2010年杨晓兰等比数列前n项和说课

合集下载

《等比数列的前n项和》优质说课稿

《等比数列的前n项和》优质说课稿

《等比数列的前n项和》说课稿各位专家、各位同行:现在, 我将向大家讲述“等比数列的前n项和公式”这节课的教学构思与设计。

我的讲述分两个部分:第一部分是我对这节教材的理解和根据高中学生的数学思维特征, 确定的教学模式和教学方法以及要实现的教学目标。

第二部分是在教学过程中, 如何用多媒体激发学生的学习热情, 调动学生潜在的学习积极性, 启迪学生的思维, 突破教材难点。

我认为课堂教学的最高原则是突破难点, 可以全面体现一个教师的综合素质、和全面展示一个教师的教学艺术、突破难点可以使学生在心理上得到一种满足和享受, 从而将认识水平达到一个新的境界。

一、教材分析1.地位和作用《等比数列的前n项和》是一个重要内容, 它不仅在现实生活中有着广泛的实际应用, 如储蓄、分期付款的有关计算等等, 而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法, 都是学生今后学习和工作中必备的数学素养。

《等比数列前n项和公式》是高中数学二年级第二学期第十三章第五节内容。

教学对象为高二学生, 教学课时为2课时。

本节课为第一课时。

在此之前, 学生已学习了数列的定义、等比数列、等比数列的通项公式等知识内容,这为过渡到本节的学习起着铺垫作用, 而本节内容也为后面学习数列求和、数列极限打下基础。

本节课既是本章的重点, 同时也是教材的重点。

从高中数学的整体内容来看, 《数列与数学归纳法》这一章是高中数学的重要内容之一, 在整个高中数学领域里占据着重要地位, 也起着关键性的作用。

首先:数列有着广泛的实际应用。

例如产品的规格设计、储蓄、分期付款的有关计算等。

其次:数列有着承前启后的作用。

数列是函数的延续, 它实质上是一种特殊的函数;学习数列又为进一步学习数列的极限等内容打下基础。

再次:数列也是培养提高学生思维能力的好题材。

学习数列要经常观察、分析、猜想,还要综合运用前面的知识解决数列中的一些问题, 这些都有利于学生数学能力的提高。

等比数列前n项和说课稿

等比数列前n项和说课稿

“等比数列的前N项和”说课稿各位评委老师,大家上午好,我的抽签序号是16号,今天我要说课的题目是《等比数列的前N项和》。

我尝试运用新课标的理念来指导教学,对于本节课,我将以“教什么,怎样教,为什么这样教”为思路,从教材分析,目标分析,教法学法分析,教学过程分析,板书设计和评价分析六个方面来谈谈我对本节课的理解和设计。

一、教材分析教材的地位与作用《等比数列的前n项和公式》是高中数学新课标必修5第一章第三节的内容。

这一节内容是在学生学习了等差数列、等比数列的概念及通项公式,等差数列的前n项和公式的基础上进行的。

是进一步学习数列知识和解决这一类求和问题的重要基础和有力工具。

因此,在教材中,占据非常重要的地位。

二、目标分析知识目标:理解并掌握等比数列的前n项和公式及其推导方法;熟练掌握运用公式求和。

能力目标:向学生渗透特殊到一般、类比与转化、分类与讨论等数学思想。

培养学生良好的学习习惯和数学思维的深刻性、广阔性等思维品质。

情感目标: 在学习过程中,使学生获得积极的情感,培养数学学习的兴趣重点和难点本节课的重点是:等比数列的前n项和公式及其初步应用;本节课的难点是:公式的推导方法。

三、教法学法分析教法分析新课标指出,学生是教学的主体,本节课我将运用新课标的理念来指导教学。

为了让学生更好的掌握本节课内容,本节课主要采用观察法、主动探究法,归纳法等教学方法,通过创设情境,使学生由浅到深,由易到难分层次对本节课内容进行掌握。

学法分析本节课要求学生通过自主观察、归纳、反思来参与学习,认识和理解数学知识,学会发现问题并尝试解决问题,在学习活动中进一步提升自己的能力。

四、教学过程分析1、复习旧知设计意图2、探索发现设计意图3、总结规律设计意图4、典例讲解设计意图5、布置作业设计意图课本具体实例导入:让学生初步体验用错位相减法得前n项和的技巧设计意图:通过故事的引入,创设教学情境,在情境的暗示作用下,学生自觉不自觉地参与了情境中的角色,这样他们的学习积极性和思维活动就会极大的调动起来。

高中数学《等比数列的前n项和》说课稿

高中数学《等比数列的前n项和》说课稿

高中数学《等比数列的前n项和》说课稿各位老师你们好!今天我要为大家讲的课题是《等比数列的前n项和》首先,我对本节内容教材进行一些分析:一、教材分析(说教材)(一)教材所处的地位和作用本节内容在全书和章节的作用是:《等比数列的前n项和》选自《普通高中课程标准数学选择性必修二》(新人教A版)第四章第三节第二课时。

在此之前,学生已经学习了有关等比数列的概念以及通项公式等知识,为本节课的学习提供了知识基础。

本节内容在数列这一章中占有重要地位,同时错位相减法也是一种重要的数学思想方法,因此本节具有承上启下的作用。

在公式推导的过程中渗透的类比、划归、分类讨论、整体变化和方程等思想,都是学生在今后的学习和工作中不可或缺的数学素养。

(二)教育教学目标根据上述材料分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:1.知识目标:通过学习数学抽象、等比数列的前n项和公式的概念和意义,进行逻辑推理、等比数列前n项和公式的推导,利用等比数列的前n项和公式进行计算,归纳数学建模思想、通过与特殊的等比数列前n项和公式的类比,得出一般等比数列前n项和的公式。

2.能力目标:通过教学初步体会分析和解决问题。

通过团队协作,进行语言表达。

通过师生双边活动,运用知识,体会逻辑推理,数学抽象和数学建模的思想。

3.情感目标:通过问题——探究的教学方法,从现实的生活经历与体验出发,提高学习的兴趣。

二、教学策略(说教法)(一)教学手段如何突出重点,突破难受,从而实现教学目标。

在教学过程中坚持“以学生为主体,以教学为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的学导式讨论教学法。

在学生思考讨论的基础下,加以引导,运用问题解决式教法,师生交谈法,问答式和课堂讨论法。

在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。

(二)学情分析(说学法)1.学生特色分析:中学生的心理学研究指出,高中阶段需要抓住学生特点,积极采用形式多样的生动的教学方法。

等比数列的前n项和说课稿教案

等比数列的前n项和说课稿教案

等比数列的前n 项和●教课目的知识与技术:掌握等比数列的前n 项和公式及公式证明思路;会用等比数列的前n 项和公式解决相关等比数列的一些简单问题。

过程与方法:经历等比数列前n 项和的推导与灵巧应用,总结数列的乞降方法,并能在具体的问题情境中发现等比关系成立数学模型、解决乞降问题。

感情态度与价值观:在应用数列知识解决问题的过程中,要勇于探究,踊跃进步,激发学习数学的热忱和勤苦求是的精神。

●教课要点等比数列的前n 项和公式推导●教课难点灵巧应用公式解决相关问题●教课过程Ⅰ. 课题导入[创建情境][ 提出问题 ] 课本 P62“国王对国际象棋的发明者的奖赏”Ⅱ . 解说新课[ 剖析问题 ] 假如把各格所放的麦粒数当作是一个数列,我们能够获得一个等比数列,它的首项是1,公比是2,求第一个格子到第64 个格子各格所放的麦粒数总合就是求这个等比数列的前64 项的和。

下边我们先来推导等比数列的前n 项和公式。

1、等比数列的前n 项和公式:当 q 1 时,Sa1(1 q n )①或 S na1a n q②n 1 q1q当 q=1 时,S n na1当已知 a1, q, n时用公式①;当已知a1, q,a n时,用公式②.公式的推导方法一:一般地,设等比数列a1 , a2a3 , a n它的前n项和是S n a1 a2a3a n第1页共3页S n a1a2a3a n由a1q n1a nS n a1a1q a1q 2a1 q n 2a1q n 1得a1q a1q 2a1 q3a1 q n 1a1q n qS n(1 q)S n a1a1q n∴当 q 1 时,S n a1 (1qn)①或S n a1a n q②1q1q 当 q=1 时,S n na1公式的推导方法二:有等比数列的定义,a2a3a nq a1a2a n1依据等比的性质,有a2a3a n S n a1q a1a2an 1S n a n即Sn a1q(1q) S n a1a n q(结论同上)S n a n环绕基本观点,从等比数列的定义出发,运用等比定理,导出了公式.公式的推导方法三:S n a1a2a3a n= a1q(a1 a2 a3a n 1 )= a1qS n 1= a1q(S n a n )(1 q)S n a1a n q (结论同上)[ 解决问题 ]有了等比数列的前n 项和公式,就能够解决方才的问题。

【说课稿】高中数学必修五《等比数列前n项和》

【说课稿】高中数学必修五《等比数列前n项和》

《2.3.3等比数列前n项和》(第一课时)说课稿尊敬的各位评委、老师:大家好,今天我说课的课题是《2.2.3等比数列前n项和》(第一课时),我尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、目标分析、过程分析、教法分析和评价分析五个方面来谈谈我对教材的理解和教学的设计,敬请各位评委、老师批评指正。

一、教材分析1.从在教材中的地位与作用来看《2.3.3等比数列的前n项和》是苏教版必修五第二章数列中的一个重要内容,也是“等差数列及其前n项和”与“等比数列”内容的延续,与函数等知识有着密切的联系。

它不仅在现实生活中有着广泛的实际应用,如存款利息、购房贷款、资产折旧的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,有助于提升学生的创新思维。

2.从学生的认知角度来看学生很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是认知的有利因素.认知的不利因素有:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维定势是一个突破,另外,对于q=1这一特殊情况,学生往往容易忽视。

3.学情分析教学对象是高二的学生,初步具备运用知识解决问题的能力,思维也较活跃敏捷,但缺乏冷静、深刻,特别是对知识的整合能力、问题的探究能力及思维的严密性上都还需要进一步培养和提高。

4.重点、难点分析本节课的重点是公式的推导、公式的特点和公式的运用;难点是公式推导思路的寻找及公式应用中q与1的关系。

设计意图:这样确定重点,既夯实了“双基”,又体现了掌握知识的三个层次:识记、理解和运用.因为公式推导中用到了多种重要的数学思想方法,所以既是重点又是难点。

二、目标分析新课标指出“三维目标”是一个密切联系的有机整体,应该以获得知识与技能的过程去学会学习和形成正确的价值观。

这要求我们在教学中以知识技能的培养为主线,渗透情感、态度与价值观,并把这两者充分体现在教学过程中,所以我从学生的角度出发,根据等比数列前n项和在教材中的地位与作用,结合学情分析,确定本节课教学目标如下:1.知识与技能目标理解等比数列前n项和公式的推导过程,掌握公式的特点和推导方法—错位相减法,在此基础上能初步应用公式解决与之有关的问题.设计意图:这一目标体现了基础知识的落实、基本技能的形成,正好符合课程标准的要求.2.过程与方法目标通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论、方程等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力.设计意图:数学教学的最终目的是通过思想方法的渗透以及思维品质的锻炼,让学生在能力上得到发展.3.情感、态度与价值观在学习过程中充分利用师生互动让学生获得积极的情感,培养学习数学的兴趣。

《等比数列的前n项和公式》说课稿(附教学设计)

《等比数列的前n项和公式》说课稿(附教学设计)

《等比数列的前n项和》说课稿各位专家、评委,大家上午好!我是来自__________,今天我要说课的题目是等比数列的前n项和.我的说课从以下六个环节来进行.一、教材分析●教学内容《等比数列的前n项和》是高中数学人教版第一册(上)第三章第五节的内容,本节计划授课2课时,今天我的说课为第一课时.●地位与作用本节是数列这章中的一个重要内容,在现实生活中有着广泛的实际应用,另外公式推导过程中所渗透的数学思想方法,是学生今后学习和工作的必备数学素养.二、学情分析●知识基础:前几节课学生已学习了等差数列求和、等比数列的定义、通项公式等知识内容,这为过渡到本节的学习起着铺垫作用.●认知水平与能力:高一学生初步具有自主探究的能力,能把本节内容与等差数列前n 项和公式的形成、特点等方面进行类比,这是积极因素,应因势利导,但不利因素是本节公式的推导与等差数列前n项和公式的推导又有所不同,另外,对于q=1这一特殊情况,学生往往容易忽视.●任教班级学生特点:我班学生基础知识较扎实、思维较活跃.依据教学大纲的教学要求,渗透新课标理念,并结合以上学情分析,我制定了如下教学目标:1.教学目标●知识与技能目标:理解用错位相减法推导等比数列前n项和公式的过程,掌握公式的特点,并在此基础上能初步应用公式.●过程与方法目标:在推导公式的过程中渗透数学思想、方法,优化学生思维品质.●情感、态度与价值目标:通过学生自主探索公式,激发他们的求知欲,体验错位相减法所折射出的数学方法美.2.教学重点、难点●重点:等比数列的前n项和公式的推导和公式的简单应用.突出重点的方法:“抓三线”,即(一)知识技能线(二)过程与方法线(三)能力线.●难点::错位相减法的生成和等比数列前n项和公式的运用突破难点的手段:“抓两点”,即一抓学生情感和思维的兴奋点,二抓知识的切入点.四、教学模式与教法、学法教学模式:本课采用“探究——发现”教学模式.教师的教法:利用多媒体辅助教学,突出活动的组织设计与方法的引导.学生的学法:突出探究、发现与交流.五、【教学过程分析】(一)教学环节创设情景提出问题类比探索形成公式公式应用培养能力解决问题前呼后应归纳总结加深理解延伸拓展发散思维下面,我就重点介绍一下我的教学过程教学过程一.创设情境、提出问题在这个环节,我分两个部分来完成.首先复习旧知,铺垫新知.接着用多媒体向学生演示了一个他们所熟悉的动画<喜羊羊与灰太狼>的故事.通过学生观看动画,教师提出问题,学生发现问题暂不能解决,从而引出课题.这样设计的目的是:复习旧知识可以引导学生发现等比数列各项特点,从而为“错位相减法”推导等比数列前n和埋下伏笔.而情景动画的引入让引出课题的同时激发学生的兴趣,, a = a q调动学习的积极性.二.类比探索、形成公式在这个环节中,我主要依托以下两个探究来完成探究一:如何求和:1 +2 + 22 + 23 + + 258 + 259我先引导学生回忆:等差数列求和的重要方法是倒序相加法,剖析倒序相加法的本质即整体设元,构造等式,利用方程的思想化繁为简,把不易求和的问题转化为易于求和的问题.从而得出求和的实质是减少了项 .同时又引导学生思考现在用这种方法还行吗?若不行,那该怎样简化运算?能否类比倒序相加的本质,根据等比数列项之间的特点,也构造一个式子,通过两式运算来解决问题? 从而引发学生的思考、讨论.这就是学生在讨论这个问题的一个片段。

等比数列的前n项和说课稿

等比数列的前n项和说课稿一、教学目标通过本节课的研究,学生们应能够:1.掌握等比数列的概念及其基本特性;2.理解等比数列的通项公式;3.计算等比数列的前n项和。

二、教学重点和难点教学重点1.理解等比数列的通项公式;2.计算等比数列的前n项和。

教学难点1.熟练运用等比数列的通项公式;2.计算复杂的等比数列的前n项和。

三、教学内容和进度安排1. 了解等比数列的概念和基本特性(10分钟)- 通过实例引入等比数列的概念;- 引导学生发现等比数列的基本特性,如公比等。

2. 掌握等比数列的通项公式(20分钟)- 讲解等比数列的通项公式及其推导过程;- 给出一些练题,帮助学生巩固掌握通项公式。

3. 计算等比数列的前n项和(30分钟)- 介绍计算等比数列的前n项和的方法;- 给出一些实际问题,引导学生运用前面研究到的知识解决问题。

4. 练和巩固(15分钟)- 划分小组进行练,巩固计算等比数列的前n项和的能力;- 收集并解答学生在练中的问题。

5. 总结和评价(5分钟)- 总结本节课的重点内容和要点;- 对学生的研究情况进行评价。

四、教学方法和手段本节课将采用如下教学方法和手段:1.课堂讲授:通过讲解介绍等比数列的概念、通项公式和计算前n项和的方法;2.示例引导:通过实例让学生发现和理解等比数列的基本特性;3.小组练:划分小组进行练,提高学生的合作和解决问题的能力。

五、教学资源- 教材:教材中相关的课文和练题;- 白板、彩色笔等。

六、教学评价教学评价主要包括以下几个方面:1.课堂参与度:学生在课堂上的积极参与程度;2.掌握程度:学生对等比数列的概念、通项公式和前n项和的掌握情况;3.解决问题能力:学生在解决实际问题时的能力表现。

七、教学后记通过本节课的教学,学生们对等比数列的概念和基本特性有了更清晰的认识,并学会了计算等比数列的前n项和。

在评价中发现,大部分学生能够独立完成课堂练习,解决实际问题的能力有所提高。

下节课可以进一步拓展等比数列的应用,提高学生对数学的兴趣和理解。

《等比数列前n项和》说课稿(精选10篇)

《等比数列前n项和》说课稿(精选10篇)因为an = a1q^(n-1)这次为您整理了《等比数列前n项和》说课稿(精选10篇),在大家参照的同时,也可以分享一下给您最好的朋友。

《等比数列前n项和》说课稿篇一一、教材分析《等比数列前n项和》选自北师大版高中数学必修5第一章第3节的内容。

等比数列的前n 项和是“等差数列及其前n项和”与“等比数列”内容的延续,也是函数的延续,它实质上是一种特殊的函数;公式推导中蕴涵的数学思想方法如分类讨论等在各种数学问题中有着广泛的应用,如在“分期付款”等实际问题中也经常涉及到。

具有一定的探究性。

二、学情分析在认知结构上已经掌握等差数列和等比数列的有关知识。

在能力方面已经初步具备运用等差数列和等比数列解决问题的能力;但学生从特殊到一般、分类讨论的数学思想还需要进一步培养和提高。

在情感态度上学习兴趣比较浓,表现欲较强,但合作交流的意识等方面尚有待加强。

并且让学生在探究等比数列前n项和的过程中体会合作交流的重要性。

三、教学目标分析:知识与技能目标:(1)能够推导出等比数列的前n项和公式;(2)能够运用等比数列的前n项和公式解决一些简单问题。

过程与方法目标:提高学生的建模意识及探究问题、分析与解决问题的能力。

体会公式探求过程中从特殊到一般的思维方法、错位相减法和分类讨论思想。

情感与态度目标:培养学生勇于探索、敢于创新的精神,磨练思维品质,从中获得成功的体验。

四、重难点的确立《等比数列的前n项和》是这一章的重点,其中公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了多种重要的数学思想,因此,本节课的教学重点为等比数列的前n项和公式的推导及其简单应用.而等比数列的前n项和公式的推导过程中用到的方法学生难以想到,因此本节课的难点为等比数列的前n项和公式的推导。

五、教学方法为突出重点和突破难点,我将采用的教学策略为启发式和探究式相结合的教学方法,教学手段采用计算机进行辅助教学。

等比数列的前n项和说课稿

等比数列的前n项和说课稿等比数列的前n项和说课稿作为一名默默奉献的教育工作者,通常会被要求编写说课稿,借助说课稿可以有效提升自己的教学能力。

怎么样才能写出优秀的说课稿呢?以下是小编为大家整理的等比数列的前n项和说课稿,仅供参考,希望能够帮助到大家。

一、大纲与教材等比数列前n项和一节是人教社高中数学必修教材试验修订本第一册第三章第五节的内容,教学对象为高一学生,教学时数2课时。

第三章《数列》是高中数学的重要内容之一,之所以在新大纲里保留下来,这是由其在整个高中数学领域里的重要地位和作用决定的。

1、数列有着广泛的实际应用。

例如产品的规格设计、储蓄、分期付款的有关计算等。

2、数列有着承前启后的作用。

数列是函数的延续,它实质上是一种特殊的函数;学习数列又为进一步学习数列的极限等内容打下基础。

3、数列是培养提高学生思维能力的好题材。

学习数列要经常观察、分析、猜想,还要综合运用前面的知识解决数列中的一些问题,这些都有利于学生数学能力的提高。

本节课既是本章的重点,同时也是教材的重点。

等比数列前n项和前面承接了数列的定义、等差数列的知识内容,又是后面学习数列求和、数列极限的基础。

本节的重点是等比数列前n项和公式及应用,难点是公式的推导。

二、教学目标1、知识目标:理解等比数列前n项和公式的推导方法,掌握等比数列前n项和公式及应用。

2、能力目标:培养学生观察问题、思考问题的能力,并能灵活运用基本概念分析问题解决问题的能力,锻炼数学思维能力。

3、思想目标:培养学生学习数学的.积极性,锻炼学生遇到困难不气馁的坚强意志和勇于创新的精神。

三、教学程序设计1、导言:本节课是由印度国王西拉谟与国际象棋发明家的故事引入的,发明者要国王在他的棋盘上的64格中的第1格放入1粒麦粒,第2格放入2粒麦粒,第3格放入4粒麦粒,第4格放入8粒麦粒……问应给发明家多少粒麦粒?这样引入课题有以下三点好处:(1)利用学生求知好奇心理,以一个小故事为切入点,便于调动学生学习本节课的趣味性和积极性。

2.5.1《等比数列的前n项和》说课稿

《等比数列前n项和》说课稿且末一中仇怀英本节课选自人民教育出版社2010版高中数学必修5第2章第5节第一课时.一、教材分析1、本节在教材中的地位和作用要上好一节课,就必须钻研教材.只有明确了本节内容在我们高中数学学习中的地位和作用,才能更好地指导我们的教学.等比数列前n项和是前面学习数列、等比数列的深化、延伸、扩展,又是函数、方程思想的特殊体现,等比数列前n项和公式的推导方法又将为以后方程和不等式等的学习打下基础.不难看出,这节内容学习的重要地位和作用.2、目标分析根据教学大纲的要求以及结合本节教材内容的地位、作用、特点等,考虑高一年级学生的认知水平,我确定了如下的三维目标:(1)知识目标:了解等比数列前n项和公式的推导过程;理解方程组法求解S的n思想;掌握等比数列前n项和S的表达式.n(2)能力目标:培养学生的创新能力、发现问题及解决问题的能力和抽象、概括的能力.(3)情感目标:培养学生的观察能力,使学生对数列的学习产生浓厚的兴趣,让他们主动融入学习.3、教学重点与难点为了实现以上三维目标,我确定本节课的重点和难点如下:重点:等比数列前n项和公式推导及应用.难点:等比数列前n项和公式推导方法的探究.二、教法和学法分析建构主义学习理论认为,学习是学习者主动建构新知识的过程,在教学中,老师不仅要传授知识给学生,还要成为他们学习活动的促进者、指导者;学生是学习的主体,教师只是学习的帮助者、引导者.根据新课程标准理念,我设计了如下的教学法:教法:讲解法发现教学法讲练结合法学法:自主式学习合作式学习探究式学习三、教学过程根据教学内容的特点,我将本节课分为以下几个环节: 1 复习思考1)等比数列的定义.2)等比数列{}n a 的通项公式11-⋅=n n q a a . 设计意图:复习旧知;为新知的讲解打下基础. 2 引例由成语“聚沙成塔”引出等比数列求前n 项和的问题.设计意图:设置引例的目的是引出课题,结合实例,培养学生对数学学习的兴趣和信心. 3、展示新知难点突破: n S 推导方法的探究. 为突破此难点,我采取了以下做法:1) 小组为单位,讨论探究.体现新课标理念,培养学生的合作精神. 2) 大胆猜测,探寻公式.培养学生仔细观察,积极思维及动手的能力. 3) 应用逻辑推理证明公式.进行推理论证,培养学生严谨的治学态度. 具体做法如下:首先,引导学生认识到:等差数列求n S 的根本思想是方程组思想,根本方法是消元法.消去的是132,,-n a a a ,解出的未知元是n S其次,学生小组讨论探究推导n S 的方法,即怎么构造方程组;小组成果展示,教师点评.设计意图:1) 使学生掌握看清事物本质的能力.2) 培养学生的概括能力.3) 学会类比思想.设等比数列{}n a 的前n 项和为n S ,⎩⎨⎧++++=++++=-n n nnn n qa a a a qS a a a a S 32121 做差有:)1(11≠--=q qqa a S n n注意: )1(1==q na S n引导学生继续化简公式,可得到)1(1)1(1≠--=q qq a S n n设计意图:在讲解n S 推导过程时,我选择用板书上、下排列,并使用彩色粉笔,让学生能直观的感觉到求解n S 的过程就是解方程组的过程:消去的是132,,-n a a a ,解出的未知元是n S . 公式剖析:在选用公式q q a a S n n --=11和qq a S n n --=1)1(1求等比数列前n 项和时应注意:1.方程的思想:知三求一. 2.公式的选取:依已知条件而定.设计目的:使学生熟练公式,会运用公式.例1 数列{}n a 为等比数列.首项为1,第n 项为28,公比为2.求前n 项和.例2 (情景2) 数列{}n a 为等比数列.首项为1,公比为21.求前n 项和. 变式训练:1.求等比数列1,2,4,...,从第5项到第10项的和. 2.已知等比数列{}n a 中,若 30,102010==S S ,求30S 4 练习练习1 等比数列{}n a 中,前6项之和为50,公比为2,求首项.练习2 等比数列{}n a 中,第2,5项分别为20,50,求第2项到5项的和. 例题和练习题的设计原则:1) 基础性; 2) 灵活性; 3) 思想性; 4) 难度的递进性. 设计目的:1 使学生能熟练运用公式,实现教学目标.掌握重点.2 将陈述性知识转化为程序性知识. 5 总结提炼(自我反思)1)引导学生归纳小结本节课所学内容.2)类比的思想,方程(组)的思想.设计意图:培养学生总结反思的良好习惯6 作业布置知识的掌握需要由浅到深,由易到难.作业布置主要根据由简到难的原则,先让学生学会熟悉选用公式,再进一步到公式的变形应用,巩固知识.1 复习2 必做题:习题2.5:1,2..选做题:习题2.5:6.3 思考:等比数列{}n a的前n项和S n的最值怎么求?4 预习下节内容设计意图:培养学生的思维能力,拓展其知识面,加深学生对所学知识的深入理解,提高应变能力;正确的预习方式是提高学习效率的重要手段;老师应该帮助学生养成良好的预习习惯.五、板书设计板书设计的好坏直接影响这节课的效果.我的板书设计如下:差数列的前n项和等比数列的前n项和公式推导例1例1变式训练练习1练习1小结作业复习引入设计意图:板书层次分明,能让学生一目了然,助于理解知识.六、教学评价总之,本节课是在建构主义等先进教学理论指导下来设计的,相信通过本节课的学习,绝大部分学生能正确选取、运用等比数列前n项和的两个公式来解决相关问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等比数列的前n项和
高一乙段:杨晓兰指导老师:魏有莲
一、说教材
1、教材的地位和作用
《等比数列的前n项和》是高中数学人教A版必修5第二章第五节的内容。

教学课时为3课时,本节课为第一课时。

它是“等差数列”,“等差数列前n项和”与“等比数列”内容的延续,具有承上启下的作用。

此公式可以方便地解决任意等比数列求和问题,而且公式推导过程中所渗透的类比,分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养.特别是“错位相减法”的运用,因此《等比数列的前n项和》既是本章的重点,同时也是本教材的重点。

2、教学目标:
知识与技能目标:帮助学生掌握等比数列前n项和公式及证明方法,理解错位相减法,并能灵活运用公式解决数学问题,及实际生活中的问题。

过程和方法目标:通过公式的推导过程,培养学生观察、分析,类比等方面的能力,培养学生分类与整合的数学思想,提升学生的逻辑思维能力。

情感态度与价值观目标:通过公式的探索发现过程,学生亲历结论的“再创造”过程,体验成功与快乐,感悟数学美,同时培养学生思维的严谨性。

3、教学的重点与难点
重点:等比数列前n项和公式的推导,公式的特点及应用公式解决实际问题。

难点:等比数列前n项和公式的推导方法。

二、说教法:
在教学中不仅要让学生“知其然”,还要“知其所以然”,为了体现以学生发展为本,遵循学生的认知规律,因此本节课主要采用启发式和探究式相结合的教学方法,通过创设情境、提出问题,启发引导、探索发现,课堂演练、巩固提高,课堂小结、布置作业四个环节来进行教学。

三、说学法
新课标理念倡导“以人为本”,强调“以学生发展为核心”,指导学生学会“探究式发现法”的学习方法,从类比猜想中探索研究从而找到问题的思路和方法,转变学生的数学学习方式,变学生被动接受式学习为主动参与式学习,不仅有利于提高学生的整体数学素养,也有利于促进学生整体学习方式的转变。

从而顺利完成学习目标。

四、说教学过程
五、板书设计
2010年 3月16日。

相关文档
最新文档