变频器反电动势保护与控制
变频器制动单元原理

变频器制动单元原理
变频器制动单元是变频器系统中的一个重要组成部分,其主要作用是控制电机的制动过程。
变频器制动单元的工作原理如下:
1. 电机制动控制器:制动过程开始时,变频器通过电机制动控制器向电机施加电压,使电机产生反电动势。
2. 制动电阻:变频器制动单元通常配备有制动电阻,在制动过程中,电机将过多的能量传递到制动电阻中,将能量转化为热量散发出去。
3. 制动电压控制:变频器通过对制动电压的控制,可以调整电机制动的程度。
当制动电压达到设定值时,可以实现电机的快速制动。
4. 制动时间控制:变频器制动单元还可以控制制动的时间,可以调整制动的时间长短,以满足不同的制动要求。
5. 制动开关:变频器制动单元还配备有制动开关,用来将电机切换到制动状态。
制动开关通常分为手动和自动两种模式,可以根据需要选择使用。
通过以上工作原理,变频器制动单元可以实现对电机的平稳制动,提高了系统的安全性和稳定性。
同时,通过调整制动电压和制动时间,可以满足不同工况下的制动需求。
变频器通过编码器实现闭环控制的原理

变频器通过编码器实现闭环控制的原理变频器带编码器的闭环控制:变频控制闭环,主要是指速度闭环。
变频电机有需要速度反馈的,在电机启动、加速和减速停止的变速过程中,电机的驱动电流需要与实际转速下电机因发电机效应产生的反电动势相匹配,如果电机驱动电流与反电动势阻抗不匹配,电机驱动力不够转速达不到输出要求,或者因电机负载过大电机没有达到输出速度值,反电动势因与转速成比例而偏弱,这样会引起电机电流徒增,容易烧毁电机线圈或驱动器。
速度反馈及时反馈的信息可以计算实际转速并导算反电动势与驱动电流的匹配,从而保护电机和驱动器。
变频频电机的速度闭环反馈,大约有三种模式:1,霍尔传感器,在电机转径上大部分是三个霍尔传感器,反馈三相位置变化。
由于传感器对电机一周的提供信息有限,速度精度低,在低速时很难分辨。
2,所谓无传感器的技术----利用线圈转起来,自感应反电动势。
但是在启动到低速过程中反电动势较弱,如果感应电路本底阻抗在,这种微弱的感应被吃掉,低速时实际获得反馈很不稳定。
3,旋转编码器,较高的分辨率(例如每圈1024个脉冲),可获得较高的速度精度,尤其是在启动到低速时精度高。
根据上述描述,可见变频器(尤其是矢量变频)带编码器主要是在低速启动时的效果,可以精细化计算驱动电流,防止电流过小驱动力不够(没有转速),或者因为堵转电机失速,反电动势不够而驱动电流过流,容易烧毁器件或电机。
上述情况在起重启升类电机尤为重要,防止变频器为保护电机失速而溜钩,所以起重启升类变频器必须加装编码器。
注意一下矢量变频的手册内容,一般有编码器反馈的,低速可做到很低。
另外,变频器有的加装了PG卡的位置闭环模式,编码器反馈给具有位置控制功能的变频器(PG卡)做位置闭环控制,或者编码器信号给PLC,PLC给指令变频器减速和制动做位置闭环控制,这时我建议需要用值编码器。
变频电机节能一直是一个讨论的话题,电机从启动到低速到正常运动,往往启动过流设计,并在低速时因反电动势很低,要有外部阻抗来匹配,实际上这就消耗了大量能耗在外部阻抗上。
浅析静止变频装置(SFC)在蓄能电厂的作用

浅析静止变频装置(SFC)在蓄能电厂的作用摘要:静止变频器(英文全称为“Static Frequency Convert-er”,简称SFC),被广泛用于抽水蓄能电厂,主要是在机组抽水工况和抽水调相工况下启动。
静止变频器的优点是启动平稳,启动时间短,调整方便,维护工作量小,可靠性高,工作效率高。
总而言之,静止变频装置对蓄能电厂设备的运转是有很大的影响的。
关键词:静止变频装置(SFC);蓄能电厂;作用前言:随着现代化大电网的不断发展,蓄能电厂内蓄能机组以其快速、有效、经济、可靠、无污染的特点,在电网的调峰、调频、填谷以及事故备用中扮演着越来越重要的角色。
蓄能电厂中的抽水蓄能机组所特有的可逆式同步电动发电机的启动则是其运行的关键技术之一。
而静止变频器SFC正是用于实现这一关键技术的理想设备。
本研究就将针对静止变频装置(SFC)在蓄能电场中的应用这一主题进行阐述,使读者对这方面的内容有一个更加深入的了解。
1.静止变频装置(SFC)结构静止变频器主要由功率单元、控制和保护单元以及辅助单元等组成。
1.1功率单元功率单元主要包括以下部分:(1)输入断路器。
在SFC发生故障或正常停运时,切断电源。
(2)输入变压器。
将高压侧与低压侧进行隔离。
(3)整流桥。
将交流电流整流为直流。
(4)逆变桥。
将直流电流逆变为交流。
(5)直流电抗器。
用于整流输出后的平波和去耦。
(6)输出断路器。
启动过程中启动回路发生故障时切断电流。
1.2 控制和保护单元控制单元包括测量单元、脉冲单元、PNC、PLC等。
(1)测量单元。
测量SFC 调节所需的各种变量的元件。
(2)脉冲单元。
可控硅触发信号的传送和变换元件。
(3)PNC(可编程数字控制器)。
用于SFC闭环调节和控制及可控硅元件的保护。
(4)PLC。
用于SFC和监控系统的输入输出联络和故障管理。
(5)保护单元。
用于SFC各种电气部件的保护(主要包含过流保护、过压保护、欠压保护、欠励保护、过励保护、差动保护、超速保护等)。
基于PLC变频器三相异步电动机正反的控制

基于PLC变频器三相异步电动机正反的控制【摘要】本文主要探讨了基于PLC变频器控制三相异步电动机正反转的技术及应用。
首先介绍了研究背景和意义,探讨了PLC在电机控制中的应用以及变频器在电机控制中的作用。
然后详细解析了三相异步电动机的工作原理,包括正转控制策略和反转控制策略。
论文对基于PLC变频器控制三相异步电动机正反转的应用前景进行了展望,并提出了未来研究方向。
通过本文的研究,可以更好地了解和掌握基于PLC变频器的电机控制技术,为相关领域的工程应用提供参考和指导。
【关键词】PLC,变频器,三相异步电动机,正反控制,应用前景,工作原理,控制策略,研究意义,研究目的,总结与展望,建议未来研究方向1. 引言1.1 背景介绍电动机是工业生产中常见的驱动设备,广泛应用于各类机械设备、生产线等领域。
传统上,电机的控制主要通过接触器、继电器等传统电气元件实现,存在操作复杂、维护困难、精度低等问题。
而随着自动化技术的发展,基于PLC和变频器的控制方案逐渐成为电机控制的主流模式。
三相异步电动机作为工业生产中最常见的电机类型,其工作原理复杂且性能优越。
正反控制策略是指根据实际需求来控制电机的正转和反转运行,实现精准控制和调节。
本文旨在探讨基于PLC和变频器的控制方案在三相异步电动机正反控制中的应用,为提高电机控制精度、降低能耗、提高生产效率提供技术支持和参考。
1.2 研究意义三相异步电动机在工业生产中应用广泛,其正反控制对于提高生产效率、降低能耗具有重要意义。
通过基于PLC(可编程逻辑控制器)和变频器对三相异步电动机进行控制,可以实现精确的正反转调速控制,提高生产线的灵活性和稳定性。
基于PLC变频器控制的电动机系统能够实现智能化、自动化控制,减少人力成本和操作复杂度。
研究基于PLC变频器三相异步电动机正反控制的意义还体现在技术创新和节能减排方面。
通过优化控制策略和参数设置,可以降低电机运行时的能耗,提高能源利用效率,符合现代工业制造对节能环保的要求。
变频器制动电路工作原理

变频器制动电路工作原理
首先,反电动势脉冲监控模块通过监测电机输出的反电动势信号,实
时监控电机的运行状态。
当电机运行时,由于反电动势的存在,系统的总
电流会较小;而当电机停止运行时,反电动势消失,总电流会变大。
通过
对反电动势信号的监测,可以及时判断出电机是否停止运行,从而做出相
应的制动处理。
接下来,反电动势捕捉模块主要用于捕捉电机停止后产生的反电动势
信号。
当电机停止运行时,由于惯性作用,电机转子会继续旋转一段时间,并产生反电动势信号。
反电动势捕捉模块能够快速捕捉到反电动势信号并
将其反馈到电机控制模块中,以提供制动信号。
然后,电流检测模块主要用于检测电机的电流变化,并根据变化结果
进行制动控制。
当电机停止运行后,电流会突然增大,超过额定电流值。
电流检测模块通过检测电流的变化情况,判断出电机是否停止运行,并将
检测结果反馈给电机控制模块。
最后,电机控制模块根据反电动势信号、反电动势捕捉信号和电流检
测信号,对电机进行制动控制。
当电机停止运行时,电机控制模块接收到
反电动势信号,并根据信号进行相应的制动处理,如调整输出频率和电压等,以达到平稳停车的效果。
总结起来,变频器制动电路通过监测反电动势信号、捕捉反电动势信号、检测电流变化和控制电机制动,实现了对电机的平稳停车和安全运行。
它在制动过程中能够根据实际情况进行调整,保证了电机的制动效果和工
作安全。
变频电机轴电流产生的原理分析及应对措施

变频电机轴电流产生的原理分析及应对措施概述在变频电机应用过程中,轴电流问题经常会受到重视。
因为轴电流大大影响电机运行稳定性和寿命,通过分析轴电流的产生原理,我们可以采取一些有效的应对措施,提高电机的使用效果和寿命。
本文将对变频电机轴电流产生的原理进行分析,并提出相应的解决方案。
变频电机轴电流产生原理声磁耦合原理在变频电机开关管的控制下,电机的电源电压不断变换,产生频繁的电磁波动。
这种电磁波动可以锁定电机铁芯磁路的频率,从而产生定子和转子之间的声磁耦合作用。
这种声磁耦合效应可以产生轴电流。
物理机制当电机旋转时,定子和转子之间会产生磁场差异。
当电机被反向运行时,传递磁场的磁通量会转移。
这种磁通量变化会在转动轴上产生感应电流,进而导致轴电流。
因此,当电机发生反转现象时,会产生轴电流。
频率问题电机轴电流的产生主要取决于电机的运行频率。
当电机运行频率低于10Hz时,一般不会产生轴电流。
而当运行频率达到10Hz以上时,轴电流的产生率逐渐增加。
当运行频率达到50Hz甚至更高时,轴电流的产生率会非常高。
变频电机轴电流应对措施为了解决变频电机的轴电流问题,我们可以采取以下措施。
实施反电动势降噪措施在电机运行的过程中,特别是当电机运行频率过高时,电机会产生反电动势,这种反电动势也会沿轴线产生电压,引发轴电流。
因此,我们可以针对电机产生的反电动势进行降噪措施,如在电路中加装反电动势滤波器、加装对称容量、限流电容等措施,有效减少轴电流的产生率。
加装零序电流保护当电机运行频率达到一定程度时,轴电流的产生率明显增加。
在这种情况下,加装零序电流保护装置可以有效降低轴电流的产生率,从而减少电机的损坏风险。
同时,这种零序电流保护装置还可以有效检测其它故障,如短路、接地等问题。
采用卟啉弱磁环电机的铁芯一般是由硅钢片构成,硅钢片中还会含有铝、钚、卟啉等元素,其中,卟啉是一种磁性很弱的元素。
我们可以通过在变频电机的铁芯中加入一定比例的卟啉物质,来有效降低电机磁强度,从而减少轴电流的产生。
变频器弱磁区
变频器在控制交流异步电机(也称感应电机)时,当输出频率逐渐升高到一定程度后,电机内部的磁通密度(即主磁通Φ)会因为反电动势(E)随着频率的增加而增大,从而导致磁路饱和程度降低,即进入弱磁状态。
这个区域被称为“弱磁区”。
具体来说,在异步电机的工作特性中,当变频器提供的电压和频率同时增加,并且保持电压与频率比(U/f)恒定时,电机的转矩会随频率上升而基本保持不变,直到达到电机的基频以上。
此时,如果继续提高频率而不相应地提高电压,电机的磁通将由于反电动势的增大而被迫减少,使得电机从磁饱和状态变为弱磁状态。
在弱磁状态下,电机铁芯的磁通不再饱和,电机的转速可以超过额定转速进行调速,这种调速方式常用于需要高速运行的场合,如提升机、风机、泵类负载等,以实现宽范围内的高效调速。
简而言之,变频器控制下的电机弱磁区是指电机工作点超出其固有同步转速,通过减小磁通来维持或提高电机转矩-速度特性的区域。
变频器启动过程
启动阶段载波的选择
启动阶段占空比很小,为了使位置信号相对容易检测一些,一般会 把载波周期调长,即如果在正常情况下的载波频率为4k,那么启动阶段 的载波频率就为1k或2k。
10P模块设计的初始阶段,载波周期定义为2k,但是由于占空比很小, 而且切换的频率点选择在8rps,所以经常检测不到位置信号(当然硬件 参数也没有调整好)。提高了切换频率点之后,位置信号可以检测到, 但是启动阶段的峰值电流又比较大,很容易引起模块的保护。所以专家 建议将载波由2k改为1k,这样同样占空比的情况下,一个载波周期内的 导通时间就成为原来的2倍。这样对于回路的延时、虑波、软件处理等造 成的延时就留下了足够的时间。
而当载波频率增加以后,每个60度的时间内的载波数量就会增加,这 样每个载波所占的电气角度就会减少,如果上一次因为噪声而没有检测到 位置信号,则下次出现位置信号间隔角度也就比较小,从而不会出现控制 信号太慢的现象。所以在改善了切换到无感应阶段的控制方法之后,载波 频率仍然采用2k。
有电流脉冲的启动波形如下:
1
上面波形,即是启动过程对应的波形。 其中1s的时间用于转子的定位,因为在停机时转子的位置是不固定的, 所以再次启动时首先要确定一下转子的位置,把转子固定在目标位置上。 然后进行强制运转,即同步运转阶段,这是由驱动控制方式决定的,强 制运转即使压机强制转起来,这一过程不理会转子的实际位置,按照既定的 60度时间和占空比进行控制,在压缩机转起来的同时就会产生反电动势,当 反电动势一定大的时候,就可以进行位置检测,一般会在压机最高频率的 1/8~1/10的转速期间进行检测。强制运转阶段的升频速度为3hz/s,速度太 慢会使转子的惯性太小,压机不容易转起来,升频速度太快在检测位置信号 之后不容易控制。 10P固定在10rps时进行检测,因为考虑到模块的最大电流的限制,在大 负载的情况下启动的占空比比较大,瞬时的冲击电流会比较大,如果电流过 大会对模块造成损坏或者致使压机退磁。当然如果强制运转的速度过高也会 造成上述现象。
变频器的控制方式
(3)输出功率。电动机的输出功率就是轴上的机械功率,计算公式
如下:
P2
TM(nM4-4) 9550
式中:P2——电动机的输出功率kW; TM——电动机轴上的电磁转矩N•m; nM——电动机的转速r/min。
4.1 恒压频比U/f的控制方式——变频调速出现的问题
能力目标: 1、会使用变频器中的恒压频比控制方式。 2、会使用变频器中的矢量控制方式。 3、会绘制频率给定曲线。
4.1 恒压频比Uຫໍສະໝຸດ f的控制方式由第一章的学习可知,变频调速的理论依据是: n (1 s)60 f p(4-1)
从式(4-1)可以看出,只要改变频率就可以实现调速的目的。 但是在实际的应用中是否如此简单就可以实现调速呢? 4.1.1 变频调速出现的问题 1、从能量的角度讨论问题 (1)输入功率。三相交流异步电动机的输入功率就是从电源吸收的 电功率,用P1表示,计算公式如下:
4.1 恒压频比U/f的控制方式——变频调速出现的问题
(3)电磁功率。由图4-1可以看 出,当输入功率P1不变而输出功率 P2减小时,传递能量的电磁功率 PM必将增大。这意味着主磁通Φ1 也必将增大,并导致磁路饱和。磁 通出现饱和后将会造成电机中流过 很大的励磁电流,增加电机的铜损 耗和铁损耗,造成电机铁芯严重过 热,不仅会使电机输出效益大大降 低,而且由于电机过热,造成电机 绕组绝缘降低,严重时,有烧毁电 机的危险。
图4-1 异步电动机的能量传递过程
所以,在进行变频调速时,有一个十分重要的要求,就是主磁通Φ1必须保持基
本不变:
Φ1 ≈ const
(4-5)
4.1 恒压频比U/f的控制方式——变频调速出现的问题
最新AB变频器抗晃电的实现
A B变频器抗晃电的实现AB低压变频器抗晃电的实现肖锡才宁波海越新材料有限公司,浙江宁波 315803摘要:当前,变频器以其优良的调速性能和显著的节能效果,越来越被更多的现代化企业所采用。
由于电网电压不稳定,导致变频器在使用中产生了新的问题——变频器因电网晃电而跳闸。
低电压通常都是短时的,对传统的控制系统影响较小,而对变频器则会产生低压跳闸导致电机停止,影响生产。
每次由于电网晃电变频低压跳闸造成的非计划停机,都给公司造成很大的经济损失。
因此,如何使变频器在瞬时低电压时仍能正常工作成为关键问题,本文介绍了我公司各种设备在抗晃电的设置原则及DZQ继电器在我公司AB低压变频器上的应用,并在实际应用中有很好的效果。
关键词:抗晃电,DZQ继电器1 前言现代工业企业里的低压电动机的控制广泛采用了熔断器(自动开关)—接触器电路, 即FC回路。
它的电源取自本回主电路,带电自保持,失压脱扣,其优点是电路简单可靠,动作迅速,而且能频繁操作,电气寿命和机械寿命极长,是其他任何控制方式所不能替代的。
然而,当电源遇瞬时失压故障,就会释放脱扣,需人工恢复,造成运行中的电动机不必要停机,生产过程被迫中断,对许多重要的自动化连续化生产的企业造成了很大的经济损失。
为此,诸如石化、化工,化纤,发电、冶炼、等行业采用了各种类型的电动机自起动装置,来应对这种因电源瞬间失压引起的电动机停机,保证一些极重要负荷的自动再起动。
2电动机自起动与防晃电的设置原则通常,电动机自起动装置是用于配合备用电源自投和电网的重合闸装置的,它们的来电时间基本都大于一秒时间,都是针对本侧电源故障目标,现有的数据处理型自起动装置均能满足要求。
但是,随着主电网的环网化以及企业中压电网供电线路的增加,而企业为降低电耗不设阻抗隔离元件,这样,当主网或企业中压电网中相邻线路故障时无可避免的引起瞬时失压,失压时间取决于相邻线路故障的切除时间。
对于中压线路短路故障的最短切除时间就是互感器退出饱和时间加断路器固有分断时间,约210ms.绝大多数瞬间失压几乎都是因相邻线路故障所致,时间就是切除故障时间,而交流接触器的失压脱扣时间应不大于3个周波,即小于60ms.而电压数采基本上和显示走一个通道,受刷新时间影响,很难做到小于300ms时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变频器反电动势保护与控制
随着电气技术的快速发展,变频器被广泛应用于各种机械设备中,
用于调节驱动电机的转速和转矩。
在变频器的正常运行过程中,会产
生一定的反电动势。
本文将探讨变频器反电动势的保护与控制方法。
一、反电动势的定义与特性
反电动势是指电动机在运行时由于旋转的转子在磁场中产生的电势。
它根据电动机的负载和转速的变化而变化。
当负载增加时,电动机的
转速降低,反电动势也随之降低。
而当负载减小时,电动机的转速增加,反电动势也随之增加。
二、反电动势的保护措施
1. 频率限制器
为了防止电动机因反电动势过高而受损,可以设置一个频率限制器。
该限制器可以在反电动势超过设定值时停止变频器的输出频率,从而
保护电动机的安全运行。
2. 电流限制器
电流限制器可以根据电动机的负载情况来限制其输出电流。
在负载
过大的情况下,限制器可以降低输出电流,以保护电动机不受过载损坏。
3. 速度闭环控制
通过设置速度闭环控制,可以实现对电动机转速的精确控制。
当负载变化时,可以通过调整变频器的输出频率和电流来保持电动机的稳定转速,从而减小反电动势的影响。
4. 矢量控制技术
矢量控制技术可以实现对电动机速度和转矩的精确控制。
通过测量电动机的反电动势,并根据控制算法进行计算和补偿,可以实现对电动机输出电流的精确控制,从而保护电动机免受过载和反电动势的影响。
三、反电动势的控制方法
1. 降低负载
降低负载是减小电动机反电动势的常用方法之一。
可以通过减少驱动装置的负荷或者增加驱动装置的数量来实现负载的均衡,从而降低电动机的反电动势。
2. 减小频率变化率
频率变化率越大,电动机的反电动势变化也越大。
因此,在变频器的控制下,应尽量减小频率的变化率,以减小反电动势对电动机的影响。
3. 增加初始电压
增加电动机的初始电压可以提高电动机的启动转矩,从而减小电动机的转速变化,减小反电动势的大小。
4. 使用反电动势保护器
反电动势保护器可以实时监测电动机的反电动势,并根据设定值进行报警或停机处理,保护电动机不受反电动势的损害。
四、总结
变频器反电动势的保护与控制是确保电动机安全运行的重要环节。
通过合理选择保护措施和控制方法,可以有效降低电动机受反电动势影响的风险,延长设备的使用寿命,提高设备的运行效率。
因此,我们在应用变频器时,务必注意反电动势的保护与控制问题,确保设备的安全可靠运行。