2.海淀2015.1初一试题

合集下载

科普阅读题 (一)

科普阅读题 (一)

科普阅读题一、光的传播北宋的沈括在《梦溪笔谈》中记述了光的直线传播和小孔成像的实验。

他首先观察鸢(老鹰)在空中飞动地上影子也跟着移动,移动的方向跟鸢飞的方向一致。

然后在纸窗上开一个小孔,使窗外飞鸢的影子呈现在室内的纸屏上,结果观察到“鸢东则影西,鸢西则影东”。

阅读材料后,请回答:你认为下面哪种说法是错误的:()A、“鸢东则影西,鸢西则影东”所描述的现象是小孔成像B、沈括观察到“鸢在空中飞动地上影子也跟着移动”是小孔成像C、小孔成像可以用光的直线传播解释D、小孔成像时像移动的方向与物体相反二、现代社会汽车大量增加,发生交通事故的一个重要原因是遇到意外情况时车不能立即停止。

司机从看到情况到肌肉动作操纵制动器来刹车需要一段时间,这段时间叫反应时间;在这段时间内汽车要保持原速前进一段距离,这段距离叫反应距离。

从操纵制动器刹车,到车停下来,汽车又要前进一段距离,这段距离叫制动距离。

下面是一个机警的司机驾驶一辆保养得很好的汽车在干燥的水平公路上以不同的速度行驶时,测得的反应距离和制动距离。

请回答:(1)刹车过程中轮胎会发热,这是什么原因?是什么能转化为什么能的过程?(2)利用上表数据,通过计算求出该司机的反应时间大约是多少秒?(3)分析上表数据可知,汽车制动距离与行驶速度有什么关系?(4)为了提醒司机朋友在雨雪天气里注意行车安全,在高速公路旁边设置了“雨雪路滑,减速慢行”的警示牌,请简要说明这句话的物理道理。

三.阅读下面摘自百度·百科的科普短文,回答下面的问题。

(张逸)雾霾天气—空气中含有较多的细颗粒物。

PM2.5表示大气中粒径小于或等于μm的细颗粒物的含量,这个值越高,就代表空气污染越严重。

细小颗粒物的形成,人为的因素是各种燃料的不完全燃烧,其来源包括发电、冶金、纺织印染等各种工业过程中排放的烟尘以及各类交通工具排放的尾气。

细小颗粒物粒径小,含大量的有毒、有害物质,且在大气中可以长时间、大范围的漫游、悬浮,吸入人体会对呼吸系统、心肺甚至大脑造成伤害。

2015海淀一模试题及答案

2015海淀一模试题及答案

海 淀 区 九 年 级 第 二 学 期 期 中 练 习数 学2015.5考生须知1.本试卷共7页,共五道大题,29道小题,满分120分。

考试时间120分钟。

2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,将本试卷、答题卡和草稿纸一并交回。

一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.2015年北京市实施能源清洁化战略,全市燃煤总量减少到15 000万吨左右,将15 000用科学记数法表示应为A . 50.1510⨯B .41.510⨯C .51.510⨯D .31510⨯ 2.右图是某几何体的三视图,该几何体是A. 三棱柱B. 三棱锥C. 长方体D.正方体 3.如图,数轴上两点A ,B 表示的数互为相反数,则点B 表示的数为2A0BA .-1B .1C .-2D .24.某游戏的规则为:选手蒙眼在一张如图所示的正方形黑白格子纸(九个小正方形面积相等)上描一个点,若所描的点落在黑色区域,获得笔记本一个;若落在白色区域,获得钢笔一支.选手获得笔记本的概率为A .12 B .45 C .49 D .595.如图,直线a 与直线b 平行,将三角板的直角顶点放在直线a 上,若∠1=40°,则∠2等于A . 40°B .50°C .60°D .140°ba 216.如图,已知∠AOB .小明按如下步骤作图:(1)以点O 为圆心,适当长为半径画弧,交OA 于D ,交OB 于点E . (2)分别以D ,E 为圆心,大于12DE 的长为半径画弧,两弧在∠AOB 的内部相交于点C .(3)画射线OC .根据上述作图步骤,下列结论正确的是A .射线OC 是AOB ∠的平分线 B .线段DE 平分线段OC C .点O 和点C 关于直线DE 对称D .OE =CE 7.某次比赛中,15名选手的成绩如图所示,则 这15名选手成绩的众数和中位数分别是 A .98,95 B .98,98 C .95,98 D .95,958. 甲骑车到乙家研讨数学问题,中途因等候红灯停止了一分钟,之后又骑行了1.2千米到达了乙家.若甲骑行的速度始终不变,从出发开始计时,剩余的路程S (单位:千米)与时间t (单位:分钟)的函数关系的图象如图所示,则图中a 等于A .1.2B .2C .2.4D .69.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E .若60B ∠=︒,AC =3,则CD 的长为A . 6B .23C .3D .310.小明在书上看到了一个实验:如右图,一个盛了水的圆柱形容器内,有一个顶端拴了一根细绳的实心铁球,将铁球从水面下沿竖直方向慢慢地匀速向上拉动.小明将此实验进行了改进,他把实心铁球换成了材质相同的别的物体,记录实验时间t 以及容器内水面的高度h ,并画出表示h 与t 的函数关系的大致图象.如左下图所示.小明选择的物体可能是A B CD63S /千米t /分钟OE DCBOA BA CEOD二、填空题(本题共18分,每小题3分) 11.分解因式:32a ab -=____________.12.写出一个函数y kx =(0k ≠),使它的图象与反比例函数1y x=的图象有公共点,这个函数的解析式为___________.13.某学习小组设计了一个摸球试验,在袋中装有黑,白两种颜色的球,这些球的形状大小质地等完全相同,即除颜色外无其他差别.在看不到球的情况下,随机从袋中摸出一个球,记下颜色,再把它放回,不断重复.下表是由试验得到的一组统计数据:从这个袋中随机摸出一个球,是白球的概率约为 .(结果精确到0.1)14.如图,点C 为线段AB 上一点,将线段CB 绕点C 旋转,得到线段CD ,若DA AB ⊥,1AD =,17BD =,则BC 的长为__________. 15. 在研究了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD 中,AD ∥BC ,请添加一个条件,使得四边形ABCD 是平行四边形”.经过思考,小明说“添加AD =BC ”,小红说“添加AB =DC ” .你同意 的观点, 理由是 .16.若三角形的某一边长等于其外接圆半径,则将此三角形称为等径三角形,该边所对的角称为等径角.已知△ABC 是等径三角形,则等径角的度数为 . 三、解答题(本题共30分,每小题5分) 17.计算:2022cos6012(3.14π)--+-+-o .18.解不等式组:345214.33x x x x +>-⎧⎪⎨-⎪⎩,≥19.已知43x y =,求代数式22(2)()()2x y x y x y y ---+-的值.摸球的次数n 100 200 300 400 500600 摸到白球的次数m 58118189237302359摸到白球的频率nm 0.58 0.59 0.63 0.593 0.604 0.598C BDA FDCB A E20.如图,点A ,B ,C ,D 在同一条直线上,AB=FC ,∠A =∠F ,∠EBC =∠FCB . 求证: BE=CD .21.已知关于x 的方程220 (0)kx x k k--=≠. (1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根都是整数,求整数k 的值.22.列方程或方程组解应用题:为了响应学校提出的“节能减排,低碳生活”的倡议,班会课上小李建议每位同学都践行“双面打印,节约用纸”.他举了一个实际例子:打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求例子中的A4厚型纸每页的质量.(墨的质量忽略不计)四、解答题(本题共20分,每小题5分)23.如图,在□ABCD 中,∠BAD 的平分线交CD 于点E ,交BC 的延长线于点F ,连接BE ,∠F =45°. (1)求证:四边形ABCD 是矩形; (2)若AB =14,DE =8,求sin ∠AEB 的值.24.根据某研究中心公布的近几年中国互联网络发展状况统计报告的部分相关数据,绘制的统计图表如下:根据以上信息解答下列问题:(1)直接写出扇形统计图中m 的值;(2)从2011年到2014年,中国网民人数每年增长的人数近似相等,估算2015年中国网民的人数约为 亿;(3)据某市统计数据显示,2014年末全市常住人口为476.6万人,其中网民数约为210万人.若2014年该市的网民学历结构与2014年的中国网民学历结构基本相同,请你估算2014年末该市网民学历是大专的约有 万人.FBCAED25.如图,在△ABC 中,AB=AC ,AD ⊥BC 于点D ,过点C 作⊙O 与边AB 相切于点E ,交BC 于点F ,CE 为⊙O 的直径. (1) 求证:OD ⊥CE ;(2) 若DF =1, DC =3,求AE 的长.26.阅读下面材料:小明遇到这样一个问题:如图1,在△ABC 中,DE ∥BC 分别交AB 于D ,交AC 于E .已知CD ⊥BE ,CD =3,BE =5,求BC +DE 的值.小明发现,过点E 作EF ∥DC ,交BC 延长线于点F ,构造△BEF ,经过推理和计算能够使问题得到解决(如图2).ADE B CADEB FC GEC ABDF图 1 图 2图3请回答:BC +DE 的值为_______.参考小明思考问题的方法,解决问题:如图3,已知□ABCD 和矩形ABEF ,AC 与DF 交于点G ,AC =BF =DF ,求∠AGF 的度数.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.在平面直角坐标系xOy 中,抛物线2212y x x =-+与y 轴交于点A ,顶点为点B ,点C 与点A 关于抛物线的对称轴对称. (1)求直线BC 的解析式;(2)点D 在抛物线上,且点D 的横坐标为4.将抛物线在点A ,D 之间的部分(包含点A ,D )记为图象G ,若图象G 向下平移t (0t >)个单位后与直线BC 只有一个公共点,求t 的取值范围.xy O –5–4–3–2–112345–7–6–5–4–3–2–11234567AEBD CFO28.在菱形ABCD 中,120ADC ∠=︒,点E 是对角线AC 上一点,连接DE ,50DEC ∠=︒,将线段BC 绕点B 逆时针旋转50︒并延长得到射线BF ,交ED 的延长线于点G . (1)依题意补全图形;EDC BAEDCBA备用图(2)求证:EG BC =;(3)用等式表示线段AE ,EG ,BG 之间的数量关系:_____________________________.29.在平面直角坐标系xOy 中,对于点(,)P a b 和点(,)Q a b ',给出如下定义:若,1,1≥b a b b a ⎧'=⎨-<⎩,则称点Q 为点P 的限变点.例如:点()2,3的限变点的坐标是()2,3,点()2,5-的限变点的坐标是()2,5--.(1)①点()3,1的限变点的坐标是___________;②在点()2,1A --,()1,2B -中有一个点是函数2y x=图象上某一个点的限变点, 这个点是_______________;(2)若点P 在函数3(2,2)y x x k k =-+->-≤≤的图象上,其限变点Q 的纵坐标b '的取值范围是52≤≤b '-,求k 的取值范围;(3)若点P 在关于x 的二次函数222y x tx t t =-++的图象上,其限变点Q 的纵坐标b '的取值范围是≥b m '或b n '<,其中m n >.令s m n =-,求s 关于t 的函数解析式及s 的取值范围.xy–6–5–4–3–2–1123456–6–5–4–3–2–1123456O海淀区九年级第二学期期中练习数学试卷答案及评分参考2015.5一、 选择题(本题共30分,每小题3分)题号1 2 3 4 5 67 8 9 10 答案B ACD B A C B D B二、填空题(本题共18分,每小题3分) 题号1112131415 16答案 a (a +b )(a -b )()0y kx k =>如,y x =0.6178小明(1分);一组对边平行且相等的四边形是平行四边形(2分)30°或150°(只答对一个2分,全对3分)三、解答题(本题共30分,每小题5分) 17. (本小题满分5分) 解:原式=11223142-⨯++ ………………………………………………………4分 1234=+. ………………………………………………………………5分 18. (本小题满分5分) 解: 345214.33x x x x +>-⎧⎪⎨-⎪⎩,≥ ② ①由不等式①得 3x <. ……………………………………………………2分由不等式②得 2≥x -. ……………………………………………………4分 ∴不等式组的解集为23≤x -<. ……………………………………………………5分19. (本小题满分5分)解: 22(2)()()2x y x y x y y ---+-2222244()2x xy y x y y =-+---………………………………………………2分243xy y =-+ ……………………………………………………………………3分()43y x y =--.…………………………………………………………………4分∵43x y =,∴原式= 0. ………………………………………………………………………5分 20. (本小题满分5分)证明:∠EBC =∠FCB ,A B E F C D ∴∠=∠. …………………………………………………………1分在△ABE 与△FCD 中, ,,,A F AB FC ABE FCD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴∆ABE ≌∆FCD .………………………………………………………………4分 ∴BE=CD . ………………………………………………………………………5分21. (本小题满分5分) (1)证明:0k ≠,∴220 kx x k--=是关于x 的一元二次方程.22(1)4()k k∆=--- ……………………………………………………1分90=>.∴方程总有两个不相等的实数根. ………………………………………2分(2)解:由求根公式,得192x k±=. ∴1221,x x k k==-. …………………………………………………………4分方程的两个实数根都是整数,且k 是整数,∴ 1k =-或1k =.…………………………………………………………5分22. (本小题满分5分)解: 设例子中的A4厚型纸每页的质量为x 克.………………………………………1分由题意,得40016020.8x x =⨯-. ………………………………………………2分 解得 4x =. ………………………………………………………3分 经检验, 4x =为原方程的解,且符合题意. ………………………………4分 答:例子中的A4厚型纸每页的质量为4克. …………………………………5分FDCB A E四、解答题(本题共20分,每小题5分) 23. (本小题满分5分) (1)证明:四边形ABCD 是平行四边形,∴AD //BC . ∴∠DAF=∠F .∠F =45°,∴∠DAE=45°.………………………………………1分AF 是∠BAD 的平分线,45EAB DAE ∴∠=∠=. 90DAB ∴∠=.又四边形ABCD 是平行四边形,∴四边形ABCD 是矩形. …………………………2分(2)解:过点B 作BH AE ⊥于点H ,如图. 四边形ABCD 是矩形,∴AB =CD ,AD =BC ,∠DCB =∠D =90°.AB =14,DE =8, ∴ CE=6.在Rt △ADE 中,∠DAE=45°, ∴∠DEA =∠DAE=45°. ∴ AD=DE =8. ∴ BC =8.在Rt △BCE 中,由勾股定理得2210BE BC CE =+=. ……………………………………………3分 在Rt △AHB 中,∠HAB=45°,∴sin 4572BH AB =⋅= . …………………………………………4分在Rt △BHE 中,∠BHE=90°,∴sin ∠AEB=7210BH BE =. ……………………………………………5分 24. (本小题满分5分)(1)36. ……………………………………………………………………………1分(2)6.700.01±. ……………………………………………………………………3分 (3)21. ……………………………………………………………………………5分25. (本小题满分5分)HFBCAEDFBCAED(1)证明:⊙O 与边AB 相切于点E ,且 CE 为⊙O 的直径.∴CE ⊥AB .AB=AC ,AD ⊥BC ,BD DC ∴=. ………………………………1分又 OE=OC ,∴OD ∥EB .∴ OD ⊥CE .………………………………2分(2)解:连接EF .CE 为⊙O 的直径,且点F 在 ⊙O 上,∴ ∠EFC =90°.CE ⊥AB ,∴∠BEC =90°.∴+BEF FEC FEC ECF ∠=∠+∠∠=90°. ∴BEF ECF ∠=∠.∴tan tan BEF ECF ∠=∠.∴BF EF EFFC=.又DF =1, BD=DC =3, ∴ BF =2, FC =4.∴22EF =. ………………………………………………… 3分∵∠EFC =90°, ∴∠BFE =90°.由勾股定理,得2223BE BF EF =+=. ……………………4分 EF ∥AD , ∴21BE BF EA FD ==. ∴3AE =. ……………………………………………………5分26. (本小题满分5分)解:BC +DE 的值为34. ……………………………………………………2分A EBDCFO解决问题: 连接AE ,CE ,如图.∵四边形ABCD 是平行四边形, ∴AB // DC .∵四边形ABEF 是矩形,∴AB // FE ,BF =AE . ∴DC // FE .∴四边形DCEF 是平行四边形. ………………………………………………3分 ∴ CE // DF . ∵AC =BF =DF , ∴AC =AE =CE .∴△ACE 是等边三角形. …………………………………………………………4分 ∴∠ACE =60°. ∵CE ∥DF ,∴∠AGF =∠ACE =60°. …………………………………………………………5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27. (本小题满分7分)解:(1)∵抛物线2212y x x =-+与y 轴交于点A ,∴点A 的坐标为(0,2). …………………………………………1分 ∵2211(232)212y x x x -+==+-, ∴抛物线的对称轴为直线1x =,顶点B 的坐标为(1,32). …………2分又∵点C 与点A 关于抛物线的对称轴对称,∴点C 的坐标为(2,2),且点C 在抛物线上.设直线BC 的解析式为y kx b =+. ∵直线BC 经过点B (1,32)和点C (2,2),∴322 2.,k b k b ⎧+=⎪⎨⎪+=⎩ 解得121.k b ⎧=⎪⎨⎪=⎩, ∴直线BC 的解析式为112y x =+.…………………………3分(2) ∵抛物线2212y x x =-+中,当4x =时,6y =,xy O –5–4–3–2–112345–7–6–5–4–3–2–11234567FE DABC GE C A BD F∴点D 的坐标为(4,6). ………………4分∵直线112y x =+中,当0x =时,1y =, 当4x =时,3y =,∴如图,点E 的坐标为(0,1),点F 的坐标为(4,3).设点A 平移后的对应点为点'A ,点D 平移后的对应点为点'D . 当图象G 向下平移至点'A 与点E 重合时, 点'D 在直线BC 上方, 此时t =1;…………………………………………………………5分当图象G 向下平移至点'D 与点F 重合时,点'A 在直线BC 下方,此时t =3.……………………………………………………………………………………6分 结合图象可知,符合题意的t 的取值范围是13t <≤.……………………………7分28. (本小题满分7分)(1)补全图形,如图1所示.…………………………………………………………1分GFEDCBA图1 图2(2)方法一:证明:连接BE ,如图2. ∵四边形ABCD 是菱形, ∴AD ∥BC . 120ADC ∠=︒, 60DCB ∴∠=︒.AC 是菱形ABCD 的对角线,∴1302DCA DCB ∠=∠=︒. ……………………………………………………………2分GFEDCBA180100EDC DEC DCA ∴∠=︒-∠-∠=︒.由菱形的对称性可知, 50BEC DEC ∠=∠=︒,100EBC EDC ∠=∠=︒.……………………………………………………………………3分 100GEB DEC BEC ∴∠=∠+∠=︒. GEB CBE ∴∠=∠. 50FBC ∠=︒,50EBG EBC FBC ∴∠=∠-∠=︒.…………………………………………………………4分 EBG BEC ∴∠=∠. 在△GEB 与△CBE 中,,,,GEB CBE BE EB EBG BEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△GEB ≌△CBE .EG BC ∴=. ………………………………………………………………………………5分 方法二:证明:连接BE ,设BG 与EC 交于点H ,如图3. ∵四边形ABCD 是菱形, ∴AD ∥BC .120ADC ∠=︒,60DCB ∴∠=︒.AC 是菱形ABCD 的对角线,∴1302DCA DCB ∠=∠=︒. ………………………2分180100EDC DEC DCA ∴∠=︒-∠-∠=︒.由菱形的对称性可知,50BEC DEC ∠=∠=︒,100EBC EDC ∠=∠=︒.……………………………………………3分50FBC ∠=︒, 图350EBG EBC FBC BEC ∴∠=∠-∠=︒=∠. ………………………………………………4分 BH EH ∴=.在△GEH 与△CBH 中,,,,GEH CBH EH BH EHG BHC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△GEH ≌△CBH .EG BC ∴=. ………………………………………………………………………………5分 (3)3AE BG EG +=. …………………………………………………………………7分 29.(本小题满分8分)解:(1)① (3,1); ……………………………………………………………………1分② 点B . ………………………………………………………………………2分HG F ED CBA(2)依题意,3(2)y x x =-+-≥图象上的点P 的限变点必在函数3,13,21x x y x x -+⎧=⎨--<⎩≥≤的图象上.2≤b '∴,即当1x =时,b '取最大值2.当2b '=-时,23x -=-+.5x ∴=. ………………………………………3分 当5b '=-时,53x -=-或53x -=-+.2x ∴=-或8x =. ………………………………4分 52≤≤b '-,由图象可知,k 的取值范围是58≤≤k .……………………………………………5分 (3)2222()y x tx t t x t t =-++=-+,∴顶点坐标为(,)t t .………………………………………………………………6分若1t <,b '的取值范围是≥b m '或≤b n ',与题意不符.若1≥t ,当1≥x 时,y 的最小值为t ,即m t =;当1x <时,y 的值小于2[(1)]t t --+,即2[(1)]n t t =--+.22(1)1s m n t t t t ∴=-=+-+=+.∴s 关于t 的函数解析式为 211)s t t =+≥ (. ……………………………7分 当t=1时,s 取最小值2.∴s 的取值范围是s ≥2. ………………………………………………………8分xy–4–3–2–1123456789–7–6–5–4–3–2–11234O。

2015年初中学业水平测试(七)

2015年初中学业水平测试(七)

2015年初中学年水平测试模拟试卷(七)一、选择题(本大题共8个小题,每小题3分,共24分.每小题均有四个选项,其中只有一项符合题目要求)1、︳-3︳= ( )A .3B .-3C .±3D .32、下列计算正确的是( ) A .(-1)-1=1 B.(-3)2=-6 C.π0=1 D.(-2)6÷(-2)3=(-2)23、不等式组322(4)1x xx +>⎧⎨--⎩≥的解集在数轴上表示正确的是( )4、某几何体的三视图如图所示,这个几何体是( )A .圆柱B .三棱柱 C. 长方体D .圆锥5、某工厂现在平均每天比原计算多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是( ) A .60045050x x=+ B .60045050x x=- C .60045050x x =+ D .60045050x x =- 6、地球绕太阳公转的速度约是110000千米/时,将110000用科学记者数法表示为( )A .11⨯104B .1.1⨯105C .1.1⨯104D .0.11⨯106 7、如图,Rt △ABC 中,∠ACB =90°,CD 是AB 上中线,若CD =5,AC =8,则sinA 为( )A .43B .54C .53D .348、某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:决赛成绩/分95 90 85 80 人数4682那么20名学生决赛成绩的众数和中位数分别是( )A .85, 90B .85, 87.5C .90, 85D .95, 90二、填空题(本大题共6个小题,每小题3分,满分18分)9、16的算术平方根是10、如图,直线a 、b 被直线l 所截,a ∥b ,∠1=70°, 则∠2=11、写出一个图象经过点(1,1)的函数解析式12、一圆锥的底面半径为1cm ,母线长2cm ,则该圆锥的侧面积为___________2cm 13、在函数21xy x =+中,自变量x 的取值范围是14、为庆祝“六•一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆第(n )图,需用火柴棒的根数为三、解答题(本大题共9个小题,满分58分)15、(本小题5分) 先化简,再求值:21111⎛⎫÷- ⎪-+⎝⎭x x x ,其中2sin 451x =︒+16、(本小题5分)如图,AD 、BC 相交于O ,OA=OC ,∠OBD=∠ODB .求证:AB=CD .17、(本小题6分)如图,一次函数y 1=kx +b 的图象与反比例函数y 2=6x的图象交于A (m ,3),B (-3,n )两点.(1)求一次函数的表达式;(2)观察函数图象,直接写出关于x 的不等式 6x>kx +b的解集.ABxyO18、(本小题7分)我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A :体操,B :跑操,C :舞蹈,D :健美操四项活动为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次被调查的学生共有 人; (2)请将统计图2补充完整;(3)统计图1中B 项目对应的扇形的圆心角是 度;(4)已知该校共有学生3600人,请根据调查结果估计该校喜欢健美操的学生人数.19、(本小题7分)甲、乙玩转盘游戏时,把质地相同的两个转盘A 、B 平均分成2份和3份,并在每一份内标有数 字如图.游戏规则:甲、乙两人分别同时转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.(1)用画树状图或列表的方法,求甲获胜的概率;(2)这个游戏对甲、乙双方公平吗?请判断并说明理由.20、(本小题6分)王小明有科技书和文艺书共44本,现又买科技书3本,文艺书1本,这样科技书就比文艺书多8本。

北京市海淀区2014-2015学年高二第一学期期末数学理科试题

北京市海淀区2014-2015学年高二第一学期期末数学理科试题

海淀区高二年级第一学期期末练习数学(理科)2015.1学校班级姓名成绩本试卷共100分.考试时间90分钟.一、选择题:本大题共8小题,每小题4分,共32分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 直线2x y +=的倾斜角是()A.π6 B.π4 C. 2π3 D.3π42. 焦点在x 轴上的椭圆2213x ym +=的离心率是12,则实数m 的值是()A. 4B.94C. 1D.343. 一个空间几何体的三视图如右图所示,该几何体的体积为() A. 8 B.83C. 163D. 64. 已知圆22:1O x y +=,直线:3430l x y +-=,则直线l 被圆O 所截的弦长为()A.65 B. 1 C.85D.2 5. 已知向量(1,1,0,),(0,1,1),==a b (1,0,1),(1,0,1)==-c d ,则其中共面的三个向量是()A.a,b,cB. a,b,dC. a,c,dD.b,c,d6. 已知等差数列{}n a ,则“21a a >”是“数列{}n a 为单调递增数列”的() A. 充分而不必要条件B.必要而不充分条件 C. 充分必要条件D. 既不充分也不必要条件7. 已知正四面体A BCD -的棱长为2,点E 是AD 的中点,则下面四个命题中正确的是() A. F BC ∀∈,EF AD ⊥ B. F BC ∃∈,EF AC ⊥ C. F BC ∀∈,EF ≥ D. F BC ∃∈,EF AC ∥8.已知曲线||1W y =,则曲线W 上的点到原点距离的取值范围是() A. 1[,1]2B.[2C.[2D.二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上. 9. 已知直线10x ay --=与直线y ax =平行,则实数___.a =10.双曲线221169x y -=的渐近线方程为_________________.11.已知空间向量(0,1,1),(,0,1)x ==a b ,若a,b 的夹角为π3,则实数x 的值为__. 12.已知椭圆22221(0)x y C a b a b+=>>:的左右焦点分别为12,F F ,若等边12P F F △的一个顶点P 在椭圆C 上,则椭圆C 的离心率为______.13. 已知点1(,0)2A -,抛物线22y x =的焦点为F ,点P 在抛物线上,且|||AP PF ,则||___.OP =14. 在正方体1111ABCD A B C D -中,α为其六个面中的一个. 点P α∈且P 不在棱上,若P 到异面直线1,AA CD 的距离相等,则点P 的轨迹可能是_________.(填上所有正确的序号) ①圆的一部分②椭圆的一部分③双曲线的一部分④抛物线的一部分三、解答题:本大题共4小题,共44分. 解答应写出文字说明,证明过程或演算步骤. 15.(本小题共10分)已知点(0,2)A ,圆22:1O x y +=.( I ) 求经过点A 与圆O 相切的直线方程;( II ) 若点P 是圆O 上的动点,求OP AP ⋅的取值范围.已知抛物线24W y x =:的焦点为F ,直线2+y x t =与抛物线W 相交于,A B 两点. ( I ) 将||AB 表示为t 的函数;( II )若||AB =AFB △的周长.在空间直角坐标系Oxyz 中,已知()(2,0,0),(2,2,0),0,0,2,(0,2,1)A B D E . ( I ) 求证:直线BE ∥平面ADO ; ( II ) 求直线OB 和平面ABD 所成的角;(Ⅲ) 在直线BE 上是否存在点P ,使得直线AP 与直线BD 垂直?若存在,求出点P 的坐标;若不存在,请说明理由.如图,已知直线(0)y kx k =≠与椭圆22:12x C y +=交于,P Q 两点.过点P 的直线PA 与PQ 垂直,且与椭圆C 的另一个交点为A . ( I ) 求直线PA 与AQ 的斜率之积;( II ) 若直线AQ 与x 轴交于点B ,求证:PB 与x 轴垂直.OAx PQ海淀区高二年级第一学期期末练习数学(理科)参考答案及评分标准2015.1一. 选择题:本大题共8小题, 每小题4分,共32分.二.填空题:本大题共6小题, 每小题4分,共24分.9. 1或1- 10.34y x =或34y x =- 11.1或1-12.1213. 14. ④说明:9,10,11题每个答案两分,丢掉一个减两分,14题多写的不给分 三.解答题:本大题共4小题,共44分. 15. (本小题满分10分)解:(I )由题意,所求直线的斜率存在.设切线方程为2y kx =+,即20kx y -+=,-------------1分 所以圆心O 到直线的距离为d =,-------------3分所以1d ==,解得k =-------------4分所求直线方程为2y =+或2y =+. -------------5分 (II )设点(,)P x y ,所以 (,)OP x y =,(,2)AP x y =-,-------------6分 所以 222OP AP x y y ⋅=+-.-------------7分因为点P 在圆上,所以22=1x y +,所以12OP AP y ⋅=-. -------------8分 又因为22=1x y +,所以11y -≤≤, -------------9分 所以[1,3]OP AP ⋅∈-. -------------10分16.(本小题满分12分) 解:(I )设点1122(,),(,),A x y B x y因为242y x y x t ⎧=⎨=+⎩, 消元化简得22444)0x t x t +-+=(-------------2分所以2212212163216161632044+144t t t t t x x t t x x ⎧⎪∆=-+-=->⎪-⎪==-⎨⎪⎪=⎪⎩-------------4分所以12||AB x x -=12t <. -------------6分 (II)因为||AB ==4t =-经检验,此时16320t ∆=->. -------------8分 所以1215x x t +=-=, 所以有1212||||()()52722p pAF BF x x x x p +=+++=++=+=. -------------10分又||AB =所以AFB △的周长为 -------------12分17.(本小题满分12分) 解: (I )法一:取点(0,2,0)C则(2,0,0),(2,0,0)CB OA ==,所以CB OA =,所以OA CB ∥-------------1分又0,2,00,1,0OD CE ==(),(),所以12CE OD =,所以OD CE ∥-------------2分 又,OA OD D CECB C ==所以平面OAD CBE ∥-------------3分 所以BE ∥平面ADO -------------4分法二:由题意,点,,A D O 所在的平面就是 xOz 平面, 取其法向量为(0,1,0)n =,-------------1分而(2,0,1)BE =-,所以0BE n ⋅=,即BE n ⊥,-------------3分 又显然点,B E 不在平面ADO 上,所以BE ∥平面ADO . -------------4分 (II )设平面ABD 的法向量为(,,)m a b c =, 因为(0,2,0),(2,0,2)AB AD ==-,所以20220AB m b AD m a c ⎧⋅==⎪⎨⋅=-+=⎪⎩, 所以可取(1,0,1)m =. -------------6分又(2,2,0),OB =设OB 与平面ABD 所成的角为θ. 所以1sin |cos ,|||2||||2OB m OB m OB m θ⋅=<>===. -------------8分所以直线OB 和平面ABD 所成的角为6π. -------------9分(Ⅲ)假设存在点(,,)P x y z ,使得直线AP 与直线BD 垂直.设BP BE λ=, 即(2,2,)(2,0,)x y z λλ--=- . -------------10分所以222x y z λλ=-⎧⎪=⎨⎪=⎩,所以(2,2,)AP λλ=-. 又(2,2,2)BD =--,所以4420AP BD λλ⋅=-+=,-------------11分解得23λ=,所以在直线BE 上存在点P ,使得直线AP 与直线BD 垂直, 点P 的坐标为22,2,)33(. -------------12分18.(本小题满分10分)解:(I )法一:设点1122(,),(,)P x y A x y ,因为22220x y y kx⎧+-=⎨=⎩, 所以22(21)2k x +=所以22221x k =+,所以,P Q 的横坐标互为相反数,所以可设11(,)Q x y --. -------------1分 因为直线PQ 的斜率为k ,且0k ≠, 而2121PA y y k x x -=-,21212121()()AQ y y y y k x x x x --+==--+, -------------2分 所以 2221212122212121PA AQy y y y y y k k x x x x x x -+-⋅==-+- 因为点,P A 都在椭圆上,所以 222212121,1,22x x y y +=+=-------------3分 所以 2221222122222121(1)(1)22PA AQx x y y k k x x x x ----⋅==-- 221222211()2x x x x -=- 12=--------------5分法二:设点1122(,),(,)P x y A x y ,因为22220x y y kx⎧+-=⎨=⎩, 所以22(21)2k x +=所以22221x k =+,所以,P Q 的横坐标互为相反数,所以可设11(,)Q x y --. -------------1分 因为直线PQ 的斜率为k ,且0k ≠,所以直线PA 的斜率存在, 设直线PA 的方程为1y k x m =+.所以221220x y y k x m⎧+-=⎨=+⎩,消元得到22211(12)4220k x k mx m +++-=. -------------2分所以22111221212214(422)04122212k m k m x x k m x x k ⎧⎪∆=-+>⎪⎪-⎪+=⎨+⎪⎪-=⎪+⎪⎩-------------3分 又121112212()()12my y k x m k x m k +=+++=+. -------------4分所以212121211()1()2AQ y y y y k x x x x k --+===---+, 所以111122PA AQ k k k k ⋅=-⋅=-. -------------5分 (II )因为2121112AQ y y k x x k +==-+,而直线,PQ PA 垂直, 所以11k k =-,所以2AQ kk =, -------------6分 所以直线AQ 的方程为11()[()]2ky y x x --=--. -------------7分令0y =,得11()2ky x x =+, -------------8分因为点11(,)P x y 在直线y kx =上,所以11y kx =, -------------9分 代入得到B 的横坐标为01x x =,所以直线PB 与x 轴垂直. -------------10分说明:解答题有其它正确解法的请酌情给分.。

2015年海淀中考数学一模试题及答案

2015年海淀中考数学一模试题及答案

海淀区九年级第二学期期中练习数 学 2015.5(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的。

1. 2015年北京市实施能源清洁化战略,全市燃煤总量减少到15 000万吨左右,将15 000用科学记数法表示应为A.0. 15 x105B.1.5×104C.1.5×105D.15 x1032.右图是某几何体的三视图,该几何体是A .三棱柱B .三棱锥C .长方体D .正方体 3.如图,数轴上两点A ,B 表示的数互为相反数,则点B 表示的数为 A. -1 B.1 C. -2 D.2 4.某游戏的规则为:选手蒙眼在一张如图所示的正方形黑白格子纸(九个小正方形面积相等)上描一个点,若所描的点落在黑色区域,获得笔记本一个;若落在白色区域,获得钢笔一支.选手获得笔记本的概率为 A.21 B. 54 C. 94 D. 95 5.如图,直线a 与直线b 平行,将三角板的直角顶点放在直线a 上,若∠1= 400,则∠2等于 A .400 B .500 C .600 D .14006.如图,已知∠AOB.小明按如下步骤作图:(1)以点O 为圆心,适当长为半径画弧,交OA 于点D ,交OB 于点E. (2)分别以点D 、E 为圆心,大于21DE 的长为半径画弧,两弧在∠AOB 的内部相交于点C . (3)画射线OC.根据上述作图步骤,下列结论正确的是A.射线OC 是∠AOB的平分线B.线段DE平分线段OC C .点D 和点C 关于直线DE 对称 D .OE=CE7.某次比赛中,15名选手的成绩如图所示,则这l5名选 手成绩的众数和中位数分别是A .98,95B .98,98C .95,98D .95 ,958.甲骑车到乙家研讨数学问题,中途因等侯红灯停止了一分钟,之后又骑行了1.2千米到达了乙家,若甲骑行的速度始终不变,从 出发开始计时,剩余的路程S (单位:千米)与时间t (单位:分钟) 的函数关系的图象如图所示,则图中a 等于 A. 1.2 B .2 C .2.4 D .69.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E .若∠B=600,AC=3,则CD 的长为 A .6 B .2 3 C .3 D .310.小明在书上看到了一个实验:如右图,一个盛了水的圆柱形容器内,有 一个顶端拴了一根细绳的实心铁球,将铁球从水面下沿竖直方向慢慢地匀速向上拉动.小明将此实验进行了改进,他把实心铁球换成了材质相 同的别的物体,记录实验时间t 以及容器内水面的高度h ,并画出表示h 与t 的函数关系的大致图象,如左下图所示.小明选择的物体可能是二、填空题(本题共18分,每小题3分)11.分解因式:a 3-ab 2=12.写出一个函数y=kx(k ≠0),使它的图象与反比例函数y=x1的图象有公共点,这个函数的解析式为_______.13.某学习小组设计了一个摸球试验,在袋中装有黑、白两种颜色的球,这些球的形状大小质地等完全相同,即除颜色外无其他差别.在看不到球的情况下,随机从袋中摸出一个球,记下颜色,再把它放回,不从这个袋中随机摸出一个球,是白球的概率约为 (结果精确到14.如图,点C 为线段AB 上一点,将线段CB 绕点C 旋转,得到线段CD ,若DA ⊥AB,AD =1,BD=17,则BC 的长为______。

北京市海淀区2015届高三上学期期末练习数学(文理)试题 扫描版含答案

北京市海淀区2015届高三上学期期末练习数学(文理)试题 扫描版含答案

海淀区高三年级第一学期期末练习数学(文)答案及评分参考 2015.1一、选择题(共8小题,每小题5分,共40分)(1)B (2)D (3)A (4)D(5)B (6)C (7)C (8)A二、填空题(共6小题,每小题5分,共30分。

有两空的小题,第一空2分,第二空3分)(9)1(,0)2- (10)3 (11)8 (12)22(13)13;4 (14)(,1][1,)-∞-+∞ 三、解答题(共6小题,共80分)(15)(共13分)解:(Ⅰ)ϕ的值是π3. ………………2分 0x 的值是43. ………………5分 (Ⅱ)由(Ⅰ)可知:π()cos(π)3f x x =+. 因为 11[,]23x ∈-, 所以 ππ2ππ633x -≤+≤. ………………7分 所以 当ππ03x +=,即13x =-时,()f x 取得最大值1; ………………10分 当π2ππ33x +=,即13x =时,()f x 取得最小值12-. ………………13分(16)(共13分)解:(Ⅰ)抽取的5人中男同学的人数为530350⨯=,女同学的人数为520250⨯=. ………………4分 (Ⅱ)记3名男同学为123,,A A A ,2名女同学为12,B B . 从5人中随机选出2名同学,所有可能的结果有12131112232122,,,,,,,A A A A A B A B A A A B A B 313212,,A B A B B B ,共10个.………………6分用C 表示:“选出的两名同学中恰有一名女同学”这一事件,则C 中的结果有6个,它们是:11122122,,,,A B A B A B A B 3132,A B A B . ………………8分 所以 选出的两名同学中恰有一名女同学的概率63()105P C ==. ………………10分 (Ⅲ)2212s s =. ………………13分 (17)(共14分)证明:(Ⅰ)在菱形11BB C C 中,BC ∥11B C .因为 BC Ë平面11AB C ,11B C Ì平面11AB C ,所以 //BC 平面11AB C . ………………3分 (Ⅱ)连接1BC .在正方形11ABB A 中,1AB BB ^.因为 平面11AA B B ⊥平面11BB C C ,平面11AA B B 平面111BB C C BB =,AB Ì平面11ABB A ,所以 AB ^平面11BB C C . ………………5分因为 1B C Ì平面11BB C C ,所以 1AB B C ^. ………………6分在菱形11BB C C 中,11BC BC ^. 因为 1BC Ì平面1ABC ,AB Ì平面1ABC ,1BC AB B =,所以 1B C ^平面1ABC . ………………8分 因为 1AC Ì平面1ABC ,所以 1B C ⊥1AC . ………………10分 (Ⅲ),,,E F H G 四点不共面. 理由如下: ………………11分 因为 ,E G 分别是111,B C B C 的中点,所以 GE ∥1CC .C B C 1B 1A 1A同理可证:GH ∥11C A .因为 GE Ì平面EHG ,GH Ì平面EHG ,GE GH G =,1CC Ì平面11AAC C ,11AC Ì平面11AAC C , 所以 平面EHG ∥平面11AAC C .因为 F ∈平面11AAC C ,所以 F ∉平面EHG ,即,,,E F H G 四点不共面. ………………14分(18)(共13分) 解:(Ⅰ)由题意可知椭圆M 的标准方程为:2212x y +=,则2,1a b ==. 所以 椭圆M 的长轴长为22. ………………2分 因为 221c a b =-=,所以 22c e a ==,即M 的离心率为22. ………………4分 (Ⅱ)若,,C O D 三点共线,由CD 是线段AB 的垂直平分线可得:OA OB =. ………………6分 由(Ⅰ)可得(0,1)A ,设00(,)B x y . ………………7分所以 22001x y +=. ①又因为 220022x y +=, ② ………………10分 由①②可得: 000,1x y =⎧⎨=⎩(舍),或000,1.x y =⎧⎨=-⎩ ………………11分 当000,1x y =⎧⎨=-⎩时,直线l 的方程为0x =,显然满足题意.所以 存在直线l 使得,,C O D 三点共线,直线l 的方程为0x =. ………………13分H G F E C B C 1B 1A 1A(19)(共13分) (Ⅰ)解:2e e '()x xx f x x-=. ………………1分 因为 切线0ax y -=过原点(0,0),所以 00000200e e e x x x x x x x -=.………………3分 解得:02x =.………………4分 (Ⅱ)证明:设2()e ()(0)xf xg x x x x ==>,则24e (2)'()x x x g x x -=.令24e (2)'()0x x x g x x -==,解得2x =.………………6分 x 在(0,)+∞上变化时,'(),()g x g x 的变化情况如下表 x (0,2) 2 (2,)+'()g x - 0 +()g x ↘ 2e 4 ↗所以 当2x =时,()g x 取得最小值2e 4.………………8分 所以 当0x >时,2e ()14g x ?,即()f x x >.………………9分 (Ⅲ)解:当0b ≤时,集合{()0}x f x bx ∈-=R 的元素个数为0;当2e 04b <<时,集合{()0}xf x bx ∈-=R 的元素个数为1;当2e 4b =时,集合{()0}xf x bx ∈-=R 的元素个数为2;当2e 4b >时,集合{()0}x f x bx ∈-=R 的元素个数为3. ………………13分(20)(共14分)解:(Ⅰ)因为 11a =,122n n a a p +=+,所以 21222a a p p =+=+,322222a a p p =+=+.因为 312S =,所以 22226324p p p ++++=+=,即6p =. ……………… 2分所以 13(1,2,3,)n n a a n +-==.所以 数列{}n a 是以1为首项,3为公差的等差数列.所以 2(1)31322n n n n n S n --=⨯+⨯=. ……………… 4分 (Ⅱ)若数列{}n a 是等比数列,则2213a a a =.由(Ⅰ)可得:2(1)1(1)2p p +=⨯+. ……………… 6分 解得:0p =. 当0p =时,由122n n a a p +=+得:11n n a a +===.显然,数列{}n a 是以1为首项,1为公比的等比数列.所以 0p =. ……………… 7分 (Ⅲ)当0p =时,由(Ⅱ)知:1(1,2,3,)n a n ==. 所以 11(1,2,3,)n n a ==,即数列1{}na 就是一个无穷等差数列. 所以 当0p =时,可以得到满足题意的等差数列.当0p ≠时,因为 11a =,122n n a a p +=+,即12n n p a a +-=,所以 数列{}n a 是以1为首项,2p 为公差的等差数列. 所以 122n p p a n =+-. 下面用反证法证明:当0p ≠时,数列1{}n a 中不能取出无限多项并按原来次序排列而成等差数列.假设存在00p ≠,从数列1{}n a 中可以取得满足题意的无穷等差数列,不妨记为{}n b . 设数列{}n b 的公差为d .①当00p >时,0(1,2,3,)n a n >=. 所以 数列{}n b 是各项均为正数的递减数列. 所以 0d <.因为 1(1)(1,2,3,)n b b n d n =+-=, 所以 当11b n d >-时,111(1)(11)0n b b b n d b d d=+-<+--=,这与0n b >矛盾. ②当00p <时,令001022p p n +-<,解得:021n p >-. 所以 当021n p >-时,0n a <恒成立. 所以 数列{}n b 必然是各项均为负数的递增数列. 所以 0d >.因为 1(1)(1,2,3,)n b b n d n =+-=, 所以 当11b n d >-时,111(1)(11)0n b b b n d b d d=+->+--=,这与0n b <矛盾. 综上所述,0p =是唯一满足条件的p 的值. ……………… 14分海淀区高三年级第一学期期末练习数学(理)答案及评分参考 2015.1一、选择题(共8小题,每小题5分,共40分)(1)C (2)D (3)B (4)C(5)B (6)A (7)C (8)B二、填空题(共6小题,每小题5分,共30分。

2015年海淀中考数学一模试题及答案

∴ 不等式组的解集为 2≤ x 3 . ……………………………………………………5 分 19. ( 本小题满分 5 分)
解: ( x 2y)2 (x y)( x y) 2 y2 x2 4xy 4 y2 ( x2 y2 ) 2 y2 ………………………………………………2 分
4 xy 3y 2 ……………………………………………………………………3
6. 如图,已知∠ AOB.小明按如下步骤作图: (1) 以点 O 为圆心,适当长为半径画弧,交
OA 于点 D ,交 OB 于点 E.
1
(2) 分别以点 D 、 E 为圆心,大于 DE 的长为半径画弧,两弧在∠ AOB 的内部相交于点 C.
2
(3) 画射线 OC.
根据上述作图步骤,下列结论正确的是 A .射线 OC是∠ AOB的平分线 B .线段 DE平分线段 OC C .点 D和点 C 关于直线 DE对称 D . OE=CE 7.某次比赛中, 15 名选手的成绩如图所示,则这 l5 名选 手成绩的众数和中 位数分别是
200
300
400
500
600
摸到白球的次数 m
58
118
189
237
302
359
m
摸到白球的频率
n
0.58
0.59
0.63
0.593 0.604
从这个袋中随机摸出一个球,是白球的概率约为
(结果精确到 0.1 )
14. 如图,点 C 为线段 AB上一点,将线段 CB绕点 C 旋转,得到线段 CD,若 DA
E
F
A
B
C
D
18. 解不等式组:
3x 4>5x 2 x 1x 4
33

2015年北京市中考数学试卷附详细答案(原版+解析版)

2015年北京市中考数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的1.(3分)(2015•北京)截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A.14×104B.1.4×105C.1.4×106D.14×1062.(3分)(2015•北京)实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是()A.a B.b C.c D.d3.(3分)(2015•北京)一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为()A.B.C.D.4.(3分)(2015•北京)剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()A.B. C.D.5.(3分)(2015•北京)如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为()A.26°B.36°C.46°D.56°6.(3分)(2015•北京)如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1.2km,则M,C两点间的距离为()A.0.5km B.0.6km C.0.9km D.1.2km7.(3分)(2015•北京)某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是()A.21,21 B.21,21.5 C.21,22 D.22,228.(3分)(2015•北京)如图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示太和门的点的坐标为(0,﹣1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是()A.景仁宫(4,2)B.养心殿(﹣2,3)C.保和殿(1,0)D.武英殿(﹣3.5,﹣4)9.(3分)(2015•北京)一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元)每次游泳收费(元)A 类50 25B 类200 20C 类400 15例如,购买A类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为()A.购买A类会员年卡B.购买B类会员年卡C.购买C类会员年卡D.不购买会员年卡10.(3分)(2015•北京)一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB,BC,CA,OA,OB,OC组成.为记录寻宝者的行进路线,在BC的中点M处放置了一台定位仪器.设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为()A.A→O→B B.B→A→C C.B→O→C D.C→B→O二、填空题(本题共18分,每小题3分)11.(3分)(2015•北京)分解因式:5x3﹣10x2+5x=.12.(3分)(2015•北京)如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=.13.(3分)(2015•北京)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为.14.(3分)(2015•北京)关于x的一元二次方程ax2+bx+=0有两个相等的实数根,写出一组满足条件的实数a,b的值:a=,b=.15.(3分)(2015•北京)北京市2009﹣2014年轨道交通日均客运量统计如图所示.根据统计图中提供的信息,预估2015年北京市轨道交通日均客运量约万人次,你的预估理由是.16.(3分)(2015•北京)阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如下:老师说:“小芸的作法正确.”请回答:小芸的作图依据是.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程.17.(5分)(2015•北京)计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.18.(5分)(2015•北京)已知2a2+3a﹣6=0.求代数式3a(2a+1)﹣(2a+1)(2a ﹣1)的值.19.(5分)(2015•北京)解不等式组,并写出它的所有非负整数解.20.(5分)(2015•北京)如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.21.(5分)(2015•北京)为解决“最后一公里”的交通接驳问题,北京市投放了大量公租自行车供市民使用.到2013年底,全市已有公租自行车25 000辆,租赁点600个.预计到2015年底,全市将有公租自行车50 000辆,并且平均每个租赁点的公租自行车数量是2013年底平均每个租赁点的公租自行车数量的1.2倍.预计到2015年底,全市将有租赁点多少个?22.(5分)(2015•北京)在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.23.(5分)(2015•北京)在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y=的一个交点为P(2,m),与x轴、y轴分别交于点A,B.(1)求m的值;(2)若PA=2AB,求k的值.24.(5分)(2015•北京)如图,AB是⊙O的直径,过点B作⊙O的切线BM,弦CD∥BM,交AB于点F,且=,连接AC,AD,延长AD交BM于点E.(1)求证:△ACD是等边三角形;(2)连接OE,若DE=2,求OE的长.25.(5分)(2015•北京)阅读下列材料:2015年清明小长假,北京市属公园开展以“清明踏青,春色满园”为主题的游园活动,虽然气温小幅走低,但游客踏青赏花的热情很高,市属公园游客接待量约为190万人次.其中,玉渊潭公园的樱花、北京植物园的桃花受到了游客的热捧,两公园的游客接待量分别为38万人次、21.75万人次;颐和园、天坛公园、北海公园因皇家园林的厚重文化底蕴与满园春色成为游客的重要目的地,游客接待量分别为26万人次、20万人次、17.6万人次;北京动物园游客接待量为18万人次,熊猫馆的游客密集度较高.2014年清明小长假,天气晴好,北京市属公园游客接待量约为200万人次,其中,玉渊潭公园游客接待量比2013 年清明小长假增长了25%;颐和园游客接待量为26.2万人次,2013 年清明小长假增加了4.6万人次;北京动物园游客接待量为22万人次.2013年清明小长假,玉渊潭公园、陶然亭公园、北京动物园游客接待量分别为32万人次、13万人次、14.9 万人次.根据以上材料解答下列问题:(1)2014年清明小长假,玉渊潭公园游客接待量为万人次;(2)选择统计表或统计图,将2013﹣2015年清明小长假玉渊潭公园、颐和园和北京动物园的游客接待量表示出来.26.(5分)(2015•北京)有这样一个问题:探究函数y=x2+的图象与性质.小东根据学习函数的经验,对函数y=x2+的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=x2+的自变量x的取值范围是;(2)下表是y与x的几组对应值.x …﹣3 ﹣2 ﹣1 ﹣﹣ 1 2 3 …y …﹣﹣﹣m …求m的值;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(1,),结合函数的图象,写出该函数的其它性质(一条即可).27.(7分)(2015•北京)在平面直角坐标系xOy中,过点(0,2)且平行于x 轴的直线,与直线y=x﹣1交于点A,点A关于直线x=1的对称点为B,抛物线C1:y=x2+bx+c经过点A,B.(1)求点A,B的坐标;(2)求抛物线C1的表达式及顶点坐标;(3)若抛物线C2:y=ax2(a≠0)与线段AB恰有一个公共点,结合函数的图象,求a的取值范围.28.(7分)(2015•北京)在正方形ABCD中,BD是一条对角线,点P在射线CD上(与点C、D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于H,连接AH,PH.(1)若点P在线段CD上,如图1.①依题意补全图1;②判断AH与PH的数量关系与位置关系并加以证明;(2)若点P在线段CD的延长线上,且∠AHQ=152°,正方形ABCD的边长为1,请写出求DP长的思路.(可以不写出计算结果)29.(8分)(2015•北京)在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C的反称点的定义如下:若在射线CP上存在一点P′,满足CP+CP′=2r,则称P′为点P关于⊙C的反称点,如图为点P及其关于⊙C 的反称点P′的示意图.特别地,当点P′与圆心C重合时,规定CP′=0.(1)当⊙O的半径为1时.①分别判断点M(2,1),N(,0),T(1,)关于⊙O的反称点是否存在?若存在,求其坐标;②点P在直线y=﹣x+2上,若点P关于⊙O的反称点P′存在,且点P′不在x轴上,求点P的横坐标的取值范围;(2)⊙C的圆心在x轴上,半径为1,直线y=﹣x+2与x轴、y轴分别交于点A,B,若线段AB上存在点P,使得点P关于⊙C的反称点P′在⊙C的内部,求圆心C的横坐标的取值范围.2015年北京市中考数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的1.(3分)(2015•北京)截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A.14×104B.1.4×105C.1.4×106D.14×106【解答】解:140000=1.4×105,故选B.2.(3分)(2015•北京)实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是()A.a B.b C.c D.d【解答】解:根据图示,可得3<|a|<4,1<|b|<2,0<|c|<1,2<|d|<3,所以这四个数中,绝对值最大的是a.故选:A.3.(3分)(2015•北京)一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为()A.B.C.D.【解答】解:从中随机摸出一个小球,恰好是黄球的概率==.故选B.4.(3分)(2015•北京)剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()A.B. C.D.【解答】解:A、不是轴对称图形,B、不是轴对称图形,C、不是轴对称图形,D、是轴对称图形,故选:D.5.(3分)(2015•北京)如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为()A.26°B.36°C.46°D.56°【解答】解:如图,∵直线l4∥l1,∴∠1+∠AOB=180°,而∠1=124°,∴∠AOB=56°,∴∠3=180°﹣∠2﹣∠AOB=180°﹣88°﹣56°=36°,故选B.6.(3分)(2015•北京)如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1.2km,则M,C两点间的距离为()A.0.5km B.0.6km C.0.9km D.1.2km【解答】解:∵在Rt△ABC中,∠ACB=90°,M为AB的中点,∴MC=AB=AM=1.2km.故选D.7.(3分)(2015•北京)某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是()A.21,21 B.21,21.5 C.21,22 D.22,22【解答】解:这组数据中,21出现了10次,出现次数最多,所以众数为21,第15个数和第16个数都是22,所以中位数是22.故选C.8.(3分)(2015•北京)如图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示太和门的点的坐标为(0,﹣1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是()A.景仁宫(4,2)B.养心殿(﹣2,3)C.保和殿(1,0)D.武英殿(﹣3.5,﹣4)【解答】解:根据表示太和门的点的坐标为(0,﹣1),表示九龙壁的点的坐标为(4,1),可得:原点是中和殿,所以可得景仁宫(2,4),养心殿(﹣2,3),保和殿(0,1),武英殿(﹣3.5,﹣3),故选B9.(3分)(2015•北京)一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元)每次游泳收费(元)A 类50 25B 类200 20C 类400 15例如,购买A类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为()A.购买A类会员年卡B.购买B类会员年卡C.购买C类会员年卡D.不购买会员年卡【解答】解:设一年内在该游泳馆游泳的次数为x次,消费的钱数为y元,根据题意得:y A=50+25x,y B=200+20x,y C=400+15x,当45≤x≤55时,1175≤y A≤1425;1100≤y B≤1300;1075≤y C≤1225;由此可见,C类会员年卡消费最低,所以最省钱的方式为购买C类会员年卡.故选:C.10.(3分)(2015•北京)一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB,BC,CA,OA,OB,OC组成.为记录寻宝者的行进路线,在BC的中点M处放置了一台定位仪器.设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为()A.A→O→B B.B→A→C C.B→O→C D.C→B→O【解答】解:A、从A点到O点y随x增大一直减小到0,故A不符合题意;B、从B到A点y随x的增大先减小再增大,从A到C点y随x的增大先减小再增大,但在A点距离最大,故B不符合题意;C、从B到O点y随x的增大先减小再增大,从O到C点y随x的增大先减小再增大,在B、C点距离最大,故C符合题意;D、从C到M点y随x的增大而减小,一直到y为0,从M点到B点y随x的增大而增大,明显与图象不符,故D不符合题意;故选:C.二、填空题(本题共18分,每小题3分)11.(3分)(2015•北京)分解因式:5x3﹣10x2+5x=5x(x﹣1)2.【解答】解:5x3﹣10x2+5x=5x(x2﹣2x+1)=5x(x﹣1)2.故答案为:5x(x﹣1)2.12.(3分)(2015•北京)如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=360°.【解答】解:∠1+∠2+∠3+∠4+∠5=(180°﹣∠BAE)+(180°﹣∠ABC)+(180°﹣∠BCD)+(180°﹣∠CDE)+(180°﹣∠DEA)=180°×5﹣(∠BAE+∠ABC+∠BCD+∠CDE+∠DEA)=900°﹣(5﹣2)×180°=900°﹣540°=360°.故答案为:360°.13.(3分)(2015•北京)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为.【解答】解:根据题意得:,故答案为:.14.(3分)(2015•北京)关于x的一元二次方程ax2+bx+=0有两个相等的实数根,写出一组满足条件的实数a,b的值:a=4,b=2.【解答】关于x的一元二次方程ax2+bx+=0有两个相等的实数根,∴△=b2﹣4×a=b2﹣a=0,∴a=b2,当b=2时,a=4,故b=2,a=4时满足条件.故答案为:4,2.15.(3分)(2015•北京)北京市2009﹣2014年轨道交通日均客运量统计如图所示.根据统计图中提供的信息,预估2015年北京市轨道交通日均客运量约980万人次,你的预估理由是因为2012﹣2013年发生数据突变,故参照2013﹣2014增长进行估算..【解答】解:参考答案①:1038,按每年平均增长人数近似相等进行估算;参考答案②:980,因为2012﹣2013年发生数据突变,故参照2013﹣2014增长进行估算.(因为题目问法比较灵活,只要理由合理均可给分,估计学生答出980至1140之间均可给分)16.(3分)(2015•北京)阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如下:老师说:“小芸的作法正确.”请回答:小芸的作图依据是到线段两个端点距离相等的点在线段的垂直平分线上,两点确定一条直线..【解答】解:∵CA=CB,DA=DB,∴CD垂直平分AB(到线段两个端点距离相等的点在线段的垂直平分线上,两点确定一条直线.)故答案为:到线段两个端点距离相等的点在线段的垂直平分线上,两点确定一条直线..三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程.17.(5分)(2015•北京)计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.【解答】解:原式=4﹣1+2﹣+4×=5+.18.(5分)(2015•北京)已知2a2+3a﹣6=0.求代数式3a(2a+1)﹣(2a+1)(2a ﹣1)的值.【解答】解:∵2a2+3a﹣6=0,即2a2+3a=6,∴原式=6a2+3a﹣4a2+1=2a2+3a+1=6+1=7.19.(5分)(2015•北京)解不等式组,并写出它的所有非负整数解.【解答】解:,由①得:x≥﹣2;由②得:x<,∴不等式组的解集为﹣2≤x<,则不等式组的所有非负整数解为:0,1,2,3.20.(5分)(2015•北京)如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.【解答】证明:∵AB=AC,AD是BC边上的中线,BE⊥AC,∴∠CBE+∠C=∠CAD+∠C=90°,∠CAD=∠BAD,∴∠CBE=∠BAD.21.(5分)(2015•北京)为解决“最后一公里”的交通接驳问题,北京市投放了大量公租自行车供市民使用.到2013年底,全市已有公租自行车25 000辆,租赁点600个.预计到2015年底,全市将有公租自行车50 000辆,并且平均每个租赁点的公租自行车数量是2013年底平均每个租赁点的公租自行车数量的1.2倍.预计到2015年底,全市将有租赁点多少个?【解答】解:设到2015年底,全市将有租赁点x个,根据题意可得:×1.2=,解得:x=1000,经检验得:x=1000是原方程的根,答:到2015年底,全市将有租赁点1000个.22.(5分)(2015•北京)在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)解:∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC===5,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.23.(5分)(2015•北京)在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y=的一个交点为P(2,m),与x轴、y轴分别交于点A,B.(1)求m的值;(2)若PA=2AB,求k的值.【解答】解:∵y=经过P(2,m),∴2m=8,解得:m=4;(2)点P(2,4)在y=kx+b上,∴4=2k+b,∴b=4﹣2k,∵直线y=kx+b(k≠0)与x轴、y轴分别交于点A,B,∴A(2﹣,0),B(0,4﹣2k),如图,点A在x轴负半轴,点B在y轴正半轴时,∵PA=2AB,∴AB=PB,则OA=OC,∴﹣2=2,解得k=1;当点A在x轴正半轴,点B在y轴负半轴时,=,解得,k=3.∴k=1或k=324.(5分)(2015•北京)如图,AB是⊙O的直径,过点B作⊙O的切线BM,弦CD∥BM,交AB于点F,且=,连接AC,AD,延长AD交BM于点E.(1)求证:△ACD是等边三角形;(2)连接OE,若DE=2,求OE的长.【解答】(1)证明:∵AB是⊙O的直径,BM是⊙O的切线,∴AB⊥BE,∵CD∥BE,∴CD⊥AB,∴,∵=,∴,∴AD=AC=CD,∴△ACD是等边三角形;(2)解:连接OE,过O作ON⊥AD于N,由(1)知,△ACD是等边三角形,∴∠DAC=60°∵AD=AC,CD⊥AB,∴∠DAB=30°,∴BE=AE,ON=AO,设⊙O的半径为:r,∴ON=r,AN=DN=r,∴EN=2+,BE=AE=,在R t△NEO与R t△BEO中,OE2=ON2+NE2=OB2+BE2,即()2+(2+)2=r2+,∴r=2,∴OE2=+25=28,∴OE=2.25.(5分)(2015•北京)阅读下列材料:2015年清明小长假,北京市属公园开展以“清明踏青,春色满园”为主题的游园活动,虽然气温小幅走低,但游客踏青赏花的热情很高,市属公园游客接待量约为190万人次.其中,玉渊潭公园的樱花、北京植物园的桃花受到了游客的热捧,两公园的游客接待量分别为38万人次、21.75万人次;颐和园、天坛公园、北海公园因皇家园林的厚重文化底蕴与满园春色成为游客的重要目的地,游客接待量分别为26万人次、20万人次、17.6万人次;北京动物园游客接待量为18万人次,熊猫馆的游客密集度较高.2014年清明小长假,天气晴好,北京市属公园游客接待量约为200万人次,其中,玉渊潭公园游客接待量比2013 年清明小长假增长了25%;颐和园游客接待量为26.2万人次,2013 年清明小长假增加了4.6万人次;北京动物园游客接待量为22万人次.2013年清明小长假,玉渊潭公园、陶然亭公园、北京动物园游客接待量分别为32万人次、13万人次、14.9 万人次.根据以上材料解答下列问题:(1)2014年清明小长假,玉渊潭公园游客接待量为40万人次;(2)选择统计表或统计图,将2013﹣2015年清明小长假玉渊潭公园、颐和园和北京动物园的游客接待量表示出来.【解答】解:(1)2014年,玉渊潭公园的游客接待量是:32×(1+25%)=40(万人).故答案是:40;(2)2013年颐和园的游客接待量是:26.2﹣4.6=21.6(万元).玉渊潭公园颐和园北京动物园2013年32 21.6 14.92014年40 26.2 222015年38 26 1826.(5分)(2015•北京)有这样一个问题:探究函数y=x2+的图象与性质.小东根据学习函数的经验,对函数y=x2+的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=x2+的自变量x的取值范围是x≠0;(2)下表是y与x的几组对应值.x …﹣3 ﹣2 ﹣1 ﹣﹣ 1 2 3 …y …﹣﹣﹣m …求m的值;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(1,),结合函数的图象,写出该函数的其它性质(一条即可)该函数没有最大值.【解答】解:(1)x≠0,(2)令x=3,∴y=×32+=+=;∴m=;(3)如图(4)该函数的其它性质:①该函数没有最大值;②该函数在x=0处断开;③该函数没有最小值;④该函数图象没有经过第四象限.故答案为该函数没有最大值.27.(7分)(2015•北京)在平面直角坐标系xOy中,过点(0,2)且平行于x 轴的直线,与直线y=x﹣1交于点A,点A关于直线x=1的对称点为B,抛物线C1:y=x2+bx+c经过点A,B.(1)求点A,B的坐标;(2)求抛物线C1的表达式及顶点坐标;(3)若抛物线C2:y=ax2(a≠0)与线段AB恰有一个公共点,结合函数的图象,求a的取值范围.【解答】解:(1)当y=2时,则2=x﹣1,解得:x=3,∴A(3,2),∵点A关于直线x=1的对称点为B,∴B(﹣1,2).(2)把(3,2),(﹣2,2)代入抛物线C1:y=x2+bx+c得:解得:∴y=x2﹣2x﹣1.顶点坐标为(1,﹣2).(3)如图,当C2过A点,B点时为临界,代入A(3,2)则9a=2,解得:a=,代入B(﹣1,2),则a(﹣1)2=2,解得:a=2,∴.28.(7分)(2015•北京)在正方形ABCD中,BD是一条对角线,点P在射线CD上(与点C、D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于H,连接AH,PH.(1)若点P在线段CD上,如图1.①依题意补全图1;②判断AH与PH的数量关系与位置关系并加以证明;(2)若点P在线段CD的延长线上,且∠AHQ=152°,正方形ABCD的边长为1,请写出求DP长的思路.(可以不写出计算结果)【解答】解:(1)①如图1;②解法一:如图1,连接CH,∵四边形ABCD是正方形,QH⊥BD,∴∠HDQ=45°,∴△DHQ是等腰直角三角形.∵DP=CQ,在△HDP与△HQC中.∵,∴△HDP≌△HQC(SAS),∴PH=CH,∠HPC=∠HCP.∵BD是正方形ABCD的对称轴,∴AH=CH,∠DAH=∠HCP,∴∠AHP=180°﹣∠ADP=90°,∴AH=PH,AH⊥PH.解法二:如图1,连接CH,∵QH⊥BD,∴∠QHB=∠BCQ=90°,∴B、H、C、Q四点共圆,∴∠DHC=∠BQC,由正方形的性质可知∠DHC=∠AHD,由平移性质可知∠BQC=∠APD,∴∠AHD=∠APD,∴A、H、P、D四点共圆,∴∠PAH=∠PDH=45°,∠AHP=∠ADP=90°,∴△HAP是等腰直角三角形,∴AH=PH,AH⊥PH.(2)解法一:如图2,∵四边形ABCD是正方形,QH⊥BD,∴∠HDQ=45°,∴△DHQ是等腰直角三角形.∵△BCQ由△ADP平移而成,∴PD=CQ.作HR⊥PC于点R,∵∠AHQ=152°,∴∠AHB=62°,∴∠DAH=17°.设DP=x,则DR=HR=RQ=.∵tan17°=,即tan17°=,∴x=.解法二:由(1)②可知∠AHP=90°,∴∠AHP=∠ADP=90°,∴A、H、D、P四点共圆,又∠AHQ=152°,∠BHQ=90°,∴∠AHB=152°﹣90°=62°,由圆的性质可知∠APD=∠AHB=62°,在Rt△APD中,∠PAD=90°﹣62°=28°,∴PD=AD•tan28°=tan28°.29.(8分)(2015•北京)在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C的反称点的定义如下:若在射线CP上存在一点P′,满足CP+CP′=2r,则称P′为点P关于⊙C的反称点,如图为点P及其关于⊙C 的反称点P′的示意图.特别地,当点P′与圆心C重合时,规定CP′=0.(1)当⊙O的半径为1时.①分别判断点M(2,1),N(,0),T(1,)关于⊙O的反称点是否存在?若存在,求其坐标;②点P在直线y=﹣x+2上,若点P关于⊙O的反称点P′存在,且点P′不在x轴上,求点P的横坐标的取值范围;(2)⊙C的圆心在x轴上,半径为1,直线y=﹣x+2与x轴、y轴分别交于点A,B,若线段AB上存在点P,使得点P关于⊙C的反称点P′在⊙C的内部,求圆心C的横坐标的取值范围.【解答】解:(1)当⊙O的半径为1时.①点M(2,1)关于⊙O的反称点不存在;N(,0)关于⊙O的反称点存在,反称点N′(,0);T(1,)关于⊙O的反称点存在,反称点T′(0,0);②∵OP≤2r=2,OP2≤4,设P(x,﹣x+2),∴OP2=x2+(﹣x+2)2=2x2﹣4x+4≤4,∴2x2﹣4x≤0,x(x﹣2)≤0,∴0≤x≤2.当x=2时,P(2,0),P′(0,0)不符合题意;当x=0时,P(0,2),P′(0,0)不符合题意;∴0<x<2;(2)∵直线y=﹣x+2与x轴、y轴分别交于点A,B,∴A(6,0),B(0,2),∴=,∴∠OBA=60°,∠OAB=30°.设C(x,0).①当C在OA上时,作CH⊥AB于H,则CH≤CP≤2r=2,所以AC≤2,C点横坐标x≥2(当x=2时,C点坐标(2,0),H点的反称点H′(2,0)在圆的内部);②当C在A点右侧时,C到线段AB的距离为AC长,AC最大值为2,所以C点横坐标x≤8.综上所述,圆心C的横坐标的取值范围是2≤x≤8.。

2015一模应用题汇编

为了响应学校提出的“节能减排,低碳生活”的倡议,班会课上小李建议每位同学都践行“双面打印,节约用纸”.他举了一个实际例子:打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求例子中的A4厚型纸每页的质量.(墨的质量忽略不计)朝阳22.列方程或方程组解应用题:为了迎接北京和张家口共同申办及举办2020年冬奥会,全长174千米的京张高铁于2014年底开工. 按照设计,京张高铁列车从张家口到北京最快用时比最慢用时少18分钟,最快列出时速是最慢列车时速的2920倍,求京张高铁最慢列车的速度是多少?西城21.从北京到某市可乘坐普通列车或高铁.已知高铁的行驶路程是400千米,普通列车的行驶路程是520千米.如果高铁的平均速度是普通列车平均速度的2.5倍,且乘坐高铁比乘坐普通列车少用3小时.求高铁的平均速度是多少千米/时.东城21.列方程或方程组解应用题:2015年“植树节”前夕,某小区为绿化环境,购进200棵柏树苗和120棵枣树苗,且两种树苗所需费用相同.每棵枣树苗的进价比每棵柏树苗的进价的2倍少5元,每棵柏树苗的进价是多少元?赵老师为了响应市政府“绿色出行”的号召,改骑自行车上下班,结果每天上班所用时间比自驾车多53小时.已知赵老师家距学校12千米,上下班高峰时段,自驾车的速度是自行车速度的2倍.求赵老师骑自行车的速度.怀柔21.列方程或方程组解应用题:为了培育和践行社会主义核心价值观,引导学生广泛阅读古今文学名著,传承优秀传统文化,我区某校决定为初三学生购进相同数量的名著《三国演义》和《红岩》.其中《三国演义》的单价比《红岩》的单价多28元.若学校购买《三国演义》用了1200元,购买《红岩》用了400元,求《三国演义》和《红岩》的单价各多少元.延庆22.列方程或方程组解应用题:八年级的学生去距学校10千米的科技馆参观,一部分学生骑自行车先走,过了20分钟,其余的学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑自行车学生速度的2倍,求骑车学生每小时走多少千米?大兴17.列方程或方程组解应用题:根据城市规划设计,某市工程队准备为该城市修建一条长4800米的公路. 铺设600 m 后,为了尽量减少施工对城市交通造成的影响,该工程队增加人力,实际每天修建公路的长度是原计划的2倍,结果9天完成任务,该工程队原计划每天铺设公路多少米?门头沟22.列方程或方程组解应用题:北京快速公交4号线开通后,为响应“绿色出行”的号召,家住门头沟的李明上班由自驾车改为乘公交.已知李明家距上班地点18千米,他乘公交平均每小时行驶的路程比他自驾车平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交所用时间是自驾车所用时间的37,问李明自驾车上班平均每小时行驶多少千米?通州22.为了把通州区打造成宜居的北京城市副中心,区政府对地下污水排放设施进行改造.某施工队承担铺设地下排污管道任务共2200米,为了减少施工对周边交通环境的影响,施工队进行技术革新,使实际平均每天铺设管道的长度比原计划多10%,结果提前两天完成任务.求原计划平均每天铺设排污管道的长度.房山22.列方程或方程组解应用题为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费).规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.下图是张磊家2014年3月和4月所交电费的收据:。

2015年北京市中考物理一模整理之15题

图82015年中考一模整理之15题(海淀)15.圆柱形容器内装有一定量的水,将其放在水平桌面上。

把球A 放入水中沉底,容器对桌面压力为F 1,水对容器底部压强为p 1;若用细线将球A 悬吊起来,静止时如图10甲所示,细线对球A 的拉力为F ,容器对桌面压力为F 2,水对容器底部压强为p 2。

若将球B 放入该烧杯中静止时,球B 有52体积露出水面,容器对桌面压力为F 3,水对容器底部压强为p 3;若将球B 用细线拴住,细线另一端固定在杯底,静止时如图10乙所示,细线对球B 的拉力仍为F ,容器对桌面压力为F 4,水对容器底部压强为p 4。

A 、B 两球的密度分别为ρA 、ρB ,重力分别为G A 、G B ,体积分别为V A 、V B ,且V A :V B =2:5,下列说法正确的是A. F 1> F 4= F 3> F 2B. G A >G B >2FC. ρA > 4ρBD. p 4> p 3> p 2> p 1(西城)15.如图8所示,在甲、乙两个完全相同的圆柱形容器内,装有等质量的水。

现将质量相等的A 、B 两个实心小球分别放入甲、乙两容器中,小球均浸没在水中,且水不溢出。

当小球静止时,两小球所受浮力分别为F A 和F B ,容器底对小球的支持力分别N A 和N B ,桌面对容器的支持力分别为N 甲和N 乙,甲、乙两容器底部受到水的压力增加量分别为ΔF 甲和ΔF 乙。

已知A 、B 两小球的密度分别为ρA =2ρ水,ρB =3ρ水。

则下列判断中正确的是 A .F A ∶F B =2∶3 B .N A ∶N B =3∶4 C .N 甲∶N 乙=2∶3 D .ΔF 甲∶ΔF 乙=3∶4(东城)15.图5中,水平桌面上有A 、B 两个相同的容器,分别放有甲、乙两个小球,两球在水中分别处于漂浮和悬浮状态,且两容器中的水面高度相同,则下列说法中正确的是 A .两球的质量可能相等B .两球受到的浮力一定相等C .A 容器底部受到的压力比B 容器的小D .B 容器中加入盐水后,乙球受到的浮力比甲球的大(朝阳)15.如图5所示,三个相同的容器内水面高度相同,甲容器内只有水,乙容器内有木块漂浮在水面上,丙容器中悬浮着一个小球,则下列四种说法正确的是A .三个容器对水平桌面的压力不相等B .三个容器中,丙容器对水平桌面的压强最大C .如果向乙容器中加入盐水,木块受到的浮力不变D .如果向丙容器中加入酒精,小球受到的浮力不变B 图5A 甲乙 图5图10BA甲 乙图7(石景山)15. 如图5所示,将三个完全相同的鸡蛋分别放入盛有不同液体的烧杯中,鸡蛋在甲杯中沉底,在乙杯中悬浮,在丙杯中漂浮,且各杯中液体深度相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
海淀区七年级第一学期期末练习
数学
2015.1
班级姓名成绩

一.选择题(本大题共30分,每小题3分)
在下列各题的四个备选答案中,只有一个是正确的.请将正确选项前的字母填在表格
中相应的位置.
题号 1 2 3 4 5 6 7 8 9 10
答案
1.-2的相反数是
A. 2 B.21 C.21 D.-2

2.全面贯彻落实“大气十条”,抓好大气污染防治,是今年环保工作的重中之重.其中推进
燃煤电厂脱硫改造15000 000千瓦是《政府工作报告》中确定的重点任务之一.将数据
15 000 000用科学记数法表示为
A.15×106 B. 1.5×107 C.1.5×108D.0.15×108
3.下列各式结果为正数的是
A.22()B.32() C.2D.
2()
4.下列计算正确的是
A.2527aaaB.
523abab

C.523aaD.3332ababab

5.如图,把原来弯曲的河道改直,A,B两地间的河道长度变短,这样做的道理是
A.两点确定一条直线 B.两点确定一条线段
C.两点之间,直线最短 D.两点之间,线段最短
B

A
2

6.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是
A.圆柱 B.圆锥 C.棱锥 D.球
7.若2是关于x的方程112xa的解,则a的值为
A.0 B.2 C.2 D.6
8.有理数a,b在数轴上的位置如图所示,则下列各式成立的是

A.b-a>0 B.-b>0 C.a>-b D.-ab<0
9.已知33xy,则53xy的值是

A.8 B.2 C.2 D.8
10.已知线段AB=6cm,若M是AB的三等分点,N是AM的中点,则线段MN的长度为
A.1cm B.2cmC.1.5cm D.1cm或2cm
二.填空题(本大题共24分,每小题3分)
11.比较大小:23(填“>”,“<”或“=”).
12.写出一个以1为解的一元一次方程.

13.若=2040′,则的补角的大小为.

14.商店上月收入为a元,本月的收入比上月的2倍还多5元,本月的收入为元(用含a
的式子表示).

15.若22(3)0ab,则2ab的值为
_____________.

16.将一副三角板如图放置,若=20AOD,则
BOC
的大小为____________.

从正面看
从左面看 从上面看
O
D
C
B

A

0
b a
3

17.已知关于x的方程7kxx有正整数解,则整数k的值为.
18.有一组算式按如下规律排列,则第6个算式的结果为________;第n个算式的结果为
_________________________(用含n的代数式表示,其中n是正整数).

1 = 1
(-2) + (-3) + (-4) = -9
3 + 4 + 5 + 6 + 7 = 25
(-4) + (-5) + (-6) + (-7) + (-8) + (-9) + (-10) = -49
5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 = 81
„„

三.解答题(本大题共18分,第19题6分, 第20题各4分,第21题各8分)
19.计算:

(1)12(18)(7)15;(2)2316821.

20.如图,平面上四个点A,B,C,D.按要求完成下列问题:
(1)连接AD,BC;
(2)画射线AB与直线CD相交于E点;
(3)用量角器度量得∠AED的大小为_________(精确到度).

D
C

B
A
4

21.解方程:
(1)2(10)6xxx;(2)12324xx.

四.解答题(本大题共12分,每小题4分)
22.先化简,再求值:aaaaa3225222,其中5a.

23. 点A,B,C在同一直线上,AB=8,AC: BC=3 : 1,求线段BC的长度.
24.列方程解应用题:
甲种铅笔每支0.4元,乙种铅笔每支0.6元,某同学共购买了这两种铅笔30支,并且买
乙种铅笔所花的钱是买甲种铅笔所花的钱的3倍,求该同学购买这两种铅笔共花了多少钱?
5

五.解答题(本大题共16分,第25题5分,第26题各5分,第27题各6分)
25.如图,将连续的偶数2,4,6,8,10,„排成一数阵,有一个能够在数阵中上下左右
平移的T字架,它可以框出数阵中的五个数.试判断这五个数的和能否为426,若能,
请求出这五个数,若不能,请说明理由.

26. 用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=22ababa.
如:1☆3=2132131=16.
(1)求(-2)☆3的值;
(2)若(12a☆3)☆(-12)=8,求a的值;

(3)若2☆x =m,1()4x☆3=n(其中x为有理数),试比较m, n的大小.

2 4 6 8 10
12 14 16 18 20
22 24 26 28 30
32 34 36 38 40
42 44 46 48 50
„„
6

27.如图1,AOB=,COD,OM,ON分别是∠AOC,∠BOD的角平分线.
(1)若∠AOB=50°,∠COD=30°,当∠COD绕着点O逆时针旋转至射线OB与OC重
合时(如图2),则∠MON的大小为______________;
(2)在(1)的条件下,继续绕着点O逆时针旋转∠COD,当∠BOC=10°时(如图3),
求∠MON的大小并说明理由;

(3)在∠COD绕点O逆时针旋转过程中,∠MON=__________________________.(用含


的式子表示).

图3
N
M
D

C

B

O
A
图2

N
M
D

(C)
B

OA
图1

N
M
D

C
B

OA

相关文档
最新文档