第三章 边坡稳定性分析

合集下载

第3章边坡稳定性分析

第3章边坡稳定性分析

§3.1 边坡稳定性分析概述
学风严谨 崇尚实践
边坡工程
§3.1 边坡稳定性分析概述
学风严谨 崇尚实践
当结构面的倾向与坡面倾向相反时,边坡为稳定结构。
当结构面的倾向与坡面倾向基本一致但其倾角大于坡角时,边坡为基 本稳定结构。
当结构面的倾向与坡面倾向之间夹角小于30°且倾角小于坡角时,边 坡为不稳定结构。
注:使用本表时应考虑地区性水文、气象等条件,结合具体情况予以修正。本表 不适用于岩层层面或主要节理面有顺坡向滑动可能的边坡。
边坡工程
§3.1 边坡稳定性分析概述
(3) 图解法
图解法可以分为两类:
① 用一定的曲线和图形来表征边坡有 关参数之间的定量关系,由此求出边 坡稳定性系数,或已知稳定系数及其
它参数(f 、c、r、结构面倾角、坡
力学分析。通过反复计算和分析比较,对可能的滑动面给出
稳定性系数。
目前,刚体极限平衡方法已经从二维发展到三维。
边坡工程
§3.1 边坡稳定性分析概述
学风严谨 崇尚实践
刚体极限平衡分析方法很多,在处理上,各种条分法在以下 几个方面引入简化条件:
(a) 对滑裂面的形状作出假定,如假定滑裂面形状为折线、 圆弧、对数螺旋线等;(b) 放松静力平衡要求,求解过程中仅满 足部分力和力矩的平衡要求;(c) 对多余未知数的数值和分布形 状做假定。
§3.1 边坡稳定性分析概述
学风严谨 崇尚实践
对于新设计的大型边坡,根据设计对边坡的要求及 边坡的荷载情况,分别预选2~3个坡角并按坡高段进行 稳定性验算,作出包括开挖、支护费用在内的技术经济 比较,然后从中选出最优的坡角、坡形。
目前,针对不同类型的边坡,已经提出一种或多种 分析方法。在具体应用中,根据具体边坡工程地质条件, 选取一种或几种方法进行综合分析。

边坡稳定性分析报告

边坡稳定性分析报告

1、边坡稳定性分析:
K s =(γv cosθtgφ+ Ac)/γv sinθ式中γ为岩土体的重度; c为结构面凝聚力; φ为结构面内摩擦角; A为结构面面积; v为岩土体积; θ为结构面倾角。

由于本工程边坡为折线边坡,故对边坡分为两段边坡(1:1.5边坡为边坡一,1:2边坡为边坡二)进行分析,详见图1-1;
边坡一:K s =(γv cosθtgφ+ Ac)/γv sinθ
=(1.21*19*0.83*0.364+1.21*15)/(19*1.21*0.555) =1.97>1
边坡二:K s =(γv cosθtgφ+ Ac)/γv sinθ
=(1.21*19*0.894*0.364+23.2*15)/(19*23.2*0.447) =2.49>1
两个边坡稳定系数都大于1,但未考虑开挖过程中机械扰动、降雨及边坡透水对边坡稳定性的影响因此对理论计算得到的安全系数应进
行修正, 如表1。

表1稳定性安全系数修正表
2、主动土压力计算
Ea=φc*r*h²Ka/2
=357.22KN
Φc=1.2,由于挖方高度大于8m,Φc=1.2。

r=19KN/m³,h=8m,Ka=tg²(45-φ/2)
3、备注
本验算未考虑上部行车荷载,尽管验算边坡稳定性符合要求但在施工过程中应该在边坡埋设位移观测桩,每天按一定频率进行观测。

位移观测埋设如下:距离开挖断面外6-10m埋设,每个断面埋设3根。

在施工过程中如发现位移量超出规定范围应立即停止施工对边坡进行防护作业,边坡防护可采用钢花管深层注浆处理。

边坡稳定性分析

边坡稳定性分析

目录摘要 (IV)Abstract (V)第一章概况 (1)1.1贵阳龙洞堡见龙路住宅小区工程概况 (1)1.2 边坡概况 (1)1.2.1 边坡地段地物环境 (1)1.2.2 边坡形态及岩土构成 (1)1.2.3 边坡安全等级及勘察等级 (2)第二章水文地质条件及工程地质条件 (3)2.1工程地质条件 (3)2.1.1 地形地貌 (3)2.1.2 地质构造 (3)2.1.3 地震 (3)2.1.4 地层岩性 (3)2.1.5 不良地质现象 (5)2.2 水文地质条件 (6)2.2.1 气象条件 (6)2.2.2 水文地质条件 (6)2.2.3 降水及空气情况 (6)第三章稳定性分析 (7)3.1分析依据 (7)3.2定性分析与评价 (7)3.3稳定性评价 (8)3.4有限单元法及ANSYS的实现 .................... 错误!未定义书签。

3.4.1 有限元法 .................................................................................................... 错误!未定义书签。

3.4.2 ANSYS边坡分析........................................................................................ 错误!未定义书签。

3.4.3 ANSYS分析情况........................................................................................ 错误!未定义书签。

3.5 极限平衡法 (10)3.5.1 计算方法介绍 (10)3.5.2 相应计算公式 (10)3.5.3 理正计算图示 (11)3.5.4 理正计算分析 (13)3.5.5 计算结果分析 (19)第四章边坡支护设计 (20)4.1 支护方式综述 (20)4.1.1 锚杆 (20)4.1.2 格构锚固 (21)4.2工程地质条件及评价 (22)4.3 设计基本要求 (22)4.4设计依据 (22)4.5 计算方法及过程 (23)4.6 锚杆支护验算 (27)4.6.1 计算结果 (27)4.6.2 结果分析 (29)4.7支护结构 (29)4.7.1 支护概况 (29)4.7.2 支护方案图 (29)4.8 防水工程 (31)4.8.1 一般规定 (31)4.8.2 排水设计 (32)4.8.3 排水施工要求 (33)4.9其他说明 (34)第五章施工组织方案 (35)5.1施工准备 (35)5.2施工方案 (35)5.2.1 施工程序 (35)5.2.2 施工起点流向 (35)5.3施工方法及施工工艺 (36)5.3.1 坡面喷浆 (36)5.3.2 锚杆施工方法 (37)5.3.3 锚杆施工步骤 (37)5.4安全生产和文明施工措施 (38)5.4.1 安全生产保证措施 (38)5.4.2 施工现场的安全措施 (39)5.4.3 应急措施 (41)第六章结论及建议 (42)6.1结论 (42)6.2存在问题 (43)6.3建议 (43)参考文献 (45)致谢 (54)贵阳市龙洞堡见龙路东侧边坡支护设计摘要贵阳市龙洞堡见龙路东侧边坡开挖坡均在16m以上,为典型的反倾向层状结构岩质与土质混合高边坡,为了确保开挖后边坡的稳定,必须保持边坡岩体(土体)有足够的稳定性,通过对边坡进行稳定性分析及安全系数的计算,设计合理的支护措施并计算支护的合理性,以达到边坡支护设计的最终目的。

第三章 边坡稳定性分析

第三章 边坡稳定性分析

(2)36º 法 方法:坡顶E处作与坡顶水平线成36º 的直线EF
二、
浸水路堤稳定性分析
1、河滩路堤受力: 普通路堤外力、自重、浮力(受水浸 泡产生浮力)、渗透动水压力(路堤两侧 水位高低不同时,水从高的一侧渗透到低 的一侧产生动水压力) 最不利情况:水位降落时动水压力指 向河滩两侧边坡,尤其当水位缓慢上涨而 集聚下降时,对路堤最不利。
※1、圆弧法基本步骤:
①通过坡脚任意选定可能滑动面AB,半径 为R,纵向单位长度,滑动土体分条(5~8) ②计算每个土条重Gi(土重、荷载重)垂 直滑动面法向分力 ③计算每一段滑动面抵抗力NitgΦ(内摩擦 力)和粘聚力cLi(Li为I小段弧长)
④以圆心o为转动圆心,半径R为力臂。 计算滑动面上各点对o点的滑动力矩和抗 滑力矩。
当量土柱高度的计算公式为:
荷载分布宽度: ⑴可分布在行车道宽度范围内 ⑵考虑实际行车有可能偏移或车辆停放在 路肩上,也可认为H1厚当量土层分布于整 个路基宽度上。
第二节 路基稳定性分析与设计验算
一、边坡稳定性分析方法: ※力学分析法: 1、数解法—假定几个滑动面力学平衡原理计 算,找出极限滑动面。 2、图解或表解法—在计算机或图解的基础上, 制定图或表,用查图或查表来进行,简单不精确。 ㈠力学分析法: 直线法—适用于砂土和砂性土(两者合称砂 性土)破裂面近似为平面。 圆弧法—适用于粘性土,破裂近似为圆柱形
※路堤各层填料性质不同时,所采用验算数据可按加权平 均法求得。
(二)边坡稳定分析的边坡取值
边坡稳定分析时,对于折线形边坡或阶梯 形边坡,在验算通过坡脚破裂面的稳定性 时,一般可取坡度平均值或坡脚点与坡顶 点的连线坡度。
(三)汽车荷载当量换算
路基承受自重作用、车辆荷载(按车 辆最不利情况排列,将车辆的设计荷 载换算成相当于土层厚度h0 ) h0称为车辆荷载的当量高度或换算高 度。

土方工程中的边坡稳定性分析与加固处理方法

土方工程中的边坡稳定性分析与加固处理方法

土方工程中的边坡稳定性分析与加固处理方法引言:边坡稳定性在土方工程中扮演着至关重要的角色。

随着城市化进程的加快和土地开发的不断扩大,对土方工程的要求也越来越高。

因此,对边坡的稳定性分析和加固处理方法的研究显得尤为重要。

一、边坡稳定性分析的基本原理边坡的稳定性是指在承受水压、荷载和地震等自然力作用下,坡体不发生破坏或发生破坏但不影响工程安全的能力。

边坡稳定性分析的基本原理包括地质条件分析、边坡形态参数计算、荷载计算和边坡稳定性分析方法选择等。

地质条件分析是边坡稳定性分析的基础。

通过对岩土层的工程地质调查,获取边坡的地质信息,如土层厚度、土层类型、坡度等,从而确定边坡的物理性质。

边坡形态参数计算包括边坡高度、坡度和坡面形状等参数的计算。

这些参数的合理选择对于边坡稳定性分析起着重要的作用。

荷载计算是指对边坡上的荷载进行合理的计算。

荷载分为静荷载和动荷载两种类型,静荷载包括土重荷载、地震力和水压力等,动荷载包括风荷载和车辆荷载等。

边坡稳定性分析方法的选择根据边坡的具体情况而定。

常用的边坡稳定性分析方法有平衡法、有限元法、反分析法等。

二、边坡稳定性问题及其原因边坡稳定性问题主要表现为边坡滑塌、边坡侧移、边坡临界水位降低等现象。

这些问题的发生原因一般可以归结为外力因素、地质因素和施工因素三个方面。

外力因素包括降雨、地震、水压力等自然力对边坡的影响。

降雨过程中,土壤的饱和度增加,会导致边坡重力和孔隙水压力的增加,从而导致边坡滑塌的发生。

地震则会导致边坡土层的动力性质发生改变,引起边坡的破坏。

水压力也会通过渗流等方式对边坡产生不利影响。

地质因素主要包括土层的物理性质、岩土层结构的稳定性等。

土体的力学性质和岩土层的结构对边坡的稳定性起着关键作用。

如土壤的黏性和强度等决定了边坡的抗剪强度。

施工因素主要包括边坡施工过程中的不当操作、施工方法的选择不合理等。

如边坡施工中土方的开挖和填筑操作不当会导致边坡的不稳定。

三、边坡稳定性分析方法的选择边坡稳定性分析方法的选择应根据边坡的具体情况和工程要求来确定。

《边坡稳定性分析》PPT课件

《边坡稳定性分析》PPT课件

图中给出了陡坡路堤滑动的 几种可能:由于基底接触面较陡 或强度较弱,致使路堤整体沿基 底接触面产生滑动;由于基底修 筑在较厚的软弱土层上,致使路 堤连同其下的软弱土层沿某一滑 动面滑动;由于基底下岩层强度 不均匀,例如泥质页岩,致使路 堤沿某一最弱的层面滑动。
基 底 接 触 面
坡 积 层
可 能 的 滑 动 面
当在高水位时,如路堤两侧边坡上的水位不一致〔图〕,就会产生横穿路堤的渗
透,即使水位相差较小,也需予以考虑动水压力的作用。
因此,但凡用粘性土填筑的浸水路堤〔不包括渗透性极小的纯粘土〕,必须进 展渗透动水压力的计算。
三、边坡滑动面形状确定
路基边坡的稳定性,与岩土性 质、构造、边坡高度及坡度等因 素有关。滑动面的形状主要因土 质而异,有的近似直线平面,有 的呈曲面,有的那么可能是不规 那么的折线平面。为简化计算, 近似地将滑动破裂面与路基横断 面的交线假设为直线、圆曲线或 折线。
以前,由于公路等级低,线形差,路基不宽,开挖 不深,边坡稳定性对公路的影响不显著,人们对边坡 稳定性没有引起足够的重视。但是随着国民经济建立 的开展,公路交通事业日新月异,公路等级越来越高, 高填深挖已经不可防止,公路边坡失稳的事例也越来 越多。边坡失稳不仅影响行车平安,甚至掩埋公路, 中断交通,造成不可估量的经济损失。因此,研究公 路边坡的稳定性非常必要。
北京-珠2000余万元
重庆万州-梁平高速公路K42砂泥岩顺层滑坡
西安秦岭某试验基地花岗岩高边坡滑坡
台湾“北二高〞基隆段发生严重的路堑边坡塌方
陡坡路基失稳案例
因此,必须对可能出现失稳或已出 现失稳的路基进展稳定性分析,保证路 基设计既满足稳定性要求,又满足经济 性要求。
路基边坡滑坍是公路上常见的破坏现象之一。例如, 在岩质或土质山坡上开挖路堑,有可能因自然平衡条 件被破坏或者因边坡过陡,使坡体沿某一滑动面产生 滑坡。对高路堤可能因水流冲刷、边坡过陡产生坍塌。

边坡稳定性分析—

边坡稳定性分析—

第一章绪论1.1引言边坡是自然或人工形成的斜坡,是人类工程活动中最基本的地质环境之一,也是工程建设中最常见的工程形式。

随着我国基础设施建设的蓬勃发展,在建筑、交通水利、矿山等方面都涉及到很多边坡稳定问题。

边坡的失稳轻则影响工程质量与施工进度,重则造成人员伤亡与国民经济的重大损失。

因此,边坡的勘察监测、边坡的稳定性分析、边坡的治理,是降低降低灾害的有效途径,是地质和岩土工程界重点研究的问题。

随着城市化进程的加速和城市人口的膨胀,越来越多的建筑物需要被建造,城市的用地也越来越珍贵。

特别是对于长沙这样多丘陵的城市来说,建筑边坡成为了不可避免的工程。

1.2边坡破坏类型边坡的破坏类型从运动形式上主要分为崩塌型和滑坡型。

崩塌破坏是指块状岩体与岩坡分离,向前翻滚而下。

一般情况岩质边坡易形成崩塌破坏,且在崩塌过程中岩体无明显滑移面。

崩塌破坏一般发生在既高又陡的岩石边坡前缘地段,破坏时大块岩体由于重力或其他力学作用下与岩坡分离而倾倒向前。

崩塌经常发生在坡顶裂隙发育的地方。

主要原因有:风化等作用减弱了节理面的黏聚力,或者是雨水进入裂隙产生水压力,或者是气温变化、冻融松动岩石,或者是植物根系生长造成膨胀压力,以及地震、雷击等外力作用(图1-1)。

滑坡是指岩土体在重力作用下,沿坡内软弱面产生的整体滑动。

与崩塌相比滑坡通常以深层破坏形式出现,其滑动面往往深入坡体内部,甚至可以延伸到坡脚以下。

其滑动速度虽比崩塌缓慢,但是不同的滑坡滑动速度相差很大,这主要取决于滑动面本身的物理力学性质。

当滑动面通过塑性较强的岩土体时,其滑动速度一般比较缓慢;相反,当滑动面通过脆性岩石,且滑动面本身具有一定的抗剪强度,在构成滑面之前可承受较高的下滑力,那么一旦形成滑面即将下滑时,抗剪强度急剧下降,滑动往往是突发而迅速的。

滑坡根据滑动模式和滑动面的纵断面形态可以分为平面滑动、圆弧滑动、楔形滑动以及复合形。

当滑动面倾向与边坡面倾向基本一致,并且存在走向与边坡垂直或接近垂直的切割面,滑动面的倾角小于坡角且大于其摩擦角时有可能发生平面滑动。

边坡稳定性分析范文

边坡稳定性分析范文

边坡稳定性分析范文首先,确定边坡的几何形状、岩土物理力学参数和边坡下方地层情况非常重要。

边坡的几何形状和大小直接影响到边坡的稳定性,岩土物理力学参数是进行力学分析的基础,而边坡下方地层情况则对边坡的稳定性有重要影响。

其次,建立边坡的力学模型是进行边坡稳定性分析的关键步骤。

力学模型可以是二维平面模型,也可以是三维空间模型,其选择应根据实际情况和分析目的来确定。

一般来说,二维平面模型适用于较简单的边坡,而三维空间模型适用于较复杂的边坡。

然后,确定荷载条件和边界条件是进行稳定性分析的基础。

荷载条件包括自重、附加荷载(如雨水、地下水等)和地震作用等,边界条件包括边坡上部和下部的约束情况。

荷载条件和边界条件的合理确定对于分析结果的准确性和可靠性非常重要。

稳定性分析是边坡稳定性分析的核心内容,也是最关键的步骤之一、常用的稳定性分析方法包括平衡法、极限平衡法、有限元法等。

平衡法是最简单也是最基本的稳定性分析方法,它假设边坡在稳定状态下满足力学平衡条件,通过比较剪切抗力和剪切力矩之间的关系来评估边坡的稳定性。

极限平衡法是在平衡法的基础上引入潜在滑移面,通过比较潜在滑移面上的剪切抗力和剪切力矩之间的关系来评估边坡的稳定性。

有限元法是一种数值分析方法,通过离散化边坡为有限个单元,并在每个单元内求解力学平衡方程来分析边坡的稳定性。

最后,根据分析结果确定相应的加固措施是边坡稳定性分析的最终目的。

根据边坡的具体情况和不同的加固要求,可以采取不同的加固措施,如加宽边坡、设置挡土墙、增加护坡等。

加固措施的选择应综合考虑边坡的稳定性和经济性。

总之,边坡稳定性分析是对地表或岩石边坡进行稳定性评估和分析的一项重要工作。

通过准确地评估和分析边坡的稳定性,我们能够确定边坡的安全系数,并采取相应的加固措施,以确保边坡的安全运行和保护环境的稳定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
29
(8)每一分段的滑动弧曲线可近似取直线,将各分段图形简化为 梯形或三角形.计算其面积Ωi,其中包括荷载换算成土柱部分 的面积在内。 (9)以路堤纵向长度1m计算出各分段的重力Gi。 (10)将每一段的重力化为二个分力: a)在滑动曲线法线方向分力 b)在滑动曲线切线方向分力 并分别求出此两者之和,∑Ni 和∑Ti (11)算出滑动曲线圆弧长L (12)计算稳定性系数
8
§ 3.2 一、试算法
直线滑动面的边坡稳定性计算
K
T
θ
W
K min
N
W cos tan cL K W sin
R K T
ω
a
ao
纯净砂类土 c = 0,则
tan K tan
[例] 纯净砂类土边坡, 取 K=1.25,φ =40º ,用 1:1.5 边坡率 (α=33º ′)时 41 α< ω = arc(0.8· tan40º) = 33º 52′,可判断边坡稳定。
其中:N为车辆数,等于2;d为车身之间的净距,等于 0.4m.b近似地取车身宽度,等于3.5m ho取2.0m
28
(3)按4.5H法确定滑动圆心辅助线。在此取θ=250;由表4—1 得βl=250。 β2 =350。作圆心辅助线。
(4)绘出三条不同位置的滑动曲线:1.一条通过路基中线; 2.一条通过路基的右边缘(如图圆弧所示);3.一条通过距右 边缘1/4路基宽度处。 (5)滑动圆弧中心可通过试算确定.也可采用另一种方法, 用直线连接可能滑弧的两端点,并作此直线的中垂线相交于 滑动圆心辅助线。图中为A点。即是该滑动曲线的中心。 (6)将圆弧范围土体分成8—10段,本例采用8段.先出坡脚起 每5m一段,最后一段略少。 (7)算出滑动曲线每一分段中点与圆心竖线之间的偏角ai
第三章 路基边坡稳定性设计
§ 3.1 § 3.2 § 3.3 § 3.4 § 3.5 § 3.6 概述 直线滑动面边坡稳定性计算 曲线滑动面边坡稳定性计算 浸水路堤稳定性计算 软土地基的路基稳定性分析 路基边坡抗震稳定性分析
1
第三章
路基边坡稳定性设计
§3.1 概述
一. 边坡稳定性设计的对象:
高填深挖、陡坡路堤、浸水路堤、以及滑坡或软
土等不利条件下的特殊路基.
边坡失稳
2
二. 失稳岩土体的型态特征: 土质路基边坡
直线形(砂性土)
1:
坡脚圆
中点圆
坡外圆
圆弧形(粘性土)破裂面的位置情况
说明
路堤稳定性评价涉及土强度参数、边坡高度、荷载等参 数。参数获取可采用室内试验、现场试验等不同的方法。
3
m
岩质路基边坡: 边坡失稳岩体的滑动面主要是地质构造面
基本原理: K=1.0,

c I H
c K=f A B H
1 A f I B
22
例:已知某土坡 φ=220,c=9.8kpa,Υ=16.66KN/m3,m=1.5,H=10.0m 试计算K=1.5时的a值。
根据条分法图解:
c I 0.059 H
当φ=220时, a=450,K=1.5, a/=300 边坡取值为 1:2

(11)计算圆弧长;
(12)计算稳定系数。
27
例题计算
解:(1)用方格纸以1:50比例绘出路堤横断面。 (2)将挂车—80换算成土柱高(当量高度)。设其中一辆挂 车停歇在路肩上.另一辆以最小间距d=0.4m与它并排, 换 算土柱高为
式中:L——纵向分布长度(等于汽车后轴轮胎的总距),L=6.4m B——横向分布车辆轮胎最外缘问总距。
⑶边坡稳定的安全系数用破裂面上全部抗滑力矩与滑动力矩之 比来定义。即 My ≥ K 〔K〕(〔K〕= 1.25 ~ 1.5 )
MO
H
W I
ho
15

计算稳定系数
o
'
i
①切向力 Ti x Qi sin i
2 1
R
10 E
i
'
m 1:
7 6 8
1
2 :m 1
5
4
3
cli
xi Qi sin(arcsin ) R ② 滑动力矩
上的软弱面。
说明
岩石路堑边坡的稳定性除受其岩性、边坡高度及施工方 法等因素影响外,还在很大程度上取决于岩体结构、结构面
产状及风化程度。
4
三、相关参数计算
土的计算参数: 1. 路堑及天然边坡土: 原状容重、内摩擦角及粘聚力 2. 路堤边坡取土: 现场压实土的容重、内摩擦角及粘聚力 3. 多层土体: 采用加权平均值 边坡的取值: 对于折线形或阶梯形边坡,一般可取平均值。
M s R(Ti Ti)
fN i
'i
fN' i N' i T'i
'i
9 cl'i
Q' i
y
xi
Qi
Ni Ti
③ 抗滑力矩 M R R(N i f cl i ) ④ 该滑动面的稳定系数为:
M R f N i cL fQi cos i cL K MS Ti Ti Qi sin i
5
汽车荷载当量换算:
NQ h0 BL
N:横向分布的车辆数 Q:每一辆车的重力 Υ:路基填料的容重 L:汽车前后轴(或履带)的总距
B:横向分布车辆轮胎最外缘之间的总距
B Nb ( N 1)m d
6
四、稳定性分析计算方法:
边坡稳定性评价宜综合采用工程地质类比法、力学分析法 (数值分析法和图解分析法)进行。
(1) 工程地质类比法:
以长期生产经验与大量资料调查为依据,凭经验判 断边坡的稳定性。
7
(2)力学分析法: 假定边坡沿某一形状滑动面破坏,根据力 学平衡原理,计算岩土体在破坏面上达到极限平衡时的安 R 全系数。 K 1.20 ~ 1.25 T
基本假定:
①破裂面以上的不稳定土体沿破裂面作整体滑动,不考 虑其内部的应力分布不均和局部移动。 ②土的极限平衡状态只在破裂面上达到,破裂面的位置要 通过计算才能确定。 力学分析法主要包括:圆弧滑动面法、平面滑动面法、 传递系数法等。
计算时通常选取若干可能的滑动面, 分别为通过坡脚与路基顶 面中点、1/4路基宽处、外侧坡顶等两点弦线的圆弧。
16
ho
◆最危险破裂面滑动圆弧临界圆心的确定。
根据上述确定的若干个滑动圆弧, 计算出每一滑动体的稳定系 数K,绘出 K 值曲线,在图上可定出最危险破裂面的临界圆心。
K3
K min
K 值曲线
K2 K1 β
求允许的边坡坡度。
13
§3.3
圆弧条分法:
圆弧滑动面的边坡稳定性计算
φ
适用于粘性土组成的路基 边坡滑动面的稳定性验算
bi R Xi
τ
li
Ni
hi
i
α
i
H
14
W I
ho
φ
b R Xi
i
τ
li
Ni
hi
i
α
i
一.圆弧条分法原理: ⑴破裂面为圆柱面, 计算 时将破裂棱体划分为若 干竖向土条; ⑵计算中不考虑土条间的 相互作用力;
分析其边坡稳定性。
25
例题计算
26

解:
例题计算


(1)用方格纸以1:50比例绘出路堤横断面;
(2)换算土层厚度数h0=2.0m;


(3)确定圆心辅助线;
(5)确定圆弧中心;
(4)绘出滑动曲线;
(6)分块,8段,每5m一段;


(7)计算偏角;
(9)计算重力;
(8)计算面积;
(10)计算法线、切线方向分力;
35

验算方法
N1
T1 ⑴ 将土体按地面变 1 坡点垂直分块后自 α W 1 上而下分别计算各 E 1 土块的剩余下滑力.
α1 α2
E2
T2
W2 N2
E1
α1
τ
1
τ2
⑵自第二块开始, 均需计入上一条块剩余下滑力对本条块的作用 把其当作作用于本块的外力,方向平行于上一块土体滑动面。 ⑶Ei计算的结果若出现负值,计算Ei+1时,公式中Ei以零值代入。
β
1 2
辅助线
ho
H
E
1
H
临界滑弧
h1
1:m 3
2
F
4.5H
M
17
二、有关圆弧条分法的几个问题:
确定滑动面圆心辅助线 [ 4.5 H 法或 36°法 (适用于坡脚圆)]
⑴ 4.5 H 法
①由坡脚A向下作垂线 AC = H(注:H高度)
③连接坡脚与坡顶得
②过C点作水平线CD = 4.5H
O
α
2
边坡线AB,据其坡率m, 查表4-1得α1、α2, AB及坡顶水平线在A、 B点分别作角α1 、α2, 交点为0
23
五.圆弧滑动面的解析法
稳定性计算:
M(ABDF)=M(AGD)-M(AGB)+M(ADF)
24
例题计算

例题:
已知:路基高度13m,顶宽10m,其横截面初步拟
定如图所示。路基填土为粉质中液限亚粘土,土
的粘聚力c=10kpa,内摩擦角为240,容重为γ=
17KN/m3,荷载为挂车-80(一辆车重力800KN)。试
30
用同样的方法,还可求得另两条滑动曲线的稳定系数: K1=1.47 K3=1.76 由于第1条曲线(通过路基中线)酌稳定系数最小,而又是最靠 左边,因此,在左边缘与路基中线之间的个点再结一条滑动曲 线,并计算其稳定系数。 K4=1.49 出此可见,第一条曲线为极限的滑动面,其稳定系数满足 1.25-1.5范围要求,因此本例采用的边坡坡度足以满足边坡稳 定酌要求。
相关文档
最新文档