锂离子电池石墨负极材料的优点和缺点
锂离子电池负极材料各自的优缺点

锂离子电池负极材料各自的优缺点锂离子电池是目前应用最广泛的可充电电池之一,其负极材料在电池性能和循环寿命方面起着重要作用。
本文将从几个常见的锂离子电池负极材料出发,分别介绍它们的优点和缺点。
1. 石墨(Graphite)优点:石墨是目前锂离子电池中最常用的负极材料之一,其优点如下:(1) 电化学稳定性好,具有较高的电导率和很好的循环寿命;(2) 能够实现相对较高的充放电容量;(3) 成本低廉,资源丰富,制备工艺成熟。
缺点:尽管石墨具有较好的性能,但也存在一些缺点:(1) 石墨的比容量相对较低,难以满足对高能量密度的要求;(2) 石墨材料存在一定的体积变化,会导致电池在循环过程中容量衰减;(3) 石墨材料在低温下的循环性能较差。
2. 硅(Silicon)优点:硅是一种具有高容量和高导电性的材料,逐渐成为锂离子电池负极材料的研究热点,其优点如下:(1) 硅具有较高的理论比容量,可以实现更高的能量密度;(2) 硅具有较好的导电性能,可以提高电池的功率密度;(3) 硅材料丰富,成本相对较低。
缺点:尽管硅具有较好的性能,但也存在一些缺点:(1) 硅材料在充放电过程中会发生体积膨胀,导致电极结构破坏和容量衰减;(2) 硅材料对于电解液中的锂离子扩散速率较慢,会影响电池的充放电速率;(3) 硅材料的制备工艺相对复杂,需要进一步提高工艺成熟度。
3. 磷酸铁锂(LiFePO4)优点:磷酸铁锂是一种具有优良特性的锂离子电池负极材料,其优点如下:(1) 磷酸铁锂具有较高的电化学稳定性和循环寿命,能够实现长循环寿命和高安全性;(2) 磷酸铁锂具有较高的理论比容量和较好的电导率;(3) 磷酸铁锂材料无毒无害,环保性能好。
缺点:尽管磷酸铁锂具有较好的性能,但也存在一些缺点:(1) 磷酸铁锂的比容量相对较低,难以满足高能量密度的需求;(2) 磷酸铁锂材料的制备工艺相对复杂,成本较高;(3) 磷酸铁锂材料的电导率较低,在高功率应用中表现较差。
锂离子电池负极主要材料

锂离子电池负极主要材料一、引言锂离子电池是一种广泛应用于移动电子设备、电动汽车等领域的高性能电池。
其由正极、负极、隔膜和电解液组成,其中负极是锂离子电池的重要组成部分。
本文将主要介绍锂离子电池负极的主要材料。
二、锂离子电池负极的作用锂离子电池负极是存储和释放锂离子的关键部分,其主要作用是在充放电过程中,通过嵌入和脱嵌过程来实现锂离子的存储和释放。
因此,选择合适的材料作为锂离子电池负极材料非常重要。
三、石墨石墨是目前应用最广泛的锂离子电池负极材料之一。
它具有良好的导电性能、化学稳定性和可靠性,并且价格相对较低。
石墨通常采用天然石墨或人造石墨制备,其中天然石墨主要包括颗粒状天然石墨和结晶状天然石墨。
人造石墨则是通过高温石墨化处理来制备的。
四、硅基材料硅基材料是一种新型的锂离子电池负极材料,其具有较高的理论比容量和能量密度。
但是,硅基材料在充放电过程中会发生体积扩大和收缩,导致电极破裂和损坏。
因此,目前主要采用的是硅纳米颗粒、硅纳米线等微纳米级别的材料来制备锂离子电池负极。
五、碳纤维碳纤维作为一种高强度、轻质的材料,近年来也被广泛应用于锂离子电池负极领域。
碳纤维具有良好的导电性能和机械性能,并且可以有效地嵌入和脱嵌锂离子。
但是,碳纤维成本相对较高,并且在充放电过程中也会出现体积变化问题。
六、金属氧化物金属氧化物作为一种新型的锂离子电池负极材料,在近年来也得到了广泛关注。
金属氧化物具有良好的电化学性能和稳定性,并且可以实现高比容量和长循环寿命。
目前常用的金属氧化物材料包括钛酸锂、钒氧化物、二氧化锰等。
七、其他材料除了上述几种主要的锂离子电池负极材料外,还有一些其他的材料也被应用于锂离子电池负极领域。
例如,石墨烯、碳纳米管等新型纳米材料,以及聚合物、聚合物复合材料等。
八、总结锂离子电池负极作为锂离子电池的重要组成部分,其主要材料包括石墨、硅基材料、碳纤维、金属氧化物等。
不同的材料具有不同的优缺点,在实际应用中需要根据具体情况进行选择。
锂电池石墨负极材料

锂电池石墨负极材料
1石墨负极材料
石墨负极材料是在锂电池制造过程中不可缺少的重要组成部分,主要应用在锂离子电池中。
石墨负极具有良好的电化学性能、闭合孔结构、良好的热稳定性以及抗氧化等优点,因此深受人们的喜爱,更是历史上最受欢迎的一种负极材料,在制造锂电池中起到了重要的作用。
2石墨负极优点
(1)石墨具有独特的电化学性能,是一种良好的负极材料,石墨在电解液中可以延迟锂离子的电化反应,从而确保电池的安全性和可靠性;
(2)石墨具有优秀的抗氧化性能,使用寿命长,在低温环境下可以保持高比容,因此在锂电池中得到了广泛的应用;
(3)石墨具有良好的表现压克力性能,可以有效的帮助电池吸收冲击,增加电池的耐久性,而且具有均匀一致的尺寸结构,使遮蔽效果更好,从而保证电池的可靠性。
3生产工艺
石墨负极材料的生产工艺主要分为三个步骤:加工、涂层和装配。
首先选择优质的天然石墨进行深加工,使其达到技术要求后涂上
优质能够连接锂离子电池的膜隔层,之后把做好的石墨材料装入特定的电池管中,进行电池封装后即成品。
4小结
石墨负极材料是锂离子电池的核心组成部分,石墨具有优良的电化学性能、良好的抗氧化性能和良好的耐冲击性,它影响着电池的使用性能,是制造高品质锂电池的重要因素。
因此,生产石墨负极材料时,必须严格执行标准,确保质量合格,才能取得良好的结果。
锂电池负极材料石墨检测方法及参考标准

锂电池负极材料石墨检测方法及参考标准石墨检验检测石墨作为一种重要的非金属矿产资源,具有导电性、导热性、润滑性、可塑性和耐高温性等五大特性,使得它在工业上有广泛的应用。
在本节中,我将重点介绍石墨在锂离子电池领域的应用,以及相关的检测标准和方法。
锂离子电池锂离子电池是一种以锂离子为主要活性物质的二次电池。
锂离子电池具有能量密度高、自放电率低、无记忆效应、环保等优点,是目前最先进的可充电电池之一。
锂离子电池的主要组成部分有正极、负极、隔膜和电解液。
正极材料通常是含锂的金属氧化物或磷酸盐,如LiCoO2、LiMn2O4、LiFePO4等;负极材料通常是碳材料或锂金属,如石墨、硬碳、软碳等;隔膜是一种具有微孔结构的聚合物薄膜,如聚丙烯(PP)、聚乙烯(PE)等;电解液是一种含有锂盐的有机溶剂,如乙酸乙酯(EC)、二甲亚碳酸甲酯(DMC)、二甲亚碳酸乙酯(DEC)等。
锂离子电池的工作原理是利用锂离子在正极和负极之间的嵌入和脱出来实现充放电过程。
当电池充电时,锂离子从正极脱出,经过隔膜和电解液到达负极,并嵌入负极材料中;当电池放电时,锂离子从负极脱出,经过隔膜和电解液到达正极,并嵌入正极材料中。
同时,伴随着锂离子的运动,还有相应的电子在外部回路中流动,形成电流。
石墨作为负极材料石墨是目前最常用的锂离子电池负极材料之一。
石墨具有层状结构,每一层由六边形排列的碳原子组成。
层与层之间通过范德华力相连,形成层间距。
这些层间距可以容纳大量的锂离子,并且不会造成体积的显著变化。
石墨作为负极材料的优点有:(1)容量高:理论上,每个碳原子可以嵌入一个锂原子,形成LiC6化合物,其比容量可达372 mAh/g。
(2)循环寿命长:由于石墨嵌入和脱出锂离子时体积变化小,因此不会造成结构的损坏,从而保证了循环寿命的长久。
(3)成本低:石墨是一种丰富的自然资源,其价格相对较低,有利于降低锂离子电池的成本。
石墨作为负极材料的缺点有:(1)电压低:石墨嵌入锂离子时的平台电压约为0.1 V,这意味着锂离子电池的输出电压会受到限制。
锂离子电池负极材料各自的优缺点

锂离子电池负极材料各自的优缺点锂离子电池是目前应用最广泛的电池之一,其负极材料是决定其性能的重要组成部分。
常见的锂离子电池负极材料有石墨、硅及其合金、锡及其合金等,它们各自具有一定的优缺点。
1. 石墨石墨是目前最常用的锂离子电池负极材料之一。
它具有以下优点:(1) 高电导率:石墨具有优良的电导性能,可以快速地传递电子,提高电池的放电性能。
(2) 高循环稳定性:石墨经过表面处理后,可以提高锂离子的扩散速率,延长电池的循环寿命。
(3) 低成本:石墨是一种常见的材料,资源丰富,生产成本相对较低。
然而,石墨也存在一些缺点:(1) 低比容量:石墨的比容量较低,即单位质量材料所能储存的锂离子数量有限,限制了电池的能量密度。
(2) 高副反应:石墨在充放电过程中容易与电解液发生副反应,导致电池容量损失。
2. 硅及其合金硅及其合金是一种有潜力的锂离子电池负极材料。
它具有以下优点:(1) 高比容量:硅及其合金具有较高的比容量,可以储存更多的锂离子,提高电池的能量密度。
(2) 丰富资源:硅是地壳中第二丰富的元素,资源相对充足。
然而,硅及其合金也存在一些缺点:(1) 体积膨胀:硅在充放电过程中会发生体积膨胀,导致电极材料的破裂和容量衰减。
(2) 低电导率:硅及其合金的电导率较低,会导致电池内阻增加,影响电池的放电性能和循环寿命。
3. 锡及其合金锡及其合金是另一种常用的锂离子电池负极材料。
它具有以下优点:(1) 高比容量:锡及其合金具有较高的比容量,可以存储更多的锂离子,提高电池的能量密度。
(2) 良好的循环稳定性:锡及其合金经过表面处理后,可以提高电池的循环寿命。
然而,锡及其合金也存在一些缺点:(1) 体积膨胀:锡在充放电过程中同样会发生体积膨胀,导致电极材料的破裂和容量衰减。
(2) 低电导率:锡及其合金的电导率较低,会导致电池内阻增加,影响电池的放电性能和循环寿命。
总的来说,石墨、硅及其合金、锡及其合金是目前常用的锂离子电池负极材料。
锂离子电池石墨负极材料的优点和缺点

锂离子电池石墨负极材料的优点和缺点锂离子电池石墨负极材料的优点和缺点一、石墨定义:1、石墨是元素碳的一种同素异形体,每个碳原子的周边连结着另外三个碳原子(排列方式呈蜂巢式的多个六边形)以共价键结合,构成共价分子。
2、由于每个碳原子均会放出一个电子,那些电子能够自由移动,因此石墨属于导电体。
石墨是其中一种最软的矿物,它的用途包括制造铅笔芯和润滑剂。
二、石墨的特殊性质:1、导电性:石墨的导电性比一般非金属矿高一百倍。
石墨能够导电是因为石墨中每个碳原子与其他碳原子只形成3个共价键,每个碳原子仍然保留1个自由电子来传输电荷。
2、导热性:导热性超过钢、铁、铅等金属材料。
导热系数随温度升高而降低,甚至在极高的温度下,石墨成绝热体。
3、耐高温性:石墨的熔点为3850±50℃,沸点为4250℃,即使经超高温电弧灼烧,重量的损失很小,热膨胀系数也很小。
石墨强度随温度提高而加强,在2000℃时,石墨强度提高一倍。
4、润滑性:石墨的润滑性能取决于石墨鳞片的大小,鳞片越大,摩擦系数越小,润滑性能越好。
由于其润滑性,在超细研磨里难度很高,使用叁星飞荣立式砂磨机可以研磨到纳米级别细度。
5、化学稳定性:石墨在常温下有良好的化学稳定性,能耐酸、耐碱和耐有机溶剂的腐蚀。
6、可塑性:石墨的韧性好,可碾成很薄的薄片。
7、抗热震性:石墨在常温下使用时能经受住温度的剧烈变化而不致破坏,温度突变时,石墨的体积变化不大,不会产生裂纹。
三、石墨的中国产地:1、我国以黑龙江鸡西市恒山区密山市柳毛乡为最大的产地。
以及黑龙江省的七台河市、鹤岗市和双鸭山市等。
2、山东省莱西市为我国石墨重要产地之一。
3、吉林省磐石市也是石墨产地之一。
4、内蒙古乌拉特中旗高勒图矿区发现全国最大晶质石墨单体矿。
5、陕西省煤田地质局一九四队在陕西洋县发现3条石墨矿带。
四、石墨世界著名产地:1、纽约Ticonderoga。
2、马达加斯加。
3、斯里兰卡(Ceylon)。
锂离子电池石墨负极材料的优点和缺点

锂离子电池石墨负极材料的优点和缺点一、石墨定义:1、石墨是元素碳的一种同素异形体,每个碳原子的周边连结着另外三个碳原子(排列方式呈蜂巢式的多个六边形)以共价键结合,构成共价分子。
2、由于每个碳原子均会放出一个电子,那些电子能够自由移动,因此石墨属于导电体。
石墨是其中一种最软的矿物,它的用途包括制造铅笔芯和润滑剂。
二、石墨的特殊性质:1、导电性:石墨的导电性比一般非金属矿高一百倍。
石墨能够导电是因为石墨中每个碳原子与其他碳原子只形成3个共价键,每个碳原子仍然保留1个自由电子来传输电荷。
2、导热性:导热性超过钢、铁、铅等金属材料。
导热系数随温度升高而降低,甚至在极高的温度下,石墨成绝热体。
3、耐高温性:石墨的熔点为3850±50℃,沸点为4250℃,即使经超高温电弧灼烧,重量的损失很小,热膨胀系数也很小。
石墨强度随温度提高而加强,在2000℃时,石墨强度提高一倍。
4、润滑性:石墨的润滑性能取决于石墨鳞片的大小,鳞片越大,摩擦系数越小,润滑性能越好。
由于其润滑性,在超细研磨里难度很高,使用叁星飞荣立式砂磨机可以研磨到纳米级别细度。
5、化学稳定性:石墨在常温下有良好的化学稳定性,能耐酸、耐碱和耐有机溶剂的腐蚀。
6、可塑性:石墨的韧性好,可碾成很薄的薄片。
7、抗热震性:石墨在常温下使用时能经受住温度的剧烈变化而不致破坏,温度突变时,石墨的体积变化不大,不会产生裂纹。
三、石墨的中国产地:1、我国以黑龙江鸡西市恒山区密山市柳毛乡为最大的产地。
以及黑龙江省的七台河市、鹤岗市和双鸭山市等。
2、山东省莱西市为我国石墨重要产地之一。
3、吉林省磐石市也是石墨产地之一。
4、内蒙古乌拉特中旗高勒图矿区发现全国最大晶质石墨单体矿。
5、陕西省煤田地质局一九四队在陕西洋县发现3条石墨矿带。
四、石墨世界着名产地:1、纽约Ticonderoga。
2、马达加斯加。
3、斯里兰卡(Ceylon)。
五、石墨分类:1、天然石墨:石墨的工艺特性主要决定于它的结晶形态。
负极材料中石墨一次颗粒的缺点

石墨作为锂离子电池负极材料有什么缺点
石墨具有六元环碳网层状结构,碳碳之间是SP2杂化的,层层之间是分子用途力连接。
石墨锂离子电池具有成本低、结晶程度高,提纯、粉碎、分级技术成熟,充放电电压平台低,理论比容量高等优点。
石墨作为锂离子电池负极材料的缺点
1、与电解液相溶性差,且对其选择性高
在首次充放电过程中锂和碳形成的插入化合物在电解液中很不稳定,其很容易与电解液发生反应,其生成物一小部分溶于电解液中,而另一部分则在负极与电解液表面形成SEI膜。
SEI膜能阻止电解液分子继续供插入石墨负极,能大大提高电池的使用寿命。
2、大电流放电性能较差
石墨负极表面形成的SEI膜不均匀且厚,将导致Li+穿过SEI膜时间过长,且石墨本身具有高取向性,Li+只能垂直于石墨端面的C轴插入,大电流放电性能不理想。
3、由于其本身晶型结构所定,晶格和晶包参数的限制,插入Li+的数量有限,从而决定其容量。
1/1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锂离子电池石墨负极材料的优点和缺点一、石墨定义:1、石墨是元素碳的一种同素异形体,每个碳原子的周边连结着另外三个碳原子(排列方式呈蜂巢式的多个六边形)以共价键结合,构成共价分子。
2、由于每个碳原子均会放出一个电子,那些电子能够自由移动,因此石墨属于导电体。
石墨是其中一种最软的矿物,它的用途包括制造铅笔芯和润滑剂。
二、石墨的特殊性质:1、导电性:石墨的导电性比一般非金属矿高一百倍。
石墨能够导电是因为石墨中每个碳原子与其他碳原子只形成3个共价键,每个碳原子仍然保留1个自由电子来传输电荷。
2、导热性:导热性超过钢、铁、铅等金属材料。
导热系数随温度升高而降低,甚至在极高的温度下,石墨成绝热体。
3、耐高温性:石墨的熔点为3850±50℃,沸点为4250℃,即使经超高温电弧灼烧,重量的损失很小,热膨胀系数也很小。
石墨强度随温度提高而加强,在2000℃时,石墨强度提高一倍。
4、润滑性:石墨的润滑性能取决于石墨鳞片的大小,鳞片越大,摩擦系数越小,润滑性能越好。
由于其润滑性,在超细研磨里难度很高,使用叁星飞荣立式砂磨机可以研磨到纳米级别细度。
5、化学稳定性:石墨在常温下有良好的化学稳定性,能耐酸、耐碱和耐有机溶剂的腐蚀。
6、可塑性:石墨的韧性好,可碾成很薄的薄片。
7、抗热震性:石墨在常温下使用时能经受住温度的剧烈变化而不致破坏,温度突变时,石墨的体积变化不大,不会产生裂纹。
三、石墨的中国产地:1、我国以黑龙江鸡西市恒山区密山市柳毛乡为最大的产地。
以及黑龙江省的七台河市、鹤岗市和双鸭山市等。
2、山东省莱西市为我国石墨重要产地之一。
3、吉林省磐石市也是石墨产地之一。
4、内蒙古乌拉特中旗高勒图矿区发现全国最大晶质石墨单体矿。
5、陕西省煤田地质局一九四队在陕西洋县发现3条石墨矿带。
四、石墨世界著名产地:1、纽约Ticonderoga。
2、马达加斯加。
3、斯里兰卡(Ceylon)。
五、石墨分类:1、天然石墨:石墨的工艺特性主要决定于它的结晶形态。
结晶形态不同的石墨矿物,具有不同的工业价值和用途。
2、人造石墨:广义上,一切通过有机炭化再经过石墨化高温处理得到的石墨材料均可称为人造石墨,如炭纤维、热解炭、泡沫石墨等。
而狭义上的人造石墨通常指以杂质含量较低的炭质原料为骨料、煤沥青等为粘结剂,经过配料、混捏、成型、炭化和石墨化等工序制得的块状固体材料,如石墨电极、等静压石墨等。
人造石墨就成型方式通常可分为:振动成型,挤压成型,模压成型,等静压成型。
3、块状石墨:块状石墨又叫致密结晶状石墨。
此类石墨结晶明显晶体肉眼可见。
颗粒直径大于0.1毫米,比表面积范围集中在0.1-1m2/g,晶体排列杂乱无章,呈致密块状构造。
这种:石墨的特点是品位很高,一般含碳量为60~65%,有时达80~98%,但其可塑性和滑腻性不如鳞片石墨好。
4、鳞片石墨:石墨晶体呈鳞片状;这是在高强度的压力下变质而成的,有大鳞片和细鳞片之分。
此类石墨矿石的特点是品位不高,一般在2~3%,或10~25%之间。
是自然界中可浮性最好的矿石之一,经过多磨多选可得高品位石墨精矿。
这类石墨的可浮性、润滑性、可塑性均比其他类型石墨优越;因此它的工业价值最大。
5、隐晶质石墨:隐晶质石墨又称微晶石墨或土状石墨,这种石墨的晶体直径一般小于1微米,比表面积范围集中在1-5m2/g,是微晶石墨的集合体,只有在电子显微镜下才能见到晶形。
此类石墨的特点是表面呈土状,缺乏光泽,润滑性比鳞片石墨稍差。
品位较高。
一般的60~85%。
少数高达90%以上。
一般应用于铸造行业比较多。
主要蕴藏在湖南郴州鲁塘。
随着石墨提纯技术的提高。
土状石墨应用越来越广泛。
六、石墨特种成型方式:石墨在工业上运用极广,几乎每个行业都会用到。
工业上多用的是人造石墨,也就是特种石墨。
按其成型的方式可分为以下几种。
1、等静压石墨。
也就是很多人叫的三高石墨,但是并不是三高就是等静压。
2、模压石墨。
3、挤压石墨,多为电极材料。
其中按石墨的颗粒度分,也可分为:1、细节构石墨。
2、中粗石墨(一般的颗粒度在0.8mm左右)。
3、电极石墨(2-4mm)。
七、石墨晶体结构:1、金属晶体:在石墨晶体中,同层的碳原子以sp2杂化形成共价键,每一个碳原子以三个共价键与另外三个原子相连。
六个碳原子在同一个平面上形成了正六连连形的环,伸展成片层结构,这里C-C键的键长皆为142pm,这正好属于原子晶体的键长范围,因此对于同一层来说,它是原子晶体。
在同一平面的碳原子还各剩下一个p轨道,它们相互重叠。
电子比较自由,相当于金属中的自由电子,所以石墨能导热和导电,这正是金属晶体特征。
因此也归类于金属晶体。
2、混合晶体:石墨晶体中层与层之间相隔340pm,距离较大,是以范德华力结合起来的,即层与层之间属于分子晶体。
但是,由于同一平面层上的碳原子间结合很强,极难破坏,所以石墨的熔点也很高,化学性质也稳定。
鉴于它的特殊的成键方式,不能单一的认为是原子晶体或者是分子晶体,按现代的表述方式,认为石墨是一种混合晶体。
八、石墨的应用:1、作耐火材料:石墨及其制品具有耐高温、高强度的性质,在冶金工业中主要用来制造石墨坩埚,在炼钢中常用石墨作钢锭之保护剂,冶金炉的内衬。
2、作导电材料:在电气工业上用作制造电极、电刷、碳棒、碳管、水银正流器的正极,石墨垫圈、电话零件,电视机显像管的涂层等。
3、作耐磨润滑材料:石墨在机械工业中常作为润滑剂。
润滑油往往不能在高速、高温、高压的条件下使用,而石墨耐磨材料可以在200~2000 ℃温度中在很高的滑动速度下,不用润滑油工作。
许多输送腐蚀介质的设备,广泛采用石墨材料制成活塞杯,密封圈和轴承,它们运转时勿需加入润滑油。
石墨乳也是许多金属加工(拔丝、拉管)时的良好的润滑剂。
4、石墨具有良好的化学稳定性。
经过特殊加工的石墨,具有耐腐蚀、导热性好,渗透率低等特点,就大量用于制作热交换器,反应槽、凝缩器、燃烧塔、吸收塔、冷却器、加热器、过滤器、泵设备。
广泛应用于石油化工、湿法冶金、酸碱生产、合成纤维、造纸等工业部门,可节省大量的金属材料。
5、不透性石墨的品种因所含树脂不同,耐蚀性也有差异。
如酚醛树脂浸渍者耐酸,但不耐碱;糠醇树脂浸渍者既耐酸,又耐碱。
不同品种的耐热性也有差异:碳和石墨在还原性气氛中可耐2000~3000℃,在氧化气氛中分别在350℃和400℃开始氧化;不透性石墨品种随浸渍剂而异,一般由酚醛或糠醇浸渍者耐热在180℃以下。
6、作铸造、翻砂、压模及高温冶金材料:由于石墨的热膨胀系数小,而且能耐急冷急热的变化,可作为玻璃器的铸模,使用石墨后黑色金属得到铸件尺寸精确,表面光洁成品率高,不经加工或稍作加工就可使用,因而节省了大量金属。
生产硬质合金等粉末冶金工艺,通常用石墨材料制成压模和烧结用的瓷舟。
单晶硅的晶体生长坩埚,区域精炼容器,支架夹具,感应加热器等都是用高纯石墨加工而成的。
此外石墨还可作真空冶炼的石墨隔热板和底座,高温电阻炉炉管,棒、板、格棚等元件。
7、用于原子能工业和国防工业:石墨具有良好的中子减速剂用于原子反应堆中,铀一石墨反应堆是应用较多的一种原子反应堆。
作为动力用的原子能反应堆中的减速材料应当具有高熔点,稳定,耐腐蚀的性能,石墨完全可以满足上述要求。
作为原子反应堆用的石墨纯度要求很高,杂质含量不应超过几十个PPM 。
特别是其中硼含量应少于0.5PPM 。
在国防工业中还用石墨制造固体燃料火箭的喷嘴,导弹的鼻锥,宇宙航行设备的零件,隔热材料和防射线材料。
8、石墨还能防止锅炉结垢,有关单位试验表明,在水中加入一定量的石墨粉(每吨水大约用4~5 克)能防止锅炉表面结垢。
此外石墨涂在金属烟囱、屋顶、桥梁、管道上可以防腐防锈。
9、石墨可作铅笔芯、颜料、抛光剂。
石墨经过特殊加工以后,可以制作各种特殊材料用于有关工业部门。
10、电极:20世纪60年代,铜做为电极材料被广泛应用,使用率约占90%,石墨仅有10%左右;21世纪,越来越多的用户开始选择石墨作为电极材料,在欧洲,超过90%以上的电极材料是石墨。
石墨超细研磨均需使用叁星飞荣立式砂磨机,才能有效研磨到纳米级别,应用到电池里面去,发挥石墨的巨大作用。
九、石墨新用途:1、柔性石墨又称膨胀石墨。
1971年美国研究成功柔性石墨密封材料,解决了原子能阀门泄漏问题,随后德、日、法也开始研制生产。
这种产品除具有天然石墨所具有的特性外,还具有特殊的柔性和弹性。
是一种理想的密封材料。
广泛用于石油化工、原子能等工业领域。
国际市场需求量逐年增长。
2、轻工业应用:此外,石墨还是轻工业中玻璃和造纸的磨光剂和防锈剂,是制造铅笔、墨汁、黑漆、油墨和人造金刚石、钻石不可缺少的原料。
它是一种很好的节能环保材料,美国已用它做为汽车电池。
随着现代科学技术和工业的发展,石墨的应用领域还在不断拓宽,已成为高科技领域中新型复合材料的重要原料,在国民经济中具有重要的作用。
十、石墨应用在电池负极材料的优点:1、首先石墨来源丰富。
2、经过改性后振实密度高。
3、电化学性能稳定。
4、比容量可以做到跟理论容量比较接近。
十一、石墨应用在电池负极材料的缺点:1、克容量不足,不太能满足动力电池的需求2、如果纯度不够,副反应较多。
3、层状结构稳定性有待提高。
4、倍率性能不好。
5、充放电平台过低。