离子膜电解法
离子膜电解法生产烧碱

• 氢气处理:电解来的高温湿氢气先经阻火器排空,合格
后进入氢气前冷却器用循环水间接冷却至一定温度。 然后进入氢气压缩机内,加压后经汽水分离器后进入 氢气后冷却器被冷冻水间接冷却。 冷却后的氢气经水雾捕集器进入氢气分配台送往高纯 盐酸岗位、或送往各用户或经氢气放空阀放空。
离子膜电解生产烧碱
工艺流程图:
离子膜氯碱生产工艺
工艺流程: • 化盐工序:用皮带运输机将原盐通过皮带称重计量,将
原盐连续丌断地送入化盐桶内进行化盐。
• 一次盐水:由工业盐、淡盐水、滤液、再生废水、生产
上水、卤水形成的NaCl盐水中,含有离子膜所丌能允许 的杂质(有机物、菌藻类、SO42-、Ca2+、Mg2+、 NH4+、SS等),在盐水中分别加入精制剂BaCl2、 NaOH、NaClO、Na2CO3、FeCl3、Na2SO3等以除去 盐水中的杂质后,再经过滤器除去悬浮物以保证供给电解 岗位所需要的饱和精制盐水。
电解工序流程图
纯水
精 盐 水 高 压 槽
碱液高位槽
大 部 分 循 环阳 阴 源自 极电解槽成品32%
一次盐水贮槽
树脂塔
阳极 循环槽
碱液 循环槽
淡盐水
加
脱氯岗位
化盐桶
• 脱氢工序: 1.将电解岗位送来的淡盐水除去游离氯,处 理成合格的淡盐水送至一次盐水制备工序。 2. 电解阳极液循环泵和阳极泄料泵送来的淡 盐水,加入盐酸后,控制PH值为0.8~1.5,从脱 氯塔顶部送入进行脱氢,脱氯后的淡盐水再由淡 盐水泵送出。 3. 送出的淡盐水加电解液调节PH值后,根据 氧化还原电位计指示游离氯含量的情况,通过调 节加入Na2SO3溶液,使返回淡盐水游离氯为规 定值。
• 纯水工序:以地下水作为原水,经一系列处理后达到电
离子膜槽电解法

离子膜槽电解法介绍离子膜槽电解法(Electrodialysis with Ion Exchange Membranes,简称EDIX)是一种通过离子交换膜实现离子选择性传输的电解方法。
该方法可以用于分离溶液中的离子,并广泛应用于水处理、环境保护、化学工业等领域。
原理离子膜槽电解法利用离子交换膜的选择性透过性,将溶液中的离子分离开。
在离子膜槽中,溶液被分成两个盛有离子交换膜的相邻腔室。
当外加电压施加在电解槽上时,离子会通过离子交换膜迁移,形成阳离子腔和阴离子腔。
离子膜槽电解法的关键是离子交换膜。
离子交换膜具有特殊的结构和化学特性,能够选择性地通透不同离子。
阳离子交换膜透过阳离子,阻挡阴离子,而阴离子交换膜则相反。
通过调整电解液的成分和电压的施加,可以实现不同离子的选择性传输和分离。
应用离子膜槽电解法在水处理中的应用非常广泛。
它可以用于去除水中的离子污染物,如重金属离子、硝酸盐离子等。
此外,离子膜槽电解法还可以用于海水淡化,将海水中的盐分去除,以获得淡水资源。
离子膜槽电解法也被应用于化学工业中的溶液分离和提纯。
例如,它可以用于酸、碱、盐等化学品的分离和浓缩。
此外,离子膜槽电解法还可用于生产氢气和氧气,以及其他化学反应的电催化反应。
优势和局限性离子膜槽电解法相比传统的电析法和电渗析法具有以下优势: 1. 选择性高:离子交换膜具有很好的选择性,可以实现高效的离子分离。
2. 能耗低:相对于传统的电析法和电渗析法,离子膜槽电解法的能耗更低。
3. 操作简便:离子膜槽电解法的操作相对简单,只需施加适当的电压和调整电解液成分。
然而,离子膜槽电解法也存在一些局限性: 1. 成本较高:离子交换膜的制备成本较高,增加了整个设备的成本。
2. 膜污染:长时间使用后,离子交换膜容易受到污染,影响传输效率。
3. 对离子浓度要求高:离子膜槽电解法在分离高浓度离子时效果较好,但对于低浓度离子的分离效果较差。
发展趋势随着科学技术的发展,离子膜槽电解法在水处理和化学工业中的应用将进一步扩大和深化。
离子膜电解法

离子膜电解法又称膜电槽电解法,是利用阳离子交换膜将单元电解槽分隔为阳极室和阴极室,使电解产品分开的方法。
离子膜电解法是在离子交换树脂(见离子交换剂)的基础上发展起来的一项新技术。
利用离子交换膜对阴阳离子具有选择透过的特性,容许带一种电荷的离子通过而限制相反电荷的离子通过,以达到浓缩、脱盐、净化、提纯以及电化合成的目的。
这项技术已经用于氯碱的生产,海水和苦咸水的淡化,工业用水和超纯水的制备,酶、维生素与氨基酸等药品的精制,电镀废液的回收,放射性废水的处理等方面,其中应用最广泛、成效最显著的是氯碱工业。
在氯碱工业中,利用阳离子交换膜电解槽电解食盐或氯化钾水溶液来制造氯气、氢气和高纯度的烧碱(氢氧化钠)或氢氧化钾。
1975年日本旭化成工业公司制成全氟羧酸型离子交换膜,首先实现离子膜电解法制烧碱,同年日本实现工业化生产。
工艺流程经过两次精制的浓食盐水溶液连续进入阳极室(图1),钠离子在电场作用下透过阳离子交换膜向阴极室移动,进入阴极液的钠离子连同阴极上电解水而产生的氢氧离子生成氢氧化钠,同时在阴极上放出氢气。
食盐水溶液中的氯离子受到膜的限制,基本上不能进入阴极室而在阳极上被氧化成为氯气。
部分氯化钠电解后,剩余的淡盐水流出电解槽经脱除溶解氯,固体盐重饱和以及精制后,返回阳极室,构成与水银法类似的盐水环路。
离开阴极室的氢氧化钠溶液一部分作为产品,一部分加入纯水后返回阴极室。
碱液的循环有助于精确控制加入的水量,又能带走电解槽内部产生的热量。
离子膜电解槽根据供电方式的不同,分为复极式和单极式两种。
复极式电解槽的各单元电解槽串联相接,电解槽的总电压为各个单元电解槽的电压之和;电路中各台电解槽并联。
单极式电解槽的各单元电解槽并联相接,电解槽的总电流为各个单元电解槽的电流之和;电路中各台电解槽串联。
有的离子膜电解槽为板式压滤机型结构(图2):在长方形的金属框内有爆炸复合的钛-钢薄板隔开阳极室和阴极室,拉网状的带有活性涂层的金属阳极和阴极分别焊接在隔板两侧的肋片上,离子膜夹在阴阳两极之间构成一个单元电解槽。
离子膜电解工艺中电流效率的影响因素牛永恒

离子膜电解工艺中电流效率的影响因素牛永恒发布时间:2021-08-30T06:12:43.542Z 来源:《中国科技人才》2021年第13期作者:牛永恒[导读] 离子膜是离子膜法烧碱工艺流程中的关键组成部分。
离子膜应长期稳定地保持较高的电流效率及较低的槽电压,降低直流电耗,并延长使用寿命。
新疆圣雄氯碱有限公司电解车间摘要:离子膜是离子膜法烧碱工艺流程中的关键组成部分。
离子膜应长期稳定地保持较高的电流效率及较低的槽电压,降低直流电耗,并延长使用寿命。
离子膜电解槽的操作关键是使离子膜能够长期稳定的保持较高的电流效率,较低的槽电压和直流电耗,延长膜的使用寿命和机框机片的寿命,不因误操作而使膜受到严重损害,同时提高成品质量。
关键词:电流效率;影响因素;离子膜烧碱本文分析了膜电解过程中影响离子膜电流效率的影响因素,提出应选择适宜的电流密度,严格控制盐水中杂质离子的含量,阴、阳极有稳定的浓度及电解温度,根据电解槽出口产品质量调整电解液,保持高电流效率。
一、离子膜法的电解原理众所周知,离子交换膜是由两层膜压合而成,较薄的一层为羧酸层,该层有高密度的离子交换基团,对Na+有高度选择性而排斥OH,但其有较高的电阻,较厚的一层为低密度的磺酸基层,主要起机械加固作用。
前者主要控制电流效率,使其更具选择性,后者对整个膜的总电压控制起着主要作用。
在电解食盐水溶液所使用的阳离子交换膜的膜体中有活性基团,它是由带负电荷的固定离子如--S03一、--COO-,同一个带正电荷的对离子Na+形成静电键,当阳离子交换膜与电解质溶液相接触时,由于磺酸基团具有亲水性能,而使膜在溶液中溶胀,膜体结构变松,从而造成许多微细弯曲的通道,膜内对应离子的浓度将高于膜外溶液中电解质浓度,使其活性基团中的对应离子Na+既可以与膜外溶液中的同电荷的Na+进行交换,又进行Na+的传输,Na十透过膜的流动受其内部结构的限制,通过改变膜的含水量可以改变膜结构的开度,从而也改变了Na+的运动阻力。
离子膜法生产氯碱操作规程

离子膜法生产氯碱操作规程离子膜法是一种用于生产氯碱的成熟工艺,它以离子膜电解器为核心设备,在工业生产中具有广泛的应用。
下面是离子膜法生产氯碱的操作规程,详细介绍了操作步骤和注意事项。
一、设备准备1.确保离子膜电解器及相关设备处于良好状态,检查设备的电缆、管道等是否完好无损。
2.检查原料储槽的液位及浓度,确认储槽内氯化钠(NaCl)和水(H2O)的供应充足。
3.检查电力供应情况,确保电解器正常运行所需的电力供应稳定可靠。
二、操作步骤1.打开水浴加热器的循环泵,使加热器内的水循环流动,将水温升至设定温度。
2.打开氯化钠储槽进料泵,将氯化钠供应至电解器的氯化钠仓中,注意控制进料流量。
3.打开水储槽进料泵,将水供应至电解器的阳离子仓中,注意控制进料流量。
4.打开电解器冷却水进出水阀门,确保电解器冷却水循环正常。
5.启动电解器设备,开启电流电压,监测电流电压是否在正常范围内。
6.持续监测电解过程中的温度、电流和电压等参数,确保电解过程稳定运行。
7.在电解过程中定期检查和清理离子膜和阳离子、阴离子层,保持离子膜的通透性。
8.电解过程结束后,关闭电解器设备,断开电流电压供应。
9.关闭水浴加热器循环泵和水储槽进料泵,切断水浴加热器和水储槽的供水。
三、注意事项1.操作前应熟悉离子膜电解器及相关设备的结构和工作原理。
2.严格按照规程操作,不得擅自改变操作步骤或参数。
3.定期检查设备,确保设备处于良好状态,及时处理设备故障。
4.离子膜电解器操作结束后,应及时进行清洗和维护,保持设备的正常运行。
5.操作人员应穿戴好防护装备,注意操作过程中的安全防护措施,避免发生事故。
6.定期进行设备检修和维护,保障设备的长期稳定运行。
以上是离子膜法生产氯碱的操作规程,操作时需要严格按照规程进行操作,并注意设备的安全和维护,确保生产过程正常运行和生产质量的稳定。
操作人员应具备相关工艺知识和操作经验,在操作过程中严格遵守相关规定,确保生产安全和环境保护。
请阐述离子膜电解法制烧碱的工艺流程

请阐述离子膜电解法制烧碱的工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!离子膜电解法制烧碱的工艺流程详解离子膜电解法制烧碱是一种现代化的氯碱生产工艺,它利用离子交换膜的选择透过性,高效地分离并制得高纯度的氢氧化钠(烧碱),同时副产氢气和氯气。
离子膜电解法制取氢氧化锂工艺研发

离子膜电解法制取氢氧化锂工艺研发摘要:本文主要探究的是以从盐湖卤水中提取的高浓度氯化锂、氯化钠混合溶液为原料,应用离子膜电解法电解氯化锂、氯化钠混合溶液,制取高纯度氢氧化锂技术的研发及应用,通过深入分析离子膜电解工艺技术的优点、使用特征以及原料溶液的水质情况,结合实际的工程项目应用状况,探究离子膜电解法技术在氢氧化锂制取过程的使用效果,以此来更好地推广离子膜电解技术在锂原材料生产企业中的应用。
关键词:离子膜电解;盐湖卤水;氯化锂;氢氧化锂引言氢氧化锂、碳酸锂为锂离子电池用磷酸铁锂等正极材料的上游原料。
其中储能用锂离子电池、锂离子电池用磷酸铁锂等正极材料、能量型动力电池组(新能源汽车关键零部件)为鼓励类产业。
2015年以来,氢氧化锂消费结构逐步转向电池行业,主要包括部分磷酸铁锂、钛酸锂以及高镍三元材料。
2016年下半年以来,氢氧化锂相对于电池级碳酸锂出现显著的溢价,主因是动力电池需求逐步抽紧氢氧化锂供需面,且高镍三元电池需求正在蓬勃兴起,氢氧化锂消费结构已明显从润滑油转向动力电池。
全球锂供应量年均增长9%,消费年均增长10%;中国供应量消费量均增长15%。
2015年氢氧化锂供需基本平衡,2020年之前需求增速高于产量增速。
氢氧化锂优点突出,符合国家高能量密度的政府补贴方向。
氢氧化锂可提升高镍三元材料的能量密度及充放电性能,且有更好的振实密度,目前多用于NCM811、NCA等高镍三元材料。
另一方面,国家补贴政策更青睐于较高能量密度的新能源车,其中对于能量密度高于120Wh/kg的乘用车氢氧化锂需求由两大因素强烈推动,一个是终端电动整车的爆发尤其是M3即将量产,另外一个是电动车高镍化趋势带来的需求,特斯拉、比亚迪、北汽、宝马、大众、日产、通用、福特等纷纷重金投入电动车,这些产品都采用高镍三元材料。
当前由于碳酸锂成本比氢氧化锂低,不少厂家仍在使用碳酸锂做锂源材料,但是随着高镍型NCA、NCM622和NCM811的兴起,必然需要更换为熔点更低的氢氧化锂。
离子交换膜法电解食盐水

离子交换膜法电解食盐水离子交换膜法电解的原理、工艺条件 盐酸的制备知识点:一、电解1、 含义:指在 原电池或电解池中,两个电极上发生的半反应,因为在原电池和电解池中, 氧化反应和还原反应使分别在两个电极上发生的。
原电池的负极和电解池的阳极的电极反应都 是氧化反应,故也叫氧化极。
原电池的正极和电解池的阴极反应都是还原反应,故也叫还原极。
2、 离子膜法电解食盐水的原理1、在离子交换膜发电解槽中, 由一种具有选择性透过性能的阳离子交换膜将电解槽分成阳极室 和阴极室学习情境五 氯碱生产技术工作任务 离子交换膜法电解授课地点 多媒体教室教学方法 讲授法课时包含章节 第五章第三四节主要教具、设 备、工具多媒体学习重点 及难点 离子交换膜法电解的原理、工艺条件 盐酸的制备学生学习基础 已具有有机化学,化工单元操作,物理化学,化工热力学等的学习基础,具有一定的自学能力,接受知识的能力也较强任务描述及任务目标Nut ]]»11值耳丨横士 24'1 * 2e =C'l 朗楹:211却2v = ir减小2NuCI+2ll ?O2Na(»H+H 2 T 增+ Cl ;黑三纽:I ni 极睛制teSm I ―1R7O(SJ?NaCIjS® SNdOH)以Nafion膜为例,离子膜的选择性透过离子膜是多孔结构物质,由孔和骨架组成,孔内是水相,固定离子团之间有微孔水道想通,骨架是含氟聚合物2、离子膜性能降低的主要因素1) 、钙和镁正离子在电场作用下,易进入离子膜内,形成沉积物堵塞孔通道2) 、为稳定操作,膜内的负离子团的数目要求相对稳定,电解液温度不宜过高,碱液浓度不宜过浓,避免出现脱水现象,在膜内产生结晶,造成膜的永久性损坏3) 、溶液碱浓度过低而温度较高时,在膜的界面处也可能出现积水起泡”现象,甚至使两层膜分开,失去离子膜的性能3、电解材料1) .阳极材料前氯碱工业上使用最广泛的是金属阳极和石墨阳极两类2) 阴极材料阴极材料要具有耐氯化钠、氢氧化钠的腐蚀,导电性能良好,且氢在电极上的过电位要低等特点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离子膜电解法
又称膜电槽电解法,是利用阳离子交换膜将单元电解槽分隔为阳极室和阴极室,使电解产品分开的方法。
离子膜电解法是在离子交换树脂(见离子交换剂)的基础上发展起来的一项新技术。
利用离子交换膜对阴阳离子具有选择透过的特性,容许带一种电荷的离子通过而限制相反电荷的离子通过,以达到浓缩、脱盐、净化、提纯以及电化合成的目的。
这项技术已经用于氯碱的生产,海水和苦咸水的淡化,工业用水和超纯水的制备,酶、维生素与氨基酸等药品的精制,电镀废液的回收,放射性废水的处理等方面,其中应用最广泛、成效最显著的是氯碱工业。
在氯碱工业中,利用阳离子交换膜电解槽电解食盐或氯化钾水溶液来制造氯气、氢气和高纯度的烧碱(氢氧化钠)或氢氧化钾。
1975年日本旭化成工业公司制成全氟羧酸型离子交换膜,首先实现离子膜电解法制烧碱,同年日本实现工业化生产。
工艺流程经过两次精制的浓食盐水溶液连续进入阳极室(图1),钠离子在电场作用下透过阳离子交换膜向阴极室移动,进入阴极液的钠离子连同阴极上电解水而产生的氢氧离子生成氢氧化钠,同时在阴极上放出氢气。
食盐水溶液中的氯离子受到膜的限制,基本上不能进入阴极室而在阳极上被氧化成为氯气。
部分氯化钠电解后,剩余的淡盐水流出电解槽经脱除溶解氯,固体盐重饱和以及精制后,返回阳极室,构成与水银法类似的盐水环路。
离开阴极室的氢氧化钠溶液一部分作为产品,一部分加入纯水后返回阴极室。
碱液的循环有助于精确控制加入的水量,又能带走电解槽内部产生的热量。
离子膜电解槽根据供电方式的不同,分为复极式和单极式两种。
复极式电解槽的各单元电解槽串联相接,电解槽的总电压为各个单元电解槽的电压之和;电路中各台电解槽并联。
单极式电解槽的各单元电解槽并联相接,电解槽的总电流为各个单元电解槽的电流之和;电路中各台电解槽串联。
有的离子膜电解槽为板式压滤机型结构(图2):在长方形的金属框内有爆炸复合的钛-钢薄板隔开阳极室和阴极室,拉网状的带有活性涂层的金属阳极和阴极分别焊接在隔板两侧的肋片上,离子膜夹在阴阳两极之间构成一个单元电解槽。
大约100个左右的单元电解槽由液压装置组成一台电解器。
另外,还有类似板式换热器的结构,由冲压的轻型钛板阳极、离子膜和冲压的镍板阴极夹在一起,构成单元电解槽。
若干个单元电解槽夹在两块端板之间组成一台电解槽。
离子膜电解法
离子交换膜侧链上带有磺酸基和(或)羧酸基等阴离子官能团的全氟聚合物制成的薄膜。
对离子膜的要求:①阳离子选择透过性好;②电解质扩散率低;③较高的化学稳定性和热稳定性;④机械强度高,不易变形;⑤电阻小。
现代阳离子交换膜大多为聚氟烃织物增强的全氟磺酸-全氟羧酸复合膜。
面向阳极的一侧为电阻较小的磺酸基;面向阴极的一侧为含水量低的羧酸基,能抑制氢氧离子向阳极室移动而提高电流效率,有的还处理成为粗糙的表面,或附有微孔状无机物薄膜,以增加全氟羧酸
膜的亲水性,减少氢气泡在膜表面上的滞留。
这种膜适用于两极间距极小的所谓“零”极距或“膜”间隙的离子交换膜电解槽。
特点①总能耗最低(与隔膜电解法和水银电解法相比),在4000A/m电流密度下,每吨烧碱的直流电耗为7.56~7.92GJ(2100~2200kWh);②烧碱纯度高,50%的氢氧化钠碱液,含氯化钠50~60ppm;③无水银或石棉污染环境的问题;④操作、控制都比较容易;⑤适应负荷变化的能力较大;⑥要求用高质量的盐水;⑦离子膜的价格比较昂贵。
现状和展望80年代初,先进的离子膜可在4000A/m的电流密度下运转,电流效率为95%~96%;可以直接生产浓度为35%的氢氧化钠,离子膜的使用寿命约为2年。
由于离子膜法具有较多的优点,今后新建的氯碱生产装置一般将采用离子膜法。
现有的水银法或隔膜法氯碱厂也会有一部分在技术改造时转换为离子膜法。