2014中考压轴题突破

合集下载

2014全国各地中考数学压轴题集锦答案(一)

2014全国各地中考数学压轴题集锦答案(一)

2014全国各地中考数学压轴题集锦答案(一)D②若点P 的运动速度为每秒1个单位长度,同时线段OC 上另一点Q 速度为每秒2个单位长度,当Q 点到达O 点时P 、Q 两点停止运动.过Q 点作x 轴的垂线,与直线AC 交于G 点,QG 为边在QG 的左侧作正方形QGMN .当这两个正方形分别有一条边恰好落在同一条直线上时,求t 的值.(正方形在x 轴上的边除外)解:(1)∵抛物线y 1=ax2+3x +c 经过原点及点A(1,2)∴⎩⎨⎧c =2a +3+c =2 解得⎩⎨⎧a =-1c =0∴抛物线y 1的解析式为y 1=-x2+3x x AyO B C P F ED Q GN M xA yO B C PF ED Q GN M H令y 1=0,得-x2+3x =0,解得x 1=0,x 2=3∴B (3,0)(2)①由题意,可得C (6,0) 过A 作AH ⊥x 轴于H ,设OP =a 可得△ODP ∽△OAH ,∴DPOP=AHOH=2∴DP =2OP =2a∵正方形PDEF ,∴E (3a ,2a ) ∵E (3a ,2a )在抛物线y 1=-x2+3x 上∴2a =-9a2+9a ,解得a 1=0(舍去),a 2=79∴OP 的长为79②设直线AC 的解析式为y =kx +b∴⎩⎨⎧2=k +b 0=6k +b 解得k =2 5 ,b =12 5∴直线AC 的解析式为y =-2 5 x +12 5由题意,OP =t ,PF =2t ,QC =2t ,GQ =45t 当EF 与MN 重合时,则OF +CN =6 O P N Q C xyD AEF M GO P N Q CxyD AE F MG∴3t +2t +4 5 t =6,∴t =3029当EF 与GQ 重合时,则OF +QC =6 ∴3t +2t =6,∴t =65当DP 与MN 重合时,则OP +CN =6∴t +2t +4 5 t =6,∴t =3019当DP 与GQ 重合时,则OP +CQ =6 ∴t +2t =6,∴t =23.(北京模拟)如图,在平面直角坐标系中,抛物线y =ax2+bx +4经过A (-3,0)、B (4,0)两点,且与y 轴交于点C ,点D 在x 轴的负半轴上,且BD =BC .动点P 从点A 出发,沿线段AB 以每秒1个单位长度的速度向点B 移动,同时动点Q 从点C 出发,沿线段CA 以某一速度向点A 移动.(1)求该抛物线的解析式;(2)若经过t 秒的移动,线段PQ 被CD 垂直平分,求此时t 的值;(3)该抛物线的对称轴上是否存在一点M ,使OP N QCxyD A EF MGO P NQC xyDA EF MGMQ +MA 的值最小?若存在,求出点M 的坐标;若不存在,请说明理由.解:(1)∵抛物线y =ax2+bx +4经过A (-3,0)、B (4,0)两点∴⎩⎨⎧9a -3b +4=016a +4b +4=0 解得a =-1 3 ,b =1 3∴所求抛物线的解析式为y =-1 3x2+ 13x +4(2)连接DQ ,依题意知AP =t ∵抛物线y =-1 3x2+ 13x +4与y 轴交于点C∴C (0,4)又A (-3,0,B (4,0)xA y OCB D P Q可得AC=5,BC=42,AB=7∵BD=BC,∴AD=AB-BD=7-42∵CD垂直平分PQ,∴QD=DP,∠CDQ=∠CDP∵BD=BC,∴∠DCB=∠CDB∴∠CDQ=∠DCB,∴DQ∥BC∴△ADQ∽△ABC,∴ADAB=DQBC∴ADAB=DPBC,∴7-427=DP42解得DP=42-327,∴AP=AD+DP=177∴线段PQ被CD垂直平分时,t的值为17 7(3)设抛物线y=-13x2+13x+4的对称轴x=12与x轴交于点E由于点A、B关于对称轴x=12对称,连接BQ交对称轴于点M则MQ+MA=MQ+MB,即MQ+MA=BQ当BQ⊥AC时,BQ最小,此时∠EBM=∠ACO xAyOCB EQ Mx=∴tan∠EBM=tan∠ACO=3 4∴MEBE=34,即ME4-12=34,解得ME=218∴M(12,218)∴在抛物线的对称轴上存在一点M(12,218),使得MQ+MA的值最小4.(北京模拟)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.动点P从点A出发,沿AC→CB→BA边运动,点P在AC、CB、BA边上运动的速度分别为每秒3、4、5个单位.直线l从与AC重合的位置开始,以每秒43个单位的速度沿CB方向移动,移动过程中保持l∥AC,且分别与CB、AB边交于点E、F.点P与直线l 同时出发,设运动的时间为t秒,当点P第一次回到点A时,点P和直线l同时停止运动.(1)当t=_________秒时,点P与点E重合;当t =_________秒时,点P 与点F 重合; (2)当点P 在AC 边上运动时,将△PEF 绕点E 逆时针旋转,使得点P 的对应点P ′落在EF 上,点F 的对应点为F ′,当EF ′⊥AB 时,求t 的值;(3)作点P 关于直线EF 的对称点Q ,在运动过程中,若形成的四边形PEQF 为菱形,求t 的值;(4)在整个运动过程中,设△PEF 的面积为S ,直接写出S 关于t 的函数关系式及S 的最大值.解:(1)3;4.5提示:在Rt △ABC 中,∠C =90°,AC =6,BC =8∴AB =6 2+8 2=10,∴sin B =ACAB = 35,cos B =BC A P l FEBCA备用图BC Al F E (P)BC AB=45,tan B=ACBC=34当点P与点E重合时,点P在CB边上,CP=CE∵AC=6,点P在AC、CB边上运动的速度分别为每秒3、4个单位∴点P在AC边上运动的时间为2秒,CP=4(t -2)∵CE=43t,∴4(t-2)=43t,解得t=3当点P与点F重合时,点P在BA边上,BP=BF∵AC=6,BC=8,点P在AC、CB、BA边上运动的速度分别为每秒3、4、5个单位∴点P在AC、CB边上运动的时间共为4秒,BF=BP=5(t-4)∵CE=43t,∴BE=8-43t在Rt△BEF中,BEBF=cos B BCAlFE(P)∴8-4 3t5( t -4 )= 4 5,解得t =4.5 (2)由题意,∠PEF =∠MEN∵EF ∥AC ,∠C =90°,∴∠BEF =90°,∠CPE =∠PEF∵EN ⊥AB ,∴∠B =∠MEN∴∠CPE =∠B ,∴tan ∠CPE =tan B ∵tan ∠CPE =CECP,tan B =ACBC=3 4∴CE CP=3 4 ,∴CP = 4 3CE∵AP =3t (0<t<2),CE =43t ,∴CP =6-3t∴6-3t =4 3 ×4 3 t ,解得t =5443(3)连接PQ 交EF 于O∵P 、Q 关于直线EF 对称,∴EF 垂直平分PQ 若四边形PEQF 为菱形,则OE =OF =12EF①当点P 在AC 边上运动时易知四边形POEC 为矩形,∴OE =PC E BO C A P l FQE BMC A P lF N∴PC=12EF∵CE=43t,∴BE=8-43t,EF=BE·tan B=34(8-43t)=6-t∴6-3t=12(6-t),解得t=65②当点P在CB边上运动时,P、E、Q三点共线,不存在四边形PEQF③当点P在BA边上运动时,则点P在点B、F 之间∵BE=8-43t,∴BF=BEcos B=54(8-43t)=10-53t∵BP=5(t-4),∴PF=BF-BP=10-53t-5(t-4)=30-20 3t∵∠POF=∠BEF=90°,∴PO∥BE,∴∠OPF =∠B在Rt△POF中,OFPF=sin BEBCA PlFQO∴12(6-t)30- 20 3t= 3 5 ,解得t =30 7∴当t =6 5 或t = 307时,四边形PEQF 为菱形(4)S =⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧-2 3t2+4t (0≤t≤2)4 3t2-12t +24(2<t≤3)-43t2+12t -24(3<t≤4)8 3t2-28t +72(4<t≤4.5)-8 3t2+28t -72(4.5<t≤6)S 的最大值为1635.(北京模拟)在等腰梯形ABCD 中,AB ∥CD ,AB =10,CD =6,AD =BC =4.点P 从点B 出发,沿线段BA 向点A 匀速运动,速度为每秒2个单位,过点P 作直线BC 的垂线PE ,垂足为E .设点P 的运动时间为t (秒).(1)∠A =___________°;(2)将△PBE 沿直线PE 翻折,得到△PB ′E ,记△PB ′E 与梯形ABCD 重叠部分的面积为S ,求S 与t 之间的函数关系式,并求出S 的最大值; (3)在整个运动过程中,是否存在以点D 、P 、B ′为顶点的三角形为直角三角形或等腰三角形?若存在,求出t 的值;若不存在,请说明理由.解:(1)60°(2)∵∠A =∠B =60°,PB =PB ′ ∴△PB ′B 是等边三角形∴PB =PB ′=BB ′=2t ,BE =B ′E =t ,PE =3t 当0<t≤2时ACBD PE B AC BD 备用图AC BD PE BS=S△PB′E=12B′E·PE=12t·3t=32t2当2<t≤4时S=S△PB′E-S△FB′C=32t2-34(2t-4)2=-32t2+43t-4 3当4<t≤5时设PB′、PE分别交DC于点G、H,作GK⊥PH 于K∵△PB′B是等边三角形,∴∠B′PB=60°=∠A ∴PG∥AD,又DG∥AP∴四边形APGD是平行四边形∴PG=AD=4∵AB∥CD,∴∠GHP=∠BPH∵∠GPH=∠BPH=12∠B′PB=30°∴∠GHP=∠GPH=30°,∴PG=GH=4∴GK=12PG=2,PK=KH=PG·cos30°=2 3∴PH=2PK=4 3∴S=S△PGH =12PH·GK=12×43×2=4 3ACBDPEBFACBDPEBG HK综上得,S 与t 之间的函数关系式为: S =⎩⎪⎪⎨⎪⎪⎧3 2t2(0<t≤2)-3 2t2+43t -43(2<t≤4)43(4<t≤5)(3)①若∠DPB ′=90° ∵∠B ′PB =60°,∴∠DPA =30° 又∠A =60°,∴∠ADP =90° ∴AP =2AD ,∴10-2t =8,∴t =1 若∠PDB ′=90°作DM ⊥AB 于M ,DN ⊥B ′B 于N 则AM =2,DM =23,NC =3,DN =3 3 PM =|10-2-2t |=|8-2t | NB ′=|3+4-2t |=|7-2t |DP2=DM2+PM2=(23 )2+( 8-2t )2=( 8-2t)2+12 DB ′2=DN2+NB ′=(33 )2+( 7-2t )2=( 7-2t)2+27∵DP 2+DB ′ 2=B ′P2∴(8-2t )2+12+( 7-2t )2+27=( 2t)2解得t 1=15+73 2>5(舍去),t 2=15-732若∠DB ′P =90°,则DB ′2+B ′P2=DP2ACBDP E B A C BD PE BM N∴(7-2t )2+27+( 2t )2=( 8-2t)2+12解得t 1=-1(舍去),t 2=0(舍去)∴存在以点D 、P 、B ′为顶点的三角形为直角三角形,此时t =1或t =15-73 2②若DP =B ′P ,则(8-2t )2+12=( 2t)2解得t =198若B ′D =B ′P ,则(7-2t )2+27=(2t)2解得t =197若DP =DB ′,则(8-2t )2+12=( 7-2t)2+27解得t =0(舍去)∴存在以点D 、P 、B ′为顶点的三角形为等腰三角形,此时t =19 8 或t =1976.(北京模拟)已知二次函数y =-3 3mx2+3mx -2的图象与x 轴交于点A (23,0)、点B ,与y轴交于点C . (1)求点B 坐标;A CB DP E B AC BD PB E(2)点P从点C出发以每秒1个单位的速度沿线段CO向O点运动,到达点O后停止运动,过点P作PQ∥AC交OA于点Q,将四边形PQAC 沿PQ翻折,得到四边形PQA′C′,设点P的运动时间为t.①当t为何值时,点A′恰好落在二次函数y=-3 3mx2+3mx-2图象的对称轴上;②设四边形PQA′C′落在第一象限内的图形面积为S,求S关于t的函数关系式,并求出S的最大值.解:(1)将A(23,0)代入y=-33mx2+3mx-2得0=-33m×(23)2+3m×23-2,解得m=33∴y=-13x2+3x-2令y=0,得-13x2+3x-2=0,解得:x1=3,x2=2 3∴B (3,0)(2)①由y =-1 3x2+3x -2,令x =0,得y =-2∴C (0,-2)∵y =-1 3 x 2+3x -2=- 1 3 ( x 32 3)2+1 4∴二次函数图象的对称轴为直线x = 3 23过A ′作A ′H ⊥OA 于H在Rt △AOC 中,∵OC =2,OA =2 3 ∴∠OAC =30°,∠OCA =60°∴∠PQA =150°,∠A ′QH =60°,AQ =A ′Q =2QH∵点A ′在二次函数图象的对称轴上 ∴⎩⎨⎧OQ +QH =3 23OQ +2QH =23 解得QH =3 2∴AQ =3,CP =1∴t =1②分两种情况:ⅰ)当0<t≤1时,四边形PQA ′C ′落在第一象限内的图形为等腰三角形QA ′DAB CO A xP H Cy(Q )DQ=A′Q=3tA′H=AQ·sin60°=3t·32=32tS=S△A′DQ=12·3t·32t=334t2∵当0<t≤1时,S随t的增大而增大∴当t=1时,S有最大值33 4ⅱ)当1<t<2时,四边形PQA′C′落在第一象限内的图形为四边形EOQA′S四边形EOQA′=S梯形PQA′C′-S△OPQ-S△PC′E=[23-32(2-t)2]-32(2-t)2-34t2=-534t2+43t-2 3∵-534t2+43t-23=-534(8)263且1<85<2,∴当t=85时,S有最大值635∵635>334,∴S的最大值是635ABCOAxPQ HDCyABCOAxPQ HECy7.(北京模拟)已知梯形ABCD中,AD∥BC,∠A=120°,E是AB的中点,过E点作射线EF∥BC,交CD于点G,AB、AD的长恰好是方程x2-4x+a2+2a+5=0的两个相等实数根,动点P、Q分别从点A、E出发,点P以每秒1个单位长度的速度沿AB由A向B运动,点Q以每秒2个单位长度的速度沿EF由E向F运动,设点P、Q运动的时间为t(秒).(1)求线段AB、AD的长;(2)当t>1时,求△DPQ的面积S与时间t 之间的函数关系式;(3)是否存在△DPQ是直角三角形的情况,如果存在,求出时间t;如果不存在,请说明理由.解:(1)由题意,△=42-4(a2+2a+5)=-4(a+1)2=0∴a=-1原方程可化为x2-4+4=0,解得∴x1=x2=2∴AB=AD=2(2)作AH⊥BC于H,交EG于O,DK⊥EF DEA BQ CPF G于K,PM⊥DA交DA的延长线于M ∵AD∥BC,∠A=120°,AB=AD=2 ∴∠B=60°,AH= 3∵E是AB中点,且EF∥BC,∴AO=DK=3 2∵AP=t,∴PM=3 2t∵t>1,∴点P在点E下方延长FE交PM于S,设DP与EF交于点N则PS=32t-32∵AD∥BC,EF∥BC,∴EF∥AD∴ENAD=PEPA,∴EN2=t-1t∴EN=2(t-1)t,∴QN=2t-2(t-1)t∴S=12(2t-2(t-1)t)(32t-32+32)=32t2-32t+32即S=32t2-32t+32(t>1)ABDQCPE FN GS O KHM(3)由题意,AM=12t,∴DM=2+12t∴DP2=DM2+PM2=(2+12t)2+(32t)2=t2+2t+4又DQ2=DK2+KQ2=(32)2+(2t-12-2)2=4t2-10t+7PQ2=PS2+SQ2=(32t-32)2+(2t+t-12)2=7t2-4t+1①若∠PDQ=90°,则DP2+DQ2=PQ2∴t2+2t+4+4t2-10t+7=7t2-4t+1解得t=6-1(舍去负值)②若∠DPQ=90°,则PD2+PQ2=DQ2∴t2+2t+4+7t2-4t+1=4t2-10t+7解得t=62-1(舍去负值)③若∠DQP=90°,则DQ2+PQ2=PD2∴4t2-10t+7+7t2-4t+1=t2+2t+4解得t=4±6 5综上所述,存在△DPQ是直角三角形的情况,此时t =6-1,t =6 2-1,t =4±658.(天津模拟)如图,在平面直角坐标系中,直y=-x +42交x 轴于点A ,交y 轴于点B .在线段OA 上有一动点P ,以每秒2个单位长度的速度由点O 向点A 匀速运动,以OP 为边作正方形OPQM 交y 轴于点M ,连接QA 和QB ,并从QA 和QB 的中点C 和D 向AB 作垂线,垂足分别为点F 和点E .设P 点运动的时间为t 秒,四边形CDEF 的面积为S 1,正方形OPQM 与四边形CDEF 重叠部分的面积为S 2.(1)直接写出A 点和B 点坐标及t (2)当t =1时,求S 1的值; (3)试求S 2与t 的函数关系式 (4)直接写出在整个运动过程中,点C 和点D所走过的路程之和.yP A Q xO D C FB M E解:(1)A (42,0)、B (0,42),0≤t≤4(2)过Q 作QH ⊥AB 于H∵C 、D 分别是QA 和QB 的中点 ∴CD ∥AB ,CD =1 2AB =12×42×2=4∵CF ⊥AB ,DE ⊥AB ,∴CF ∥DE ∴四边形CDEF 是平行四边形 又∵CF ⊥AB ,∴四边形CDEF 是矩形 ∵CF ⊥AB ,QH ⊥AB ,∴CF ∥QH 又∵C 是QA 中点,∴CF =12QH连接OQ∵正方形OPQM ,∴∠1=∠2,OP =PQ =QM =MO∵OA =OB ,∴PA =MB∴Rt △QPA ≌Rt △QMB ,∴QA =QB ,∠PQA =∠MQB∵QH ⊥AB ,∴∠3=∠4∴∠1+∠MQB +∠3=180°,∴O 、Q 、H 三点共线∴QH =OH -OQyPA Qx O D C F BM EH 123 4∵t =1,点P 的运动速度为每秒2个单位长度∴OP =2,∴OQ =2 又∵OA =42,∴OH =4∴QH =OH -OQ =4-2=2,∴CF =1 ∴S 1=CD ·CF =4×1=4(3)当点Q 落在AB 上时,OQ ⊥AB ,△QOA 是等腰直角三角形 ∴t =22÷2=2 当0≤t≤2时,S 2=0当点E 落在QM 上,点F 落在PQ 上时,△CFK 和△DEG 都是等腰直角三角形 过C 作CT ⊥PQ 于T则CT =1 2 AP = 1 2 ( 42-2t )= 22( 4-t) ∴CF =2CT =4-t连接OQ ,分别交AB 、CD 于N 、R 则ON =2 2 OA =22×42=4∵OP =2t ,∴OQ =2t ,∴QN =2t -4 ∴CF =12QN =t -2∴4-t =t -2,∴t =3yP A Q xO D C FB M E G H I K N R yP A Qx O DC F B M E G K N R T当2<t≤3时,重叠部分为等腰梯形GHIK△QGK 和△QHI 都是等腰直角三角形 ∵QN =2t -4,RN =CF =t -2,∴QR =t -2 ∴GK =2QR =2t -4,HI =2QN =4t -8∴S 2=1 2 (GK +HI)·RN = 12( 2t -4+4t -8 )( t -2 )=3(t-2)2当3<t≤4时,重叠部分为六边形GHEFIK易知Rt △CIK ≌Rt △DHG ,∴GH =KI =2CT =2(4-t) ∴S 2=S 矩形CDEF-2S △CIK=CD ·CF -KI ·CT =4( t -2 )- 2( 4-t)·2 2( 4-t)=-t2+12t -24综上得S 2关于t 的函数关系式为: S 2=⎩⎪⎨⎪⎧0(0≤t≤2)3(t -2 )2(2<t≤3)-t2+12t -24(3<t≤4)(4)8提示:点C 和点D 走过的路程分别为以OP 为边的正方形的对角线的一半y P A Q xO D C FB M E G H I KN R T9.(上海模拟)如图,正方形ABCD中,AB=5,点E是BC延长线上一点,CE=BC,连接BD.动点M从B出发,以每秒2个单位长度的速度沿BD向D运动;动点N从E出发,以每秒2个单位长度的速度沿EB向B运动,两点同时出发,当其中一点到达终点后另一点也停止运动.设运动时间为t秒,过M作BD的垂线MP交BE于P.(1)当PN=2时,求运动时间t;(2)是否存在这样的t,使△MPN为等腰三角形?若存在,求出t的值;若不存在,请说明理由;(3)设△MPN与△BCD重叠部分的面积为S,直接写出S与t的函数关系式和函数的定义域.A BDNCPME解:(1)∵正方形ABCD,∴∠DBC=45°∵MP⊥DB,∴△BMP是等腰直角三角形∵BM=2t,∴BP=2BM=2t又PN=2,NE=2t当0<t<2.5时,BP+PN+NE=BE∴2t+2+2t=10,∴t=2当2.5<t<5时,BP-PN+NE=BE∴2t-2+2t=10,∴t=3(2)过M作MH⊥BC于H则△NQC∽△NMH,∴QCCN=MHHN∴QC5-2t=t10-t-2t,∴QC=5t-2t210-3t令QC=y,则y=5t-2t2 10-3t整理得2t2-(3y+5)t+10y=0∵t为实数,∴[-(3y+5)]2-4×2×10y≥0即9y2-50y+25≥0,解得y≥5(舍去)或y≤5 9∴线段QC长度的最大值为5 9(3)当0<t<2.5时ABDNCPMEQHABDPCN EMABDNCP E M∵∠MPN =∠DBC +∠BMP =45°+90°=135° ∴∠MPN 为钝角,∴MN>MP ,MN>PN若PM =PN ,则2t =10-4t解得t =57(4-2)当2.5<t<5时∵∠MNP >∠MBP =∠MPB ,∴MP>MN若MN =PN ,则∠PMN =∠MPN =45° ∴∠MNP =90°,即MN ⊥BP ∴BN =NP ,BP =2BN ∴2t =2(10-2t),解得t =10 3若PM =PN∵PN =BP -BN =BP -(BE -NE)=BP +NE -BE∴2t =2t +2t -10,解得t =57(4+2)∴当t =5 7 (4-2),t =10 3,t =57(4+2)时,△MPN 为等腰三角形(4)S =⎩⎪⎨⎪⎧8t 3-50t2+75t20-6t(0<t<2.5)5t - 252(2.5<t<5)A B DP C N M EADB PC N MEB PC N AD B N C P ME Q10.(重庆模拟)如图,已知△ABC 是等边三角形,点O 是AC 的中点,OB =12,动点P 在线段AB 上从点A 向点B 以每秒3个单位的速度运动,设运动时间为t 秒.以点P 为顶点,作等边△PMN ,点M ,N 在直线OB 上,取OB 的中点D ,以OD 为边在△AOB 内部作如图所示的矩形ODEF ,点E 在线段AB 上.(1)求当等边△PMN 的顶点M 运动到与点O 重合时t 的值;(2)求等边△PMN 的边长(用含t 的代数式表示);(3)设等边△PMN 和矩形ODEF 重叠部分的面积为S ,请直接写出S 与t 的函数关系式及自变量t 的取值范围;(4)点P 在运动过程中,是否存在点M ,使得△EFM 是等腰三角形?若存在,求出对应的t 的值;若不存在,请说明理由.AO D CBF E 备用图A O D CBPN F M E AO D CBF E 备用图解:(1)当点M 与点O 重合时 ∵△ABC 、△PMN 是等边三角形,O 为AC 中点∴∠AOP =30°,∠APO =90° ∵OB =12,∴AO =43=2AP =23t 解得t =2∴当t =2时,点M 与点O 重合 (2)由题设知∠ABM =30°,AB =83,AP =3t∴PB =83-3t ,PM =PB ·tan30°=8-t即等边△PMN 的边长为8-tA O D CBPF E (N) (M ) A O D CBP N F M E(3)S =⎩⎪⎪⎪⎨⎪⎪⎪⎧23t +63(0≤t≤1)-23t2+63t +43(1<t≤2)-3 2t2+103(2<t≤4)23t2-203t +503(4<t≤5)0(5<t≤8)提示:①当0≤t≤1时,PM 经过线段AF设PM 交AF 于点J ,PN 交EF 于点G ,则重叠部分为直角梯形FONG∵AP =3t ,∴AJ =23t ,JO =43-23t MO =4-2t ,ON =8-t -(4-2t)=4+t作GH ⊥ON 于H则GH =FO =23,HN =2,FG =OH =4+t -2=2+t∴S =S 梯形FONG=12(FG +ON)·FO=12(2+t +4+t)·23=23t +6 3 ②当1<t≤2时,PM 经过线段 设PM 交EF 于点I ,则重叠部分为五边形IJONG FJ =AJ -AF =23t -23,FI =2t -2 A O D CBP N F M E G JHA O D CBPNI M E G F J∴S =S梯形FONG-S △FIJ=23t +63-12(23t -23)(2t -2)=-23t2+63t +4 3③当2<t≤4时,PN 经过线段ED设PN 交ED 于点K ,则重叠部分为五边形IMDKG∵AP =3t ,∴PE =43-3t∴IG =GE =4-t ,EK =43-3t ∴KD =23-(43-3t)=3t -23,DN =t -2 ∴S =S 梯形IMNG-S △KDN=12(4-t +8-t)·23-12(3t -23)(t -2) =-3 2t2+10 3④当4<t≤5时,PM 经过线段ED设PM 交ED 于点R ,则重叠部分为△RMD ∵AP =3t ,∴EP =3t -4 3 ∴ER =2EP =23t -8 3∴RD =23-(23t -83)=103-23tMD =10-2tAO D CB P N F M E G I K A O DC BPN FM E R∴S =S △RMD=12(10-2t)(103-23t)=23t2-203t +50 3⑤当5<t≤8时,S =0(4)∵MN =BN =PN =8-t ,∴MB=16-2t ①若FM =EM ,则M 为OD 中点 ∴OM =3∵OM +MB =OB ,∴3+16-2t =12∴t =3.5②若FM =FE =6,则OM =6 2-( 23)2=2 6 ∵OM +MB =OB ,∴26+16-2t =12 ∴t =2+ 6③若EF =EM =6,点M 在OD 或DB 上则DM =6 2-( 23)2=2 6 ∴DB +DM =MB 或者DB -DM =MB∴6+26=16-2t 或6-26=16-2t ∴t =5-6或t =5+ 6综上所述,当t =3.5、2+6、5-6、5+6时,△MEF 是等腰三角形AO D CBP N F M E A O D C BP N F M E AO D CB P N FM E AO D CBP N F M E11.(浙江某校自主招生)如图,正方形OABC 的顶点O在坐标原点,且OA边和AB边所在直线的解析式分别为y=34x和y=-43x+253.(1)求正方形OABC的边长;(2)现有动点P、Q分别从C、A同时出发,点P沿线段CB向终点B运动,速度为每秒1个单位,点Q沿折线A→O→C向终点C运动,速度为每秒k个单位,设运动时间为2秒.当k为何值时,将△CPQ沿它的一边翻折,使得翻折前后的两个三角形组成的四边形为菱形?(3)若正方形以每秒53个单位的速度沿射线AO下滑,直至顶点B落在x轴上时停止下滑.设正方形在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围.解:(1)联立 ⎩⎪⎨⎪⎧y =3 4x y =-4 3x +25 3解得⎩⎨⎧x =4y =3∴A (4,3),∴OA =4 2+32=5∴正方形OABC 的边长为5(2)要使△CPQ 沿它的一边翻折,翻折前后的两个三角形组成的 四边形为菱形,根据轴对称的性质,只需△CPQ 为等腰三角形即可 当t =2秒时∵点P 的速度为每秒1个单位,∴CP =2CB xOAyCBxO AyQP N分两种情况:①当点Q在OA上时,∵PQ≥BA>PC,∴只存在一点Q,使QC=QP作QN⊥CP于N,则CN=12CP=OQ=1∴QA=5-1=4,∴k=42=2②当点Q在OC上时,同理只存在一点Q,使CP=CQ=2∴OQ+OA=10-2=8,∴k=82=4综上所述,当t=2秒时,以所得的等腰三角形CPQ沿底边翻折,翻折后得到菱形的k值为2或4(3)①当点A运动到点O时,t=3当0<t≤3时,设O′C′交x轴于点D则tan∠DOO′=34,即DO′OO′DO′53t=34,∴DO′=5 4t∴S=12DO′·OO′=12·54t·53t=2524t2CBxOAyQPxOyABDCO②当点C 运动到x 轴上时,t =(5×4 3)÷53=4当3<t≤4时,设A ′B ′交x 轴于点E∵A ′O =5 3 t -5,∴A ′E = 3 4 A ′O =5t -154∴S =1 2 (A ′E +O ′D )·A ′O ′= 1 2 ( 5t -15 4 +5 4t)·5=50t -758③当点B 运动到x 轴上时,t =(5+5×4 3)÷53=7当4<t≤7时,设B ′C ′交x 轴于点F∵A ′E =5t -15 4,∴B ′E =5-5t -15 4=35-5t4∴B ′F =4 3 B ′E =35-5t3∴S =52-1 2 ·35-5t 4·35-5t 3 =- 25 24t2175 12t -62524综上所述,S 关于滑行时间t 的函数关系式为:xO yAB FCOExOyA B DCO ES = ⎩⎪⎪⎨⎪⎪⎧25 24t2(0<t≤3)50t -758(3<t≤4)-25 24t2+175 12t -625 24(4<t≤7)12.(浙江某校自主招生)如图,正方形ABCD 的边长为8cm ,动点P 从点A 出发沿AB 边以1cm /秒的速度向点B 匀速移动(点P 不与点A 、B 重合),动点Q 从点B 出发沿折线BC -CD 以2cm /秒的速度匀速移动.点P 、Q 同时出发,当点P 停止时,点Q 也随之停止.连接AQ 交BD 于点E .设点P 运动时间为t (秒).(1)当点Q 在线段BC 上运动时,点P 出发多少时间后,∠BEP =∠BEQ ?(2)设△APE 的面积为S (cm 2),求S 关于t 的函数关系式,并写出t 的取值范围;(3)当4<t <8时,求△APE 的面积为S 的变化范围.A B D ECP Q解(1)AP=x cm,BQ=2x cm∵∠BEP=∠BEQ,BE=BE,∠PBE=∠QBE =45°∴△PBE≌△QBE,∴PB=BQ即8-x=2x,∴x=8 3∴点P出发83秒后,∠BEP=∠BEQ(2)①当0<x≤4时,点Q在BC上,作EN ⊥AB于N,EM⊥BC于M∵AD∥BC,∴AEEQ=ADBQ=82x=4x即AEEQ=4x,∴AEAQ=4x+4∴NEBQ=AEAQ,∴NE=AE·BQAQ=8xx+4∴S=12AP·NE=12x·8xx+4=4x2x+4ABDECPQNM即S =4x2x +4(0<x≤4)②当4<x<8时,点Q 在CD 上,作QF ⊥AB于F ,交BD 于H 则AEEQ =ADHQ = 8 16-2x =4 8-x即AEEQ= 48-x,∴AEAQ= 48-x +4=412-x作EN ⊥AB 于N ,则NEFQ=AEAQ∴NE =AE ·FQFQ =3212-x∴S =1 2AP ·NE = 1 2x ·32 12-x =16x 12-x即S =16x 12-x(4<x<8)(3)当4<x<8时,由S =16x 12-x,得x =12S16+S∵4<x<8,∴4<12S16+S<8∵S>0,∴16+S>0,∴4(16+S)<12S<8(16+S)A BD ECPQNFH解得8<S<3213.(浙江模拟)如图,菱形ABCD 的边长为6且∠DAB =60°,以点A 为原点、边AB 所在直线为x 轴且顶点D 在第一象限建立平面直角坐标系.动点P 从点D 出发沿折线D -C -B 向终点B 以每秒2个单位的速度运动,同时动点Q 从点A 出发沿x 轴负半轴以每秒1个单位的速度运动,当点P 到达终点时停止运动.设运动时间为t ,直线PQ 交边AD 于点E .(1)求出经过A 、D 、C 三点的抛物线解析式; (2)是否存在时刻t ,使得PQ ⊥BD ?若存在,求出t 值,若不存在,请说明理由;(3)设AE 长为y ,试求y 与t 之间的函数关系式;(4)若F 、G 为DC 边上两点,且点DF =FG =1,试在对角线DB 上找一点M 、抛物线对称轴上找一点N ,使得四边形FMNG 周长最小并求出周长最小值.xAyED CBF G Q P解:(1)由题意得:D (3,33)、C (9,33) 设经过A 、D 、C 三点的抛物线解析式为y =ax2+bx把D 、C 两点坐标代入上式,得:⎩⎨⎧9a +3b =3381a +9b =33解得:a =-3 9 ,b =43 3∴抛物线的解析式为:y =3 x243x(2)连接AC∵四边形ABCD 是菱形,∴AC ⊥BD 若PQ ⊥BD ,则PQ ∥AC 当点P 在DC 上时∵PC ∥AQ ,PQ ∥AC ,∴四边形PQAC 是平行四边形∴PC =AQ ,即6-2t =t, ∴t =2xA yED C BF G Q P当点P 在CB 上时,PQ 与AC 相交,此时不存在符合要求的t 值(3)①当点P 在DC 上,即0≤t≤3时∵DP ∥AQ ,∴△DEP ∽△AEQ ∴DEy=DPAQ=2tt=2,∴y13AD =2②当点P 在CB 上,即3<t≤6时∵AE ∥BP ,∴△QEA ∽△QPB ∴AEBP=QAQB,即y12-2t =t6+t∴y =12-2t6+t综上所述,y 与t 之间的函数关系式为: y =⎩⎨⎧2 (0≤t≤3) 12-2t6+t(3<t≤6)(4)作点F 关于直线BD 的对称点F ′,由菱形对称性知F ′在DA 上,且DF ′=DF =1作点G 关于抛物线对称轴的对称点G ′,易求DG ′=4连接F ′G ′交DB 于点M 、交对称轴于点N ,则点M 、N 即为所求的两点xAyF D C BF G M NG HxA yED CBFGQP过F′作F′H⊥DG′于H,可得HD=12,F′H=32,HG′=9 2∴F′G′=F′H2+HG′2=21∴四边形FMNG周长最小值为F′G′+FG=21+114.(浙江模拟)如图,直线y=-x+5和直线y=kx-4交于点C(3,m),两直线分别交y轴于点A和点B,一平行于y轴的直线l从点C出发水平向左平移,速度为每秒1个单位,运动时间为t,且分别交AC、BC于点P、Q,以PQ为一边向左侧作正方形PQDE.(1)求m和k的值;(2)当t为何值时,正方形的边DE刚好在y轴上?(3)当直线l从点C出发开始运动的同时,点M也同时在线段AB上由点A向点B以每秒4个单位的速度运动,问点M从进入正方形PQDE 到离开正方形持续的时间有多长?解:(1)把C (3,m )代入y =-x +5得m =2∴C (3,2),代入y =kx -4得k =2(2)由题意,点P 横坐标为3-t当x =3-t 时,y =-x +5=t +2,∴P (3-t ,t +2) ∵PQ ∥y 轴,∴点Q 横坐标为3-t 当x =3-t 时,y =2x -4=2-2t ,∴Q (3-t ,2-2t ) ∴PQ =t +2-(2-2t)=3t∵正方形PQDE ,∴PQ =PEA O C Byxl P Q D E A O C By xlPQ D E。

2014年中考数学压轴题解题技巧及训练(完整版)-推荐下载

2014年中考数学压轴题解题技巧及训练(完整版)-推荐下载
几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段) 运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量 的取值范围,最后根据所求的函数关系进行探索研究。一般有:在什么条件下图形是等腰 三角形、直角三角形,四边形是平行四边形、菱形、梯形等,或探索两个三角形满足什么 条件相似等,或探究线段之间的数量、位置关系等,或探索面积之间满足一定关系时求 x 的值等,或直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是列出包 含自变量和因变量之间的等量关系(即列出含有 x、y 的方程),变形写成 y=f(x)的形 式。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、 面积相等方法。求函数的自变量的取值范围主要是寻找图形的特殊位置(极端位置)和根 据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代 数的方法求出 x 的值。
A.第四象限
【题型】代数类函数计算。
B.第三象限


2
C.第二象限 D.第一象限
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

(精)2014年四川省各地区中考压轴汇编

(精)2014年四川省各地区中考压轴汇编

2014年中考数学压轴题精编—四川篇12014年中考数学压轴题精编—四川篇1.(四川省成都市)在平面直角坐标系xO y 中,抛物线y =ax2+bx +c 与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,点A 的坐标为(-3,0).若将经过A 、C 两点的直线y =kx +b 沿y 轴向下平移3个单位后恰好经过原点,且抛物线的对称轴是直线x =-2. (1)求直线AC 及抛物线的函数表达式;(2)如果P 是线段AC 上一点,设△ABP 、△BPC 的面积分别为S △ABP 、S △BPC,且S △ABP :S △BPC=2 :3,求点P 的坐标;(3)设⊙Q 的半径为l ,圆心Q 在抛物线上运动,则在运动过程中是否存在⊙Q 与坐标轴相切的情况?若存在,求出圆心Q 的坐标;若不存在,请说明理由.并探究:若设⊙Q 的半径为r ,圆心Q 在抛物线上运动,则当r 取何值时,⊙Q 与两坐轴同时相切?1 x yO 12014年中考数学压轴题精编—四川篇22.(四川省自贡市)如图,在直角坐标平面内,O 为坐标原点,A 点的坐标为(1,0),B 点在x 轴上且在点A 的右侧,AB =OA ,过点A 和B 作x 轴的垂线分别交二次函数y =x2的图象于点C 和D ,直线OC 交BD 于M ,直线CD 交y 轴于点H 。

记C 、D 的横坐标分别为x C ,x D ,点H 的纵坐标y H 。

(1)证明:①S △CMD :S 梯形ABMC =2 :3②x C ·x D =-y H(2)若将上述A 点坐标(1,0)改为A 点坐标(t ,0)(t >0),其他条件不变,结论S △CMD :S 梯形ABMC =2 :3是否仍成立?请说明理由。

(3)若A 的坐标(t ,0)(t >0),又将条件y =x2改为y =ax2(a >0),其他条件不变,那么x C 、x D 和y H 又有怎样的数量关系?写出关系式,并证明。

2014年中考数学压轴题精编--江西篇(试题及答案)

2014年中考数学压轴题精编--江西篇(试题及答案)

2014年中考数学压轴题精编—江西篇1.(江西省)图1所示的遮阳伞,伞柄垂直于水平地面,其示意图如图2.当伞收紧时,点P 与点A 重合;当伞慢慢撑开时,动点P 由A 向B 移动;当点P 到达点B 时,伞张得最开.已知伞在撑开的过程中,总有PM =PN =CM =CN =6.0分米,CE =CF =18.0分米,BC =2.0分米.设AP =x 分米. (1)求x 的取值范围; (2)若∠CPN =60°,求x 的值;(3)设阳光直射下,伞下的阴影(假定为圆面)面积为y ,求y 关于x 的关系式(结果保留π).1.解:(1)∵BC =2,AC =CN +PN =12,∴AB =12-2=10∴x 的取值范围是:0≤x≤10 ·········································································· 2分(2)∵CN =PN ,∠CPN =60°,∴△PCN 是等边三角形,∴CP =6∴AP =AC -PC =12-6=6即当∠CPN =60°,时,x =6分米 ··································································· 4分 (3)连接MN 、EF ,分别交AC 于O 、H∵PM =PN =CM =CN ,∴四边形PNCM 是菱形 ∴MN 与PC 互相垂直平分,AC 是∠ECF 的平分线 PO =21PC =21(12-x )=6-21x在Rt △MOP 中,PM =6 ∴MO 2=PM 2-PO 2=6 2-(6-21x )2=6x -41x2又CE =CF ,AC 是∠ECF 的平分线,∴EH =HF ,∵∠ECH =∠MCO ,∠EHC =∠MOC =90°,∴△CEH ∽△CMO∴MO EH =CM CE ,∴22MO EH =(618)2∴EH 2=9·MO 2=9·(6x -41x2) ··································································· 7分∴y =π·EH 2=9π(6x -41x2) 图2图1即y =-49πx2+54πx ······················································································ 9分 2.(江西省南昌市)图1所示的遮阳伞,伞柄垂直于水平地面,其示意图如图2.当伞收紧时,点P 与点A重合;当伞慢慢撑开时,动点P 由A 向B 移动;当点P 到达点B 时,伞张得最开.已知伞在撑开的过程中,总有PM =PN =CM =CN =6.0分米,CE =CF =18.0分米,BC =2.0分米. (1)求AP 长的取值范围; (2)当∠CPN =60°时,求AP 的值;(3)在阳光垂直照射下,伞张得最开时,求伞下的阴影(假定为圆面)面积S (结果保留π).2.解:(1)∵BC =2,AC =CN +PN =12,∴AB =12-2=10∴AP 的取值范围是:0≤AP ≤10 ···································································· 1分 (2)∵CN =PN ,∠CPN =60°,∴△PCN 是等边三角形,∴CP =6∴AP =AC -PC =12-6=6即当∠CPN =60°,时,AP =6分米 ································································ 2分 (3)伞张得最开时,点P 与点B 重合连接MN 、EF ,分别交AC 于O 、H∵BM =BN =CM =CN ,∴四边形BNCM 为菱形 ∴MN ⊥BC ,AC 是∠ECF 的平分线 OC =21BC =21×2=1在Rt △CON 中,ON =22OC CN-=2216-=35∵CE =CF ,AC 是∠ECF 的平分线,∴AC ⊥∵∠OCN =∠HCF ,∠CON =∠CHF =90°,∴△CON ∽△CHF ∴HF ON =CFCN ,∴HF 35=186,∴HF =353∴S =π·HF 2=π·(353)2=315π(平方分米) ············································ 5分图2图1 A3.(江西省、江西省南昌市)如图,已知经过原点的抛物线y=-2x2+4x 与x 轴的另一交点为A ,现将它向右平移m (m >0)个单位,所得抛物线与x 轴交于C 、D 两点,与原抛物线交于点P . (1)求点A 的坐标,并判断△PCA 存在时它的形状(不要求说理);(2)在x 轴上是否存在两条相等的线段,若存在,请一一找出,并写出它们的长度(可用含m 的式子表示);若不存在,请说明理由;(3)设△PCD 的面积为S ,求S 关于m 的关系式.3.解:(1)令-2x2+4x =0,得x 1=0,x 2=2∴点A 的坐标为(2,0) ················································································ 2分 △PCA 是等腰三角形 ······················································································· 3分 (2)存在OC =AD =m ,OA =CD =2 ·············································································· 5分 (3)当0<m <2时,如图1,作PH ⊥x 轴于H ,设P (x P ,y P )∵A (2,0),C (m ,0) ∴AC =2-m ,∴CH =2AC =22m-∴x P =OH =m +22m -=22+m ·················· 7分把x P =22+m 代入y =-2x2+4x ,得 y P =-21m2+2 ·············································· 8分∵CD =OA =2 ∴S=21CD ·PH=21·2·(-21m2+2)=-21m2+2 ···································· 9分 当m =2时,△PCD 不存在 ··········································································· 10分当m >2时,如图2,作PH ⊥x 轴于H ,设P (x P ,y P ∵A (2,0),C (m ,0) ∴AC =m -2,∴AH =22-m ∴x P =OH =2+22-m =22+m 图1把x P =22m 代入y =-2x2+4x ,得 y P =-21m2+2 ∵CD =OA =2∴S=21CD ·PH=21·2·(-y P)=21m2-2 ················································· 12分 说明:采用S=21CD ·PH=21·2·|y P |思路求解,未排除m =2的,扣1分。

2014中考数学真题解析 压轴题4(含答案)

2014中考数学真题解析 压轴题4(含答案)

页眉内容(2012年1月最新最细)2011全国中考真题解析120考点汇编压轴题4127.(2011山东淄博24,分)抛物线y=ax2+bx+c与y轴交于点C(0,﹣2),与直线y=x 交于点A(﹣2,﹣2),B(2,2).(1)求抛物线的解析式;(2)如图,线段MN在线段AB上移动(点M与点A不重合,点N与点B不重合),且M点的横坐标为m,过点M作x轴的垂线与x轴交于点P,过点N作x轴的垂线与抛物线交于点Q.以点P,M,Q,N为顶点的四边形能否为平行四边形?若能,请求出m的值;若不能,请说明理由.考点:二次函数综合题;解二元一次方程组;待定系数法求二次函数解析式;勾股定理;平行四边形的性质。

专题:计算题。

分析:(1)把C的坐标代入求出c的值,把A、B的坐标代入抛物线的解析式得到方程组,求出方程组的解即可求出抛物线的解析式;(2)以点P,M,Q,N为顶点的四边形能为平行四边形,当M在OA上,N在OB 上时,以点P,M,Q,N为顶点的四边形为平行四边形,求出N的横坐标,求出ND、MD,根据勾股定理求出m即可.解答:(1)解:∵抛物线y=ax2+bx+c与y轴交于点C(0,﹣2),代入得:c=﹣2,∴y=ax2+bx﹣2,把A(﹣2,﹣2),B(2,2)代入得:2422 2422a ba b-=--⎧⎨=+-⎩,解得:121ab⎧=⎪⎨⎪=⎩,∴y=12x2+x﹣2,答:抛物线的解析式是y=12x2+x﹣2.(2)解:以点P,M,Q,N为顶点的四边形能为平行四边形.理由如下:∵M、N在直线y=x上,∴OP=PM,OQ=QN,只有M在OA上,N在OB上时,ON=OM时,以点P,M,Q,N为顶点的四边形为平行四边形,过M作MC⊥y轴于C,交NQ的延长线于D ,∵M点的横坐标为m,∴N的横坐标是﹣m,MD=ND=|2m|,由勾股定理得:(2m)2+(2m)22=,∵m<0,m=12 -.答:以点P,M,Q,N为顶点的四边形能为平行四边形,m的值是12 .点评:本题主要考查对一次函数的性质,用待定系数法求二次函数的解析式,解二元一次方程组,平行四边形的性质,勾股定理等知识点的理解和掌握,能用待定系数法求二次函数的解析式和得到MD=ND=|2m|是解此题的关键.128.(2011•山西)如图,在平面直角坐标系中.四边形OABC是平行四边形.直线l经过O、C两点.点A的坐标为(8,o),点B的坐标为(11.4),动点P在线段OA上从点O 出发以每秒1个单位的速度向点A运动,同时动点Q从点A出发以每秒2个单位的速度沿A→B→C的方向向点C运动,过点P作PM垂直于x轴,与折线O一C﹣B相交于点M.当P、Q两点中有一点到达终点时,另一点也随之停止运动,设点P、Q运动的时间为t秒(t >0).△MPQ的面积为S.(1)点C的坐标为,直线l的解析式为.(2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围.(3)试求题(2)中当t为何值时,S的值最大,并求出S的最大值.(4)随着P、Q两点的运动,当点M在线段CB上运动时,设PM的延长线与直线l相交于点N.试探究:当t为何值时,△QMN为等腰三角形?请直接写出t的值.考点:二次函数综合题。

2014河北中考数学压轴题分析

2014河北中考数学压轴题分析

2014河北中考数学压轴题分析一转眼来到2014年:选择题16这次是统计里的名词题比较简单填空题20:也算是一种找规律?一步一步做即可,注意OA=0.1,而不是1,这儿很容易错。

选择和填空都这么简单,难道大题比较难吗?确实是有一定的挑战性。

25几何探究:考到了圆的折叠问题,第一次遇到还是挺有挑战的。

整体动图了解一下:问题问的就是几个特殊位置的情况:第一问易得注意下图BP过圆心的时候,A'恰好在圆上,要善于发现额外结论,这对后边问题有很大影响。

第二问也是静态位置,相切,九十度必须用上。

90度易得角ABP为120/2=60度,也就是此时P在圆的最高点位置。

BP易得。

第三问:与前两问联系异常的紧密,注意到B点始终算是一个交点(公共点)。

那么所谓的一个公共点其实就只能是B,也就是除了B之外,BA'与弧没有其他的交点的时候即可。

对比之前的问题发现,前面求的就是两个临界位置,A' 在圆上的时候:相切的时候刚好一个交点:还要注意的是角本身的取值范围,显然大于0,那么最大是几呢?如下图:P与B重合的时候,角度无限趋近于120,但是不能等于,因为P 和B重合的时候是不存在角的!(极限思想!?)如下图计算出:最后写范围注意临界位置取还是不取:1等于0度时,不满足要求:因为是两个交点2等于30度时,不满足要求,也是两个交点3相切时,等于60度时,满足要求只有一个交点。

4最后位置120无限接近但是取不到综上:最后范围就是0<a<30,60=<a<120,26题决策问题:后边还有:很新颖一道题,看似用小学知识就能解决,其实也确实差不多。

要在于分析和决策能力。

第一问很简单,用子字母表示数即可。

注意算距离为400 要分情况相遇前和相遇后。

第二问:想象显然,1号车,2号车在运动过程中是关于直线轴对称的,相遇一定在D或B。

也可以说1号车每经过一次D或B就相遇一次,so……显然1号车第三次到C的时候相遇了5次。

创新多解拓展——2014年安徽中考数学压轴题赏析

创 新 多 解 拓 展——2014年安徽中考数学压轴题赏析作者简介:中学一级,学科带头人,注重命题探究推广,在《中学数学教学参考》、《中学数学》、《中国数学教育》等刊物均有文章发表。

【安徽卷第23题】如图1,正六边形ABCDEF 的边长为a ,P 是BC 边上一动点,过P 作PM ∥AB 交AF 于M ,作PN ∥CD 交DE 于N ,(1)①∠MPN=②求证:PM+PN=3a;(2)如图2,点O 是AD 的中点,连接OM 、ON 。

求证:OM=ON;(3)如图3,点O 是AD 的中点,OG 平分∠MON ,判断四边形OMGN 是否为特殊四边形,并说明理由。

1、创新,多层突破:畅游历年考题,正多边形频频登场,多以选择题或填空题面目出现,偶尔表现为解答题,这些题难易度适中。

所考查内容丰富多彩,层出不穷。

围绕面积的有:2008年潍坊第15题正六边形与外接圆围成的区域面积,2012年安徽选择题第7题正八边形植草砖的面积,2012咸宁选择题第7题正六边形边、内切圆与半径围成的区域面积;围绕角的有:2011年辽阳的填空题第16题,2012年长春填空题第11题;围绕所围区域形状的有:2012年河北填空题第18题,考查n 个全等的正六边围成一圈后中间也形成一个正多边形,求n 的值;围绕正多边形对称性的有:2012年江西填空题第13题,考查直尺画正五边形的对称轴;围绕对角线分割成的图形形状的有:2007年江西第19题证明题,2011年连云港市选择题第7题;围绕正多边形不同特点的有:2012年南通第24题,考查正五边形与正六边形的不同点和相同点;围绕正多边形边长的有:2011年芜湖第20题方程题;规律探究的有:2011年桂林市第12题选择题,2012年江苏无锡第18题填空题,两题考查背景相同——正六边形沿直线滚动,前者考查某个顶点的路径,后者考查的是哪个顶点经过坐标平面上特定点。

很明显前者是原创,后者是借鉴。

各种考题在内容创意上,你追我赶,持续翻新,靓丽上演,让一份份考卷流光溢彩,平添了几分“咀嚼率”。

2014年中考数学压轴

2014年中考数学压轴题精编—广东篇1.广东省(中山市、汕头市、东莞市等)如图,已知P 是线段AB 上的任意一点(不含端点A ,B ),分别以AP 、BP 为斜边在AB 的同侧作等腰直角△APD 和△BPE ,连接AE 交PD 于点M ,连接BD 交PE 于点N .(1)求证:①MN ∥AB ;②MN 1=AP 1+BP1; (2)若AB =4,当点P 在AB 上运动时,求MN的取值范围.2.广东省(中山市、汕头市、东莞市等)如图(1),(2)所示,矩形ABCD 的边长AB =6,BC =4,点F 在DC 上,DF =2.动点M 、N 分别从点D 、B 同时出发,沿射线DA 、线段BA 向点A 的方向运动(点M 可运动到DA 的延长线上),当动点N 运动到点A 时,M 、N 两点同时停止运动.连接FM 、MN 、FN ,当F 、N 、M 不在同一直线时,可得△FMN ,过△FMN 三边的中点作△PQW .设动点M 、N 的速度都是1个单位/秒,M 、N 运动的时间为x 秒.试解答下列问题: (1)说明△FMN ∽△QWP ;(2)设0≤x ≤4(即M 从D 到A 运动的时间段).试问x 为何值时,△PQW 为直角三角形?当x 在何范围时,△PQW 不为直角三角形?(3)问当x 为何值时,线段MN 最短?求此时MN 的值.图(1)图(2)A P DB N M E3.(广东省广州市)如图,⊙O 的半径为1,点P 是⊙O 上一点,弦AB 垂直平分线段OP ,点D 是弧 ⌒APB上的任一点(与端点A 、B 不重合),DE ⊥AB 于点E ,以D 为圆心、DE 长为半径作⊙D ,分别过点A 、B 作⊙D 的切线,两条切线相交于点C .(1)求弦AB 的长;(2)判断∠ACB 是否为定值,若是,求出∠ACB 的大小;否则,请说明理由;(3)记△ABC 的面积为S ,若2DE S=34,求△ABC 的周长.4.(广东省广州市)如图,四边形OABC 是矩形,点A 、C 的坐标分别为(3,0),(0,1),点D 是线段BC 上的动点(与端点B 、C 不重合),过点D 作直线y =-21x +b 交折线OAB 于点E . (1)记△ODE 的面积为S ,求S 与b 的函数关系式;(2)当点E 在线段OA 上时,若矩形OABC 关于直线DE 的对称图形为四边形O 1A 1B 1C 1,试探究四边形O 1A 1B 1C 1与矩形OABC 重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.CP D O B A E5.(广东省深圳市)如图是一圆形纸片,AB 是直径,BC 是弦,将纸片沿弦BC 折叠后,劣弧BC 与AB 交于点D ,得到BDC ︵.(1)若BD ︵=CD ︵,求证:BDC ︵必经过圆心O ;(2)若AB =8,BD ︵=2CD ︵,求BC 的长.6.(广东省深圳市)如图,抛物线y =ax2+c (a >0)经过梯形ABCD 的四个顶点,梯形的底AD 在x 轴上,其中A (-2,0),B (-1,-3). (1)求抛物线的解析式;(2)点M 为y 轴上任意一点,当点M 到A 、B 两点的距离之和为最小时,求此时点M 的坐标;(3)在第(2)问的结论下,抛物线上的点P 使S △PAD =4S △ABM 成立,求点P 的坐标.7.(广东省深圳市)如图1,以点M (-1,0)为圆心的圆与y 轴、x 轴分别交于点A 、B 、C 、D ,直线y =-33x -335与⊙M 相切于点H ,交x 轴于点E ,交y 轴于点F . (1)请直接写出OE 、⊙M 的半径r 、CH 的长;(2)如图2,弦HQ 交x 轴于点P ,且DP : PH =3 :2,求cos ∠QHC 的值;(3)如图3,点K 为线段EC 上一动点(不与E 、C 重合),连接BK 交⊙M 于点T ,弦AT 交x 轴于点N .是否存在一个常数a ,始终满足MN ·MK =a ,如果存在,请求出a 的值;如果不存在,请说明理由.8.(广东省珠海市)如图,△ABC 内接于⊙O ,AB =6,AC =4,D 是AB 边上一点,P 是优弧BAC 的中点,连结P A 、PB 、PC 、PD .(1)当BD 的长度为多少时,△P AD 是以AD 为底边的等腰三角形?并证明;(2)若cos ∠PCB =55,求P A 的长.9.(广东省珠海市)如图,平面直角坐标系中有一矩形ABCO(O为原点),点A、C分别在x轴、y轴上,且C点坐标为(0,6).将BCD沿BD折叠(D点在OC边上),使C点落在OA边的E点上,并将BAE沿BE折叠,恰好使点A落在BD的点F上.(1)直接写出∠ABE、∠CBD的度数,并求折痕BD所在直线的函数解析式;(2)过F点作FG⊥x轴,垂足为G,FG的中点为H,若抛物线y=ax2+bx+c经过B、H、D三点,求抛物线的函数解析式;(3)若点P是矩形内部的点,且点P在(2)中的抛物线上运动(不含B、D点),过点P作PN⊥BC分别交BC和BD于点N、M,设h=PM-MN,试求出h与P点横坐标x的函数解析式,并画出该函数的简图,分别写出使PM<MN、PM=MN、PM>MN成立的x的取值范围.10.(广东省佛山市)一般来说,依据数学研究对象本质属性的相同点和差异点,将数学对象分为不同种类的数学思想叫做“分类”的思想;将事物进行分类,然后对划分的每一类分别进行研究和求解的方法叫做“分类讨论”的方法.请依据分类的思想和分类讨论的方法解决下列问题:如图,在△ABC中,∠ACB>∠ABC.(1)若∠BAC是锐角,请探索在直线AB上有多少个点D,能保证△ACD∽△ABC(不包括全等)?(2)请对∠BAC进行恰当的分类,直接写出每一类在直线AB上能保证△ACD∽△ABC(不包括全等)的点D的个数.AB C12.(广东省茂名市)如图,在直角坐标系xO y 中,正方形OCBA 的顶点A 、C 分别在y 轴、x 轴上,点B坐标为(6,6),抛物线y =ax2+bx +c 经过A 、B 两点,且3a -b =-1. (1)求a ,b ,c 的值;(2)如果动点E 、F 同时分别从点A 、点B 出发,分别沿A →B 、B →C 运动,速度都是每秒1个单位长度,当点E 到达终点B 时,点E 、F 随之停止运动.设运动时间为t 秒,△EBF 的面积为S . ①试求出S 与t 之间的函数关系式,并求出S 的最大值;②当S 取得最大值时,在抛物线上是否存在点R ,使得以点E 、B 、R 、F 为顶点的四边形是平行四边形?如果存在,求出点R 的坐标;如果不存在,请说明理由.13.(广东省茂名市)已知⊙O 1的半径为R ,周长为C .(1)在⊙O 1内任意作三条弦,其长分别是l 1、l 2、l 3.求证:l 1+l 2+l 3<C ; (2)如图,在直角坐标系xO y 中,设⊙O 1的圆心O 1(R ,R ). ①当直线l :y =x +b (b >0)与⊙O 1相切时,求b 的值;②当反比例函数y =xk(k >0)的图象与⊙O 1有两个交点时,求k 的取值范围.(备用图)(备用图)14.(广东省湛江市)如图,在△ABC 中,以AB 为直径的⊙O 交BC 于点P ,PD ⊥AC 于点D ,且PD 与⊙O 相切.(1)求证:AB =AC ;(2)若BC =6,AB =4,求CD 的值. 15.(广东省湛江市)如图,在平面直角坐标系中,点B 的坐标为(-3,-4),线段OB 绕原点逆时针旋转后与x 轴的正半轴重合,点B 的对应点为点A .(1)直接写出点A 的坐标,并求出经过A 、O 、B 三点的抛物线的解析式; (2)在抛物线的对称轴上是否存在点C ,使BC +OC 的值最小?若存在,求出点C 的坐标;若不存在,请说明理由;(3)如果点P 是抛物线上的一个动点,且在x 轴的上方,当点P 运动到什么位置时,△P AB 的面积最大?求出此时点P 的坐标和△P AB 的最大面积.B16.(广东省肇庆市)已知二次函数y =x2+bx +c +1的图象过点P (2,1). (1)求证:c =-2b -4;(2)求bc 的最大值;(3)若二次函数的图象与x 轴交于点A (x 1,0)、B (x 2,0),△ABP 的面积是43,求b 的值.17.(广东省清远市)在⊙O 中,点P 在直径AB 上运动,但与A 、B 两点不重合,过点P 作弦CE ⊥AB ,在AB ︵上任取一点D ,直线CD 与直线AB 交于点F ,弦DE 交直线AB 于点M ,连接CM . (1)如图1,当点P 运动到与O 点重合时,求∠FDM 的度数;(2)如图2、图3,当点P 运动到与O 点不重合时,求证:FM ·OB =DF ·MC .图1 AB O (P )F D C EM 图2ABO FD C EMP 图3 B O FD CE M P18.(广东省河源市、梅州市)如图,△ABC 中,点P 是边AC 上的一个动点,过P 作直线MN ∥BC ,设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F . (1)求证:PE =PF ;(2)当点P 在边AC 上运动时,四边形BCFE 可能是菱形吗?说明理由; (3)若在AC 边上存在点P ,使四边形AECF 是正方形,且BCAP=23,求此时∠A 的大小.19.(广东省河源市、梅州市)如图,直角梯形OABC 中,OC ∥AB ,C (0,3),B (4,1),以BC 为直径的圆交x 轴于E ,D 两点(D 点在E 点右方). (1)求点E 、D 的坐标;(2)求过B 、C 、D 三点的抛物线的函数关系式;(3)过B 、C 、D 三点的抛物线上是否存在点Q ,使△BDQ 是以BD 为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q 的坐标.AB NF D C E M PE D A B CF 20.(广东省高州市学科竞赛暨重点中学提前招生考试)已知抛物线y =ax2+bx +c (a ≠0)与x 轴交于A 、B 两点,顶点为C .(1)当△ABC 为直角三角形时,求b 2-4ac 的值;(2)当△ABC 为等边三角形时,求b2-4ac 的值.21.(广东省高州市学科竞赛暨重点中学提前招生考试)已知一次函数y 1=2x ,二次函数y 2=mx2-3(m -1)x +2m -1的图象关于y 轴对称. (1)求二次函数y 2的解析式;(2)是否存在二次函数y 3=ax2+bx +c ,其图象经过点(-5,2),且对于任意一个实数x ,这三个函数所对应的函数值y 1、y 2、y 3都有y 1≤y 3≤y 2成立?若存在,求出函数y 3的解析式;若不存在,请说明理由. 22.(广东省高州市学科竞赛暨重点中学提前招生考试)如图,在△ABC 中,∠ABC 为锐角,AB ≠AC ,∠BAC ≠90º,D 为线段BC 上一点,连接AD ,以AD 为一边在AD 的左侧作正方形ADEF ,连结BF . (1)当BF ⊥BC 时,求∠ABC 的大小;(2)若AB =24,BC =3,在(1)的条件下,设正方形ADEF 的边DE 与线段BF 相交于点P ,当线段BP 的长取最大值时,求正方形ADEF 与△ABC 重叠部分的面积.23.(广东省高州市学科竞赛暨重点中学提前招生考试)甲船从A 港出发顺流匀速驶向B 港,行至某处,发现船上一救生圈不知何时落入水中,立刻沿原路返回,找到救生圈后,继续顺流驶向B 港.乙船从B 港出发逆流匀速驶向A 港.已知救生圈漂流的速度和水流速度相同;甲、乙两船在静水中的速度相同.甲、乙两船到A 港的距离S 1、S 2(km )与行驶时间t (h )之间的函数图象如图所示.(1)求甲船到B 港的距离S 与行驶时间t 之间的函数关系式;(2)求救生圈在水中漂流的路程;(3)求甲船发现救生圈落入水中时,甲船到救生圈的距离.24.(广东省高州市学科竞赛暨重点中学提前招生考试)如图,在平面直角坐标系中,四边形OABC 为矩形,点A 、B 的坐标分别为(12,0)、(12,6),直线y =-23x +b 与y 轴交于点P ,与边OA 交于点D ,与边BC 交于点E .(1)若直线y =-23x +b 平分矩形OABC 的面积,求b 的值; (2)在(1)的条件下,当直线y =-23x +b 绕点P 顺时针旋转时,与直线BC 和x 轴分别交于点N 、M ,问:是否存在ON 平分∠CNM 的情况?若存在,求线段DM 的长;若不存在,请说明理由;(3)在(1)的条件下,将矩形OABC 沿DE 折叠,若点O 落在边BC 上,求出该点坐标;若不在边BC 上,求将(1)中的直线沿y 轴怎样平移,使矩形OABC 沿平移后的直线折叠,点O 恰好落在边BC 上.备用图备用图OC=8cm ,现有两动点P 、Q 分别从O 、C 同时出发,P 在线段OA 上沿OAcm 的速度匀速运动,Q 在线段CO 上沿CO 方向以每秒1 cm 的速度匀速运动.设运动时间为t 秒. (1)用t 的式子表示△OPQ 的面积S ;(2)求证:四边形OPBQ 的面积是一个定值, 并求出这个定值;(3)当△OPQ 与△P AB 和△QPB 相似时,抛物线214y x bx c =++经过B 、P 两点,过线段BP 上 一动点M 作y 轴的平行线交抛物线于N ,当线段 MN 的长取最大值时,求直线MN 把四边形OPBQ分成两部分的面积之比25. 如图11,已知抛物线y =ax 2+bx +2交x 轴于A (﹣1,0),B (4,0)两点,交y 轴于点C ,与过点C 且平行于x 轴的直线交于另一点D ,点P 是抛物线上一动点.(1)求抛物线解析式及点D 的坐标;(2)若点E 在x 轴上,且以A ,E ,D ,P 为顶点的四边形是平行四边形,求点P 的坐标;(3)若点P 在y 轴右侧,过点P 作直线CD 的垂线,垂足为Q ,若将△CPQ 沿CP 翻折,点Q 的对应点为Q ′.是否存在点P ,使Q ′恰好落在x轴上?若存在,求出点P 的坐标;若不存在,说明理由.26.(6分)要在一块长52m,宽48m的矩形绿地上,修建同样宽的两条互相垂直的甬路.下面分别是小亮和小颖的设计方案.(1)求小亮设计方案中甬路的宽度x;(2)求小颖设计方案中四块绿地的总面积(友情提示:小颖设计方案中的与小亮设计方案中的取值相同)。

2014中考数学压轴题解题技巧

中考数学压轴题解题技巧中考数学压轴题分析(一)数学综合题关键是第24题和25题,我们不妨把它分为函数型综合题和几何型综合题。

(一)函数型综合题:是先给定直角坐标系和几何图形,求函数的解析式,然后进行图形的研究,求点的坐标或研究图形的某些性质。

初中已知函数有:①一次函数(包括正比例函数),它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线;③二次函数,它所对应的图像是抛物线。

求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。

此类题基本在第24题,满分12分,基本分2-3小题来呈现。

(二)几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点运动,求对应的函数的解析式,最后根据所求的函数关系进行探索研究,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等,求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系,几何型综合题基本在第25题做为压轴题出现,满分14分,一般分三小题呈现。

在解数学综合题时我们要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。

中考数学压轴题分析(二)具有选拔功能的中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。

解数学压轴题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基本技能,三要掌握常用的解题策略。

现介绍几种常用的解题策略,供初三同学参考。

1、以坐标系为桥梁,运用数形结合思想:纵观最近几年各地的中考压轴题,绝大部分都是与坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。

2、以直线或抛物线知识为载体,运用函数与方程思想:直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。

2014中考数学压轴题四个解题技巧

2014中考数学压轴题四个解题技巧各类题型的中考数学压轴题在近几年的中考中慢慢涌现出来,比如设计新颖、富有创意的,还有以平移、旋转、翻折等图形变换为解题思路的题目。

不少考生在遇到这类花样百出的题目时,往往都是一团乱麻,甚至是放弃压轴题,其实,中考数学压轴题解题只要找好四大切入点,一切都会迎刃而解。

切入点一:做不出、找相似,有相似、用相似压轴题牵涉到的知识点较多,知识转化的难度较高。

学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。

切入点二:构造定理所需的图形或基本图形在解决问题的过程中,有时添加辅助线是必不可少的。

对于北京中考来说,只有一道很简单的证明题是可以不用添加辅助线的,其余的全都涉及到辅助线的添加问题。

中考对学生添线的要求还是挺高的,但添辅助线几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形。

切入点三:紧扣不变量,并善于使用前题所采用的方法或结论在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。

切入点四:在题目中寻找多解的信息图形在运动变化,可能满足条件的情形不止一种,也就是通常所说的两解或多解,如何避免漏解也是一个令考生头痛的问题,其实多解的信息在题目中就可以找到,这就需要我们深度的挖掘题干,实际上就是反复认真的审题。

总之,中考数学压轴题的切入点有很多,考试时也并不是说一定要找到那么多,往往只需找到一两个就行了,关键是找到以后一定要敢于去做。

有些同学往往想想觉得不行就放弃了,其实绝大多数的题目只要想到上述切入点,认真做下去,问题基本都可以得到解决,希望对各位考生有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014中考压轴题突破训练目标1.熟悉题型结构,辨识题目类型,调用解题方法;2.书写框架明晰,踩点得分(完整、快速、简洁)。

题型结构及解题方法压轴题综合性强,知识高度融合,侧重考查学生对知识的综合运用能力,对问题背景的研究能力答题规范动作1.试卷上探索思路、在演草纸上演草。

2.合理规划答题卡的答题区域:两栏书写,先左后右。

作答前根据思路,提前规划,确保在答题区域内写完答案;同时方便修改。

3.作答要求:框架明晰,结论突出,过程简洁。

23题作答更加注重结论,不同类型的作答要点:几何推理环节,要突出几何特征及数量关系表达,简化证明过程;面积问题,要突出面积表达的方案和结论;几何最值问题,直接确定最值存在状态,再进行求解;存在性问题,要明确分类,突出总结。

4.20分钟内完成。

实力才是考试发挥的前提。

若在真题演练阶段训练过程中,对老师所讲的套路不熟悉或不知道,需要查找资源解决。

下方所列查漏补缺资源集中训练每类问题的思路和方法,这些训练与真题演练阶段的训练互相补充,帮学生系统解决压轴题,以到中考考场时,不仅题目会做,而且能高效拿分。

课程名称:2014中考数学难点突破1、图形运动产生的面积问题2、存在性问题3、二次函数综合(包括二次函数与几何综合、二次函数之面积问题、二次函数中的存在性问题)4、2014中考数学压轴题全面突破(包括动态几何、函数与几何综合、点的存在性、三角形的存在性、四边形的存在性、压轴题综合训练)一、图形运动产生的面积问题一、知识点睛1.研究_基本_图形2.分析运动状态:①由起点、终点确定t的范围;②对t分段,根据运动趋势画图,找边与定点,通常是状态转折点相交时的特殊位置.3.分段画图,选择适当方法表达面积.二、精讲精练1.已知,等边三角形ABC的边长为4厘米,长为1厘米的线段MN在△ABC的边AB上,沿AB方向以1M、2.H.平ABCD3.如图,△ABC中,∠C=90°,AC=8cm,BC=6cm,点P、Q同时从点C出发,以1cm/s的速度分别沿CA、CB匀速运动,当点Q到达点B时,点P、Q同时停止运动.过点P作AC的垂线l交AB于点R,连接PQ、RQ,并作△PQR关于直线l对称的图形,得到△PQ'R.设点Q的运动时间为t(s),△PQ'R与△PAR 重叠部分的面积为S(cm2).(1)t为何值时,点Q' 恰好落在AB上?(2)求S与t的函数关系式,并写出t的取值范围.(3)S能否为98?若能,求出此时t的值;若不能,请说明理由.CBABC PRQ Q'lBB4. 如图,在△ABC 中,∠A =90°,AB =2cm ,AC =4cm ,动点P 从点A 出发,沿AB 方向以1cm/s 的速度向点B 运动,动点Q 从点B 同时出发,沿BA 方向以1cm/s 的速度向点A 运动.当点P 到达点B 时,P ,Q 两点同时停止运动.以AP 为边向上作正方形APDE ,过点Q 作QF ∥BC ,交AC 于点F .设点P 的运动时间为t s ,正方形APDE 和梯形BCFQ 重叠部分的面积为S cm 2. (1)当t =_____s 时,点P 与点Q 重合; (2)当t =_____s 时,点D 在QF 上;(3)当点P 在Q ,B 两点之间(不包括Q ,B求S 与t 之间的函数关系式.5. 如图,在平面直角坐标系中,已知点A (0,1)、D 方形ABCD .(1)填空:点B 的坐标为________,点C (2)若正方形以每秒5个单位长度的速度沿射线动.在运动过程中,设正方形落在y 并写出相应的自变量t 的取值范围.l 2与x 轴1个单位长度的速度移动.设矩形ABCD 与△OMN 重叠部分的面积为S ,移动的时间为t (从点B 与点O 重合时开始计时,到点A 与点N 重合时计时结束).求S 与自变量t 之间的函数关系式,并写出相应的自变量t 的取值范围.AB C DNMOy二、二次函数中的存在性问题一、知识点睛解决“二次函数中存在性问题”的基本步骤:①画图分析.研究确定图形,先画图解决其中一种情形.②分类讨论.先验证①的结果是否合理,再找其他分类,类比第一种情形求解.③验证取舍.结合点的运动范围,画图或推理,对结果取舍.二、精讲精练1.2y轴向上平2.上,另一Q重合),3.OB=8.将矩形的边BC绕点B逆时针旋转,使点C恰好与x轴上的点A重合.(1)若抛物线cbxxy++-=231经过A、B两点,求该抛物线的解析式:______________;(2)若点M是直线AB作MN⊥x轴于点N.是否存在点M,使△AMN与△ACD相似?若存在,求出点M的坐标;若不存在,说明理由.yO COyBAxxAO C COBAx4. 已知抛物线2=23y x x --经过A 、B 、C 三点,点P (1,k )在直线BC :y=x -3上,若点M 在x 轴上,点N 在抛物线上,是否存在以A 、M 、N 、P 为顶点的四边形为平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由.5.MN P ,过点①研究函数表达式.二次函数关注四点一线,一次函数关注k 、b ; ②)关键点坐标转线段长.找特殊图形、特殊位置关系,寻求边和角度信息. 二、精讲精练1. 如图,抛物线y =ax 2-5ax +4(a <0)经过△ABC 的三个顶点,已知BC ∥x 轴,点A 在x 轴上,点C 在y轴上,且AC =BC . (1)求抛物线的解析式.(2)在抛物线的对称轴上是否存在点M ,使|MA -MB |最大? 若存在,求出点M 的坐标;若不存在,请说明理由.2. 如图,已知抛物线y =ax 2-2ax -b (a >0)与x 轴交于A 、B 两点,点A 在点B 的右侧,且点B 的坐标为(-1,0),与y 轴的负半轴交于点C ,顶点为D .连接AC 、CD ,∠ACD =90°. (1)求抛物线的解析式;(2)点E 在抛物线的对称轴上,点F 在抛物线上,且以B 、A 、F 、E 四点为顶点的四边形为平行四边形,求点F 的坐标.3. 如图,在平面直角坐标系中,直线3342y x =-与抛物线214y x bx c =-++交于A 、B 两点,点A 在x 轴上,点B 的横坐标为-8.(1)求该抛物线的解析式;(2)点P 是直线AB C ,交直线AB 于点D ,作PE ⊥AB 于点E .设△PDE 点P 的横坐标为x ,求l 关于x4. 已知,抛物线212y ax ax b =-+经过A (-1,0),C 与x 轴交于另一点B .(1)求此抛物线的解析式;(2 (不与点B 重合),点Q 在线段MB 上移动,且∠y 2与x 的函数关系式,5. 2=,且与x 轴交于A 、B A (1,(1(2①如图1,当△PBC 的面积与△ABC 的面积相等时,求点P 的坐标; ②如图2,当∠PCB =∠BCA 时,求直线CP 的解析式.四、中考数学压轴题专项训练1.如图,在直角梯形OABC 中,AB ∥OC ,BC ⊥x 轴于点C ,A (1,1),B (3,1).动点P 从点O 出发,沿x 轴正方向以每秒1个单位长度的速度移动.过点P 作PQ ⊥OA ,垂足为Q .设点P 移动的时间为t 秒(0<t <4),△OPQ 与直角梯形OABC 重叠部分的面积为S . (3)过点P 作直线CD 的垂线,垂足为Q .若将△CPQ 沿CP 翻折,点Q 的对应点为Q ′,是否存在点P P 的坐标;若不存在,请说明理由.3.(11A ,B 两点,以线段AB 为边向上作正方形ABCD ,过点A ,D(1(2AB 下滑,直至顶点D 落在x 轴上时停止,设正方形落在x 轴下方部分的面积为S ,求S 关于滑行时间t 的函数关系式,并写出相应自变量t 的取值范围;(3)在(2)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上C ,E 两点间的抛物线弧所扫过的面积.4.(11分)如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3).点C是点A关于点B的对称点,点F是线段BC的中点,直线l轴于点D.(1)求抛物线的解析式;(2)点K为线段AB上一动点,过点K作x线CD于点H,交抛物线于点G,求线段HG(3)在直线l上取点M,在抛物线上取点N,使以N为顶点的四边形是平行四边形,求点N的坐标.5.(11分)如图,在平面直角坐标系中,直线34y x=抛物线214y x bx c=-++交于A,B两点,点A在x(1)求抛物线的解析式.(2)点P是直线AB交直线AB于点D,作PE⊥AB于点E.①设△PDE的周长为l,点P的横坐标为x,求l②连接P A,以P A为边作图示一侧的正方形正方形的大小、位置也随之改变.当顶点F或G直接写出对应的点P的坐标.6.(112的顶点,点B的坐标为(1,(1(2于点D,交抛物线C1于点E,平行于y轴的直线x=a:DE=4:3,求a的值; (3C2,且抛物线C2的顶点为P,交x轴于点Q,当NP平分∠MNQ时,求m的值.图1 图2附:参考答案一、图形运动产生的面积问题1. (1)当t =32时,四边形MNQP 恰为矩形.此时,该矩形的面积为2(2) 当0<t ≤1时,+2S =;当1<t ≤2时,2S =;当2<t <3时,S =2.(1)90°;4 (2)x =2.3.(1)当t =125时,点Q' 恰好落在AB 上. (2)当0<t ≤125时,23-+38S t t =;当125<t ≤(3)由(2)问可得,当0<t ≤125时,23-8t +当125<t ≤6时,299(8-)568t =;解得,t =4t =98S =. 4.(1)29-24t t ;当43<t 5.(1)t ≤12时,25S t =;当12<t ≤1时,55-4S t =;当1<t 6.(1)1时,24t S =;当1<t 当4<t ≤5时,231349--424S t t =+;当5<t ≤6时,13-2S t =+;当6<t ≤7时,()217-2S t =二、二次函数中的存在性问题1.解:由题意,设OA=m,则OB=2m;当∠BAP=90△BAP∽△AOB或△BAP∽△BOA;①若△BAP∽△AOB,如图1,可知△PMA∽△AOB,相似比为2:1;则P1(5m,2m代入xxy32+-=,可知2513=m,)2526,513(1P②若△BAP∽△BOA,如图2,可知△PMA∽△AOB,相似比为1:2;则P2(2m,2m代入xxy32+-=,可知811=m,)1611,411(2P当∠ABP=90°时,△ABP∽△AOB或△ABP∽△BOA;③若△ABP∽△AOB,如图3,可知△PMB∽△BOA,相似比为2:1;则P3(4m,4m代入xxy32+-=,可知21=m,)2,2(3P④若△ABP∽△BOA,如图4,可知△PMB∽△BOA,相似比为1:2;则P4(m,m25代入xxy32+-=,可知1=m,415(,)P2.解:(1B点坐标(1,3)要求直线CQ长度.过点D作F.则可证△为正方形.则∠DQG=BC=3,此时,Q可得BQ(2)要求P坐标即可. 而题目当中没有说明∠DCE=30°还是∠DCE=60°,所以分两种情况来讨论.①当∠DCE=30°时,a)过点D作DH⊥x轴于点H,过点D作DK⊥QP于点K.则可证△DCH∽△DEK.则DH DCDK DE==在矩形DHQK中,DK=HQ,则DHHQ=在Rt△DHQ中,∠DQC=60°.则在Rt△BCQ中,BCCQ=∴CQ,此时,Q点坐标为()则P点横坐标为代入()21134y x=--+b)又P、Q为动点,∴可能PQ由对称性可得此时点P坐标为(194)②当∠DCE=60°时,a)过点D作DM⊥x轴于点M,过点D作DN⊥QP 则可证△DCM∽△DEN.则DM DCDN DE==在矩形DMQN中,DN=MQ,则DMMQ=在Rt△DMQ中,∠DQM=30°.则在Rt△BCQ中,BCCQ ∴CQ=Q点坐标为(1+0则P点横坐标为1+代入()2113y x=--+AP可为平行四边形边、对角线;(1)∵点A、2;∵点M①当点解:2x又∵点A1(3M、2(36,0)+M②当点解:2232--=-x x得1=±x又∵点A、P横坐标差为2 ∴点M的坐标为:3(1-M、4(1-M(2)当AP为平行四边形边对角线时;设M5(m,0)MN一定过AP的中点(0,-1)则N5(-m,-2),N5在抛物线上∴2232+-=-m m1=-±m∴1=-m∴5(1-+M综上所述:符合条件点P的坐标为:1(3M 2(3+M 3(1-+M 4(1--M5.解:分析题意,可得:MP ∥NQ ,若以P 、M 、N 、Q 为顶点的四边形为平行四边形,只需MP =NQ 即可。

相关文档
最新文档