锂离子电池碳负极材料研究进展
锂离子电池硅碳复合负极材料的研究现状

后续热处理,制得 GSiWh 复合材料。 石墨具有很高的振实密
度、导电性和机械强度,小麦衍生的无定形碳改善了硅与石
墨之间的物理和电相互作用。 在 200 kV 加速电压下的透射
电子显微镜( TEM) 和高角环形暗场像( HAAD) 分析证实,与
相沉积法、溶胶-凝胶法、基质诱导凝固法、热解法、原位聚合
法和喷雾干燥法等。 这些技术制备的碳层可以缓冲硅的体
积膨胀,且无定型碳包覆层具有较大的比表面积,能在电极
与电解液之间提供更大的接触面积,加速 Li 的传输
+
Q. Xu 等
[11]
[10]
。
受西瓜形貌的启发,通过喷雾干燥和化学气
相沉积法( CVD) 工艺,合成 Si / C 复合材料。 首先,将硅纳米
颗粒( SiNPs) 与聚乙烯吡咯烷酮( PVP) 、葡萄糖和羧甲基纤
维素( CMC) 水溶液混合,超声波处理 2 h;再与片状石墨球磨
系人;
丰小华(1995-) ,男,山西人,郑州轻工业大学材料与化学工程学院硕士生,研究方向:化学电源材料;
张林森(1979-) ,男,河南人,郑州轻工业大学材料与化学工程学院教授,研究方向:化学电源材料;
陈 冰(2000-) ,女,河南人,郑州轻工业大学材料与化学工程学院本科生,研究方向:新能源材料与器件。
( School of Material and Chemical Engineering,Zhengzhou University of Light Industry,Zhengzhou,Henan 450002,China )
Abstract: Research progress in preparation method, structural characteristics and lithium storage performance was reviewed for
锡基作为锂离子电池负极材料的研究进展

锡基作为锂离子电池负极材料的研究进展在锂离子电池技术不断发展过程中,以碳为负极的电池具有良好的循环性,技术成熟依然是目前主流的负极材料,但却基本达到了碳的理论容量。
不能够进一步满足当代对大容量小体积电池的要求。
因此必须开发新的理论容量高的负极材料,在研究过程中出现了不少的代替碳的负极材料。
锡基就是其中一种。
在1997年,日本的富士公司首先发现了无定形锡基氧化物(TOC)具有很长的循环寿命和较大的可逆容量。
此后,在全世界掀起了研究锡基材料的浪潮,开发了多种含锡的材料类型,包括金属锡,锡基氧化物,锡基合金,硫化锡等。
锡基负极材料在锂离子的嵌入和脱出过程中可以形成Sn,其中的x小于Lix4.4。
也就是说一个锡原子可以与4.4个锂原子相结合形成合金。
从而计算出锂的理论容量大概在990mAh/g,远大于碳基材料(理论容量372mAh/g),这使得锡基作为锂离子电池负极材料具有广大的潜力。
但是锡基作为负极材料时锂离子的嵌入和脱出会使体积发生巨大改变。
因此需要对锡基材料作进一步的研究,下面会从不同方面的锡基进行综述,来进一步了解锡基材料的优劣性。
2.1金属锡材料及复合材料锡和锂能够形成Sn。
纯净的Sn作为负极材料时,锂离子的嵌入和脱出Li4.4过程其体积变化率高达100%—300%,而且电极易发生破裂与粉碎,导致电池的可逆容量下降。
在Yang S等人[13]的文章中证实了此点,他们制作了厚度为12µm 到15µm的纯锡作为电极的电池。
在随后的研究中发现纯锡电极在前15次循环中的容量为600mAh/g,但在下面的循环中迅速降到了100~200mAh/g。
X射线研究分析可以看出晶体的尺寸变小了,由此可知以纯锡作为负极材料会发生严重变形。
目前的解决方法主要有两种,一种是将锡可以纳米化并加入碳材料,这一种情况与碳—硅复合材料类似,在上面已经提到过。
另一种方法是电镀制备锡薄膜电极。
2.1.1纳米化方法纳米化的研究中有Wang等人[14]以石墨为分散剂,采用高能机械研磨法SiO/和金属Li的混合物发生反应,并还原成金属Sn,得到纳米簇会均匀的SnO分布含锂的弹性石墨基质。
浅谈锂离子电池石墨负极材料的改性研究进展

112AUTO TIMENEW ENERGY AUTOMOBILE | 新能源汽车现代化社会,各种人工智能技术、大数据平台或者是电力能源的全面发展,都在不断的提高各行业内部运行设备所需要的电能,而对于目前使用广泛的电力能源储存设备锂离子电池,怎样在保障自身效益扩大的同时,满足不同消费群体的需求,还需要作出全面改革,例如:如何扩充储锂容量、提高倍率性能及循环稳定性等,而对锂离子电池关键构件进行分析,起到核心作用的就是石墨负极材料。
对此,石墨负极材料的性能,对锂离子电池后期发展和使用效益有着决定性作用。
再加上石墨导电效率优良,还具备良好的锂离子嵌入、脱出性能,多种优势条件也最终使得石墨变成锂离子电池体系当中使用率为最高、商业化程度为最广泛的负极材料。
但是由于受石墨微观结构客观因素影响,造成石墨理论储锂容量只能达到372mA.h/g,从而出现了电解液兼容性较差、体积膨胀率过高等问题,最终严重影响到了电极能量的密度以及循环稳定性。
对此,意识到问题的严重性,若是要想让实现石墨负极材料性能综合性提升,目前已有诸多国内外重量级研究人员投入到对石墨负极材料改性研究工作当中,也做到了多角度、多层面的研究分析,同时也取得了一定的成果。
1 锂离子电池的电化学机理及石墨嵌锂机制作为一种正常锂离子浓差电池,锂离子电池可分为正极、负极、隔膜、电解液等。
设置石墨负极、LiCoO 2正极,然后综合以上因素,研究锂离子电池的工作机制,可以看出,在对其进行充电期间,清晰看到锂离子在正极LiCoO 2晶格中顺利脱出,而后锂离子循序渐进扩散到电解液中,并在最后穿过隔膜而进入到石墨负极层。
整个过程中,为充分保障电荷之间平衡度,会有同等数量的电子在正极中释放出来,并从外电流路流到石墨负极中,此时会构建出一个回路整体[1]。
而在放电过程中,负极石墨层间的锂离子又开始慢慢脱出,再经电解液,最后返回并嵌入到LiCoO 2晶格中,此时电子会经外电流路传输到正极,这样就可以实现以此充电、放电循环。
锂离子电池负极材料的研究进展

锂离子电池负极材料的研究进展摘要:当前全球范围内的石油和其他传统能源越来越稀缺,迫切需要有效开发和利用可再生能源,例如太阳能、风能和潮汐能。
但是,这些新能源供应不稳定且持续不断,因此需要先转换成电能再输出,这促进了可充电电池的研究。
传统的铅酸电池,镍镉电池和镍氢电池存在使用寿命短、能量密度低和环境污染等问题,极大地限制了它们的大规模应用。
当前,电池行业的首要任务是找到可替代传统铅酸电池和镍镉电池的可充电电池,迫切需要开发无毒、无污染的电极材料和电池隔膜以及无污染的电池。
与传统的二次化学电池相比,锂离子电池由于其吸引人的特性已经在电子产品中占主导地位,显示出广阔的发展前景。
关键词:锂离子电池;负极材料;研究进展引言国际能源结构正从传统化石能源的主导地位逐渐转变为低碳、清洁和安全的能源,以二次电池为代表的电化学储能技术已成为最有前途的储能技术之一。
锂离子电池因其比能量高、工作电压高、循环寿命长和体积小等特点得到了广泛关注。
锂离子电池主体由正极、隔膜、负极、封装壳体四部分组成,就提高电池的比能量而言,提高负极的性能相对于改进正极、隔膜、封装壳体更为容易。
负极又包括了电流集流体(通常是铜箔)、导电剂(通常是乙炔黑)、粘结剂(通常是聚偏氟乙烯)和具有与锂离子可逆反应的活性材料。
电极的性能几乎取决于活性材料的性能。
1嵌入型负极材料嵌入型负极材料嵌入机制可以描述为,材料结构中可以容纳一定的外来的锂离子,相变形成新的含锂的化合物,并且能在随后的充放电过程中脱出外来的锂离子,恢复到先前的原始结构。
嵌入型负极材料,包括已经商业化锂离子电池负极材料石墨、非石墨化的碳材料(如石墨烯、碳纳米管、碳纳米纤维)、TiO2以及钛酸锂等。
其中碳质材料的优点包括良好的工作电压平台,安全性好以及成本低等。
但是也存在一些问题,如高电压滞后、高不可逆容量的缺点。
钛酸盐负极材料具有优异的安全性、成本低、长循环寿命的优点,但能量密度低。
石墨作为层状碳材料,是首先被商业化和人们所熟知的LIB负极材料,也是最成功的嵌入型负极材料,锂离子嵌入后可生成层状LiC6,其放电平台在0.2V(vs.Li+/Li)以下,有优异的嵌/脱锂动力学性能,是比较完美的LIB负极材料。
锂离子电池碳负极材料研究进展

第 2期
有 色 金 属
No f Io s M e as nern ti
Vo . 3 .N . 16 O 2
M a 2 0 1 v 1
2 0 1 年 5 月 1
DOI 1 . 9 9 j i n 1 0 :0 3 6 / .s . 0 1—0 1 . 0 1 0 . 3 s 2 12 1. 2 0 5
下 优 点 : 容 量 高 ( 0 ~4 0 比 20 0 mAh g 电 极 电 位 低 / ),
1 中 间相 碳 微 球
虽 然 中间相 碳 微 球 的 制备 和应 用 开 始 于 2 0世
纪 6 7 0~ 0年 代 , 但直 到 2 O世纪 9 0年 代才 有 在锂 离
子 电池 中应 用 的 文 献 报 道 。 19 9 2年 Y mar 等 a uaJ
关 键 词 : 机 非 金 属 材 料 ; 离 子 电池 ; 述 ; 无 锂 综 负极 材 料 ; 然 石 墨 表 面 改性 天
中 图 分 类 号 : M 1 . 文 献 标 识码 : 文 章 编 号 : 0 — 2 1 2 1 )2 04 0 9 13 F A 1 1 0 1 (0 1 0 —Байду номын сангаас17— 5 0
锂 离 子 电池 碳 负 极 材 料 研 究 进 展
孙 学 亮 , 秀娟 , 秦 卜立敏 , 吴 伟
( 山大 学 环境 与化 学 工程 学 院 , 燕 河北 秦 皇 岛 0 6 0 ) 6 0 4
摘 要 : 综述锂离子电池碳负极材料的研究进展 , 主要包括 中间相碳 微球 、 天然石 墨、 无定形 碳负极材料 以及 天然石墨 表面
(<1 0 S i/ i , . V V L ) 循环 效 率 高 (>9 % ) 循 环 寿 L 5 ,
锂离子电池硅碳复合负极材料研究进展

锂离子电池硅碳复合负极材料研究进展曹志颖;孙红亮;杨亚洲;孙俊才【摘要】Si/C composites which have high capacity and low discharge potential have been investigated as possible substitute for the commercial graphite or carbon anode.Recent years,Si/C composites materials as anodes for lithium-ion batteries were focused by manyresearchers.Different methods and materials have significant impact on the properties of Si/C composites.The recent progress of Si/C composites materials was summarized according to the classification of carbon materials.Furthermore,this paper discussed the rasearch trend of Si/C composites as anodes for lithium-ion batteries.%硅碳负极材料具有最高的储锂容量和较低的电压平台,有望成为替代商业化石墨或碳负极的材料.关于硅碳复合材料作为锂离子电池负极材料的研究是近年来该领域的研究热点.不同的实验方法和原料都会对复合材料的性能产生重要的影响.按碳材料的分类综述了近几年关于硅碳复合材料的研究进展,并重点介绍了材料的制备方法及其优缺点.此外,还初步讨论了硅碳复合材料作为锂离子电池负极材料的研究趋势.【期刊名称】《电源技术》【年(卷),期】2018(042)005【总页数】3页(P722-724)【关键词】锂离子电池;负极材料;硅碳复合材料;缓冲基体【作者】曹志颖;孙红亮;杨亚洲;孙俊才【作者单位】大连海事大学交通运输装备与海洋工程学院,辽宁大连116026;大连海事大学交通运输装备与海洋工程学院,辽宁大连116026;大连海事大学交通运输装备与海洋工程学院,辽宁大连116026;大连海事大学交通运输装备与海洋工程学院,辽宁大连116026【正文语种】中文【中图分类】TM912.9随着环境问题的日益严重、化石能源的衰竭及各种便携电子产品和电动汽车的广泛应用和迅速发展,对化学能源的需求及性能要求也在不断提高。
锂离子电池用石墨负极材料改性研究进展

锂离子电池用石墨负极材料改性研究进展一、概述锂离子电池作为当代能源存储技术的代表,其性能优化和成本降低一直是科研和产业界关注的焦点。
负极材料作为锂离子电池的重要组成部分,其性能直接决定了电池的整体性能。
石墨材料以其稳定性高、导电性好、来源广等优点,成为目前较为理想的锂电池负极材料。
天然石墨负极在比容量及倍率性能上仍存在不足,难以满足高性能负极材料的需求。
对石墨负极材料进行改性研究,以提高其性能,具有重要的理论和实际意义。
研究者们针对石墨负极材料的改性进行了大量研究,探索了多种改性方法。
这些方法主要包括球形化处理、表面处理、掺杂改性等,旨在改善石墨负极材料的结构、形貌和电化学性能。
球形化处理可以优化石墨的形貌,使其更接近各向同性,从而提高比容量;表面处理则通过改变石墨表面的化学性质,提高首次充放电效率;掺杂改性则通过引入其他元素或化合物,提高石墨的导电性和稳定性。
单一的改性方法往往难以达到理想的改性效果,研究者们开始探索多种方法协同改性的可能性。
通过多种方法协同改性,可以综合提高石墨负极材料的性能,使其在比容量、倍率性能、循环稳定性等方面都有显著提升。
随着科技的不断发展,新型的改性方法和技术也不断涌现。
近年来兴起的纳米技术、复合材料技术等,为石墨负极材料的改性提供了新的思路和方法。
这些新技术和新方法的应用,有望为锂离子电池用石墨负极材料的改性研究带来新的突破。
锂离子电池用石墨负极材料的改性研究是一个持续且深入的领域。
通过对石墨负极材料进行改性,可以有效提高其性能,推动锂离子电池技术的发展和应用。
随着研究的深入和新技术的不断涌现,石墨负极材料的性能将得到进一步提升,为锂离子电池的发展和应用提供更加坚实的基础。
1. 锂离子电池的重要性及应用领域锂离子电池,作为当代最重要的能源储存设备之一,其重要性在科技发展和日常生活中日益凸显。
它凭借高能量密度、长寿命、无记忆效应以及快速充电能力等诸多优点,已经成为新能源汽车、消费电子产品、能源存储系统以及航天航空等众多领域不可或缺的核心部件。
锂离子电池石墨负极材料的改性研究进展

锂离子电池石墨负极材料的改性研究进展一、内容描述通过调整石墨晶体的结构,可以有效地提高其作为锂离子电池负极材料的性能。
通过施加高压等静压处理,可以减小石墨颗粒之间的嵌合程度,从而提高其电化学性能。
利用化学气相沉积法(CVD)制备的石墨负极材料具有更加规整的表面形貌,有利于锂离子的嵌入和脱出。
表面修饰是一种有效的改性和优化石墨负极材料的方法。
通过物理或化学手段,在石墨表面引入特定的官能团或纳米结构,可以提高其在锂离子电池中的稳定性。
利用有机溶剂或水溶性聚合物对石墨进行包覆处理,可以有效防止石墨表面的锂枝晶生长,从而提高电池的安全性。
石墨负极材料的颗粒形貌对其电化学性能也有重要影响。
通过控制石墨的成核、生长和集料过程,可以制备出具有一定形状、粒度和分布的石墨负极材料。
特定形貌的石墨负极材料具有更高的比表面积和更低的锂离子扩散电阻,有利于提高电池的能量密度和功率密度。
石墨负极材料的组成对其性能也有一定的影响。
通过添加其他元素或化合物,可以改善石墨负极材料的结构稳定性和电化学性能。
在石墨中添加硅、锡等元素,可以增加石墨的理论嵌锂容量;添加硫、氮等元素,可以作为锂离子电池的电解质和吸附剂,提高电池的循环稳定性。
《锂离子电池石墨负极材料的改性研究进展》将围绕石墨负极材料的结构改良、表面修饰、形貌调控和组成优化等方面进行深入探讨,以期推动锂离子电池技术的不断发展和应用领域的拓展。
1. 锂离子电池的发展历程金属锂插层电池时代 (1970s1980s):在该阶段,研究人员开始关注锂插层化合物,例如LiMn2O4等,作为新一代蓄电池的可行性。
这些早期的锂离子电池使用金属锂作为阳极,然而由于金属锂在充放电过程中会产生锂枝晶,导致电池循环性能较差,因此该方法并未实现大规模商业化应用。
锂离子动力电池的诞生 (1990s):为解决金属锂插层电池存在的体积膨胀和锂枝晶问题,研究者们开始探索石墨类材料作为锂离子电池的负极。
天然石墨因其出色的循环稳定性、高比容量和低成本成为首选的负极材料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锂离子电池碳负极材料的研究进展赵永胜(河北工业大学化工学院应用化学系,天津 300130)摘要综述了锂离子电池碳负极材料中石墨化碳、无定形碳和碳纳米材料近几年的研究成果及发展方向,探讨了该类材料目前存在的问题及解决办法,对该类材料的发展趋势进行了展望。
关键词锂离子电池负极材料碳材料Research progress of carbon anode materials forlithium ion batteriesZhao Yongsheng(Department of Applied Chemistry,School of Chemical Engineering and Technology,Hebei University of Technology,Tianjin 300130)Abstract:The research achievements on three main aspects in the field of lithium ion battery carbon anode materials in recent years. Graphitized carbon,amorphous carbon,carbon nano-materials are summarized. The problems in these materials and the feasible methods to solve the problems are discussed. Finally, the developing trend of lithium ion battery carbon anode materials is prospected.Keywords:Lithium ion batteries;anode materials;carbon materials 自1991年日本索尼公司开发成功以碳材料为负极的锂离子电池(LixC6/LiX In PC-EC(1:1)/Li1-x CoO2)以来(LiX为锂盐),锂离子电池已迅速向产业化发展,并在移动电话、摄像机、笔记本电脑、便携式电器上大量应用[1]。
自锂离子电池的商品化以来,研究的负极材料有以下几种:石墨化碳材料、无定向碳材料、氮化物、硅基材料、锡基材料、新型合金[2]。
本文着重对锂离子电池碳负极材料方面的研究进展进行评述。
1.碳基负极材料的分类炭素材料的种类繁多,其结晶形式有金刚石、石墨、富勒烯、碳纳米管等,非晶体的过渡形式则不胜枚举。
对炭素材料有各种不同的分类方法。
按照锂离子电池负极材料的发展方向,本文将碳材料分为石墨化碳和无定型碳[3]。
2.石墨化碳的电极性能石墨类碳材料的嵌锂行为时目前研究的比较透彻并且已得到大家的公认。
石墨中的碳原子为sp2杂化并形成片层结构,层与层之间通过范德华力结合,层内原子间是共价键结合。
在电化学嵌入反应过程中,部分溶剂化的锂离子嵌入时会同时带入溶剂分子,造成溶剂共嵌入,会使石墨片层结构逐渐被剥离。
这在以PC为溶剂的电解液体系中特别明显。
2.1天然石墨天然石墨是石墨化程度高、结晶完整、嵌入位置多、容量大。
锂的可逆插入容量在合适的电解质中可达372mAh/g,即为理论水平[2]。
其电位曲线变化如图1所示,具有明显的放电平台,且平台电位很低,一般不超过0.3V,故电池的端电压高,有高的比容量[4]。
但由于墨片面容易发生剥离,因此循环性能不是很理想。
通过改性,可以有效防止。
对于普通的天然石墨而言,由于自然进化过程中石墨化过程不彻底,一般容量低于300mAh/g。
第一次循环的充放电效率低于80%,而且循环性能也不理想。
天然石墨作为负极材料在低温(例如-20℃)下的电化学行为也不理想,认为主要是锂离子在石墨中的扩散慢造成的。
因此在改性时,锂离子在石墨中的动力学扩散是关键[5]。
图1石墨的锂电位和容量的关系[4]2.2中间相微珠碳产业化的锂离子电池的负极材料均为碳材料,包括天然石墨、MCMB、焦炭等,在这些材料中,MCMB被认为是最具有发展潜力的一种碳材料,这不仅是因为它的比容量可以达300mAh/g。
更重要的原因在于,与其他碳材料相比,MCMB的直径为5~40μm,呈球形片层结构且表面光滑,这赋予其以下独特优点:球状结构有利于实现紧密堆积,从而可制备高密度电极;MCMB的表面光滑和低的比表面积可以减少在充电过程中电极表面副反应的发生,从而降低第一次充电过程中的库仑损失,球形片层结构使Li+可以在球的各个方面插入和放出,解决了石墨类材料由于各向异性过高引起的石墨片层溶胀、塌陷和不能快速大电流充放电的问题[6]。
MCMB是焦油沥青在400~500℃加热成熔融状态时沉淀出的微球,再在700~1000℃热处理后可用作电池的负极材料[7]。
但MCMB在微观结构仍为乱层无序状,若再进一步提高热处理温度到2000℃以上,MCMB微晶尺寸变大,呈现出明显的层状结构,得到石墨化程度高的MCMB[8]。
图2各向异性炭的片层结构随温度变化模型和最终形成的规整石墨片层结构[9] 2.3石墨化碳材料的改性石墨化碳材料具有较高的比容量、较低而平稳的放电平台、充放电过程中体积变化小等优点,但是石墨化碳材料对电解液的组成非常敏感,不适合含有PC 的电解液,耐过充能力差,在充放电过程中石墨结果易于遭到破坏等。
所以对各种碳材料进行各种掺杂改性,以提高其电化学性能成了研究的热点。
碳材料的改性主要包括表面处理;引入金属或非金属元素进行掺杂;机械研磨和其他方法等。
表面处理目的在于改善材料表面结构,提高电化学性能。
主要方法有:表面卤化、表面氧化、表面包覆(碳包覆、金属包覆、聚合物包覆等)。
在表面包覆方向,研究者采用沥青、羧甲基纤维素等热解炭包覆天然石墨[10,11],包覆后天然石墨的充电容量提升,不可逆容量降低至7%左右,振实密度增大。
研究认为热解炭包覆石墨形成一种核壳结构,及微晶石墨内核,热解炭外壳[12]。
其他改性方面, 人们采用Ni、Ag、Cu、Fe、Co等金属包覆掺杂处理天然石墨,这些材料均能不同程度的提高电极的嵌脱锂性能,对电极可逆容量、循环性能等提高有所贡献[13]。
张永刚[14]首次采用氯化钴浸渍MCMB,然后700℃和1000℃低温处理样品,有效改善了电池的循环性能。
汤东,侯全会等[15]采用TiC 掺杂MCMB改善了MCMB的石墨化程度以及微观结构。
3.无定形碳的电极性能无定形碳材料,它们也是由石墨微晶构成的,碳原子之间以sp2杂化方式结合,只是它们的结晶度低,同时石墨片层的组织结构不像石墨那样规整有序,所以宏观上不呈现晶体的性质。
无定形碳材料按其石墨化难易程度,可分为易石墨化炭和难石墨化炭两种。
易石墨化炭又称为软炭,是指在2500℃以上的高温下能石墨化的无定形炭;难石墨化炭也称为硬炭,它们在2500℃以上的高温也难石墨化。
这种区别主要是由于组成它们的石墨片层的排列方式不同[6](图3)。
图3 软炭和硬炭的结构模型总体上而言,无定形碳材料的可逆容量较高,甚至可高达900mAh/g以上。
例如:Wang Q等[16]由晶体生长热水法制备的含微孔的硬碳球(HCS1)具有极佳的球形形貌、可控的单分散粒子粒径和光滑的表面。
其可逆容量高达430mAh/g,首次库仑效率为73%;Hu J等[17]利用微乳液做媒介的晶体生长水热法制备的含微孔的硬碳球(HCS2)嵌锂容量高达566mAh/g,首次库仑效率为83.2%;而Fey G T K等[18]用稻壳热裂解也制得了硬碳负极,其可逆容量为1055mAh/g,是现在已报道的锂离子电池硬碳负极中容量最高的。
但是多数无定形碳材料的循环性能不理想,可逆储锂容量一般随循环的进行衰减的比较快。
另外,电压存在滞后现象。
锂插入时,主要是在0.3V以下进行;而在拖出时,则有相当大的一部分在0.8V以上。
且低温无定形碳材料第1次的充放电效率比较低,组装成电池后,实际容量不如高温石墨化碳材料。
因此,提高无定形碳材料的充放电效率。
特别是第一次充放电效率的大小是改进低温无定形碳材料性能的重要方向。
向碳材料中掺杂非金属B、Si、P、N、S等均可使碳材料嵌锂特性发生明显改变[19]。
尹鸽平[20,21]通过向酚醛树脂热解炭中掺杂B、P 可使材料可逆容量获得明显的提高。
宁林坚,王玲治等[22]采用分散聚合的方法制备的锡基颗粒在碳基体中均匀分散的锡/碳复合材料。
CVD法包覆硬碳是另一种有效的无定形碳改性方法。
龚金保,汪继强[23]采用CVD的处理典型竹炭样品,可逆容量达到554mAh/g,首次循环效率为85.9%,经10次循环后基本没有容量衰减,有望获得实际应用。
4.碳纳米材料的电极性能碳纳米材料主要是指碳纳米管、具有纳米空结构的无定形碳材料和天然石墨以及碳材料的纳米掺杂。
4.1碳纳米管(CNTs)碳纳米管的种类多种多样,根据壁(石墨片层)的多少可分为单壁碳纳米管和多壁纳米管;根据石墨化程度的不同可分为无定形碳纳米管和石墨化碳纳米管。
碳纳米管用作锂离子电池的负极材料具有嵌入深度小、过程短、嵌入位置多(管内和层间的缝隙、空穴),储锂量大(可达CLi2水平)等,同时碳纳米管导电性好,这些都有利于碳纳米管的充放电性能。
但是,不可逆容量过高,电压滞后和放电平台不明显等缺点制约了碳纳米管在锂电中的应用。
例如:李昌明等 [24]使用CNTs作锂离子电池负极,首次放电容量达560mAh/g,但首次不可逆容量损失达430mAh/g。
对碳纳米管进行改性处理,可明显改善了碳纳米管的电化学性能。
王振旭等[25]采用氧化改性处理使非晶碳纳米管的首次放电容量533mAh/g,可逆容量在400mAh/g左右趋于稳定。
采用合适的纳米金属离子对碳纳米管进行表面包覆,如纳米Sn,即可提高电极比能量,又能显著降低碳纳米管的不可逆容量[26]。
4.2碳材料的纳米掺杂碳材料的纳米掺杂是指在碳材料结构中掺杂其他原子,这些原子以纳米尺寸存在于碳结构中。
其中最典型的是硅原子在碳材料中的纳米掺杂。
由于硅与碳的化学性质相近,所以能很好的与周围的碳原子紧密结合。
硅原子在碳材料中呈纳米分散,Li+不仅可以嵌入到碳材料本身所具有的结构中,还可以嵌入到呈纳米分散的硅原子的空隙中,为锂离子提供大量的纳米通道,增加了锂离子的嵌入位置。
Chen Libao等[27]用喷雾干燥技术制备Si/C复合碳负极材料,其可逆容量达635mAh/g,且循环性能比较稳定。
碳材料的掺杂原子除硅外,还有B、P、Al、Ga、Ni等[28],用作锂离子电池负极材料的碳有多种,如石墨、MCMB、碳纤维、热解炭等,这些碳材料都可以通过掺入杂原子改善性能。
5.结束语综上所述,近些年来,锂离子二次电池的碳负极材料的研究和开发所取得得进展是有目共睹的。