最新人教版高中数学选修2-2第二章《演绎推理》教学设计

合集下载

2.1.演绎推理-人教A版选修2-2教案

2.1.演绎推理-人教A版选修2-2教案

2.1.演绎推理-人教A版选修2-2教案一、教学目标1.了解演绎推理的定义和特点。

2.能够分辨有效推理和无效推理。

3.能够使用基本规则进行正确的推理。

二、教学重点和难点教学重点1.演绎推理的定义和特点。

2.使用基本规则进行正确的推理。

教学难点1.故事中出现的多重条件和导出结论的复杂性。

三、教学过程1. 导入环节通过引入一个有多个条件的故事,让学生们策略性地推理出结论。

这个案例非常简单,因为它只包含两个条件:如果今天下雨,那么路面就会湿滑。

2. 讲解演绎推理讲解什么是演绎推理以及它的特点,需要说明的是演绎推理只在推理有确定性的决策和结论时才有效。

3. 演练基本规则对于初学者来说,基本规则的使用是很重要的。

依次介绍假言、交换、极化、套用和情况归纳等规则,引导学生使用这些规则进行推理。

4. 扩展训练再一次引入有多个条件的案例,让学生独立进行推理并得出正确的结论。

让学生们从这个案例中意识到多重条件和推断的复杂性。

5. 总结归纳在讲解演绎推理之后,询问学生对于这个主题是否有了更深刻的理解。

这里应该用简单易懂的语言进行总结和归纳。

四、教学评估1.观察学生在推理任务中的表现,了解了解他们推理的能力和策略。

2.在小组会议中开展学生交流,促进他们对故事多个因素和复杂推理的理解和分析。

3.在课堂结束时,让学生回顾当天的课程,鼓励他们用自己的话进行总结。

并通过收集此前教学的认知考核结果来判断学生的掌握程度。

五、教学反思本节课引导学生使用基本规则进行演绎推理,适用于初学者。

对于更高水平的学生,可以引入条件语句的验证和论证,或更复杂的情况。

同时,在讲述规则的同时,更好地提供实际案例模拟情境,更利于学生掌握和理解。

高二数学选修2-2_《演绎推理》参考教案2

高二数学选修2-2_《演绎推理》参考教案2

第三课时演绎推理教学目标:一、知识与技能:了解演绎推理的含义;能正确地运用演绎推理进行简单的推理.二、过程与方法:从实例中了解合情推理与演绎推理之间的联系与差别三、情感态度和价值观:体会推理的应用形式教学重点:三段论教学难点:推理过程.教学过程:一.复习:合情推理归纳推理从特殊到一般类比推理从特殊到特殊从具体问题出发――观察、分析比较、联想――归纳.类比――提出猜想二.问题情境.观察与思考1所有的金属都能导电铜是金属,所以,铜能够导电2.一切奇数都不能被2整除,(2100+1)是奇数,所以,(2100+1)不能被2整除.3.三角函数都是周期函数,tanα是三角函数,所以,tanα是周期函数.提出问题:像这样的推理是合情推理吗?二.学生活动:1.所有的金属都能导电←————大前提铜是金属,←-----小前提所以,铜能够导电←――结论2.一切奇数都不能被2整除←————大前提(2100+1)是奇数,←――小前提所以,(2100+1)不能被2整除.←―――结论3.三角函数都是周期函数,←——大前提tanα是三角函数,←――小前提所以,tanα是周期函数.←――结论三,建构数学演绎推理的定义:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.1.演绎推理是由一般到特殊的推理;2.“三段论”是演绎推理的一般模式;包括⑴大前提---已知的一般原理;⑵小前提---所研究的特殊情况;⑶结论-----据一般原理,对特殊情况做出的判断.三段论的基本格式M—P(M是P)(大前提)S—M(S是M)(小前提)S—P(S是P)(结论)3.三段论推理,只要前提正确,推理形式也正确,结论必然正确四,数学运用例1、三角形ABC中,D、E、F分别是BC、CA、AB的中点,∠BFD=∠A,DE∥BA,求证:ED=AF写成推理模式说明有几个推理就有几个三段论练习1:把“函数21y x x =++的图象是一条抛物线”恢复成完全三段论 例2、已知a ,b ,m 为正实数,b<a ,求证b a <b ma m++并说明包含几个三段论 [法二]作差比较练习:已知lg 2m =,计算lg0.8 解 lg lg (0)n a n a a =>---------大前提3lg8lg 2=————小前提lg83lg2=————结论lg lg lg (00)a a b a b b=->>,——大前提8lg0.8lg10=——-小前提 lg0.8lg81=-——结论例3.下面推理正确吗?为什么?“指数函数是单调增函数,因为0.5x y =是指数函数,所以0.5x y =是单调增函数” 解答:不对,大前提不正确说明:在演绎推理中,只要两个前提正确,推理形式也是正确的,则结论是正确的 练习:五 回顾小结:1、演绎推理具有如下特点:见课本.2、演绎推理错误的主要原因是:1.大前提不成立;2, 小前提不符合大前提的条件(推理形式不正确). 六、作业: [补充习题]1、已知数列{}n a 的首项114a a =≠,且112|2124nn na n a a n +⎧⎪⎪=⎨⎪+⎪⎩,,,记2111234n nb a n -=-=,,,,,(1)求3a ,2a ;(2)判断数列{}n b 是否为等比数列,并证明 2、已知632()1f x x x x x =-+-+求证对任意实数x ,()0f x >恒成立3、设实数a 、b 、c 成等比数列,非零实数x ,y 分别为a 与b ,b 与c 的等差中项,求证:acxy+=2 4、AB 是⊙O 的直径,PA 垂直于⊙O 所在的平面,C 是圆周上不同于A 、B 的任意一点,求证BC ⊥平面PAC ,并说明含有几个三段论推理 [答案]1、23111428a a a a =+=+,,{}nb 是等比数列,证明12122111111114242442n n n n n b a a a b ++-⎛⎫=-=-=+-= ⎪⎝⎭ 2、0x <时,()0f x >显然成立;01x <≤时,62()(1)10f x x x x x =+-+->;1x >时,33()(1)(1)10f x x x x x =-+-+>.总之f (x )>0恒成立3、4略第四课时 推理案例赏识教学目标:一、知识与技能:了解合情推理和演绎推理的含义.能正确地运用合情推理和演绎推理进行简单的推理.二、过程与方法:通过具体例子,形成完整的:计算−−−−→合情推理猜想−−−−→演推理证明的思路三、情感态度与价值观:体会合情推理与演绎推理之间的联系与差别 教学重点:了解合情推理与演绎推理的混合应用教学难点:形成完整的思路. 教学过程:一、复习 合情推理和演绎推理的过程 二、案例:例1 、正整数平方和公式的推导. 提出问题22222()123?S n n =++++=说明:一般的一个数学发现的过程是:计算−−−−→合情推理猜想−−−−→演推理证明的思路练习1:求31nk k =∑练习2:()x f x x e =+,对一切实数a ,b ,a+b ≤0,说明()()f a f b +与()()f a f b -+-的大小关系,并证明思考:练习2中,()f x 解析式是否必要?修改成什么条件也可以比较大小?例2、台体体积公式的推导练习:直线12P P 上有点P ,若12P P PP λ=,称P 分12P P 的比为λ,则有121OP OP OP λλ+=+,类比此结论,对于一个梯形ABCD (上底、下底分别为DC 、AB ),EF 分梯形的高的自上而下的比为λ,求EF (用两底AB 、CD 表示),并证明;再次类比,空间一个台体,上下底面面积分别为1S 、2S ,一个平行于底面的截面分高自上而下的比为λ,截面面积S 与1S 、2S 满足关系___________(1DC ABEF λλ+=+,说明:(1)数学发现过程是一个探索创造的过程.是一个不断地提出猜想验证猜想的过程,合情推理和论证推理相辅相成,相互为用,共同推动着发现活动的进程. (2)合情推理是富于创造性的或然推理,在数学发现活动中,它为演绎推理确定了目标和方向,具有提出猜想、发现结论,提供思路的作用.(3)演绎推理是形式化程度较高的必然推理,在数学发现活动中,它具有类似于“实验”的功能,它不仅为合情推理提供了前提,而且可以对猜想作出“判决”和证明,从而为调控探索活动提供依据.三、小结:数学发现过程是一个探索创造的过程.是一个不断地提出猜想验证猜想的过程,合情推理和论证推理相辅相成,相互为用,共同推动着发现活动的进程.形成完整的思路过程:计算−−−−→合情推理猜想−−−−→演推理证明的思路[补充习题]1、在三角形ABC中,三个内角A、B、C对应边分别为a,b,c,且A、B、C成等差数列,a、b、c成等比数列,判断三角形ABC的形状,并证明2、函数()f x满足对任意非零实数a及任意x有1()()1()f xf x af x++=-,判断()f x是否为周期函数,如果是,求出它的一个周期3、α、β是两个不同的平面,m、n是平面α、β之外的两条不同直线,给出四个论断:①m⊥n;②α⊥β;③n⊥β;④m⊥α,以其中三个论断为条件,余下一个论断为结论,写出你认为正确的一个命题[答案]1、等边三角形;2、4||a是其一个周期;3、①③④⇒②;②③④⇒①。

高中数学新人教版B版精品教案《2.1.2 演绎推理》

高中数学新人教版B版精品教案《2.1.2 演绎推理》

《演绎推理》教学设计教材:人民教育出版社高中数学B版选修2-2章节:第二章《推理与证明》《合情推理与演绎推理》《演绎推理》面向学生:高二年级(一)教学目标1知识与技能目标:理解演绎推理的含义,了解合情推理和演绎推理之间的联系和差异;掌握演绎推理的基本模式,体会它们的重要性,并能运用它们进行一些简单的推理2.过程与方法目标:结合具体实例,感受演绎推理在数学以及日常生活中的作用,养成言之有理,论证有据的习惯3情感态度和价值观目标:结合已学过的数学实例和日常生活中的实例,使学生体会数学与其他学科以及实际生活的联系;通过演绎推理的学习,培养学生严谨的作风,形成实事求是,力戒浮夸的思维习惯(二)教学重点和难点教学重点:演绎推理的概念,三段论推理规则教学难点:用“三段论”进行简单的推理(三)教学方法:以教师为主导,学生为主体,以能力发展为目标,从学生的认知规律出发,采用问题探究,合作交流,启发引导的方法指导学生学习,充分调动学生积极性,引导学生在学习过程中体会知识的价值,感受知识的无穷魅力(四)教学过程环节一情境激趣, 温故知新问题1:由以下具体事实能得到怎样的结论应用了什么推理学生活动: 积极思考,谨慎求解,复习旧知设计意图:注重情景创设和学习兴趣培养1 填入空缺数字:5,9,15,(),33,452.鱼饵:鱼竿(a)笔:书籍(b)写诗:笔(c)锅铲:炒锅(d)电脑:手机3从(a)(b)(c)(d)中选出一个合适的图案,填在问号处4.南之于西北,正如西之于()(a)西北(b)东北(c)西南(d)东南环节二互动交流,研讨新知问题2:引例:(以下推理是哪种推理?是我们学过的归纳推理或类比推理吗?)所有的平行四边形对角线互相平分,菱形是平行四边形,菱形的对角线互相平分学生活动: 发现问题,寻找解决问题的出路,自主学习设计意图:重视知识发生、发展过程开展教学演绎推理概念:演绎推理是由到的推理;问题3: 由学生举出生活或者各科学习中,演绎推理的例子学生活动:积极思考,踊跃发言设计意图:通过举例,加深对演绎推理概念的理解问题4:演绎推理中经常使用的推理规则是什么?“三段论”是演绎推理的一般模式,包括:⑴大前提---⑵小前提---⑶结论---环节三概念辨析,思维升华问题5:如何用集合的观点理解三段论推理?学生活动:积极思考,踊跃发言设计意图:通过变式演练,加深对演绎推理概念的辨析,深刻理解演绎推理的本质所有的平行四边形(A)对角线互相平分(P),------A是P------B是A------B是PP学生活动:从数学史发展背景了解三段论及演绎推理设计意图:延伸课堂,丰富学识,加强对数学文化的了解环节五课堂练习,巩固所学练习1:将下列演绎推理写成三段论形式,并指出大,小前提及结论(1)太阳系大行星以椭圆轨道绕太阳运行,海王星是太阳系的大行星,海王星以椭圆形轨道绕太阳运行(2)函数=tan是周期函数练习2:下列推理是否正确,说明理由?(1)自然数是整数,3是自然数,3是整数(2)整数是自然数,-3是整数,-3是自然数(3)自然数是整数,-3是自然数,-3是整数(4)自然数是整数,-3是整数,-3是自然数练习3:演绎推理在生活中的应用(1)中国的大学分布于中国各地,北京大学是中国的大学,所以北京大学分布于中国各地。

人教版高中选修2-22.1合情推理与演绎推理教学设计

人教版高中选修2-22.1合情推理与演绎推理教学设计

人教版高中选修2-22.1合情推理与演绎推理教学设计一、教学背景本次教学适用于人教版高中选修2-22.1《数学与现实》这一模块中,合情推理与演绎推理的教学内容。

该模块旨在让学生能够运用数学知识分析现实生活中的问题,培养学生的数学思维、逻辑思维和创新意识,提高其实际应用数学的能力。

二、教学目标1.了解合情推理与演绎推理的概念和原理,掌握相关的数学知识和技能。

2.能够通过理论知识和实际问题的分析,运用合情推理和演绎推理方法解决实际问题和应用问题。

3.能够处理实际问题中的信息、转换问题描述方式,建立合理的数学模型,运用数学方法求解问题。

4.提高学生的数学思维能力和解决问题的能力,为以后的学习和工作打下基础。

三、教学内容本次教学将涉及以下内容:1.合情推理和演绎推理的概念和原理2.数学和现实生活中的联系3.运用合情推理和演绎推理方法解决实际问题4.转换问题描述方式,建立数学模型,运用数学方法求解问题1.导入引出本节课的主要内容,引入合情推理和演绎推理的概念和原理,让学生了解其基本概念和相关知识点。

2.课堂教学(1)合情推理•了解合情推理的定义和相关定理•通过数学题目,让学生感知合情推理的应用(2)演绎推理•了解演绎推理的定义和相关定理•通过数学题目,让学生感知演绎推理的应用(3)数学与现实生活中的联系•分析数学知识在现实生活中的应用,让学生了解其重要性(4)应用合情推理和演绎推理解决实际问题•引导学生分析实际问题,理解合情推理和演绎推理的应用•通过实例和数学题目,让学生掌握应用合情推理和演绎推理解决实际问题的方法(5)建立数学模型,运用数学方法求解问题•教授建立数学模型的步骤和方法,让学生掌握建立模型的能力•通过实例和数学题目,让学生学会运用数学方法求解问题的方法3.教学总结进行本节课的总结和归纳,让学生对本节课的内容有一个系统的认识和掌握。

1.学生是否了解合情推理和演绎推理的概念和原理。

2.学生是否能够将知识应用于实际问题的解决中。

人教A版高中数学选修合情推理与演绎推理演绎推理教案

人教A版高中数学选修合情推理与演绎推理演绎推理教案

普通高中课程标准实验教科书—数学选修2-2[人教版A]2.1.2演绎推理教学目标:结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。

教学重点:掌握演绎推理的基本模式,并能运用它们进行一些简单推理。

教学过程一、复习二、引入新课1.假言推理假言推理是以假言判断为前提的演绎推理。

假言推理分为充分条件假言推理和必要条件假言推理两种。

(1)充分条件假言推理的基本原则是:小前提肯定大前提的前件,结论就肯定大前提的后件;小前提否定大前提的后件,结论就否定大前提的前件。

(2)必要条件假言推理的基本原则是:小前提肯定大前提的后件,结论就要肯定大前提的前件;小前提否定大前提的前件,结论就要否定大前提的后件。

2.三段论三段论是指由两个简单判断作前提和一个简单判断作结论组成的演绎推理。

三段论中三个简单判断只包含三个不同的概念,每个概念都重复出现一次。

这三个概念都有专门名称:结论中的宾词叫“大词”,结论中的主词叫“小词”,结论不出现的那个概念叫“中词”,在两个前提中,包含大词的叫“大前提”,包含小词的叫“小前提”。

3.关系推理指前提中至少有一个是关系判断的推理,它是根据关系的逻辑性质进行推演的。

可分为纯关系推理和混合关系推理。

纯关系推理就是前提和结论都是关系判断的推理,包括对称性关系推理、反对称性关系推理、传递性关系推理和反传递性关系推理。

(1)对称性关系推理是根据关系的对称性进行的推理。

(2)反对称性关系推理是根据关系的反对称性进行的推理。

(3)传递性关系推理是根据关系的传递性进行的推理。

(4)反传递性关系推理是根据关系的反传递性进行的推理。

4. 完全归纳推理是这样一种归纳推理:根据对某类事物的全部个别对象的考察,已知它们都具有某种性质,由此得出结论说:该类事物都具有某种性质。

完全归纳推理可用公式表示如下:具有(或不具有)性质P具有(或不具有)性质P……具有(或不具有)性质P(S1 S2……Sn是 S类的所有个别对象)所以,所有S都具有(或不具有)性质P可见,完全归纳推理的基本特点在于:前提中所考察的个别对象,必须是该类事物的全部个别对象。

人教课标版高中数学选修2-2:《演绎推理》教案-新版

人教课标版高中数学选修2-2:《演绎推理》教案-新版

2.1.2 演绎推理一、教学目标1.核心素养通过学习演绎推理,初步形成基本的数学抽象和逻辑推理能力.2.学习目标(1)结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本方法,并能运用它们进行一些简单推理.(2)通过具体实例,了解合情推理和演绎推理之间的联系和差异.3.学习重点了解演绎推理的含义,能利用“三段论”进行简单的推理.4.学习难点用“三段论”进行简单的推理.二、教学设计(一)课前设计1.预习任务任务1阅读教材P78-P81,思考:什么是演绎推理?合情推理与演绎推理的在逻辑上有什么区别?2.预习自测)1.下列几种推理过程是演绎推理的是()A.5和可以比较大小B.由平面三角形的性质,推测空间四面体的性质C.我校高中高二级有18个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人D. 预测股票走势图解:A2.推理“①矩形是平行四边形;②三角形不是平行四边形;③三角形不是矩形”中的小前提是( )A.①B.②C.③D.①和②解:B3.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b⊆/平面α,直线a ≠⊂平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的,这是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误解: A(二)课堂设计1.知识回顾(1)归纳推理和类比推理的含义和特点.(2)合情推理的逻辑缺陷是什么.2.问题探究问题探究一 演绎推理的基本方法 ●活动一 回顾合情推理,认知逻辑特征1. 练习: ① 对于任意正整数n ,猜想(2n -1)与(n +1)2的大小关系?②在平面内,若,a c b c ⊥⊥,则//a b . 类比到空间,你会得到什么结论?(结论:在空间中,若,a c b c ⊥⊥,则//a b ;或在空间中,若,,//αγβγαβ⊥⊥则.2. 讨论:以上推理属于什么推理,结论正确吗?合情推理的结论不一定正确,有待进一步证明,有什么能使结论正确的推理形式呢? ●活动二 结合实例,体会演绎推理导入:①所有的金属都能够导电,铜是金属,所以 ;②太阳系的大行星都以椭圆形轨道绕太阳运行,冥王星是太阳系的大行星,因此 ; ③奇数都不能被2整除,2007是奇数,所以 .讨论:上述例子的推理形式与我们学过的合情推理一样吗?在逻辑上有什么共同特点? ●活动三 总结共性,形成方法提问:观察教材引例,它们都由几部分组成,各部分有什么特点?“三段论”是演绎推理的一般模式:第一段:大前提——已知的一般原理;第二段:小前提——所研究的特殊情况;第三段:结论——根据一般原理,对特殊情况做出的判断.问题探究二 演绎推理的的简单运用. ●活动一 结合实例,体会演绎推理考查下面两个推理:①所有导体通电时都发热,铁是导体,所以铁通电时发热;②两个平面平行,其中一个平面内的任意直线必平行于另一平面,如果直线a 是其中一个平面内的一条直线,那么a 平行于另一条直线.思考两个问题:(1)这两个推理的第一句话都说的是什么?(2)这两个推理的第二、第三句话又说的是什么?通过以上探究,我们可以发现什么?用文字语言描述:演绎推理,顾名思义就是“所有人都对当然我也对”的一种推理.演绎推理的定义:从一般性的原理出发,推出某个特殊情况下的结论,称为演绎推理,又称为逻辑推理.是由一般到特殊的推理.●活动二 梳理小结,掌握演绎推理的逻辑含义例1:把下面的演绎推理写成三段论:所有的金属都能够导电,铀是金属,所以铀能导电【知识点:演绎推理的基本方法】详解:大前提:所有的金属能够导电小前提:铀是金属结论:铀能够导电点拨:对命题进行分析,找出大前提、小前提、结论然后根据三段论推理的模式进行改写. 例2:分析下面几个推理是否正确,说明为什么?(1)因为指数函数x a y =是增函数,而x y )21(=是指数函数,所以x y )21(=是增函数; (2)因为无理数是无限不循环小数,而π是无限不循环小数,所以π是无理数(3)因为过不共线的三点有且仅有一个平面,而A 、B 、C 为空间三点,所以过A 、B 、C 三点只能确定一个平面【知识点:演绎推理的基本方法】详解:以上几个推理都是错误的.(1)大前提错误;(2)推理形式错误;(3)小前提错误.点拨:演绎推理在大前提、小前提和推理形式都正确的前提下,得到的结论才一定是正确的. 例3:如图所示,在锐角三角形ABC 中,AD ⊥BC ,BE ⊥AC ,D ,E 为垂足,求证:AB 的中点M 到D ,E 的距离相等.M A B【知识点:简单的演绎推理】详解: (1)因为有一个内角为直角的三角形是直角三角形,…………大前提在△ABD 中,AD ⊥BC ,∠ADB =90 ,………………………小前提所以△ABD 是直角三角形. ……………………………………结论同理,△AEB 也是直角三角形(2)因为直角三角形斜边上的中线等于斜边的一半,…………………大前提而M 是Rt △ABD 斜边AB 的中点,DM 是斜边上的中线,………小前提所以DM =AB 21,…………………………………………………结论 同理,EM =AB 21. 所以DM =EM . 点拨:演绎推理应用规律方法:应用三段论证明问题时,要充分挖掘题目的外在和内在的条件(小前提),根据需要引入相关的适用的定理和性质(大前提),并保证每一步的推理都是正确的、严密的,才能得出正确的结论.3.课堂总结【知识梳理】关于演绎推理:(1) 定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理;(2) 特点:演绎推理是由一般到特殊的推理;(3) 模式:三段论.“三段论”是演绎推理的一般模式,包括:【重难点突破】(1)演绎推理是由一般到特殊的证明,它常用来证明和推理数学问题,注意推理过程的严密性,书写格式的规范性.(2)抓住演绎推理的一般模式——“三段论”:大前提——已知的一般原理;小前提——所研究的特殊情况;结论——根据一般原理,对特殊情况做出的判断.4.随堂检测1.下面几种推理过程是演绎推理的是( )A .两条直线平行,同旁内角互补,由此若∠A ,∠B 是两条平行直线被第三条直线所截得的同旁内角,则∠A +∠B =180°B .某校高三(1)班有55人,高三(2)班有54人,高三(3)班有52人,由此得出高三所有班人数超过50人C .由平面正三角形的性质,推测空间四面体的性质D .在数列{a n }中,a 1=1,a n =12⎝ ⎛⎭⎪⎫a n -1+1a n -1(n ≥2),由此归纳出{a n }的通项公式 【知识点:演绎推理的含义】解:A .2.“因为指数函数y =a x 是增函数(大前提),而y =⎝ ⎛⎭⎪⎫13x 是指数函数(小前提),所以y =⎝ ⎛⎭⎪⎫13x 是增函数(结论)”,上面推理的错误是( )A .大前提错导致结论错B .小前提错导致结论错C .推理形式错导致结论错D .大前提和小前提错都导致结论错【知识点:演绎推理的基本方法】解:A3.正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin (x 2+1)是奇函数.以上推理错误的原因是________.【知识点:演绎推理的基本方法】解:小前提错误.4.“∵四边形ABCD 是矩形,∴四边形ABCD 的对角线相等.”以上推理的大前提是________.【知识点:演绎推理的含义】解:矩形的对角线相等.5.三段论:“①小宏在2013年的高考中考入了重点本科院校;②小宏在2013年的高考中只要正常发挥就能考入重点本科院校;③小宏在2013年的高考中正常发挥”中,“小前提”是__________(填序号).【知识点:演绎推理的基本方法】解:③(三)课后作业基础型 自主突破1.“∵四边形ABCD 是矩形,∴四边形ABCD 的对角线相等”,补充以上推理的大前提是( )A .正方形都是对角线相等的四边形B .矩形都是对角线相等的四边形C .等腰梯形都是对角线相等的四边形D .矩形都是对边平行且相等的四边形【知识点:演绎推理的基本方法】解:B 由大前提、小前提、结论三者的关系,知大前提是:矩形是对角线相等的四边形.故应选B.2.“①一个错误的推理或者前提不成立,或者推理形式不正确,②这个错误的推理不是前提不成立,③所以这个错误的推理是推理形式不正确.”上述三段论是( )A .大前提错B .小前提错C .结论错D .正确的【知识点:演绎推理的含义】解:D 前提正确,推理形式及结论都正确.故应选D.3.《论语·学路》篇中说:“名不正,则言不顺;言不顺,则事不成;事不成,则礼乐不兴;礼乐不兴,则刑罚不中;刑罚不中,则民无所措手足;所以,名不正,则民无所措手足.”上述推理用的是( )A .类比推理B .归纳推理C .演绎推理D .一次三段论【知识点:演绎推理的含义】解:C 这是一个复合三段论,从“名不正”推出“民无所措手足”,连续运用五次三段论,属演绎推理形式.4.“因对数函数y =log a x (x >0)是增函数(大前提),而x y 31log =是对数函数(小前提),所以x y 31log =是增函数(结论)”.上面推理的错误是( ) A .大前提错导致结论错 B .小前提错导致结论错C .推理形式错导致结论错D .大前提和小前提都错导致结论错【知识点:演绎推理的含义】解:A 对数函数y =log a x 不是增函数,只有当a >1时,才是增函数,所以大前提是错误的.5.下面几种推理过程是演绎推理的是( )A .两条直线平行,同旁内角互补,因为∠A 和∠B 是两条平行直线被第三条直线所截的同旁内角,所以∠A +∠B =180°B .我国地质学家李四光发现中国松辽平原和中亚细亚的地质结构类似,而中亚细亚有丰富的石油,由此,他推断松辽平原也蕴藏着丰富的石油C .由6=3+3,8=3+5,10=3+7,12=5+7,14=7+7,...得出结论:一个偶数(大于4)可以写成两个质数之和D .在数列}{n a 中,11=a ,)2()1(2111≥+=--n a a a n n n ,由此归纳得出}{n a 的通项公式 【知识点:演绎推理的含义】解:A. B 选项是类比推理,C 、D 两个选项是归纳推理.6.三段论:“①只有船准时起航,才能准时到达目的港,②这艘船是准时到达目的港的,③所以这艘船是准时起航的”中的小前提是( )A .①B .②C .①②D .③【知识点:演绎推理的基本方法】解:B 易知应为②.故应选B.能力型 师生共研7.“10是5的倍数,15是5的倍数,所以15是10的倍数”上述推理( )A .大前提错B .小前提错C .推论过程错D .正确【知识点:演绎推理的基本方法】解:C 大小前提正确,结论错误,那么推论过程错.故应选C.8.凡自然数是整数,4是自然数,所以4是整数,以上三段论推理( )A .正确B .推理形式正确C .两个自然数概念不一致D .两个整数概念不一致【知识点:演绎推理的基本方法】解:A 三段论的推理是正确的.故应选A.9.在三段论中,M ,P ,S 的包含关系可表示为( )【知识点:简单的演绎推理】解:A如果概念P包含了概念M,则P必包含了M中的任一概念S,这时三者的包含可表示为;如果概念P排斥了概念M,则必排斥M中的任一概念S,这时三者的关系应为.故应选A.10.命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是()A.使用了归纳推理B.使用了类比推理C.使用了“三段论”,但大前提使用错误D.使用了“三段论”,但小前提使用错误【知识点:演绎推理的含义】解:D应用了“三段论”推理,小前提与大前提不对应,小前提使用错误导致结论错误.探究型多维突破11.用三段论形式证明:在梯形ABCD中,AD∥BC,AB=DC,则∠B=∠C.【知识点:简单的演绎推理】解:如下图延长AB,DC交于点M.①平行线分线段成比例大前提②△AMD 中AD ∥BC 小前提③MB BA =MC CD 结论①等量代换 大前提②AB =CD 小前提③MB =MC 结论在三角形中等边对等角 大前提MB =MC 小前提∠1=∠MBC =∠MCB =∠2 结论等量代换 大前提∠B =π-∠1 ∠C =π-∠2 小前提∠B =∠C 结论12.用三段论形式证明:f (x )=x 3+x (x ∈R )为奇函数.【知识点:简单的演绎推理】解:若f (-x )=-f (x ),则f (x )为奇函数 大前提∵f (-x )=(-x )3+(-x )=-x 3-x =-(x 3+x )=-f (x ) 小前提∴f (x )=x 3+x 是奇函数 结论自助餐1.在证明f (x )=2x +1为增函数的过程中,有下列四个命题:①增函数的定义是大前提;②增函数的定义是小前提;③函数f (x )=2x +1满足增函数的定义是大前提;④函数f (x )=2x +1满足增函数的定义是小前提.其中正确的命题是( )A .①④B .②④C .①③D .②③【知识点:演绎推理的含义】解:A .2.有一个“三段论”推理是这样的:对于可导函数)(x f ,如果0)(0='x f ,那么0x x =是函数)(x f 的极值点,因为3)(x x f =在0=x 处的导数值为0,所以0=x 是函数3)(x x f =的极值点,以上推理中( )A .大前提错误B .小前提错误C .推理形式错误D .结论正确【知识点:演绎推理的含义】解:A3.锐角三角形的面积等于底乘高的一半;直角三角形的面积等于底乘高的一半;钝角三角形的面积等于底乘高的一半;所以,凡是三角形的面积都等于底乘高的一半.以上推理运用的推理规则是( )A .三段论推理B .假言推理C .关系推理D .完全归纳推理【知识点:演绎推理的含义】解:D 所有三角形按角分,只有锐角三角形、Rt 三角形和钝角三角形三种情形,上述推理穷尽了所有的可能情形,故为完全归纳推理.4.若0>>b a ,0<<d c ,则一定有( ) A.c b d a > B.c b d a < C.d b c a < D.db c a > 【知识点:简单的演绎推理】解:B5.已知“对定义域D 内的任意x ,都有f (-x )=f (x ),则y =f (x )是偶函数”,则下列函数是偶函数的是( )A. y =2x B. y =lg x C.y =sin x D. y =cos x【知识点:简单的演绎推理】解:D 根据诱导公式,cos(-x )=cos x ,所以 y =cos x 是偶函数.6.下面三句话按三段论模式排列顺序正确的是( )①y =tan x 是三角函数;②三角函数是周期函数;③y =tan x 是周期函数.A.①②③B.③②①C.②③①D.②①③【知识点:演绎推理的含义】解:D ②是大前提,①是小前提,③是结论.7. 下面是关于演绎推理的几种叙述:①演绎推理是由一般到特殊的推理;②演绎推理得出的结论一定是正确的;③演绎推理的一般模式是“三段论”;④“三段论”中的大前提有时可以省略.其中正确的说法是________.(填序号)【知识点:演绎推理的含义】解:①③④ 根据课本知识容易得知①③④都是正确的,只有在大前提和小前提都正确的时候才能保证演绎推理的结论正确.8.求函数y =log 2x -2的定义域时,第一步推理中大前提是a 有意义时,a ≥0,小前提是log 2x -2有意义,结论是________.【知识点:演绎推理的含义】解:log 2x -2≥0由三段论方法知应为log 2x -2≥0.9.以下推理过程省略的大前提为:________.∵a 2+b 2≥2ab ,∴2(a 2+b 2)≥a 2+b 2+2ab .【知识点:演绎推理的含义】解:若a ≥b ,则a +c ≥b +c 由小前提和结论可知,是在小前提的两边同时加上了a 2+b 2,故大前提为:若a ≥b ,则a +c ≥b +c .10.四棱锥P -ABCD 中,O 为CD 上的动点,四边形ABCD 满足条件________时,V P -AOB 恒为定值(写出一个你认为正确的一个条件即可).【知识点:演绎推理的含义】解:四边形ABCD 为平行四边形或矩形或正方形等,设h 为P 到面ABCD 的距离,V P -AOB =13S △AOB ·h ,又S △AOB =12|AB |d (d 为O 到直线AB 的距离).因为h 、|AB |均为定值,所以V P -AOB 恒为定值时,只有d 也为定值,这是一个开放型问题,答案为四边形ABCD 为平行四边形或矩形或正方形等.11.用三段论写出求解下题的主要解答过程.若不等式|ax +2|<6的解集为(-1,2),求实数a 的值.【知识点:简单的演绎推理】解:推理的第一个关键环节:大前提:如果不等式f (x )<0的解集为(m ,n ),且f (m )、f (n )有意义,则m 、n 是方程f (x )=0的实数根,小前提:不等式|ax +2|<6的解集为(-1,2),且x =-1与x =2都使表达式|ax +2|-6有意义, 结论:-1和2是方程|ax +2|-6=0的根.∴|-a +2|-6=0与|2a +2|-6=0同时成立.推理的第二个关键环节:大前提:如果|x |=a ,a >0,那么x =±a ,小前提:|-a +2|=6且|2a +2|=6,结论:-a +2=±6且2a +2=±6.以下可得出结论a =-4.12.对于三次函数f (x )=ax 3+bx 2+cx +d (a ≠0),给出定义:设f ′(x )是函数y =f (x )的导数,f ″(x )是f ′(x )的导数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若f (x )=13x 3-12x 2+3x -512,请你根据这一发现,(1)求函数f (x )=13x 3-12x 2+3x -512的对称中心;(2)计算f (12 013)+f (22 013)+f (32 013)+f (42 013)+…+f (2 0122 013).点拨:证明本题依据的大前提是中心对称的定义,函数y =f (x )的图象上的任一点关于对称中心的对称点仍在图象上.小前提是f (x )=-a a x +a(a >0,且a ≠1)的图象关于点(12,-12)对称. (1)证明 函数f (x )的定义域为全体实数,任取一点(x ,y ),它关于点(12,-12)对称的点的坐标为(1-x ,-1-y ).由已知y =-a a x +a, 则-1-y =-1+a a x +a =-a xa x +a, f (1-x )=-a a 1-x +a =-a a a x +a =-a ·a x a +a ·a x =-a xa x +a, ∴-1-y =f (1-x ),即函数y =f (x )的图象关于点(12,-12)对称.(2)解 由(1)知-1-f (x )=f (1-x ),即f (x )+f (1-x )=-1.∴f (-2)+f (3)=-1,f (-1)+f (2)=-1,f (0)+f (1)=-1.则f(-2)+f(-1)+f(0)+f(1)+f(2)+f(3)=-3.。

2.1.演绎推理-人教B版选修2-2教案

2.1.演绎推理-人教B版选修2-2教案一、教学目标1.了解演绎推理的基本概念和形式规律。

2.掌握构建演绎推理的方法和技巧。

3.能够分析、评判和应用演绎推理。

二、教学重点1.演绎推理的基本概念和形式规律。

2.构建演绎推理的方法和技巧。

三、教学难点1.如何应用演绎推理分析和评判日常生活中的论述。

四、教学内容和过程1. 课前预习前置任务:学生通过阅读教材,了解演绎推理的基本概念和形式规律。

- 授课方式:个人自学。

- 要求:在课堂上完成预习作业的Review部分。

2. 演讲式讲授知识讲授:演绎推理的构建方法和技巧。

- 授课方式:演讲式讲授。

- 要求:学生要认真听讲,边听边做笔记。

3. 讨论式学习知识温习:通过实例分析和小组讨论,巩固学生的知识点。

- 授课方式:小组讨论。

- 要求:学生需要积极参与讨论并做好笔记。

4. 导练式学习知识运用:通过老师的示范和引导,对学生进行知识运用指导。

- 授课方式:导练式学习。

- 要求:学生要认真听讲,边听边做笔记。

5. 结合实际知识应用:在一些实际案例中,引导学生进行演绎推理的分析和评判。

- 授课方式:小组讨论。

- 要求:学生需要积极参与讨论并做好笔记。

6. 课后反思知识反思:通过在线课后问卷,对学生的学习效果和教学质量进行评估和反思。

- 授课方式:在线课后问卷。

- 要求:学生需要认真填写问卷,倾听老师的建议并做好笔记。

五、课程评估1.学生预习作业的Review部分。

2.小组讨论记录。

3.课后问卷。

六、参考资料1.《人教B版选修2语文》。

2.《语言与逻辑》。

人教A版高二数学选修2-2 第二章 第一节 2.1.2演绎推理(同步教案)

§2.1.2演绎推理教学目标:1. 了解演绎推理的含义。

2. 能正确地运用演绎推理进行简单的推理。

3. 了解合情推理与演绎推理之间的联系与差别。

教学重点:正确地运用演绎推理进行简单的推理;教学难点:了解合情推理与演绎推理之间的联系与差别.教学过程设计(一)、复习引入,激发兴趣。

【教师引入】复习:合情推理归纳推理从特殊到一般类比推理从特殊到特殊从具体问题出发――观察、分析比较、联想――归纳。

类比――提出猜想合情推理的结论不一定正确,有待进一步证明,有什么能使结论正确的推理形式呢?(二)、探究新知,揭示概念①所有的金属都能够导电,铜是金属,所以;②太阳系的大行星都以椭圆形轨道绕太阳运行,冥王星是太阳系的大行星,因此;③奇数都不能被2整除,2017是奇数,所以 .(填空→讨论:上述例子的推理形式与我们学过的合情推理一样吗?(三)、分析归纳,抽象概括从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理。

要点:由一般到特殊的推理。

“三段论”是演绎推理的一般模式:第一段:大前提——已知的一般原理;第二段:小前提——所研究的特殊情况;第三段:结论——根据一般原理,对特殊情况做出的判断.三段论的基本格式M—P(M是P)(大前提)S—M(S是M)(小前提)S—P(S是P)(结论)3.三段论推理的依据,用集合的观点来理解:若集合M的所有元素都具有性质P,S是M的一个子集,那么S中所有元素也都具有性质P.(四)、知识应用,深化理解例1:用三段论的形式写出下列演绎推理。

(1)三角形内角和180°,等边三角形内角和是180°.(2)0.332•是有理数。

例2.如图;在锐角三角形ABC 中,AD ⊥BC, BE ⊥AC,D,E 是垂足,求证AB 的中点M 到D,E 的距离相等解: (1)因为有一个内角是只直角的三角形是直角三角形,——大前提 在△ABC 中,AD ⊥BC,即∠ADB=90°——-小前提所以△ABD 是直角三角形——结论(2)因为直角三角形斜边上的中线等于斜边的一半,——大前提因为 DM 是直角三角形斜边上的中线,——小前提所以 DM= 21 AB ——结论 同理 EM= AB所以 DM=EM.例3:证明函数2()2f x x x =-+在(],1-∞-上是增函数.证明方法(定义法、导数法) → 指出:大前题、小前题、结论. 练习如图,在△ABC 中,AC > BC , CD 是AB 上的高,求证: ∠ACD > ∠BCD.(五)、归纳小结、布置作业合情推理与演绎推理的区别合情推理 演绎推理归纳推理类比推理区别推理形式由部分到整体、个别到一般的推理。

最新人教版高中数学选修1-2《演绎推理》教学设计

教学设计2.1.2演绎推理整体设计教材分析《演绎推理》是高中数学中的基本思维过程,是根据一个或几个已知的判断来确定一个新的判断的思维过程,也是人们学习和生活中经常使用的思维方式,是正确进行逻辑推理必不可少的基础知识,是高考热点.演绎推理具有证明结论、整理和构建知识体系的作用,是公理体系中的基本推理方法.本节内容相对比较抽象,教学中应紧密结合已学过的生活实例和数学实例,让学生了解演绎推理的含义,并在上一节学习的基础上,了解合情推理与演绎推理之间的联系与差异,同时纠正推理过程中可能犯的典型错误,增强学生的好奇心,激发出潜在的创造力,使学生能正确应用合情推理和演绎推理去进行一些简单的推理,证明一些数学结论.课时划分1课时.教学目标1.知识与技能目标了解演绎推理的含义,了解合情推理与演绎推理之间的联系与差别,能正确地运用演绎推理,进行简单的推理.2.过程与方法目标了解和体会演绎推理在日常生活和学习中的应用,培养学生的逻辑推理能力,使学生学会观察,大胆猜想,敢于归纳、挖掘其中所包含的推理思路和思想;明确演绎推理的基本过程,提高学生的创新能力.3.情感、态度与价值观通过本节课的学习,体验推理源于实践,又应用于实践的思想,激发学生学习的兴趣,培养学生勇于探索、创新的个性品质.重点难点重点:正确地运用演绎推理进行简单的推理证明.难点:了解合情推理与演绎推理之间的联系与差别.教学过程引入新课观察与思考:新学期开始了,班里换了新的老师,他们是林老师、王老师和吴老师,三位老师分别教语文、数学、英语.已知:每个老师只教一门课;林老师上课全用汉语;英语老师是一个学生的哥哥;吴老师是一位女教师,她比数学老师活泼.问:三位老师各上什么课?活动设计:让学生带着浓厚的兴趣,先独立思考,然后小组交流.引导分析:启发学生把自己的思考过程借助于下列表格展示出来,从而解决问题.注意与学生交流.学情预测:开始学生的回答可能不全面、不准确,但在其他学生的不断补充、纠正下,会趋于准确.活动结果:林老师——数学,王老师——英语,吴老师——语文.设计意图本着“兴趣是最好的老师”的原则,结合生活中具体的实例,激发学生学习的兴趣,让学生体会“数学来源于生活”,创造和谐积极的学习气氛,体会演绎推理的现实意义.探究新知判断下列推理是合情推理吗?分析推理过程,明确它们的推理形式.(1)所有的金属都能导电,铜是金属,所以,铜能够导电.(2)一切奇数都不能被2整除,(2100+1)是奇数,所以,(2100+1)不能被2整除.(3)三角函数都是周期函数,tanα是三角函数,所以,tanα是周期函数.活动设计:学生口答,教师板书.学情预测:学生积极思考片刻,有学生举手回答且回答准确.活动结果:以上推理不是合情推理,它们的推理形式如下:(1)所有的金属都能导电,第一段铜是金属,第二段所以,铜能够导电.第三段(2)一切奇数都不能被2整除,第一段(2100+1)是奇数,第二段所以,(2100+1)不能被2整除.第三段(3)三角函数都是周期函数,第一段tanα是三角函数,第二段所以,tanα是周期函数.第三段提出问题:对于上面的三个推理,它们的推理形式有什么特点?活动设计:学生独立思考,并自由发言.学情预测:通过观察和分析,学生有足够的能力来解决上面所提问题.活动结果:上面的例子都有三段,是以一般的判断为前提,得出一些个别的、具体的判断:(1)所有的金属都能导电,大前提铜是金属,小前提所以,铜能够导电.结论(2)一切奇数都不能被2整除,大前提(2100+1)是奇数,小前提所以,(2100+1)不能被2整除.结论(3)三角函数都是周期函数,大前提tanα是三角函数,小前提所以,tanα是周期函数.结论教师:演绎推理的定义:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.1.演绎推理是由一般到特殊的推理;2.“三段论”是演绎推理的一般模式,包括(1)大前提——已知的一般原理;(2)小前提——所研究的特殊情况;(3)结论——根据一般原理,对特殊情况做出的判断.设计意图通过对演绎推理概念的学习,体会以“三段论”模式来说明演绎推理的特点,从中概括出演绎推理的推理过程,对演绎推理是一般到特殊的推理有一个直观的认识,训练和培养学生的演绎推理能力.理解新知提出问题:在应用“三段论”进行推理的过程中,得到的推理结论一定正确吗?为什么?例如:(1)所有阔叶植物都是落叶的,葡萄树是阔叶植物,所以,葡萄树都是落叶的.(2)因为所有边长都相等的凸多边形是正多边形,而菱形是所有边长都相等的凸多边形,所以菱形是正多边形.(3)英雄难过美人关,我难过美人关,所以,我是英雄.活动设计:学生独立思考,先有学生自由发言,然后教师小结并形成新知.学情预测:学生们在积极思考,对(2)(3)两个小题的结论产生分歧,意见不统一.活动结果:(1)推理形式正确,前提正确,结论正确.(2)推理形式正确,大前提错误,结论错误.(3)推理形式错误(大、小前提没有连接起来),结论错误.教师:通过上面的学习,学生们对演绎推理和“三段论”模式都有了更深的了解,其中特别注意:(1)三段论的基本格式M—P(M是P)(大前提)S—M(S是M)(小前提)S—P(S是P)(结论)(2)三段论推理的依据,用集合的观点来理解:若集合M的所有元素都具有性质P,S 是M的一个子集,那么S中所有元素也都具有性质P.(3)在演绎推理中,只有前提和推理形式都正确,结论才是正确的.设计意图通过所举的例子,教师可以了解学生对演绎推理和三段论模式的理解程度,明确概念的内涵和外延,加深理解,及时更正学生在认识推理中产生的错误和偏差.提出问题:合情推理与演绎推理有什么区别与联系?活动设计:学生独立思考,先由学生自由发言,然后教师小结并形成新知.活动结果:设计意图通过比较合情推理与演绎推理的区别与联系,有助于学生更清晰地理解和掌握这两种推理方法,并能灵活应用.运用新知例1如图,在锐角三角形ABC 中,AD ⊥BC ,BE ⊥AC ,D ,E 是垂足,求证:AB 的中点M 到D ,E 的距离相等.思路分析:根据三段论的推理过程进行证明.证明:(1)因为有一个内角是直角的三角形是直角三角形,——大前提 在△ABC 中,AD ⊥BC ,即∠ADB =90°,——小前提 所以△ABD 是直角三角形.——结论(2)因为直角三角形斜边上的中线等于斜边的一半,——大前提 因为DM 是直角三角形ABD 斜边上的中线,——小前提 所以DM =12AB.——结论同理EM =12AB.所以DM =EM.点评:通过对上述问题的证明,挖掘其中包含的推理思路,使学生明确演绎推理的基本过程,突出演绎推理中的“大前提”“小前提”和“结论”.巩固练习由①正方形的对角线相等;②平行四边形的对角线相等;③正方形是平行四边形,根据“三段论”推理得出一个结论,则这个结论是( )A .正方形的对角线相等B .平行四边形的对角线相等C .正方形是平行四边形D .其他 答案:A例2证明函数f(x)=-x 2+2x 在(-∞,1)内是增函数.思路分析:证明本例所依据的大前提是:在某个区间(a ,b)内,如果f ′(x)>0,那么函数y =f(x)在这个区间内单调递增.小前提是f(x)=-x 2+2x 在(-∞,1)内有f ′(x)>0,这是证明本例的关键. 证明:f ′(x)=-2x +2,因为当x ∈(-∞,1)时,有1-x>0, 所以f ′(x)=-2x +2=2(1-x)>0,于是,根据“三段论”,可知f(x)=-x 2+2x 在(-∞,1)内是增函数.点评:通过对上述问题的证明,挖掘其中包含的推理思路,使学生明确演绎推理的基本过程,并加深对演绎推理的认识.教师:许多学生能写出证明过程,但不一定非常清楚证明的逻辑规则,因此在表述证明过程时往往显得杂乱无章,通过这两个例子的教学,应当使这种状况得到改善.变练演编(1)已知a ,b ,m 均为正实数,且b<a ,求证:b a <b +ma +m.(2)已知△ABC 的三条边分别为a ,b ,c ,则1+ <1+.思路分析:(1)中根据演绎推理的证明过程进行证明;(2)中不必证明,答案不唯一. 证明:(1)不等式两边乘以同一个正数,不等式仍成立,——大前提 b<a ,m>0,——小前提 所以mb<ma.——结论不等式两边加上同一个数,不等式仍成立,——大前提 mb<ma ,ab =ab ,——小前提所以ab +mb<ab +ma ,即b(a +m)<a(b +m).——结论不等式两边除以同一个正数,不等式仍成立,——大前提 b(a +m)<a(b +m),a(a +m)>0,——小前提 所以,b (a +m )a (a +m )<a (b +m )a (a +m ),即b a <b +m a +m .——结论(2)c 1+c <a +b 1+a +b (答案不唯一,例如a1+a <c +b 1+c +b). 点评:通过证明(1)中不等式成立,感知条件与结论的不唯一性,例如:已知a ,b ,m 均为正实数,若a<b ,求证:a b <a +mb +m.(2)中加强学生思维的灵活性、分析问题的深刻性.活动设计:学生讨论交流并回答问题,老师对不同的合理答案给予肯定,将所有发现的结论一一列举,并由学生予以评价.设计意图通过变练演编,使学生对演绎推理的认识不断加深,同时培养学生逻辑思维的严谨性. 达标检测1.下列表述正确的是( )①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.A .①②③B .②③④C .②④⑤D .①③⑤2.有这样一段演绎推理“有些有理数是真分数,整数是有理数,则整数是真分数”,结论显然是错误的,是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误3.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内的所有直线;已知直线b 平面α,直线a 平面α,直线b ∥平面α,则直线b ∥直线a ”,结论显然是错误的,这是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误 答案:1.D 2.C 3.A课堂小结1.知识收获:(1)演绎推理的定义:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括大前提——已知的一般原理;小前提——所研究的特殊情况;结论——根据一般原理,对特殊情况做出的判断.2.方法收获:利用演绎推理判断进行证明的方法与步骤:①找出大前提;②找出小前提;③根据“三段论”推出结论.3.思维收获:培养和训练学生严谨缜密的逻辑思维.布置作业课本本节练习1、2、3.补充练习基础练习1.把“函数y=x2+x+1的图象是一条抛物线”恢复成三段论.2.下面说法正确的有()(1)演绎推理是由一般到特殊的推理;(2)演绎推理得到的结论一定是正确的;(3)演绎推理的一般模式是“三段论”形式;(4)演绎推理的结论的正误与大前提、小前提和推理形式有关.A.1个B.2个C.3个D.4个3.下列几种推理过程是演绎推理的是()A.5和22可以比较大小B.由平面三角形的性质,推测空间四面体的性质C.东升高中高二年级有15个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人D.预测股票走势图4.已知△ABC,∠A=30°,∠B=60°,求证:a<b.证明:∵∠A=30°,∠B=60°,∴∠A<∠B,∴a<b,画线部分是演绎推理的()A.大前提B.小前提C.结论D.三段论5.用演绎推理法证明y=x是增函数时的大前提是______.答案:1.解:二次函数的图象是一条抛物线(大前提),函数y=x2+x+1是二次函数(小前提),所以,函数y=x2+x+1的图象是一条抛物线(结论).2.C 3.A 4.B 5.增函数的定义拓展练习6.S为△ABC所在平面外一点,SA⊥平面ABC,平面SAB⊥平面SBC.求证:AB⊥BC.证明:如图,作AE⊥SB于E.∵平面SAB⊥平面SBC,∴AE⊥平面SBC,∴AE⊥BC.又∵SA⊥平面ABC,∴SA⊥BC.∵SA∩AE=A,SA⊂平面SAB,AE⊂平面SAB,∴BC⊥平面SAB.∵AB⊂平面SAB,∴AB⊥BC.设计说明由于这节课概念性、理论性较强,一般的教学方式会使学生感到枯燥乏味,为此,激发学生的学习兴趣是上好本节课的关键.教学中始终要注意以学生为主,让学生在自我思考、相互交流中去总结概念“下定义”,去体会概念的本质属性.学生对于演绎推理和三段论的理解,需要经过一定时间的体会,先给出学生常见问题的解决步骤,结合以前所学的知识来解决问题,在教学中经常借助这些概念表达、阐述和分析问题.引导学生从日常生活中的推理问题出发,激发学生的学习兴趣,结合学生熟知的旧知识归纳新知识,同时在应用新知的过程中,将所学的知识条理化,使学生的认知结构更趋于合理.备课资料例1小王、小刘、小张参加了今年的高考,考完后在一起议论.小王说:“我肯定考上重点大学.”小刘说:“重点大学我是考不上了.”小张说:“要是不论重点不重点,我考上肯定没问题.”发榜结果表明,三人中考取重点大学、一般大学和没考上大学的各有一个,并且他们三个人的预言只有一个人是对的,另外两个人的预言都同事实恰好相反.可见() A.小王没考上,小刘考上一般大学,小张考上重点大学B.小王考上一般大学,小刘没考上,小张考上重点大学C.小王没考上,小刘考上重点大学,小张考上一般大学D.小王考上一般大学,小刘考上重点大学,小张没考上解析:根据推理知识得出结论.答案:C例2已知直线l、m,平面α、β,且l⊥α,m∥β,给出下列四个命题:(1)若α∥β,则l⊥m;(2)若l⊥m,则α∥β;(3)若α⊥β,则l∥m;(4)若l∥m,则α⊥β.其中正确命题的个数是()A.1 B.2C.3 D.4解析:根据演绎推理的定义,逐一判断结论的正误.由直线和平面、平面和平面平行和垂直的判定定理、性质定理,可知应选B.答案:B点评:以准确、完整地理解条件为基础,才能判断命题的正误.例3函数y=f(x)在(0,2)上是增函数,函数y=f(x+2)是偶函数,则f(1),f(2.5),f(3.5)的大小关系是______.解析:根据函数的性质进行判断.∵函数y=f(x)在(0,2)上是增函数,∴0<x+2<2,即-2<x<0.∴函数y=f(x+2)在(-2,0)上是增函数.又∵函数y=f(x+2)是偶函数,∴函数y=f(x+2)在(0,2)上是减函数.由图象可得f(2.5)>f(1)>f(3.5).故应填f(2.5)>f(1)>f(3.5).答案:f(2.5)>f(1)>f(3.5)点评:根据函数的基本性质,结合三段论的推理模式可得.例4已知lg2=m,计算lg0.8.分析:利用所学的推理知识解决问题.解:lga n=nlga(a>0),——大前提lg8=lg23,——小前提lg8=3lg2.——结论lg ab=lga-lgb(a>0,b>0),——大前提lg0.8=lg 810,——小前提所以lg0.8=lg8-1=3lg2-1=3m-1.——结论点评:找出三段论的大前提与小前提即可得到答案.(设计者:李小青)。

高中数学选修2-2教学设计4:2.1.2 演绎推理教案

2.1.2 演绎推理三维目标1.知识与技能(1)让学生知道演绎推理的含义,以及演绎推理与合情推理的联系与差异.(2)能运用演绎推理的基本方法“三段论”进行一些简单的推理.2.过程与方法(1)结合已学过的数学实例和生活中的实例,引出演绎推理的概念.(2)通过对实际例子的分析,从中概括出演绎推理的推理过程.(3)通过一些证明题的实例,让学生体会“三段论”的推理形式.3.情感、态度与价值观让学生体会演绎推理的逻辑推理美,让学生亲身经历数学研究的过程,感受数学的魅力,进而激发自身的求知欲.了解演绎推理在数学证明中的重要地位和日常生活中的作用,养成言之有理,论证有据的思维习惯.重点难点重点:了解演绎推理的含义,理解合情推理与演绎推理的区别与联系,能利用“三段论”进行简单的推理.难点:利用三段论证明一些实际问题.通过比较合情推理与演绎推理的区别与联系,加深学生对概念的理解,在演绎推理的应用中要注意大前提、小前提的应用方法与技巧,注意推理形式的正确性.可将常见的证明题型分类研究,探究每种题型的特点,总结证明方法的特征,学以致用使所证问题化难为易.教学方式建议本课运用自学指导法,通过创设问题情境,引导学生自学探究演绎推理与合情推理的区别与联系,了解演绎推理的作用和应用方式方法.教师指导重点应放在“三段论”的理解与应用上,师生共同研讨大前提、小前提、结论之间的关系,帮助学生分析大前提、小前提的作用及应用方法,引导学生挖掘证明过程包含的推理思路,明确演绎推理的基本过程,总结规律方法,使学生能举一反三、触类旁通.本部分的练习题不在“多”,而在“精”,关键在理解.教学流程创设问题情境,引出问题,引导学生认识演绎推理的概念,了解演绎推理与合情推理的区别与联系.利用填一填的形式,使学生自主学习本节基础知识,并反馈了解,对理解有困难的概念加以讲解.引导学生在学习基础知识的基础上完成例题1,总结三段论的特点.通过变式训练,总结此类问题易犯的错误.师生共同分析探究例题2的证明方法:找出大前提、小前提,利用三段论给出证明.引导学生完成互动探究.探究一演绎推理看下面两个问题:(1)一切奇数都不能被2整除,(22012+1)是奇数,所以(22012+1)不能被2整除;(2)两个平面平行,则其中一个平面内的任意直线必平行于另一个平面,如果直线a 是其中一个平面内的一条直线,那么a 平行于另一个平面.1.这两个问题中的第一句都说的是什么?【提示】 都说的是一般原理.2.第二句又说的是什么?【提示】 都说的是特殊示例.3.第三句呢?【提示】 由一般原理对特殊示例作出判断.1.演绎推理(1)含义:从一般性的原理出发,推出某个特殊情况下的结论的推理.(2)特点:由一般到特殊的推理.2.三段论探究二 把演绎推理写成三段论形式例1 将下列推理写成“三段论”的形式:(1)向量是既有大小又有方向的量,故零向量也有大小和方向;(2)矩形的对角线相等,正方形是矩形,所以正方形的对角线相等;(3)0.332·是有理数;(4)y=sin x (x ∈R )是周期函数.【思路探究】首先分析出每个题的大前提、小前提及结论,再写成三段论的形式.【自主解答】(1)向量是既有大小又有方向的量,大前提零向量是向量,小前提所以零向量也有大小和方向.结论(2)每一个矩形的对角线都相等,大前提正方形是矩形,小前提正方形的对角线相等.结论(3)所有的循环小数都是有理数,大前提0.332·是循环小数,小前提0.332·是有理数.结论(4)三角函数是周期函数,大前提y =sin x 是三角函数,小前提y =sin x 是周期函数,结论规律方法用三段论写推理过程时,关键是明确大、小前提,三段论中的大前提提供了一个一般性的原理,小前提指出了一种特殊情况,两个命题结合起来,揭示一般原理与特殊情况的内在联系.有时可省略小前提,有时甚至也可大前提与小前提都省略.在寻找大前提时,可找一个使结论成立的充分条件作为大前提.变式练习指出下列推理中的错误,并分析产生错误的原因:(1)整数是自然数,大前提-3是整数,小前提-3是自然数.结论(2)常数函数的导函数为0,大前提函数f (x )的导函数为0,小前提f (x )为常数函数.结论(3)无理数是无限不循环小数,大前提13(0.33333…)是无限不循环小数,小前提 13是无理数结论 [解析](1)结论是错误的,原因是大前提错误.自然数是非负整数.(2)结论是错误的,原因是推理形式错误.大前提指出的一般原理中结论为“导函数为0”,因此演绎推理的结论也应为“导函数为0”.(3)结论是错误的,原因是小前提错误13(0.33333…)是循环小数而不是无限不循环小数. 探究三 三段论在证明几何问题中的应用例2 已知在梯形ABCD 中,DC =DA ,AD ∥BC .求证:AC 平分∠BCD .(用三段论证明)【思路探究】观察图形→DC=DA⇒∠1=∠2→AD∥BC⇒∠1=∠3→∠2=∠3【自主解答】∵等腰三角形两底角相等,大前提△ADC是等腰三角形,∠1和∠2是两个底角,小前提∴∠1=∠2结论∵两条平行线被第三条直线截得的内错角相等,大前提∠1和∠3是平行线AD、BC被AC截得的内错角,小前提∴∠1=∠3.结论∵等于同一个角的两个角相等,大前提∠2=∠1,∠3=∠1,小前提∴∠2=∠3,即AC平分∠BCD.结论规律方法1.三段论推理的根据,从集合的观点来理解,就是:若集合M的所有元素都具有性质P,S是M的子集,那么S中所有元素都具有性质P.2.数学问题的解决和证明都蕴含着演绎推理,即一连串的三段论,关键是找到每一步推理的依据——大前提、小前提,注意前一个推理的结论可作为下一个三段论的前提.规律方法合情推理仅是“合乎情理”的推理,它得到的结论不一定正确.但合情推理常常帮助我们猜测和发现新的规律,为我们提供证明的思路和方法,而演绎推理得到的结论一定正确(前提和推理形式都正确的前提下).二者结合可以利用合情推理去发现问题,然后用演绎推理进行论证.作业:[解析]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学设计2.1.2演绎推理整体设计教材分析《演绎推理》是高中数学中的基本思维过程,是根据一个或几个已知的判断来确定一个新的判断的思维过程,也是人们学习和生活中经常使用的思维方式,是正确进行逻辑推理必不可少的基础知识,是高考热点.演绎推理具有证明结论、整理和构建知识体系的作用,是公理体系中的基本推理方法.本节内容相对比较抽象,教学中应紧密结合已学过的生活实例和数学实例,让学生了解演绎推理的含义,并在上一节学习的基础上,了解合情推理与演绎推理之间的联系与差异,同时纠正推理过程中可能犯的典型错误,增强学生的好奇心,激发出潜在的创造力,使学生能正确应用合情推理和演绎推理去进行一些简单的推理,证明一些数学结论.课时划分1课时.教学目标1.知识与技能目标了解演绎推理的含义,了解合情推理与演绎推理之间的联系与差别,能正确地运用演绎推理,进行简单的推理.2.过程与方法目标了解和体会演绎推理在日常生活和学习中的应用,培养学生的逻辑推理能力,使学生学会观察,大胆猜想,敢于归纳、挖掘其中所包含的推理思路和思想;明确演绎推理的基本过程,提高学生的创新能力.3.情感、态度与价值观通过本节课的学习,体验推理源于实践,又应用于实践的思想,激发学生学习的兴趣,培养学生勇于探索、创新的个性品质.重点难点重点:正确地运用演绎推理进行简单的推理证明.难点:了解合情推理与演绎推理之间的联系与差别.教学过程引入新课观察与思考:新学期开始了,班里换了新的老师,他们是林老师、王老师和吴老师,三位老师分别教语文、数学、英语.已知:每个老师只教一门课;林老师上课全用汉语;英语老师是一个学生的哥哥;吴老师是一位女教师,她比数学老师活泼.问:三位老师各上什么课?活动设计:让学生带着浓厚的兴趣,先独立思考,然后小组交流.引导分析:启发学生把自己的思考过程借助于下列表格展示出来,从而解决问题.注意与学生交流.学情预测:开始学生的回答可能不全面、不准确,但在其他学生的不断补充、纠正下,会趋于准确.活动结果:林老师——数学,王老师——英语,吴老师——语文.设计意图本着“兴趣是最好的老师”的原则,结合生活中具体的实例,激发学生学习的兴趣,让学生体会“数学来源于生活”,创造和谐积极的学习气氛,体会演绎推理的现实意义.探究新知判断下列推理是合情推理吗?分析推理过程,明确它们的推理形式.(1)所有的金属都能导电,铜是金属,所以,铜能够导电.(2)一切奇数都不能被2整除,(2100+1)是奇数,所以,(2100+1)不能被2整除.(3)三角函数都是周期函数,tanα是三角函数,所以,tanα是周期函数.活动设计:学生口答,教师板书.学情预测:学生积极思考片刻,有学生举手回答且回答准确.活动结果:以上推理不是合情推理,它们的推理形式如下:(1)所有的金属都能导电,第一段铜是金属,第二段所以,铜能够导电.第三段(2)一切奇数都不能被2整除,第一段(2100+1)是奇数,第二段所以,(2100+1)不能被2整除.第三段(3)三角函数都是周期函数,第一段tanα是三角函数,第二段所以,tanα是周期函数.第三段提出问题:对于上面的三个推理,它们的推理形式有什么特点?活动设计:学生独立思考,并自由发言.学情预测:通过观察和分析,学生有足够的能力来解决上面所提问题.活动结果:上面的例子都有三段,是以一般的判断为前提,得出一些个别的、具体的判断:(1)所有的金属都能导电,大前提铜是金属,小前提所以,铜能够导电.结论(2)一切奇数都不能被2整除,大前提(2100+1)是奇数,小前提所以,(2100+1)不能被2整除.结论(3)三角函数都是周期函数,大前提tanα是三角函数,小前提所以,tanα是周期函数.结论教师:演绎推理的定义:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.1.演绎推理是由一般到特殊的推理;2.“三段论”是演绎推理的一般模式,包括(1)大前提——已知的一般原理;(2)小前提——所研究的特殊情况;(3)结论——根据一般原理,对特殊情况做出的判断.设计意图通过对演绎推理概念的学习,体会以“三段论”模式来说明演绎推理的特点,从中概括出演绎推理的推理过程,对演绎推理是一般到特殊的推理有一个直观的认识,训练和培养学生的演绎推理能力.理解新知提出问题:在应用“三段论”进行推理的过程中,得到的推理结论一定正确吗?为什么?例如:(1)所有阔叶植物都是落叶的,葡萄树是阔叶植物,所以,葡萄树都是落叶的.(2)因为所有边长都相等的凸多边形是正多边形,而菱形是所有边长都相等的凸多边形,所以菱形是正多边形.(3)英雄难过美人关,我难过美人关,所以,我是英雄.活动设计:学生独立思考,先有学生自由发言,然后教师小结并形成新知.学情预测:学生们在积极思考,对(2)(3)两个小题的结论产生分歧,意见不统一.活动结果:(1)推理形式正确,前提正确,结论正确.(2)推理形式正确,大前提错误,结论错误.(3)推理形式错误(大、小前提没有连接起来),结论错误.教师:通过上面的学习,学生们对演绎推理和“三段论”模式都有了更深的了解,其中特别注意:(1)三段论的基本格式M—P(M是P)(大前提)S—M(S是M)(小前提)S—P(S是P)(结论)(2)三段论推理的依据,用集合的观点来理解:若集合M的所有元素都具有性质P,S 是M的一个子集,那么S中所有元素也都具有性质P.(3)在演绎推理中,只有前提和推理形式都正确,结论才是正确的.设计意图通过所举的例子,教师可以了解学生对演绎推理和三段论模式的理解程度,明确概念的内涵和外延,加深理解,及时更正学生在认识推理中产生的错误和偏差.提出问题:合情推理与演绎推理有什么区别与联系?活动设计:学生独立思考,先由学生自由发言,然后教师小结并形成新知.活动结果:设计意图通过比较合情推理与演绎推理的区别与联系,有助于学生更清晰地理解和掌握这两种推理方法,并能灵活应用.运用新知例1如图,在锐角三角形ABC 中,AD ⊥BC ,BE ⊥AC ,D ,E 是垂足,求证:AB 的中点M 到D ,E 的距离相等.思路分析:根据三段论的推理过程进行证明.证明:(1)因为有一个内角是直角的三角形是直角三角形,——大前提 在△ABC 中,AD ⊥BC ,即∠ADB =90°,——小前提 所以△ABD 是直角三角形.——结论(2)因为直角三角形斜边上的中线等于斜边的一半,——大前提 因为DM 是直角三角形ABD 斜边上的中线,——小前提 所以DM =12AB.——结论同理EM =12AB.所以DM =EM.点评:通过对上述问题的证明,挖掘其中包含的推理思路,使学生明确演绎推理的基本过程,突出演绎推理中的“大前提”“小前提”和“结论”.巩固练习由①正方形的对角线相等;②平行四边形的对角线相等;③正方形是平行四边形,根据“三段论”推理得出一个结论,则这个结论是( )A .正方形的对角线相等B .平行四边形的对角线相等C .正方形是平行四边形D .其他 答案:A例2证明函数f(x)=-x 2+2x 在(-∞,1)内是增函数.思路分析:证明本例所依据的大前提是:在某个区间(a ,b)内,如果f ′(x)>0,那么函数y =f(x)在这个区间内单调递增.小前提是f(x)=-x 2+2x 在(-∞,1)内有f ′(x)>0,这是证明本例的关键. 证明:f ′(x)=-2x +2,因为当x ∈(-∞,1)时,有1-x>0, 所以f ′(x)=-2x +2=2(1-x)>0,于是,根据“三段论”,可知f(x)=-x 2+2x 在(-∞,1)内是增函数.点评:通过对上述问题的证明,挖掘其中包含的推理思路,使学生明确演绎推理的基本过程,并加深对演绎推理的认识.教师:许多学生能写出证明过程,但不一定非常清楚证明的逻辑规则,因此在表述证明过程时往往显得杂乱无章,通过这两个例子的教学,应当使这种状况得到改善.变练演编(1)已知a ,b ,m 均为正实数,且b<a ,求证:b a <b +ma +m.(2)已知△ABC 的三条边分别为a ,b ,c ,则1+ <1+.思路分析:(1)中根据演绎推理的证明过程进行证明;(2)中不必证明,答案不唯一. 证明:(1)不等式两边乘以同一个正数,不等式仍成立,——大前提 b<a ,m>0,——小前提 所以mb<ma.——结论不等式两边加上同一个数,不等式仍成立,——大前提 mb<ma ,ab =ab ,——小前提所以ab +mb<ab +ma ,即b(a +m)<a(b +m).——结论不等式两边除以同一个正数,不等式仍成立,——大前提 b(a +m)<a(b +m),a(a +m)>0,——小前提 所以,b (a +m )a (a +m )<a (b +m )a (a +m ),即b a <b +m a +m .——结论(2)c 1+c <a +b 1+a +b (答案不唯一,例如a1+a <c +b 1+c +b). 点评:通过证明(1)中不等式成立,感知条件与结论的不唯一性,例如:已知a ,b ,m 均为正实数,若a<b ,求证:a b <a +mb +m.(2)中加强学生思维的灵活性、分析问题的深刻性.活动设计:学生讨论交流并回答问题,老师对不同的合理答案给予肯定,将所有发现的结论一一列举,并由学生予以评价.设计意图通过变练演编,使学生对演绎推理的认识不断加深,同时培养学生逻辑思维的严谨性. 达标检测1.下列表述正确的是( )①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.A .①②③B .②③④C .②④⑤D .①③⑤2.有这样一段演绎推理“有些有理数是真分数,整数是有理数,则整数是真分数”,结论显然是错误的,是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误3.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内的所有直线;已知直线b 平面α,直线a 平面α,直线b ∥平面α,则直线b ∥直线a ”,结论显然是错误的,这是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误 答案:1.D 2.C 3.A课堂小结1.知识收获:(1)演绎推理的定义:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括大前提——已知的一般原理;小前提——所研究的特殊情况;结论——根据一般原理,对特殊情况做出的判断.2.方法收获:利用演绎推理判断进行证明的方法与步骤:①找出大前提;②找出小前提;③根据“三段论”推出结论.3.思维收获:培养和训练学生严谨缜密的逻辑思维.布置作业课本本节练习1、2、3.补充练习基础练习1.把“函数y=x2+x+1的图象是一条抛物线”恢复成三段论.2.下面说法正确的有()(1)演绎推理是由一般到特殊的推理;(2)演绎推理得到的结论一定是正确的;(3)演绎推理的一般模式是“三段论”形式;(4)演绎推理的结论的正误与大前提、小前提和推理形式有关.A.1个B.2个C.3个D.4个3.下列几种推理过程是演绎推理的是()A.5和22可以比较大小B.由平面三角形的性质,推测空间四面体的性质C.东升高中高二年级有15个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人D.预测股票走势图4.已知△ABC,∠A=30°,∠B=60°,求证:a<b.证明:∵∠A=30°,∠B=60°,∴∠A<∠B,∴a<b,画线部分是演绎推理的()A.大前提B.小前提C.结论D.三段论5.用演绎推理法证明y=x是增函数时的大前提是______.答案:1.解:二次函数的图象是一条抛物线(大前提),函数y=x2+x+1是二次函数(小前提),所以,函数y=x2+x+1的图象是一条抛物线(结论).2.C 3.A 4.B 5.增函数的定义拓展练习6.S为△ABC所在平面外一点,SA⊥平面ABC,平面SAB⊥平面SBC.求证:AB⊥BC.证明:如图,作AE⊥SB于E.∵平面SAB⊥平面SBC,∴AE⊥平面SBC,∴AE⊥BC.又∵SA⊥平面ABC,∴SA⊥BC.∵SA∩AE=A,SA⊂平面SAB,AE⊂平面SAB,∴BC⊥平面SAB.∵AB⊂平面SAB,∴AB⊥BC.设计说明由于这节课概念性、理论性较强,一般的教学方式会使学生感到枯燥乏味,为此,激发学生的学习兴趣是上好本节课的关键.教学中始终要注意以学生为主,让学生在自我思考、相互交流中去总结概念“下定义”,去体会概念的本质属性.学生对于演绎推理和三段论的理解,需要经过一定时间的体会,先给出学生常见问题的解决步骤,结合以前所学的知识来解决问题,在教学中经常借助这些概念表达、阐述和分析问题.引导学生从日常生活中的推理问题出发,激发学生的学习兴趣,结合学生熟知的旧知识归纳新知识,同时在应用新知的过程中,将所学的知识条理化,使学生的认知结构更趋于合理.备课资料例1小王、小刘、小张参加了今年的高考,考完后在一起议论.小王说:“我肯定考上重点大学.”小刘说:“重点大学我是考不上了.”小张说:“要是不论重点不重点,我考上肯定没问题.”发榜结果表明,三人中考取重点大学、一般大学和没考上大学的各有一个,并且他们三个人的预言只有一个人是对的,另外两个人的预言都同事实恰好相反.可见() A.小王没考上,小刘考上一般大学,小张考上重点大学B.小王考上一般大学,小刘没考上,小张考上重点大学C.小王没考上,小刘考上重点大学,小张考上一般大学D.小王考上一般大学,小刘考上重点大学,小张没考上解析:根据推理知识得出结论.答案:C例2已知直线l、m,平面α、β,且l⊥α,m∥β,给出下列四个命题:(1)若α∥β,则l⊥m;(2)若l⊥m,则α∥β;(3)若α⊥β,则l∥m;(4)若l∥m,则α⊥β.其中正确命题的个数是()A.1 B.2C.3 D.4解析:根据演绎推理的定义,逐一判断结论的正误.由直线和平面、平面和平面平行和垂直的判定定理、性质定理,可知应选B.答案:B点评:以准确、完整地理解条件为基础,才能判断命题的正误.例3函数y=f(x)在(0,2)上是增函数,函数y=f(x+2)是偶函数,则f(1),f(2.5),f(3.5)的大小关系是______.解析:根据函数的性质进行判断.∵函数y=f(x)在(0,2)上是增函数,∴0<x+2<2,即-2<x<0.∴函数y=f(x+2)在(-2,0)上是增函数.又∵函数y=f(x+2)是偶函数,∴函数y=f(x+2)在(0,2)上是减函数.由图象可得f(2.5)>f(1)>f(3.5).故应填f(2.5)>f(1)>f(3.5).答案:f(2.5)>f(1)>f(3.5)点评:根据函数的基本性质,结合三段论的推理模式可得.例4已知lg2=m,计算lg0.8.分析:利用所学的推理知识解决问题.解:lga n=nlga(a>0),——大前提lg8=lg23,——小前提lg8=3lg2.——结论lg ab=lga-lgb(a>0,b>0),——大前提lg0.8=lg 810,——小前提所以lg0.8=lg8-1=3lg2-1=3m-1.——结论点评:找出三段论的大前提与小前提即可得到答案.(设计者:李小青)。

相关文档
最新文档