在明显的2H相和3R相,而人造石墨只存在2H相。六方石墨(2H)和菱方石墨(3R)的XRD谱图如下: 3、天然石墨与人造石墨负极材料无序度(ID/IG)差异——拉曼光谱分析法 对于未经石墨化处理的天然石墨与人造石墨,除了根据SEM剖面图、XRD晶体结构图及其参数进行区别外,拉曼光谱测试的无序度ID/IG也是区别这两类石墨的有效方法。天然球形石墨的无序度ID/IG一般为0.4~0.85,未经石墨化处理的表面包覆天然石墨无序度ID/IG一般为0.9~1.6,未经石墨化处理的新型改性天然石墨无序度ID/IG一般为0.2~0.6。人造石墨的无序度ID/IG一般为 0.04~0.34。整体上,未经高温石墨化处理的天然石墨负极材料的无序度ID/IG 比人造石墨负极材料的无序度ID/IG大。经石墨化处理的表面包覆天然石墨无序度ID/IG一般为0.17~0.36,人造石墨的无序度ID/IG一般为0.04~0.34,经石

改性天然鳞片石墨锂离子电池负极材料的研究_吴其修

第42卷第17期2014年9月 广州化工 Guangzhou Chemical Industry Vol.42No.17 Sep.2014 改性天然鳞片石墨锂离子电池负极材料的研究 吴其修1,2,李佳坤1,2,刘明东1,2,陈平1,2,赵娟3 (1湛江市聚鑫新能源有限公司,广东湛江524024;2广东东岛新能源有限公司, 广东湛江524024;3广东海洋大学,广东湛江524088) 摘要:对粒径为12μm的天然鳞片石墨进行表面碳包覆改性,并对包覆前后样品的微观结构和电化学性能进行了研究。结果表明:包覆改性提高了天然石墨的振实密度、表面形貌和电化学性能,在0.1C、0.2C、0.5C、1C、2C、5C和10C倍率下,对应的可逆容量分别为368.6mAh/g、362.6mAh/g、353.8mAh/g、340.6mAh/g、298.6mAh/g、228.2mAh/g和150.2mAh/g,相对于天然石墨,可逆容量分别提高了6.2mAh/g、20.9mAh/g、31.6mAh/g、42.1mAh/g、52.4mAh/g、80.0mAh/g和58.0mAh/g,碳包覆小粒径天然石墨表现出的良好的倍率性能,有望应用于电动车用锂离子电池中。 关键词:天然鳞片石墨;电化学性能;碳包覆;倍率性能 中图分类号:TM911文献标志码:A文章编号:1001-9677(2014)017-0076-03 Study of Surface-modified Natural Flake Graphite for Lithium Ion Batteries WU Qi-xiu,LI Jia-kun,LIU Ming-dong,CHEN Ping,ZHAO Juan (1Zhanjiang Juxin new energy Co.,Ltd.,Guangdong Zhanjiang524024; 2Guangdong Dongdao New Energy Co.,Ltd.,Guangdong Zhanjiang524024; 3Engineering College,Guangdong Ocean University,Guangdong Zhanjiang524088,China)Abstract:The natural flake graphite with the particle size of12μm was coated by a layer of pitch,and the microstructure and electrochemical performance of natural flake graphite and surface modified graphite were studied.It was showed the surface modified graphite with high tap density,surface morphology and excellent electrochemical performance.The capacities of modified graphite were3368.6mAh/g,362.6mAh/g,353.8mAh/g,340.6mAh/g,298.6mAh/g,228.2mAh/g and150.2mAh/g,corresponding to the rates0.1C,0.5C,1C,2C,5C and10C,which increased to6.2mAh/g,20.9mAh/g,31.6mAh/g,42.1mAh/g,52.4mAh/g,80.0mAh/g and58.0mAh/g,relative to natural graphite.The good rate performance of carbon coated small-sized natural graphite for lithium-ion battery made it a promising candidate as anode materials for electric vehicle dynamic1ithium-ion batteries. Key words:natural flake graphite;electrochemical performance;carbon coated;rate performance 锂离子电池因其工作电压高、能量密度大、循环寿命长、自放电小、无记忆效应等优点,成为20世纪90年代以来继镍氢电池之后的新一代二次电池[1-2]。国内外迫于能源危机与环境污染的双重压力,电动汽车的研究与开发引起了世界各国的关注。电动汽车发展的关键在于动力电池的发展,锂离子电池因其具有重量轻、比能量高、循环寿命长、使用温度范围宽且无记忆效应、绿色、环保等特点,被认为是最有发展前途的电动汽车用电池之一[3-4],国际上许多汽车制造商、电池生产厂及科研院校等积极开展了电动车用锂离子电池的研究开发工作。电动车用锂离子电池对电极材料有着更为严格的要求,特别是为满足电动汽车启动和爬坡的能量需求,需要电极材料在大电流下充放电的性能优异。天然石墨有很多优点,如来源广、价格低、充放电电压平台低、理论比容量高等,是一种十分理想的锂离子电池负极材料。目前市场上普遍使用的球形石墨是平均粒径在14 25μm,其中17μm的球形石墨使用最多。现有的研究表明小粒径天然石墨材料在大电流下循环性能性能比较好,可以满足电动车用锂离子电池的电极材料[5-6]。本文对粒径为12μm天然石墨材料进行表面包覆改性,并对其性能进行了研究。 1实验 1.1实验用主要设备 JEOL JSM-35型扫描电子显微镜(SEM);Malvern型激光粒度分布测试仪;Rigaku D/max rA型自动X-射ASAP2010型比表面测定仪(77.35K,样品0.2000g);DC-5型全自动电池性能测试仪,上海正方电子电器有限公司;HY-100型振实密度仪。 1.2改性天然球形石墨 将经整形和提纯后碳含量为99.9%的天然石墨置于三口烧瓶中,抽真空至-0.1MPa。准确称取一定量的高温煤沥青(炭化收率为80%)于烧杯中,加入50mL四氢呋喃,用玻璃棒搅拌均匀,随后超声振荡30min使沥青充分溶解。通过分液漏斗将沥青溶液加入三口烧瓶中,保持抽真空状态进行磁力搅拌10min。将真空浸渍后的样品在常压下加热除去溶剂,然后经

锂离子电池石墨负极材料的优点和缺点

锂离子电池石墨负极材料的优点和缺点 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

锂离子电池石墨负极材料的优点和缺点 一、石墨定义: 1、石墨是元素碳的一种同素异形体,每个碳原子的周边连结着另外三个碳原子(排列方式呈蜂巢式的多个六边形)以共价键结合,构成共价分子。 2、由于每个碳原子均会放出一个电子,那些电子能够自由移动,因此石墨属于导电体。石墨是其中一种最软的矿物,它的用途包括制造铅笔芯和润滑剂。 二、石墨的特殊性质: 1、导电性:石墨的导电性比一般非金属矿高一百倍。石墨能够导电是因为石墨中每个碳原子与其他碳原子只形成3个共价键,每个碳原子仍然保留1个自由电子来传输电荷。 2、导热性:导热性超过钢、铁、铅等金属材料。导热系数随温度升高而降低,甚至在极高的温度下,石墨成绝热体。 3、耐高温性:石墨的熔点为3850±50℃,沸点为4250℃,即使经超高温电弧灼烧,重量的损失很小,热膨胀系数也很小。石墨强度随温度提高而加强,在2000℃时,石墨强度提高一倍。 4、润滑性:石墨的润滑性能取决于石墨鳞片的大小,鳞片越大,摩擦系数越小,润滑性能越好。由于其润滑性,在超细研磨里难度很高,使用叁星飞荣立式砂磨机可以研磨到纳米级别细度。

5、化学稳定性:石墨在常温下有良好的化学稳定性,能耐酸、耐碱和耐有机溶剂的腐蚀。 6、可塑性:石墨的韧性好,可碾成很薄的薄片。 7、抗热震性:石墨在常温下使用时能经受住温度的剧烈变化而不致破坏,温度突变时,石墨的体积变化不大,不会产生裂纹。 三、石墨的中国产地: 1、我国以黑龙江鸡西市恒山区密山市柳毛乡为最大的产地。以及黑龙江省的七台河市、鹤岗市和双鸭山市等。 2、山东省莱西市为我国石墨重要产地之一。 3、吉林省磐石市也是石墨产地之一。 4、内蒙古乌拉特中旗高勒图矿区发现全国最大晶质石墨单体矿。 5、陕西省煤田地质局一九四队在陕西洋县发现3条石墨矿带。 四、石墨世界着名产地: 1、纽约Ticonderoga。 2、马达加斯加。 3、斯里兰卡(Ceylon)。 五、石墨分类: 1、天然石墨:石墨的工艺特性主要决定于它的结晶形态。结晶形态不同的石墨矿物,具有不同的工业价值和用途。 2、人造石墨:广义上,一切通过有机炭化再经过石墨化高温处理得到的石墨材料均可称为人造石墨,如炭纤维、热解炭、泡沫石墨等。而狭义上的人造石墨通常指以杂质含量较低的炭质原料为骨料、煤沥青等为粘

锂离子电池用石墨负极材料及其设备制作方法与制作流程

本技术提供了一种锂离子电池用石墨负极材料,该负极材料是以石墨材料为内核,在石墨材料表面包覆有一层由木质素热解碳与石墨烯组成的导电网络膜;该导电网络膜的质量为石墨负极材料质量的0.03~8%。上述负极材料的制备包括以下步骤:(1)将石墨粉、木质素与氧化石墨烯在分散介质中混合均匀;(2)将制得的混合料烘干,然后置于烧结炉中,在惰性气氛或还原混合气氛中,于350~600℃下恒温焙烧3~10小时,再于650~1200℃下恒温焙烧5~20小时,然后冷却至室温。本技术显著地提高了石墨负极材料的导电率,从而提高锂离子电池石墨负极材料的高倍率性能与循环性能,减少其不可逆容量。 权利要求书 1.一种锂离子电池用石墨负极材料,其特征在于,所述石墨负极材料是以石墨材料为内核,在石墨材料表面包覆有一层由木质素热解碳与石墨烯组成的导电网络膜;所述导电网络膜的质量为石墨负极材料质量的0.03~8%。 2.根据权利要求1所述的锂离子电池用石墨负极材料,其特征在于,所述导电网络膜的质量为石墨负极材料质量的0.05~1.5%。 3.一种如权利要求1或2所述的锂离子电池用石墨负极材料的制备方法,其特征在于,包括以

下步骤: (1)将石墨粉、木质素与氧化石墨烯在分散介质中混合均匀,其中分散介质、木质素与氧化石墨烯的质量比为100~500∶0.5~5.5∶0.1~5.0;石墨粉、木质素与氧化石墨烯的质量比为90.0~99.4∶0.5~5.0∶0.1~5.0; (2)将制得的混合料烘干,然后置于烧结炉中,在惰性气氛或还原混合气氛中,以5~30℃/min加热速率升温,于350~600℃下恒温焙烧3~10小时,再以5~30℃/min加热速率升温,于650~1200℃下恒温焙烧5~20小时,然后以3~30℃/min降温速度冷却至室温,得到表面包覆一层木质素热解碳与石墨烯的石墨负极材料。 4.根据权利要求3所述的制备方法,其特征在于,所述步骤(1)中木质素为木质素磺酸铵、木质素磺酸钠、木质素磺酸钙与木质素磺酸镁中的一种或几种。 5.根据权利要求3所述的制备方法,其特征在于,所述步骤(1)中氧化石墨烯的层数为1~10层。 6.根据权利要求3所述的制备方法,其特征在于,所述步骤(1)中分散介质为水、甲醇、乙醇、苯、甲苯、丙酮、有机酸与有机酯中的一种或几种,在分散介质中混合时同时进行超声处理或球磨处理。 7.根据权利要求3~6中任一项所述的制备方法,其特征在于,所述步骤(1)中将石墨粉、木质素与氧化石墨烯在分散介质中混合均匀的具体操作是:先将木质素与氧化石墨烯按配比溶于分散介质中得到分散良好的混合液,再将石墨粉按配比加入到前述混合液中,混合均匀。 8.根据权利要求3~6中任一项所述的制备方法,其特征在于,所述步骤(2)中烘干是在100℃~200℃温度下进行。 9.根据权利要求3~6中任一项所述的制备方法,其特征在于,所述步骤(2)中将烘干的混合料置于烧结炉前,先在压片机上将前述混合料制成片状、圆状、球形或各种其他几何形

锂离子电池石墨负极材料的优点和缺点

锂离子电池石墨负极材料得优点与缺点 一、石墨定义: 1、石墨就是元素碳得一种同素异形体,每个碳原子得周边连结着另外三个碳原子(排列方式呈蜂巢式得多个六边形)以共价键结合,构成共价分子。 2、由于每个碳原子均会放出一个电子,那些电子能够自由移动,因此石墨属于导电体。石墨就是其中一种最软得矿物,它得用途包括制造铅笔芯与润滑剂。 二、石墨得特殊性质: 1、导电性:石墨得导电性比一般非金属矿高一百倍。石墨能够导电就是因为石墨中每个碳原子与其她碳原子只形成3个共价键,每个碳原子仍然保留1个自由电子来传输电荷。 2、导热性:导热性超过钢、铁、铅等金属材料。导热系数随温度升高而降低,甚至在极高得温度下,石墨成绝热体。 3、耐高温性:石墨得熔点为3850±50℃,沸点为4250℃,即使经超高温电弧灼烧,重量得损失很小,热膨胀系数也很小。石墨强度随温度提高而加强,在2000℃时,石墨强度提高一倍。 4、润滑性:石墨得润滑性能取决于石墨鳞片得大小,鳞片越大,摩擦系数越小,润滑性能越好。由于其润滑性,在超细研磨里难度很高,使用叁星飞荣立式砂磨机可以研磨到纳米级别细度。 5、化学稳定性:石墨在常温下有良好得化学稳定性,能耐酸、耐碱与耐有机溶剂得腐蚀。 6、可塑性:石墨得韧性好,可碾成很薄得薄片。 7、抗热震性:石墨在常温下使用时能经受住温度得剧烈变化而不致破坏,温度突变时,石墨得体积变化不大,不会产生裂纹。

三、石墨得中国产地: 1、我国以黑龙江鸡西市恒山区密山市柳毛乡为最大得产地。以及黑龙江省得七台河市、鹤岗市与双鸭山市等。 2、山东省莱西市为我国石墨重要产地之一。 3、吉林省磐石市也就是石墨产地之一。 4、内蒙古乌拉特中旗高勒图矿区发现全国最大晶质石墨单体矿。 5、陕西省煤田地质局一九四队在陕西洋县发现3条石墨矿带。 四、石墨世界著名产地: 1、纽约Ticonderoga。 2、马达加斯加。 3、斯里兰卡(Ceylon)。 五、石墨分类: 1、天然石墨:石墨得工艺特性主要决定于它得结晶形态。结晶形态不同得石墨矿物,具有不同得工业价值与用途。 2、人造石墨:广义上,一切通过有机炭化再经过石墨化高温处理得到得石墨材料均可称为人造石墨,如炭纤维、热解炭、泡沫石墨等。而狭义上得人造石墨通常指以杂质含量较低得炭质原料为骨料、煤沥青等为粘结剂,经过配料、混捏、成型、炭化与石墨化等工序制得得块状固体材料,如石墨电极、等静压石墨等。 人造石墨就成型方式通常可分为:振动成型,挤压成型,模压成型,等静压成型。 3、块状石墨:块状石墨又叫致密结晶状石墨。此类石墨结晶明显晶体肉眼可见。颗粒直

锂离子电池负极材料介绍及合成方法

锂离子电池负极材料介绍及合成方法 目前,锂离子电池所采用的负极材料一般都是碳素材料,如石墨、软碳(如焦炭等)、硬碳等。正在探索的负极材料有氮化物、PAS、锡基氧化物、锡基氧化物、锡合金,以及纳米负极材料等。作为锂离子电池负极材料要求具有以下性能:(1)锂离子在负极基体中的插入氧化还原电位尽可能低,接近金属锂的电位,从而使电池的输出电压高; (2)在基体中大量的锂能够发生可逆插入和脱插以得到高容量密度,即可逆的x值尽可能大; (3)在插入/脱插过程中,锂的插入和脱插应可逆且主体结构没有或很少发生变化,这样尽可能大; (4)氧化还原电位随x的变化应该尽可能少,这样电池的电压不会发生显著变化,可保持较平稳的充电和放电; (5)插入化合物应有较好的电导率和离子电导率,这样可减少极化并能进行大电流充放电; (6)主体材料具有良好的表面结构,能够与液体电解质形成良好的SEI 膜; (7)插入化合物在整个电压范围内具有良好的化学稳定性,在形成SEI 膜后不与电解质等发生反应; (8)锂离子在主体材料中有较大的扩散系数,便于快速充放电; (9)从实用角度而言,主体材料应该便宜,对环境无污染。 一、碳负极材料 碳负极锂离子电池在安全和循环寿命方面显示出较好的性能,并且碳材料价廉、无毒,目前商品锂离子电池广泛采用碳负极材料。近年来随着对碳材料研究工作的不断深入,已经发现通过对石墨和各类碳材料进行表面改性和结构调整,或使石墨部分无序化,或在各类碳材料中形成纳米级的孔、洞和通道等结构,锂在其中的嵌入-脱嵌不但可以按化学计量LiC6进行,而且还可以有非化学计量嵌入-脱嵌,其比容量大大增加,由LiC6的理论值372mAh/g提高到700mAh/g~1000mAh/g,因此而使锂离子电池的比能量大大增加。 目前,已研究开发的锂离子电池负极材料主要有:石墨、石油焦、碳纤维、热解炭、中间相沥青基炭微球(MCMB)、炭黑、玻璃炭等,其中石墨和石油焦最有应用价值。 石墨类碳材料的插锂特性是:(1)插锂电位低且平坦,可为锂离子电池提供高的、平稳的工作电压。大部分插锂容量分布在0.00~0.20V之间(vs. Li+/Li);(2)插锂容量高,LiC 6 的理论容量为372mAh.g-1;(3)与有机溶剂相容能力差,易发生溶剂共插入,降低插锂性能。 石油焦类碳材料的插、脱锂的特性是:(1)起始插锂过程没有明显的电位平 台出现;(2)插层化合物Li x C 6 的组成中,x=0.5左右,插锂容量与热处理温度 和表面状态有关;(3)与溶剂相容性、循环性能好。 根据石墨化程度,一般碳负极材料分成石墨、软碳、硬碳。 1、石墨 石墨材料导电性好,结晶度较高具有良好的层状结构,适合锂的嵌入-脱嵌,形成锂-石墨层间化合物,充放电容量可达300mAh.g-1以上,充放电效率在90%

相关文档
最新文档