锂离子电池负极材料-天然石墨改性研究

合集下载

石墨化石油焦用作锂离子电池负极材料的研究

石墨化石油焦用作锂离子电池负极材料的研究

中图分类号:TM912.9文献标识码:A文章编号:1008-0899(2019)02-055-04石油焦是石油提炼过程中的一种副产品,产量大,价值低廉,主要成分为碳。

石油焦主要用于供钢铁厂使用的石墨电极、预焙阳极、水泥厂和发电厂的燃料等[1],而随着其产量不断增大,市场需求逐渐饱和,人们开始对石油焦的高附加值应用进行研究,其中石油焦作为锂离子电池负极材料的研究展现出巨大的应用前景。

通过高温石墨化热处理将石油焦制备成石墨,用于锂离子电池负极材料,研究石墨化温度对石油焦作为锂离子电池负极材料电化学性能的影响,探讨石墨化温度对石油焦电化学性能影响的机理,从而为促进石油焦的高附加值利用提供理论支撑。

1实验1.1原料分析本研究所用石油焦原料为新疆某公司所生产,平均粒径小于500μm。

根据国标GB2001-91焦炭工业分析测定方法测定石油焦原料的灰分、水分、挥发分和固定碳,成分分析如表1所示。

表1石油焦的工业分析由表1可以看出,石油焦的固定碳、灰分和水分含量分别为91.37%、0.41%和0.1%,固定碳含量较高,灰分和水分含量较低,其中灰分可用HCl浸洗除去[2-4]。

1.2石墨化石油焦的制备将石油焦原料在球磨机上进行破碎,筛后分级得到粒径为10~20μm的石油焦,然后用12%HCl溶液酸浸处理除去灰分。

分别取4份酸浸处理后烘干的石油焦5g放于高纯石墨坩埚中,将石墨坩埚放入高温石墨化炉中,在高纯N2气氛保护下进行不同温度的石墨化热处理。

石墨化热处理温度分别为2 000℃,2200℃,2400℃和2600℃,得到的样品分别相应的标记为C20,C22,C24,C26。

1.3材料结构的表征采用JSM-6360LV型扫描电子显微镜检测样品颗粒的大小和微观形貌。

采用Rigaku-TTRIII型X-射线衍射仪来检测石墨化热处理前后石油焦的微观结构及其石墨化度。

测试条件:扫描速度为10°/min,扫描角度为10~80°。

人造石墨和天然石墨负极材料

人造石墨和天然石墨负极材料

人造石墨和天然石墨负极材料一、引言人造石墨和天然石墨都是负极材料,用于制造锂离子电池、燃料电池等应用。

在当今的新能源产业中,石墨材料已经成为不可或缺的材料之一。

人造石墨和天然石墨各有其优势和劣势,本文将对这两种材料进行深入探讨,分析其特性、性能及应用领域。

二、人造石墨的特性和性能1.人造石墨的制备方法人造石墨是一种由碳源材料通过高温处理制成的材料。

其制备方法主要包括热转化法、化学气相沉积法、电化学法等。

热转化法是指在高温下通过热解或碳化原料来制备石墨材料;化学气相沉积法是指利用碳源气体在高温下沉积石墨材料;电化学法是指利用电解沉积的方法来制备石墨材料。

2.人造石墨的结构特性人造石墨的结构主要由多层片状结构组成,具有较好的导电性和热导性。

其晶体结构类似于天然石墨,但由于其制备过程中的控制条件和生长方式不同,导致其结构和性能与天然石墨有所不同。

3.人造石墨的性能特点人造石墨具有良好的导电性、热导性和化学稳定性,具有较高的比表面积和较好的化学反应性。

在电池负极材料的应用中,人造石墨能够提供较高的储锂容量和较好的循环稳定性,因此得到了广泛的应用。

三、天然石墨的特性和性能1.天然石墨的产地和获取方式天然石墨主要产自地下矿藏,其产地分布广泛,包括中国、印度、巴西、加拿大等国家和地区。

其获取方式主要包括露天开采和井下采矿,其中井下采矿是主要的采矿方式。

2.天然石墨的结构特性天然石墨的结构主要由规则的多层石墨片组成,具有较好的导电性、热导性和化学稳定性。

其晶体结构稳定,分子间作用力较强,具有较好的稳定性和强度。

3.天然石墨的性能特点天然石墨具有较高的导电性和热导性,具有良好的化学稳定性和抗腐蚀性。

在锂离子电池、燃料电池等领域,天然石墨作为负极材料能够提供良好的储锂容量和循环稳定性,因而得到了广泛的应用。

四、人造石墨和天然石墨的比较分析1.物理特性比较人造石墨和天然石墨在物理特性上有一些差异。

人造石墨的比表面积一般较天然石墨大,而天然石墨的晶体结构比较稳定,具有较好的结构稳定性和强度。

3锂离子电池负极材料与应用简介-20110312

3锂离子电池负极材料与应用简介-20110312

人造石墨简介—石墨单颗粒的晶型特点
微米级的石墨单颗粒都具有一定程度的各向异性的特点。
作为锂离子二次电池负极材料,石墨单颗粒的各向异性特 征会在一定程度上引起电池制作过程中的下列特性 ①极片膨胀且易脱落 ②与电液相容性变差 ③循环变差 ④平台变低
改变石墨单颗粒的各向异性是人造研发根本。
高度各向异性负极材料单颗粒示意图
石墨电极的充放电曲线
一、负极概述—石墨负极材料充放电示意图
电解液
石墨单颗粒
Li+
Li+
Li+ Li+
Li+ PC
Li+
《1》一般石墨负极材料的层间距为3.356-3.366A左右。
PC
《2》锂离子与石墨发生插层反应(嵌入)石墨层间距要
扩张到3.70左右。
PC
《3》PC与石墨发生插层反应石墨层间距要扩张到7.98左
中间相石墨简介—中间相石墨应用
近年来,利用中间相炭微球负极材料所具有的高的倍率性能、长 循环寿命和高安全性能,中间相炭微球负极材料在动力电池上得到广 泛应用,同时也在一些高倍率航模、车模及圆柱电池中使用;
中间相石墨简介—中间相石墨改进方向
1、通过合成与热处理工艺改进,提高石墨化度; 实施效果----容量提高5%,压实提高10%左右;
一、负极概述—石墨的插锂特性
(1)插锂电位低且平坦,可为锂离子提供高的、平稳的工作电压,大部分插锂容 量分布在-0.20V~0V之间(vs.Li/Li+);
(2)插锂容量高,LiC6的理论容量为372mAh/g; (3)与有机溶液相容能力差,易发生溶剂共插入现象,从而降低插锂性能。
锂的插入反应 一般是从菱形位置 (即端面,Z字型 面和扶椅型面)进 行,因为锂从完整 的墨片基面是无法 穿过的。但是如果 基面存在缺陷结构 诸如微孔等,也可 以经基面进行插锂。

动力锂离子电池及其负极材料的现状和发展

动力锂离子电池及其负极材料的现状和发展

动力锂离子电池及其负极材料的现状和发展2010-11-10 14:45:06 中国石墨碳素网文/苗艳丽杨红强岳敏天津市贝特瑞新能源材料有限责任公司随着汽车行业的发展,石油、天然气等不可再生石化燃料的耗竭日益受到关注,空气污染和室温效应也成为全球性的问题。

为解决能源问题、实现低碳经济,基于目前能源技术的发展水平,电动汽车技术逐渐成为全球经济发展的重点方向,美国、日本、德国、中国等国家相继限制燃油车使用,大力发展电动车。

作为电动汽车的核心部件——动力电池也迎来了大好的发展机遇。

动力电池是指应用于电动车的电池,包括锂离子电池、铅酸电池、燃料电池等,其中,锂离子电池因具有比能量高、比功率大、自放电少、使用寿命长及安全性好等特性,成为目前各国发展的重点。

国外政府及企业在动力锂离子电池研发上均做出了很大的努力。

我国的锂离子电池产业起步虽较晚,但发展速度非常快,同时,政府给予了大力的支持。

“十一五”期间,“863”电动汽车重大专项对混合动力(HEV)、外接充电式混合动力(PHEV)用锂离子电池关键材料和电池进行了专门的研究。

与锂离子电池其他部件相比,锂离子电池负极材料的发展较为成熟。

在商业应用中,石墨类碳材料技术较为成熟,市场价格也比较稳定,但随着锂离子动力电池对能量密度、功率密度、安全等性能的要求不断提升,硬碳、钛酸锂(Li4Ti5O12)、合金等其他材料也相继成为研究热门。

一、动力锂离子电池负极材料简介1.动力锂离子电池负极材料特性锂离子电池由正极、负极、电解液、隔膜和其他附属材料组成。

锂离子电池负极材料要求具备以下的特点:①尽可能低的电极电位;②离子在负极固态结构中有较高的扩散率;③高度的脱嵌可逆性;④良好的电导率及热力学稳定性;⑤安全性能好;⑥与电解质溶剂相容性好;⑦资源丰富、价格低廉;⑧安全、无污染。

2.动力锂离子电池负极材料主要类型早期人们曾用金属锂作为负极材料,但由于存在安全问题没有大规模商业应用。

锂离子电池新型负极材料的研究

锂离子电池新型负极材料的研究

锂离子电池新型负极材料的研究本文着重介绍了锂离子电池负极材料金属基(Sn基材料、Si基材料)、钛酸锂、碳材料(碳纳米管、石墨烯等)的性能、优缺点及改进方法,并对这些负极材料的应用作了进一步展望。

锂离子电池因具有能量密度高、工作电压高、循环寿命长、自放电小及环境友好等显著优点,已被广泛用于3C电子产品(Computer,ConsumerElectronic和Communication)、储能设备、电动汽车及船用领域。

锂离子电池的能量密度(170Wh/kg),约为传统铅酸蓄电池的3~4倍,使其在动力电源领域具有较强的吸引力。

而负极材料的能量密度是影响锂离子电池能量密度的主要因素之一,可见负极材料在锂离子电池化学体系中起着至关重要的作用,其中研究较为广泛的锂离子电池负极材料为金属基(Sn基材料、Si基材料)、钛酸锂、碳材料(碳纳米管、石墨烯等)等负极材料。

金属基材料1.1锡基材料目前锡基负极材料主要有锡氧化物和锡合金等。

1.1.1锡氧化物SnO2因具有较高的理论比容量(781mAh/g)而备受关注,然而,其在应用过程中也存在一些问题:首次不可逆容量大、嵌锂时会存在较大的体积效应(体积膨胀250%~300%)、循环过程中容易团聚等。

研究表明,通过制备复合材料,可以有效抑制SnO2颗粒的团聚,同时还能缓解嵌锂时的体积效应,提高SnO2的电化学稳定性。

Zhou等通过化学沉积和高温烧结法制备SnO2/石墨复合材料,其在100mA/g的电流密度下,比容量可达450mAh/g以上,在2400mA/g电流密度下,可逆比容量超过230mAh/g,实验表明,石墨作为载体,不仅能将SnO2颗粒分散得更均匀,而且能有效抑制颗粒团聚,提高材料的循环稳定性。

1.1.2锡合金SnCoC是Sn合金负极材料中商业化较成功的一类材料,其将Sn、Co、C三种元素在原子水平上均匀混合,并非晶化处理而得,该材料能有效抑制充放电过程中电极材料的体积变化,提高循环寿命。

锂离子电池石墨负极材料的优点和缺点

锂离子电池石墨负极材料的优点和缺点

锂离子电池石墨负极材料的优点和缺点IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】锂离子电池石墨负极材料的优点和缺点一、石墨定义:1、石墨是元素碳的一种同素异形体,每个碳原子的周边连结着另外三个碳原子(排列方式呈蜂巢式的多个六边形)以共价键结合,构成共价分子。

2、由于每个碳原子均会放出一个电子,那些电子能够自由移动,因此石墨属于导电体。

石墨是其中一种最软的矿物,它的用途包括制造铅笔芯和润滑剂。

二、石墨的特殊性质:1、导电性:石墨的导电性比一般非金属矿高一百倍。

石墨能够导电是因为石墨中每个碳原子与其他碳原子只形成3个共价键,每个碳原子仍然保留1个自由电子来传输电荷。

2、导热性:导热性超过钢、铁、铅等金属材料。

导热系数随温度升高而降低,甚至在极高的温度下,石墨成绝热体。

3、耐高温性:石墨的熔点为3850±50℃,沸点为4250℃,即使经超高温电弧灼烧,重量的损失很小,热膨胀系数也很小。

石墨强度随温度提高而加强,在2000℃时,石墨强度提高一倍。

4、润滑性:石墨的润滑性能取决于石墨鳞片的大小,鳞片越大,摩擦系数越小,润滑性能越好。

由于其润滑性,在超细研磨里难度很高,使用叁星飞荣立式砂磨机可以研磨到纳米级别细度。

5、化学稳定性:石墨在常温下有良好的化学稳定性,能耐酸、耐碱和耐有机溶剂的腐蚀。

6、可塑性:石墨的韧性好,可碾成很薄的薄片。

7、抗热震性:石墨在常温下使用时能经受住温度的剧烈变化而不致破坏,温度突变时,石墨的体积变化不大,不会产生裂纹。

三、石墨的中国产地:1、我国以黑龙江鸡西市恒山区密山市柳毛乡为最大的产地。

以及黑龙江省的七台河市、鹤岗市和双鸭山市等。

2、山东省莱西市为我国石墨重要产地之一。

3、吉林省磐石市也是石墨产地之一。

4、内蒙古乌拉特中旗高勒图矿区发现全国最大晶质石墨单体矿。

5、陕西省煤田地质局一九四队在陕西洋县发现3条石墨矿带。

过渡金属氧化物锂离子电池负极材料的类型以及改性

过渡金属氧化物锂离子电池负极材料的类型以及改性

二○一五年专业课论文过渡金属氧化物锂离子电池负极材料的类型以及改性研究学院:材料科学与工程学院专业:材料物理与化学姓名:崔宇学号:2014231015过渡金属氧化物锂离子电池负极材料的类型以及改性研究崔宇长安大学材料科学与工程学院,陕西西安,710049摘要系统的介绍了锂离子电池负极材料的类型,原理以及电化学性能?叙述了对不同的材料的改性办法?简要介绍了氧化物材料的纳米改性和复合改性,对以后可能展开的研究方向提出指导?关键词锂离子电池负极;纳米改性Types of transition metal oxide anode material for lithium-ion batteries and modificationAbstract Systems introduces the type of anode material for lithium-ion batteries, principle and electrochemical properties. Modified approach to the different materials is described. Introduced and modification of nano-modification of oxide materials, possible research direction in the future.Keywords Lithium ion battery; Nano modified0引言伴随着互联网移动化的进程,诞生出越来越多的移动设备?随着智能手机的普及,电池这一性能瓶颈带来的问题日益突出?因此,研发出新的具有更强性能的锂电池成为当下的热点方向?由于手机对于锂电池的容量要求极高,而且它具有较高的利润,因此使用一些金属元素来代替现有的碳材料成为可能?目前,传统的石墨负极材料理论比容量为372mAh/g,已不能满足新一代高比容量电池负极材料的需求,为此,开发新型高比容量锂离子电池负极材料显得迫在眉睫[1-2]?与传统的石墨负极相比,过渡金属氧化物拥有高的理论容量和首次充放电容量?然而由于它们存在首次库仑效率低?高倍率充放电容量低和循环稳定性较差等缺陷,限制了其广泛应用[3-5]?与正极材料一样,负极材料也是影响锂离子电池性能的重要因素之一,是锂离子电池发展的主要研究内容?它经历了3个阶段的发展,分别是最初的金属锂,锂合金和目前商业应用的碳材料?一般来说,理想的负极材料应满足以下要求[6-7]:(1)低的氧化还原电位,近可能接近锂的电位?负极材料的氧化还原电位越低,整个电池系统的工作电位就会越高,这样锂离子电池将获得更高的能量;(2)良好的电子传导率和锂离子迁移率?良好的导电性和锂离子迁移率可以保证电池反应的快速发生,从而保证电池系统能够进行快速充电;(3)结构稳定,容量高?负极材料应该具有锂离子容易脱嵌的结构,并且在发生锂离子脱嵌的过程中,其结构应该保持稳定,具有稳定的循环性能;(4)与电解液有很好的兼容性,并且不与电解液反应;(5)制备容易?成本低?环保?无毒性等?1碳基负极材料自从索尼公司用碳材料作负极的商品化锂离子电池以来,人们对碳负极进行了广泛研究?目前使用的碳基负极材料主要包括石墨和无定形碳两大类?石墨因导电性好?结晶度高?层状结构有利于锂离子的脱嵌,工作电位与金属锂相近等优点而被广泛研究,同时石墨也是最早实现商业化的碳负极材料,其理论比容量为372mAh/g,在实际应用中容量可达330mAh/g左右[8]?无定形碳主要包括硬碳和软碳两种,软碳为经2500℃以上高温处理后能石墨化的无定形碳,其中典型代表为中间相碳微球(MCMB),其石墨化程度低,可逆容量约为为320 mAh/g[9];硬碳通常为难以石墨化的碳,即使在2500℃下也难以石墨化,一般具有比较大的比表面积,主要为特殊结构的高分子聚合物的热解碳,具有单层碳原子的无序排列结构,层间距比较大以及在层间中存在着大量的微孔,这就大大的增加储锂面积,所以硬碳基本上都具有较高的嵌锂容量,可达到500mAh/g以上[10]?然而此类材料都具有密度小和首次库企效率低等缺点而难以满足商业化锂离子电池的要求,通常被用作其他负极材料的添加剂以增加电导率?近年来,越来越多的纳米级别的新型碳材料被发现,如碳纳米管?多孔碳?碳纳米纤维和石墨稀等[11-13],这些材料因具有特殊的纳米结构,使得它们的比容量比普通碳基材料高?碳纳米管因直径小,比表面积大,从而可以提供很多的锂离子嵌入活性点,从而具有很高的比容量;另外,碳纳米管的良好的电子和离子传导性,使材料具有很好的倍率性能?但是,碳纳米管产率很低,不适合广泛的商业应用,一般被作为碳源与其他负极材料进行复合以增加电导率?石墨稀这一颗科学界的“新星”,因具有优异的电导率?极高的比表面积(约2630m2/g)?机械柔朝性好等特点被广泛研究?由于石墨稀极高的比表面积和猎皱结构,使得锂离子不仅可以存储在石墨炼的片面上,还可以存储在石墨稀的边沿?缺陷以及其他位置,从而具有较高的比容量?Kim等人[13]用石墨炼作为锂离子电池负极材料测得其比容量约为540 mAh/g 人目前,石墨稀主要应用于与金属氧化物进行复合从而提高氧化物的导电性,改善其循环性能?2合金类负极材料金属锂用作负极材料时易产生枝晶,而用锂合金替换可以有效的避免此现象的发生,从而提高电池的安全性[14]?锂合金材料一般为金属锂与金属类或半金属类元素之间进行合金化的产物,这些元素主要集中在第4和第5主族,如:Si, Sn, As, Sb ,Ge, Pb, P和Bi?还有一些像Al, Zn, Cd, Ag, Au, In, Ga和和Mg金属元素也可以形成锂合金材料,其中研究最广泛的合金材料为Si[15,16]和Sn[17,18]合金类材料?2.1锂离子电池挂基负极材料在硅基负极材料中1个桂原子最多可以与4.4个锂离子反应形成Li4.4Si合金,使得其理论容量高达4200 mAh/g,其值最接近于金属锂?另外Si还具有无毒环保,嵌锂电位低并且资源丰富等优点,这些特性使得Si成为有望取代石墨的一种理想材料?但是,Si在充放电过程中会出现严重的体积变化,其变化量通常高达280 %-300 %,巨大的体积变化将产生很大的应力,从而出现电极材料的结构失稳?电极粉化等现象,甚至出现电极材料与集流体脱离,使得容量快速衰减,这也是桂基材料未取得广泛应用的主要原因?目前,改善Si基材料循环性能的办法主要有制备Si纳米材料和利用碳基材料与Si复合?2.2锂离子电池锡基负极材料自从1997年日本Fujifilm公司发现无定形锡基氧化物(TOC)具有较长的循环寿命和较高的可逆容量以来,锡基负极材料引起广泛的关注[19]?与桂基材料类似,锡基材料中1个Sn原子可以和4.4个锂离子反应形成Li4.4Sn合金,其理论容量可达到990 mAh/g,但是锡基材料也面临着充放电过程中体积膨胀(约100 %-300 %)的问题,从而极大的限制了其广泛的商业化应用?锡基氧化物最常用的改性办法主要有合成具有较大比表面积纳米材料,有效缓解充放电过程中的巨大体积变化,从而有效改善材料的循环性能?另一种有效方法为与碳材料进行复合形成复合材料,其中碳对Sn颗粒进行表面包覆,可以有效缓冲体积膨胀,防止活性颗粒团聚,同时也还可进一步提高材料的导电性?另外,碳材料本身也是一种很好的嵌锂材料,并且其结构在脱嵌锂过程中变化很小,与碳复合可有效的改善锡基材料的电化学性能?Wan等人[20]通过模板法成功制备了中空C/Sn复合材料,表现出极高的容量和优异的循环性能?Yu等人[21]合成出来的Sn/C复合纳米材料,具有良好的循环性能,200次循环后其容量仍维持在737 mAh/g?2.3 Li4Ti5012负极材料Li4Ti5012结构与LiMn2O4类似,也属于尖晶石结构,空间群为Fd3m,理论上, Li4Ti5012可以嵌入3个锂离子生成Li7Ti5012,生成的Li7Ti5012也属于尖晶石结构,并且其晶胞体积与Li4Ti5O12几乎一致,故常Li4Ti5012被称为零应变材料,从而使得Li4Ti5012结构在充放电过程中十分稳定,其循环寿命可达数千次乃至上万次?Li4Ti5012的理论比容量为175mAhg?实际应用中也可达到150-160mAh/g[22]?虽然Li4Ti5012的循环性能比较好,但Li4Ti5012导电性差(10-13S/cm)?离子扩散系数也很低(10-8cm2/s),加上其平台电压比较高,通常要与4或5V正极材料搭配使用,这导致Li4Ti5012材料在大电流密度下容量衰减很快,倍率性能差等缺点?通常釆用离子掺杂?表面包覆?减小Li4Ti5012粒径来改善Li4Ti5012的倍率性能?2.4金属氧化物负极材料早在上世纪80年代,人们就发现一些金属氧化物具备可逆充放电的能力,从而将其应用于锂离子电池电极材料,其中锡的氧化物研究的最多,如SnO2和SnO[23-24]?自从Tarascon等人于2000年首次报道了纳米尺寸的过渡金属氧化物(Co3O4,NiO,CuO和Fe2O3)作为锂离子负极材料具有优异的储锂性能后,过渡金属氧化物引起了全球范围内的极大关注,掀起了一股以过渡金属氧化物为锂离子电池负极材料的研究热潮?根据不同的充放电机理,主要可分为三类:合金类反应?嵌入式反应和转换式反应(3d过渡金属氧化物)?2.4.1合金类反应金属氧化物这类金属氧化物中最常见的是SnO2 [25],在充放电过程中, SnO2首先与金属锂反应生成金属Sn和Li2O,随后金属锡与锂进行可逆的合金化反应,而Li2O不参与反应?与Sn基材料类似,1 mol SnO2理论上最多可与4.4 mol的锂离子发生可逆反应,其理论容量为780mAh/g?其反应机理如下所示:SnO2+ 8Li++ 8e-→Sn + 4Li2O (1-6)Sn + 4.4Li++4.4e-→Li4.4Sn (1-7)和锡基材料一样,SnO2在充放电过程中也会出现巨大的体积变化,从而导致容量衰减很快,循环性能变差?目前, SnO2材料改性方法主要有:合成具有纳米结构?制备不同形貌的SnO2材料,进行表面包覆,与碳材料进行复合等?2.4.2嵌入式反应金属氣化物这类金属氧化物的储锂方式与Li4Ti5012类似,也是通过嵌入式反应来进行的?这种方式表现在电化学反应是通过锂离子在金属氧化物结构中进行可逆的嵌入与脱出而发生的,这样不会使氧化物结构发生太大的变化[27]?其中典型物质为TiO2,反应式1-8为其反应机理,反应时1 mol的TiO2与X mol的Li离子进行可逆反应生成LixTiO2,其中X的具体数值取决于TiO2晶态与尺寸?一般认为,1 mol的锐钛矿晶型的TiO2可以与0.5mol的Li+进行可逆反应,其理论容量可达167mAh/g;对于TiO2(B)材料,其1 mol可以与0.75 mol的Li+进行可逆反应,其理论比容量比锐铁矿高,可达到251mAhg人由于TiO2材料电导率及离子迁移率都比较低,从而导致材料的倍率性不佳,通常改善倍率性能的方法有:合成纳米尺寸的TiO2?进行离子掺杂?表面进行碳包覆等?TiO2 + xLi+ + xe-→LixTiO2 (1-8)2.4.3转换式反应金属氧化物其实大部分金属氧化物都是以转换式反应的形式来进行储锂的,其中比较典型的就是Tarascon等人[25]2000年报道的过渡金属氧化物(MxOy M = Co , Fe, Ni, Mn, Cu等)?这类氧化物的理论比容量都比较高,一般在700mAh/g以上,它们以转换式的形式进行储锂,其机制有别于传统碳材料(原子层间插入机理),锡基?娃基材料(合金化机理),Ti02 (嵌入式反应机理),其反应机理如下所示:MxOy + 2yLi++ 2e? xM + yLi2O (1-9)上述反应机理同样也适用于过渡金属氟化物?硫化物?氮化物等?从上式中可以得知在首次放电过程中, MxOy粒子与锂发生反应,产生非晶态的Li2O和尺寸约为2-8nm的具有高度电化学活性的金属M颗粒,金属颗粒分散于非晶态的Li2O中?与此同时,在过渡金属氧化物的表面出现电解液的分解,颗粒表面形成一层固态的电解质(SEI)膜,此过程会消耗了一定的锂离子,这会对首次放电容量有一定贡献,导致首次放电过程中容量均会超过理论容量?在之后的充电过程中,过渡金属M与Li2O反应,重新生成过渡金属氧化物MxOy,同时会分解部分的SEI膜,尺寸为2-8 nm金属颗粒具有高度的活性,这种高度活性使得逆反应得以发生?一般过渡金属氧化物的首次不可逆容量比较大,库伦效率比较低(约50%-70%),其主要原因是由于有些纳米过渡金属M和Li2O不能完全转化成MxOy,另一方面源于首次充电过程中不能完全分解首次放电过程中生成的SEI膜?3 3d过渡金属氧化物负极材料的研究进展3.1钴的氧化物对于钴氧化物的研究主要集中于Co3O4和CoO,它们与锂进行反应生成金属Co纳米颗粒与Li2O,这一特性早在1982年就被Thackeray等人[28]发现?然而,其真正应用于锂离子电池是在2000年Pizot等人[25]在Nature上进行相关报道之后?相对于传统碳负极材料,Co3O4与CoO表现出很高的容量(约为传统碳的2-3倍),其理论容量分别为892和716mAh/g?反应机理如下所示:Co3O4+8Li++8e-?3Co + 4Li2O (1-10)CoO + 2Li+ +2e-?Co + Li2O (1-11)其中Co3O4因比容量高而受到更多的关注,虽然Co3O4的理论容量很高,但其导电性差,并且在不断的循环过程中会出现体积的巨大变化,材料的结构会发生改变,甚至坊塌?需对Co3O4进行改性从而达到更好的实际应用?目前主要的改性方法有:合成特殊结构的Co3O4纳米材料,如纳米线?纳米管?纳米针?纳米片等[29-32]?以及与碳材料(石墨?碳纳米管?石墨稀等)进行复合[33-35]?Chen等人[36]通过球磨法和煅烧法分别合成了 Co3O4纳米颗粒以及纳米棒,表现出优异的电化学性能?Yan等人[37]通过化学沉淀法制备钴的前驱体,后在空气气氛下进行锻烧得到多孔Co3O4纳米笼状物,循环30次后可逆容量依旧高达970 mAh/g人表现出良好的循环稳定性?3.2猛的氧化物猛因具有廉价?资源来源广?无毒等特点引起了广泛研究?猛的氧化物主要有MnO, MnO2, Mn2O3和 Mn3O4,其中 MnO 理论比容量达 756 mAh/g, Mn3O4为936mAh/g,其反应机理如反应式1-9所示,可计算得出MnO2的理论比容量高达1233 mAh/g,尽管具有很高的理论容量,但是MnO2向金属Mn单质的转变过程需要克服很大的热力学势垒,反应不容易进行,这大大限制了 MnO2材料的实际应用?与其他过渡金属氧化物类似,猛的氧化物也面临着导电性差?体积膨胀与收缩大的问题,从而导致循环性能差?一般通过对材料进行改性来提高其电化学性能的稳定性,其中主要包括合成多孔结构材料?与碳材料进行复合等?Deng等人[38]通过热分解MnCO3得到多孔的Mn2O3微球,其表现出优异的电化学稳定性,在循环50次后比容量仍然能够保持796 mAh/g?Wang[39]等人合成石墨稀与Mn3O4的复合材料,其比容量约为900mAh/g,几乎与其理论容量接近?Reddy等人[40]通过AAO模板法合成MnO2/C同轴纳米管阵列,其表现出优异的循环性能?3.3铁的氧化物铁的氧化物负极材料主要有FeO?Fe3O4和Fe2O3,其理论比容量分别为744?922?1007mAh/g?其对锂反应式如下:FeO+ 2Li++2e-?Fe + Li2O (1-12)Fe3O4+8Li++8e-?3Fe + 4 Li2O (1-13)Fe2O3+6Li++6e-?2Fe+3 Li2O (1-14)其中Fe2O3因其具有比容量高?稳定性高?环境友好等特点而被广泛研究?但是,Fe203作为半导体,其导电性差,电子传递速度慢,加上在充放电过程中会出现材料聚集的现象,这使得多数的Fe2O3材料的循环稳定性都比较差,对于改善Fe2O3材料的循环性能的方法主要有两类,其一为合成不同特殊形貌的Fe2O3材料,如:纳米管,纳米片,纳米胶囊等?另一种方便?有效的改性方法为与碳材料进行复合?Reddy 等人[41]通过热处理的方法在铜箱上合成α- Fe2O3纳米片,作为锂离子负极材料表现出优异的循环性能,在65 mA/g电流密度下循环80次容量几乎没有衰减,保持在约700 mAh/g?Zhao等人[42]通过水热法合成单壁碳与Fe2O3;复合材料,其表现出极好的循环性能和倍率性能,在1 A/g大电流密度下可逆容量依旧可以保持约为680mAh/g?3.4镍的氧化物NiO的储锂机理中一般认为NiO与Li反应,转化为Ni纳米颗粒和Li2O,其理论比容量可达718 mAh/g,反应式可表达如下:NiO + 2Li+2e-?Ni+Li2O (1-15)虽然NiO具有较高的比容量,但是由于其导电性差,不利于电子的迁移和离子的扩散,造成NiO材料在首次循环中出现较大的不可逆容量损失(约为35%),加上在循环过程中的巨大体积变化,从而使得材料的容量衰减很快,导致循环性能差的缺点?近些年来人们采取一系列方法来对NiO材料进行改性,其中主要包括:与碳材料进行复合?合成具有纳米结构的NiO材料?Qian等人[43]通过超声方法合成石墨稀与3D NiO复合材料,其表现出优异的循环性能,在200mA/g电流密度下循环50次可逆容量依旧高达1065 mAh/g?Wei等人[44]通过溶剂热法合成NiO/C杂化微球,极大的改善了 NiO材料的循环稳定性,在电流密度为387 mA/g下循环20次可逆容量仍可以维持在400 mAh/g左右?Wang等人[45]通过热处理方法在泡沫镇上生成三维多孔NiO材料,表现出优异的循环性能,在0.2 C倍率下循环30次可逆容量可保持在540 mAh/g3.5铜的氧化物铜的氧化物也是过渡金属氧化物中的主要一员,研究较多的有CuO和Cu2O,其理论容量分别为674mAh/g和375mAh/g?与前面叙述的氧化物类似,铜氧化物也面临着首次不可逆容量损失大,循环性能差等缺点?目前,对铜氧化物材料进行了大量的改性工作,主要的改性方法包括制备不同形貌纳米材料,与碳材料进行复合等?Sun等人[46]通过阴极极化的方法在Cu片在合成一维针状CuO材料,用于锂离子电池负极材料,在2C电流密度下循环100次可逆容量依旧能保持在583.1 mAh/g,在15和20 C大倍率电流密度下容量分别为545.9和492.2mAh/g?表现出良好的循环性能和极好的倍率性能?Wang等人[47]通过简单的溶液法合成CuO/石墨稀的复合物,在65 mA/g电流密度下循环100次可逆容量依旧可保持在600mAh/g,即使在600mA/g高电流密度下其比容量依旧可达150mA/g?4 3d过渡金属氧化物负极材料的改性虽然过渡金属氧化物具有超高的理论容量,大多数都在700 mAh/g 以上?但是3d过渡金属氧化物一般都为半导体材料,其导电性都比较差,而且在反应过程中生成的惰性Li2O进一步导致材料导电性的恶化,从而阻碍材料的电子导电与离子扩散,产生电化学反应动力不足等缺点;并且,过渡金属氧化物在与锂发生反应过程中会产生很大的体积膨胀,这会产生较大的应力,导致活性颗粒的粉化,使得活性材料在不断的充放电过程中慢慢的与集流体等失去电接触,同时由于体积出现巨大膨胀,从而将导致纳米粒子产生电化学团聚现象,进而丧失电化学活性?这些因素导致3ci过渡金属氧化物的循环性能差?目前对过渡金属氧化物的研究主要集中于对其的改性,改性措施主要分为纳米化与复合化这两类?其中纳米化结构包括零维的纳米颗粒,一维的纳米棒?纳米管?纳米带?纳米线?纳米针,二维的纳米片?纳米小板等[36,37,41,46,48]?这些结构具有许多独特优势: 1.可以促进电子电导和缩短锂离子的传输路径;2.可以有效的增加电解液与电极的接触面积;3.纳米材料可以诱发新的储锂机制;4.能有效缓解充放电过程中的体积变化?实践也证明这种纳米化结构过渡金属氧化物材料具有优异的循环性能?Bruce等人[49]以SBA-15为模板通过化学沉淀法制备了介孔Co3O4纳米线,在100 mA/g电流密度下循环60次可逆容量依旧保持在约800mAh/g,表现出极好的循环稳定性?Zhu等人[50]通过水热法在Ni基片上合成Co3O4纳米棒阵列,其在1 C 倍率下循环20次可逆容量仍高达1000 mAh/g,具有优异的循环性能?复合化主要体现在与碳材料的复合,其中碳材料的来源主要有无定型碳?碳纳米管?碳纳米纤维?石墨稀等[18,21,35,43,44,47]?与碳复合是一种非常有效的改性方法,这些碳材料一方面可以提高活性物质的电子电导率?另一方面,碳材料一般表面积都比较大,这样可以有效的缓解活性物质在充放电过程中的体积变化?除此之外,碳材料本身也可以进行储锂?目前,与碳材料进行复合作来改善过渡金属氧化物材料的循环性能引起了人们的极大关注,特别是继石墨稀发现之后,全球掀起了一股以石墨稀与过渡金属氧化物进行复合的热潮?Yang等人[51]通过超声法合成CoO量子点与石墨稀的复合物,其量子点尺寸为3-8 nm,作为锂离子电池负极材料,在50mA/g 密度下循环50次可逆容量仍高达1600mAh/g,即使在1A/g这样大电流密度下可逆容量依旧可达l000mAh/g人其表现出极好的循环性能与倍率性能,主要归因于石墨烯可以极大提高CoO导电性,同时石墨稀较大的比表面积(约为2630 m2/g)可大大缓解CoO在充放电过程中的体积膨胀问题?Wang等人[52]通过水热法合成CoO纳米棒与碳纳米管的具有核壳结构的复合材料,表现出良好的循环性能,在电流密度高达3580 mA/g循环200次可逆容量还可保持730 mAh/g?Wang等人[53]通过原位还原法合成MnO/C复合材料,在200 mA/g电流密度下循环40次可逆容量依旧保持在600 mAh/g人展现了优异的循环性能?另外,合成具有多孔结构(复合)材料也可以有效的改善过渡金属氧化物的循环性能,这些多孔结构可以有效缓解材料在充放电过程中的体积变化,提高材料的循环稳定性[29,31,38];同时多孔结构可以增加电解液与电极材料的接触面积,为电化学反应提供更多的反应点,有利于电化学反应的快速进行,从而增强倍率性能?Zhou等人[54]通过水热法合成介孔Fe3O4/C微胶囊复合材料,在186 mA/g电流密度下循环50次可逆容量可达800 mAh/g,具有优异的循环性能?Chen等人[55]通过水热法在Cu片上合成具有多孔结构的Co3O4纳米针材料,其首次放电容量可达到1600mA/g,在0.5 C倍率下循环20次可逆容量依旧保持在800mA/g?Huang等人[56]通过水热法在Ti片上生长CoO多孔纳米线,在716 mA/g电流密度下循环20次可逆容量还可保持约为700 mA/g?目前,对于过渡金属氧化物的改性方法趋向于综合化,通过简单易行?能耗低的方法来对材料进行改性是未来的方向?5总结与展望综上分析,3d 过渡金属氧化物MxOy负极材料具有很高的可逆容量,较好的倍率性能,同时,也具有首次放电容量损失大?循环稳定性差的缺点?研究者已采用各种方法进行掺杂包覆,提高MxOy的导电率,抑制纳米颗粒的团聚,改善其电化学性能,并取得了良好的效果?总之,将MxOy负极材料结构化( 空心?核壳?多孔等) ,发挥微米?纳米结构的优势,做成微/ 纳米复合材料,或者将MxOy与其他功能材料复合,克服MxOy的缺点,发挥多组分优势,做成多元复合材料,是制备高性能3d 过渡金属氧化物MxOy负极微/ 纳米材料的发展趋势?相信随着研究的不断深入,3d 过渡金属氧化物负极微/ 纳米材料会有更好的应用前景?参考文献:[1] Guo P, Song H, Chen X. Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries [J].Electrochem Commun,2009,11:1320[2] Kim H, Seo D H, Kim S W, et al. Highly reversibleCo3O4/graphene hybrid anode for lithium rechargeable batteries[J].Carbon,2011,49:326[3] Sun B, Chen Z, Kim H S, et al. MnO/C core-shell nanorods ashigh capacity anode materials for lithium-ion batteries [J].J Power Sources,2011,196:3346[4] Xiang J Y, Tu J P, Zhang J, et al. Incorporation of MWCNTs into leaf-like CuOnanoplates for superior reversible Liion storage[J]. Electrochem Commun,2010,12:1103[5] Xiang J Y, Tu J P, Yuan Y F, et al. Improved electrochemical performances of core-shell Cu2O/Cu composite prepared by a simple one-step method[J]. ElectrochemCommun, 2009,11:262[6] Bai Y P, Xing J D, Wu H L, et al. ,The mechanical alloying mechanism of various Fe203-Al-Fe systems [J]. Advanced Powder Technology, 2013,24(1): 373-381.[7] Ahmmad B, Leonard K, Islam M S, et al. , Green synthesis of mesoporous hematite (alpha-Fe2.3) nanoparticles and their photocatalytic activity [J] Advanced Powder Technology, 2013,24(1): 160-167.[8] Winter M, Besenhard J 0,Spahr M E, et al. ,Insertion electrode materials for rechargeable lithium batteries [J], Advanced Materials, 1998,10(10): 725-763.[9] Reeves S D and Morris R S. Improved MCMB anodes by surface modification with self-assembling nonionic surfactants [J]. Electrochemical and Solid State Letters,2004,7(8): B29-B30.[10] Mochida I, Ku C H and Korai Y. Anodic performance and insertion mechanism of hard carbons prepared from synthetic isotropic pitches [J]. Carbon, 2001,39(3):399-410.[11] Che G L, Lakshmi B B, Fisher E R, et al” Carbon nanotubule membranes for electrochemical energy storage andproduction[J]. Nature, 1998,393(6683):346-349.[12] Kim C, Yang K S, Kojima M, et al. ,Fabrication of electrospinning-derivedcarbon nanofiber webs for the anode material of lithium-ion secondary batteries [J]. Advanced Functional Materials, 2006,16(18): 2393-2397.[13] Yoo E, Kim J, Hosono E, et al. ,Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries [J]. Nano Letters,2008,8(8): 2277-2282.。

锂离子电池负极材料的研究进展

锂离子电池负极材料的研究进展

锂离子电池负极材料的研究进展摘要:锂离子电池作为一种电源应用很广泛,但是在应用中存在一些不足,选取电化学性能良好的正负极材料是提高和改善锂离子电池电化学性能最重要的因素。

简单介绍锂离子电池的电化学反应原理和从新型碳材料、硅基负极材料、锡基负极材料三方面锂离子电池的研究状况,并展望了锂离子电池负极材料的发展趋势。

关键词:锂离子电池;负极材料;研究现状0 引言目前全球最具潜力的可充电电池是锂离子电池。

用碳负极材料的商品化的锂离子电池可逆比容量已达350 mA∙h/g,快接近理论比容量372mA∙h/g[1]。

随着全球化的加快,科技日新月异,电子产品日益普及,发展中的电动汽车等对电池能源提出了更高的要求,其中主要包括能量密度、使用寿命等[2]。

开发新型、廉价的负极材料是锂离子电池研究的热点课题之一。

就目前而言,主要有新型碳材料、锡基材料、硅基材料等,本文研究了这些新型负极材料的研究现状及未来的发展方向。

1锂离子电池的电化学反应原理锂离子电池是指用锂离子嵌入化合物作为正负极的二次电池.锂离子电池的正极材料必须有能够接纳锂离子的位置和扩散路径,目前应用性能较好的正极材料是具有高插入电位的层状结构的过渡金属氧化物和锂的化合物,如LixCoO2,LixNiO2以及尖晶石结构的LiMn2O4等,这些正极材料的插锂电位都可以达到 4 V以上(vs.Li+/Li)[3].负极材料一般用锂碳层间化合物Li x C6,其电解质一般采用溶解有锂盐LiPF6、LiAsF6等的有机溶液。

锂离子电池实际上是一个锂离子浓差电池,正负电极由两种不同的锂离子嵌入化合物构成.充电时,Li+从正极脱嵌经过电解质嵌入负极,此时负极处于富锂态,正极处于贫锂态;放电时则相反,Li+从负极脱嵌,经过电解质嵌入正极,正极处于富锂态,负极处于贫锂态.锂离子电池的工作电压与构成电极的锂离子嵌入化合物本身及锂离子的浓度有关[3]。

2新型碳材料在新型碳负极方面,未来的发展将主要集中在高功率石墨类负极及非石墨类高容量碳负极,以满足未来动力和高能电池的需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江大学硕士学位论文摘要 锉离子电池是一种绿色、可充式的二次电源,其工作电压高、能量密度大,大量应用于手机、计算机等便携式设备。进一步提高电池性能和降低成本是锉离子电池发展的重点。由于碳材料种类繁多,性能提升空间大,因而研究高性能,低成本的的碳负极材料是改善锉离子电池性能和降低电池成本的有效途径之一。本论文主要研究铿离子电池负极材料的结构和性能,期望获得电化学性能优异、成本低廉的负极材料。

本文采用XRD, TEM, SEM, BET,激光粒径和电化学测试等方法,对热处理天然石墨结构和电化学性能进行了分析,研究了材料的晶体结构、杂质含量、粒径大小、比表面积等因素对其充放电性能的影响。采用FTIR, XRD, SEM等方法分析电极表面SEI膜的成分和形貌特征,研究了在大电流充放条件下,石墨材料可逆容量的衰减机理。采用XRD, TEM和电化学测试等方法,研究了聚氯乙稀热解碳包覆CoSb3材料的结构特征和电化学性能。 研究发现,热处理可有效提高负极材料石墨化程度、增大石墨微晶尺寸,减小比表面积,增大颗粒平均粒径,从而显著改善充放电性能。随着热处理温度的升高,性能进一步得到改善,800℃处理的石墨材料可逆容量为320 mAh/g,首次库仑效率为80%。这是由于800℃处理的石墨材料BET比表面积最小,颗粒平均粒径最大,有利于降低不可逆容量。其次,800℃下热处理,大量减少了石墨表面的活性点,有利于不可逆容量的减少。而且经过热处理,原先难以储铿的位置也可以嵌脱锉,提高了石墨材VII的可逆容量。 SEI膜的红外吸收光谱分析表明,SEI膜上有(CH20Co2Li)2, Li2CO3, CH20002Li等几种物质。SEI膜的SEM分析表明,活性铿与电解液发生反应,放出CH2=CH2, C02,HF等气体,可逆容量随电流密度的增大而减小。在充放电过程中,石墨材料结构发生可逆变化。在嵌脱铿过程中,依次生成LiCls, LiC,2, LiC6等铿一碳化合物,同时这些铿-碳化合物在不同电位下相互转化。 通过聚氯乙稀热解碳包覆CoSb3制备负极材料,不可逆容量损失相对减少。首次不可逆容量损失从纯CoSb3试样的62%下降到42%。相对于纯的CoSb3合金,热解碳包覆CoSb:负极材料的容量循环衰减速率较慢。20个循环之后,CoSb3试样的可逆容量衰减到50 mAh/g以下,热解碳包覆CoSb:负极材料的可逆容量下降到160 mAh/g o

关键词:晶体结构,比表面积,活性点,SEI膜,铿一碳化合物,聚氯乙稀热解碳包覆 CoSb、材料浙江大学硕士学位论文Abstract Lithium-ion batteries are green and rechargeable secondary power, they are widely usedin mobile phones, computers and other equipments, due to high working-voltage, largeenergy density. The emphases on lithium-ion batteries are further to improve theirperformances and reduce their costs. Carbon materials are one of the available approachesthat enhance the performances and decrease the costs of lithium-ion batteries, since there area variety of species of carbon materials and their properties improvement would be effectiveto upgrade the anode. The thesis was concerned on the structures and performances of anodematerials, and hope to find ideal materials.

In the thesis, the heat-treated natural graphite was analyzed in structures andelectrochemical properties through XRD, TEM, SEM, BET, Laser particle diameter andelectrochemical test, the electrochemical performances was affected by the factors such ascrystal structure, impurity content, particle diameter and BET specific surface area. Thecompositions and surface characteristics of SEI film were analyzed by FTIR, XRD and SEM.The structures and electrochemical performances were investigated by XRD, TEM andelectrochemical test.

It is found that heat-treatment could effectively enhance the degree of graphatizing,graphite crystallite size, average graphite diameter of anode materials, and it also decreasedBET specific surface area, accordingly improved greatly the charge/discharge performanceWith the increase of heat-treatment temperature, electrochemical performance was furtherimproved. The reversible capacity of 8000C-treated graphite was 320 mAh/g, the initialcoulomb efficiency was 80%. Compared with the other graphite, BET specific surface areaof 8000C-treated graphite was the smallest, and the average graphite diameter was the largest,caused to decrease the irreversible capacity. Besides, heat-treatment at 8000C decreased thenumbers of active sites of graphite surface, the decrease of the numbers of the active sitesreduced greatly the irreversible capacity. Furthermore, the sites, which were originallyimpossible to intercalate lithium-ion, could intercalate lithium-ion, and increased thereversible capacity consequently.

With the FTIR analysis of the SEI film, there were several components, such as(CH20CO2Li)21 Li2C031 CH20002Li. With the SEM analysis of the SEI film, it suggestedthat active lithium reacted with electrode, giving out CH2=CH2, C02. HF and other gases,reversible capacity decreased with the increase of the current density. In the discharge/chargeprocess, the structure of graphite was changed. In the intercalate/deintercalate process,LiC,s. LiC,2" LiC6 and other graphite-lithium compounds were produced, and thesegraphite-lithium compounds were transformed each other in diferent voltages.浙江大学硕士学位论文Through coating pyrolytic coke on CoSb3, the loss of irreversible capacity、Vas

decreased. The initial loss of irreversible capacity decreased from 629/6 to 429/o. Compared

with CoSb3, the cycling stability of the coke-coated CoSb3 composite was enhanced. Aftertwenty cycles, the reversible capacity of the coke-coated CoSb3160 mAh/g to 50 mAh/g.site enhanced from

words: crystal structure, BET special surface area,graphite-lithium compounds, the coke coated CoSb3active site, SEI film,

composite.

III

相关文档
最新文档