传感器原理及应用论文
力传感器的原理与应用论文

力传感器的原理与应用论文引言力传感器是一种能够测量物体受力大小的装置,广泛应用于工业自动化、机器人技术、航空航天等领域。
本文将介绍力传感器的基本原理、分类和应用,以及一些相关技术的发展。
一、力传感器的基本原理力传感器基于哈克定律,通过测量物体所受力的大小来获得相关数据。
其基本原理可归纳为以下几点: 1. 应变测量原理:力传感器利用物体受力时产生的应变量来测量力的大小。
当物体受到力的作用时,传感器内部的应变片会发生形变,可通过电桥电路来测量应变片的变化,从而计算出物体所受的力。
2. 压电效应原理:压电力传感器通过压电效应将受力转换为电压输出。
压电材料在受到外力作用时会产生电荷,通过测量电荷的大小可以得知物体所受的力。
3. 感应原理:感应力传感器利用感应原理将受力转化为电磁感应信号。
当物体受到力的作用时,感应力传感器内部的电磁感应元件会产生感应电流,通过测量感应电流的大小可以得知物体所受的力。
二、力传感器的分类根据原理和结构的不同,力传感器可以分为以下几种类型: 1. 压阻式力传感器:利用应变片的变化来测量受力物体的压力大小,并将其转化为电阻值的变化。
2.压电式力传感器:使用压电材料将受力转换为电压输出,具有灵敏度高、频率响应范围广的特点。
3. 容积式力传感器:通过测量气体或液体在封闭空间中产生的压力变化,间接计算物体所受的力。
4. 振荡式力传感器:利用物体受力时产生的振动变化,通过测量频率或振幅的变化来计算力的大小。
5. 电容式力传感器:根据电容变化来测量力的大小,具有高精度、灵敏度高的优点。
三、力传感器的应用力传感器在许多领域都有广泛的应用,下面列举了几个典型的应用场景: - 工业自动化:力传感器可用于测量机械臂、自动生产线等设备所受的力,用于控制装置和设备的运行状态,实现自动化生产。
- 机器人技术:力传感器可用于机器人手臂的控制,通过测量机器人手臂在抓取物体时的力度,实现精确的操作和控制。
传感器的原理及其应用论文范文

传感器的原理及其应用1. 介绍本文将介绍传感器的原理和其在各个领域的应用。
传感器是一种用于检测和测量环境中各种物理量的设备。
它们广泛应用于工业、医疗、环境保护、军事等领域。
本文将首先介绍传感器的工作原理,然后详细讨论传感器在不同领域的应用。
2. 传感器的工作原理传感器的工作原理基于各种物理现象,如光电效应、热敏效应、压电效应等。
以下是几种常见的传感器工作原理:2.1 光电传感器光电传感器利用光电效应测量光的强度和特性。
当光照射到光电传感器上时,光会激发光电元件内的电子,产生电流。
通过测量电流的大小,可以得知光的强度和特性。
光电传感器广泛应用于自动化控制、安防和光通信等领域。
2.2 温度传感器温度传感器根据物质的热敏性质来测量温度。
常见的温度传感器包括热电偶和热电阻。
热电偶利用两种不同金属的电极在不同温度下产生电势差,从而测量温度。
热电阻则根据电阻值随温度变化的特性来测量温度。
温度传感器广泛应用于气象、工业过程控制和家用电器等领域。
2.3 压力传感器压力传感器用于测量压力的大小。
它们通过将压力转化为力或位移,再测量这些参数来得知压力。
常见的压力传感器包括电阻应变式传感器和压电传感器。
电阻应变式传感器根据压力引起的电阻变化来测量压力。
压电传感器则利用压电效应,将压力转化为电荷来测量压力。
压力传感器广泛应用于工业自动化、汽车、航空航天等领域。
2.4 气体传感器气体传感器用于检测环境中的气体浓度。
常见的气体传感器包括气敏传感器和红外线传感器。
气敏传感器基于物质与气体之间的化学反应来测量气体浓度。
红外线传感器利用气体对红外线的吸收特性来测量气体浓度。
气体传感器广泛应用于空气质量监测、工业过程控制和燃气检测等领域。
3. 传感器的应用传感器在各个领域都有广泛的应用。
以下是几个领域中传感器的应用示例:3.1 工业控制在工业控制中,传感器被用于监测和控制生产过程中的各种参数。
例如,温度传感器可用于监测设备和物料的温度,以确保生产过程的稳定性。
压力传感器的原理及应用论文

压力传感器的原理及应用论文摘要本论文主要介绍了压力传感器的原理、种类和主要应用。
首先,我们将介绍压力传感器的工作原理,包括压力对传感器的影响以及常见的压力传感器技术。
接下来,我们将讨论压力传感器的主要应用领域,包括工业自动化、医疗设备、汽车工业和航空航天等。
最后,我们将总结压力传感器技术的发展趋势和未来的研究方向。
引言压力传感器是一种用于测量和监测压力变化的装置。
它们在现代工业和科学领域中有着广泛的应用,从汽车工业到航空航天,从医疗设备到环境监测等。
本论文旨在介绍压力传感器的原理和应用,以便读者对该领域有更深入的了解。
压力传感器的工作原理压力传感器是利用一系列物理或机械效应来测量压力的设备。
以下是一些常见的压力传感器原理:1.电阻式压力传感器:电阻式压力传感器利用压力对电阻值的影响来测量压力。
当压力施加在敏感元件上时,电阻值会发生变化,通过测量电阻值的变化,可以确定压力的大小。
2.压力传感器基于微机电系统(MEMS)的原理:这种压力传感器使用微小的机械结构和敏感元件来测量压力变化。
当压力施加在微机械结构上时,结构的变形将导致电信号的变化,通过测量电信号的变化,可以确定压力的大小。
3.压电式压力传感器:压电式压力传感器利用压电效应来测量压力变化。
当压力施加在压电元件上时,它们会产生电荷积累,通过测量电荷的变化,可以确定压力的大小。
压力传感器的种类根据测量范围和应用需求的不同,压力传感器可以分为多个种类。
以下是几种常见的压力传感器类型:1.绝对压力传感器:绝对压力传感器可以测量相对于真空的绝对压力。
它们通常用于气象监测和高空应用等。
2.相对压力传感器:相对压力传感器可以测量相对于环境压力的相对压力。
它们通常用于工业自动化、流体控制和汽车工业等。
3.差动压力传感器:差动压力传感器可以测量两个压力之间的差异。
它们通常用于流体流量测量和液位测量等。
4.密封式压力传感器:密封式压力传感器具有高防尘和防水性能,适用于恶劣环境下的应用。
传感器原理及应用论文

传感器原理及应用论文传感器是一种能够感知、接收并转换某种能量或物理量的装置,它可以将非电信号转换为电信号,或者将一种形式的能量转换为另一种形式的能量。
传感器在现代科技领域中扮演着至关重要的角色,应用范围涵盖了工业生产、医疗设备、环境监测、智能家居等诸多领域。
本文将就传感器的原理及其在各个领域的应用进行探讨。
首先,让我们来了解一下传感器的工作原理。
传感器的工作原理主要包括感受外界信息、将信息转换为可测量的信号、信号的放大和处理、最终输出结果等几个步骤。
以温度传感器为例,当温度发生变化时,传感器内部的电阻值也会相应发生变化,这样的变化会引起电路中电压、电流等参数的变化,最终被转换为数字信号输出。
而光敏传感器则是利用光电效应将光信号转换为电信号输出。
传感器的工作原理可以简单概括为“感知-转换-输出”。
其次,传感器在工业生产中的应用十分广泛。
比如在自动化生产线上,各类传感器可以监测生产过程中的温度、压力、流量等参数,实时反馈给控制系统,从而实现对生产过程的精准控制。
在机械制造领域,传感器也扮演着重要角色,比如在机床上安装位移传感器,可以实时监测工件的位置,保证加工精度。
此外,传感器在汽车制造、航空航天、化工等领域也有着广泛的应用,为工业生产提供了可靠的技术支持。
除了工业生产,传感器在医疗设备中也发挥着不可替代的作用。
例如,心率传感器可以实时监测患者的心率变化,血氧传感器可以监测血氧饱和度,体温传感器可以监测患者的体温变化。
这些传感器的应用,为医生提供了重要的生理参数,帮助医生及时了解患者的身体状况,为诊断和治疗提供了重要依据。
此外,传感器在环境监测领域也发挥着重要作用。
比如大气传感器可以监测大气中的温度、湿度、气压等参数,水质传感器可以监测水质的PH值、浊度等参数,土壤传感器可以监测土壤的湿度、养分含量等参数。
这些传感器的应用,有助于科学家们更好地了解自然环境的变化,为环境保护和资源利用提供了重要数据支持。
传感器的基本原理及应用领域论文

传感器的基本原理及应用领域一、传感器的基本原理传感器是一种能够感知和测量某种物理量并将其转化为可用信号的设备。
传感器的工作原理通常基于不同的物理现象,如电磁感应、压力变化、声波传播等。
以下是几种常见的传感器工作原理:1. 光电传感器光电传感器利用物体对光的反射、散射或吸收的变化来检测物体的存在、位置或其他属性。
光电传感器包括光敏电阻、光电二极管和光电晶体管等。
它们通过光敏元件的电阻、电流或电压的变化来感知光的强度或改变。
2. 温度传感器温度传感器是测量物体的温度变化的设备。
常用的温度传感器有热电偶、热电阻和半导体温度传感器。
热电偶通过两个不同金属的焊接点之间产生的温差来测量温度变化。
热电阻则是通过材料的电阻随温度变化而产生的变化来测量温度。
半导体温度传感器利用半导体材料的电阻随温度的变化来测量温度。
3. 压力传感器压力传感器是测量物体受力或气体液体压力的设备。
它们根据物体受力或压力改变导致的变形或变量来测量压力。
常见的压力传感器有电阻式、电容式和压阻式传感器。
电阻式传感器是将变形或变量转化为电阻改变来测量压力。
电容式传感器则是将变形或变量转化为电容改变来测量压力。
压阻式传感器则是测量物体受力产生的压阻值来获得压力信息。
二、传感器的应用领域传感器在各个领域都有广泛的应用,以下列举了几个常见的应用领域:1. 工业自动化传感器在工业自动化中发挥着关键作用。
例如,温度传感器可以用于监测和控制工业过程中的温度变化。
压力传感器可以用于监测液体或气体管道中的压力变化。
光电传感器可以用于检测物体的存在和位置,实现自动化的装配和分拣。
2. 医疗健康传感器在医疗健康领域的应用越来越广泛。
例如,心率传感器可以测量人体的心跳情况,用于心率监测和心脏疾病检测。
血压传感器可以测量人体的血压水平,用于高血压和低血压的监测和治疗。
体温传感器可以测量人体的体温,用于发热疾病的检测和监测。
3. 环境监测传感器在环境监测中发挥着重要作用。
汽车传感器的原理及应用论文范文

汽车传感器的原理及应用论文范文引言汽车传感器是汽车电子系统中的重要组成部分,通过监测和测量汽车各种参数,可以提供给汽车控制单元(ECU)有关车辆性能、安全性和环境指标的重要信息。
本文将介绍汽车传感器的原理及其在汽车行业中的应用。
1. 汽车传感器的分类根据测量参数的不同,汽车传感器可以分为以下几类:1.1 温度传感器温度传感器用于测量发动机冷却液、排气气体、空气等的温度。
这些温度数据对于发动机的正常工作非常重要。
1.2 压力传感器压力传感器被用来测量燃油压力、涡轮增压压力和轮胎气压等。
这些参数的监测可以确保发动机的燃烧效率和安全性。
1.3 速度传感器速度传感器用于测量车辆的行驶速度。
这些速度数据可用于制动系统、车速控制系统和防抱死刹车系统等。
1.4 液位传感器液位传感器被用于测量燃油、冷却液和刹车液等的液位。
这些数据可以用于车辆的燃油管理和维护。
1.5 氧气传感器氧气传感器被用于测量汽车尾气中的氧气含量,以便控制发动机的燃烧过程和排放水平。
2. 汽车传感器的工作原理汽车传感器的工作原理主要涉及传感元件和信号处理电路。
2.1 传感元件传感元件是汽车传感器的核心部件,根据不同的测量参数,可以采用不同的传感器技术,如电阻传感器、电容传感器、压电传感器、霍尔传感器等。
2.2 信号处理电路传感器所获得的信号通常是微弱的模拟信号,需要通过信号处理电路进行放大、过滤和模数转换等处理,以适应汽车电子系统对信号的要求。
3. 汽车传感器的应用汽车传感器在汽车行业中的应用非常广泛,主要包括以下几个方面:3.1 发动机管理系统引擎控制单元(ECU)使用各种传感器来监测发动机的温度、压力、氧气含量等参数,并根据这些数据调整燃料喷射、点火时机和进气量等,以提高燃烧效率和降低排放。
3.2 制动系统制动系统中的传感器可监测刹车液位、刹车片磨损程度和车速等参数,以确保刹车系统的安全性和可靠性。
3.3 安全气囊系统安全气囊系统中的传感器可检测车辆碰撞的冲击力和方向,从而触发安全气囊的膨胀和释放,以保护乘车人员的安全。
传感器的原理及其应用论文

传感器的原理及其应用论文摘要本论文主要介绍了传感器的原理及其在各个领域中的应用。
首先,论文阐述了传感器的定义和基本原理。
接着,详细讨论了各种类型传感器的工作原理,包括光学传感器、压力传感器、温度传感器等。
随后,论文探讨了传感器在环境监测、医疗领域、智能交通系统、工业生产等领域的应用案例。
最后,论文总结了传感器的发展趋势和未来的研究方向。
1. 引言传感器是一种能够感知环境中各种物理量并将其转化为可用信号的设备。
它是现代科技中不可或缺的一部分,广泛应用于各个领域。
本章将介绍传感器的基本概念,以及其在不同领域中的重要性和应用前景。
2. 传感器的定义和基本原理2.1 定义传感器是一种能够感知并感知环境中某种物理量,并将其转化为可以用来测量、监测或控制的其他形式的信号的设备。
2.2 基本原理传感器的基本原理是通过感受外部物理量的变化,并将其转化为可测量的电信号或其他形式的输出信号。
传感器通常包括感受部件、转换部件、输出部件和电路部分。
3. 传感器类型及其工作原理3.1 光学传感器光学传感器是一种利用光学原理检测并测量环境物理量的传感器。
它通过感受环境中光线的变化来判断目标物体的位置、颜色、形状等特征。
光学传感器工作原理可分为透射式光电传感器、反射式光电传感器和光纤传感器等。
3.2 压力传感器压力传感器是用于测量系统中气体或液体压力的传感器。
它通过感受被测介质对传感器施加的力来转化为电信号输出。
按其测量原理可分为机械式压力传感器、电阻式压力传感器和微电子压力传感器等。
3.3 温度传感器温度传感器是用于测量环境中温度变化的传感器。
常见的温度传感器有热电偶、热电阻和半导体温度传感器等。
这些传感器通过测量物体的温度并将其转化为电流或电压信号来实现温度测量。
4. 传感器的应用案例4.1 环境监测传感器在环境监测中起着重要的作用。
例如,大气压力传感器可以用于气象学研究和天气预报,土壤温湿度传感器可以用于农业生产监测,水质传感器可以用于水环境监测等。
湿度传感器的原理及应用论文范文

湿度传感器的原理及应用论文范文一、引言湿度传感器是一种常见的电子传感器,用于测量空气中的湿度水分含量。
它广泛应用于气象、工业、农业等领域,在各个领域都发挥着重要的作用。
本文将介绍湿度传感器的原理以及在不同领域的应用。
二、湿度传感器的原理湿度传感器的原理基于物质吸湿性能的变化。
常见的湿度传感器有电阻式湿度传感器和电容式湿度传感器两种类型。
2.1 电阻式湿度传感器原理电阻式湿度传感器使用一种湿度敏感材料作为电阻元件,该材料的电阻随湿度变化而变化。
当湿度增加时,湿度敏感材料吸湿膨胀,导致电阻增加;当湿度减少时,湿度敏感材料脱湿收缩,导致电阻减少。
通过测量电阻的变化,可以间接测量湿度的变化。
2.2 电容式湿度传感器原理电容式湿度传感器通过测量电容的变化来间接测量湿度。
传感器由两个电极和一个吸湿材料组成,当空气中的湿度变化时,吸湿材料的含水量发生变化,导致电极之间的电容值发生变化。
传感器测量电容的变化,并转换为相应的湿度值。
三、湿度传感器的应用领域湿度传感器在许多领域中具有广泛的应用。
3.1 气象领域湿度是气象学中一个重要的参数,对天气的变化和气候的研究起着至关重要的作用。
气象领域常用湿度传感器来测量大气中的湿度水分含量,从而预测天气变化、制定农业灌溉计划等。
3.2 工业领域在工业领域中,湿度传感器常用于检测生产环境中的湿度水分含量。
例如,在食品加工过程中,湿度传感器可以帮助控制空气湿度,确保产品的质量和安全性。
在纺织品和木材行业中,湿度传感器可以帮助控制材料的干燥程度,防止发霉和变形。
3.3 农业领域农业领域对于湿度的要求较高,湿度传感器被广泛用于农业自动化系统中。
例如,在温室种植中,湿度传感器可以监测温室内的湿度水分含量,调节温室的通风和灌溉系统,提供适宜的生长条件。
在农田灌溉中,湿度传感器可以测量土壤湿度,帮助合理使用水资源和制定灌溉计划。
3.4 生活领域在生活领域,湿度传感器也有很多应用。
例如,智能家居系统中的湿度传感器可以监测室内湿度,根据湿度的变化调节室内空调系统,提供舒适的生活环境。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电涡流传感器的原理及应用摘要:电涡流传感器以其灵敏度高、动态响应快和测量的非接触性等优点,广泛应用于检测机械位移、振幅、及材料的物理参数等,目前该传感器被广泛应用于电力、石油、煤炭、化工、冶金等行业和一些科研单位。
本文对电涡流位移传感器的工作原理、研究现状、工程应用、发展趋势及其技术缺陷等方面进行了综述,使读者对电涡流传感器的基础知识和工程应用有一定的了解。
关键词:电涡流传感器;工作原理;工程应用;研究现状中图分类号:TP212.9Principle and Application of Eddy Current SensorAbstract: Eddy current sensor with its high sensitivity, fast dynamic response and the advantages of non-contact measurement is widely used to detect mechanical displacement , amplitude, and physical parameters of the material , at present, the sensors are widely used in electric power, petroleum, coal, chemical, metallurgy and other industries, and some research institutes. In this paper, the principle aspects, current research, engineering applications, trends and technical defects of eddy current displacement sensors were reviewed, allowing the reader to the basic knowledge and engineering applications eddy current sensors have a certain understanding.Key words: Eddy current sensor; Principle; Engineering application; Research status0引言电涡流现象的发现可追溯到1831年,法拉第(Michael Faradays)发现了电磁感应现象,1879年,休斯(Hughes)记录下了当线圈靠近具有不同电导率及磁导率的金属导体时,其本身特性的变化情况,但直到第二次世界大战,电涡流效应才被实际用于金属导体材料的探测。
20世纪50及60年代,美国本特利公司和德国的Rentique研究所相继研究了电涡流传感器原理,并逐步发展出了产品及仪器。
目前,电涡流检测方法及传感器已经成为一种精确度高、应用广泛的传感器。
上世纪60年代,冶金、航空和有色金属等行业就已经开始采用涡流来检测成型金属管材的表面缺陷,但因涡流检测技术发展不足,在分辨率和可靠性及抑制干扰等方面存在缺陷,检测仅仅局限于导电材料的表面。
直到80年代后期,才取得一定突破,90年代以来,其应用领域更是扩展到航空航天、核工业、电力、石油、化工、机械、冶金等部门[1]。
随着工业生产和科学技术发展对电涡流检测技术的要求日益增高,电涡流检测技术及传感器的应用将会越来越广泛。
近年来,电涡流检测技术越来越多的受到无损检测工作者的青睐,同其他无损检测技术相比,它具有非接触、无污染、操作方便等特点[2]。
这项基于电磁感应原理的一种新兴检测技术,通过利用麦克斯韦方程及其边界条件对处于敏感探头形成的电磁场中的被测金属导体及其周围空间区域列出方程并进行求解,对探头线圈的阻抗特性的变化与被测体各影响因素之间的关系加以确定[3]。
本文对电涡流位移传感器的工作原理、研究现状、工程应用、发展趋势及其技术缺陷等方面进行了综述,使读者对电涡流传感器的基础知识和工程应用有一定的综合了解。
1 电涡流传感器的工作原理电涡流传感器主要由三部分组成:探头、延伸电缆、前置器,如图1-1 所示。
电涡流传感器探头主要由框架和安置在框架上的线圈组成;延伸电缆为连接探头与前置器的信号传输线;前置器主要实现信号的发生、信号的变换、信号的提取和信号的处理功能。
电涡流传感器检测基于涡流效应(金属导体置于变化磁场中,导体内就会产生呈漩涡状流动的感应电流的现象,称之为电涡流效应),涡流的形成必须具备两个条件:存在交变磁场;被测对象处于交变磁场中。
前置器中信号发生部分产生高频振荡电流通过延伸电缆流入线圈,在探头端部线圈中产生交变磁场,与在交变磁场下的被测金属导体共同组成了电涡流传感器系统。
图1-1 电涡流传感器的构成依据电涡流效应在被测对象上产生磁场反作用于探头线圈引起相关参数的变化,将非电量转换为对应相关参数的电量变化从而达到探测的目的。
其电涡流的工作原理如图1-2 所示。
当线圈中通有交变电流I1时,由于电流的变化,在线圈周围就会产生交变磁场H1,由于电磁感应定律可知,当被测对象靠近探头线圈,处于磁场作用范围内时,金属体表面层中就会感应出电流,由于此电流为闭合电流(称电涡流I2),它又产生一个与H1反向磁场H2,阻碍外磁场H1的变化。
从而导致线圈中阻抗Z、电感量L及品质因数Q发生变化,这种变化就反映了被测体的电涡流效应的作用。
图1-2 电涡流工作原理涡流的大小与被测对象的电阻率ρ、磁导率μ、尺寸因子r、励磁电流I、电流角频率ω、导体与线圈间距离x等参数有关。
如果控制某些参数不变,使上述参数中某一参数是其他参数的单一变量,就构成了测量不同变量(参数)用的一种涡流式传感器[4]。
由于电涡流传感器的测量范围广,灵敏度高,结构简单,抗干扰能力以及可以非接触测量等优点,广泛用于工业生产和科学研究的各个领域。
表 1.1 给出了电涡流传感器测量的参数,变化量及特征。
表 1.1 电涡流传感器在测量中的应用特征被测参数变换量特征位移,厚度,振动x1、非接触连续测量2、受剩磁影响表面温度,电解质浓度,材质判别,速度(温度)ρ1、非接触连续测量2、对温度变化进行补偿应力,温度μ1、非接触连续测量2、受剩磁材料影响探伤x, ρ, μ可以定量测量2 电涡流传感器的研究发展上世纪50年代,欧美等发达国家对多种形式探头线圈在检测不同形状工件时工作状况的进行分析研究,并成功计算出了探头的阻抗特性,以此结果研制出了第一台涡流仪器[3]。
近年来,电涡流检测技术在我国受到越来越多的重视并开始迅速发展,并以多元化多方向的形式向多个研究方面发展。
以清华大学和南京航空航天大学为代表的大专院校以及若干科研单位,其电涡流检测技术在人工神经网络技术和三维缺陷阻抗图等研究方面取得了很大进展[2]。
而在涡流检测技术的其他发展方向上,例如涡流探伤、电涡流传感器等,我国也进行了深入研究,并同时取得了较为理想的成果。
随着电涡流检测技术的发展,其主要研究方向的各个方面都得到了长足的发展,这些技术包括多频涡流检测技术、阻抗平面显示技术、深层涡流技术和远场涡流检测技术。
(1)电涡流检测探头设计的理论研究。
探头是电涡流传感器的关键器件,对于探头的研究一直是电涡流传感器技术发展上的重中之重。
而目前有关探头的设计理论尚不充分,制造探头多凭经验或实验数据进行。
因此对探头各项参数进行理论分析,得出最优化探头参数将成为以后电涡流传感器设计研究中极其重要的课题[5]。
(2)由电涡流效应可知,具有电磁性能的金属表面会产生电涡流效应,可通过对此效应与材料表面性能间关系的研究分析,来对金属表面质量做出评价。
因此可将电涡流效应用于金属探伤,包括对金属材料的裂纹扩展、开裂、加工中的磨削烧伤和残余应力的研究等。
目前电涡流探伤技术越来越多的得到人们的关注,并可望得到突破性的进展[6]。
(3)由于天然气、石油、煤炭、电力等工程建设的大力发展,目前对于金属管道的无损检测受到越来越多的重视,并使得人们在这项无损检测项目上投入更多的精力及技术,对检测的灵敏度及精确度要求也越来越高,尤其是金属管道内部缺陷的检测。
而远场涡流技术对内部缺陷的检测灵敏度是很高的,对各种长距离管道检修都很有效,因此在我国,远场涡流技术的研究和应用将会得到长远的发展,并会有更为广泛的应用[5]。
(4)成像技术的研究和发展。
随着生产力及生产技术的不断发展,人们生活水平的提高,对于各种生产生活中的缺陷的挑剔已经打了吹毛求疵的地步。
而在工业生产中,更希望得到最清晰直观的缺陷表观,而三维成像技术直接的将缺陷进行成像并对其做出更为详细的描述,这样做不仅使得缺陷检测更为方便立体而且更重要的是大大的提高了产品的质量。
因此涡流检测三维成像技术必将成为今后发展的必然方向。
(5)涡流/超声一体化检测技术。
顾名思义,即将电涡流检测技术和超声波检测技术集成到一起形成的一体化综合检测设备,这样兼备了两者各自特有的功能,又使资源得到合理有效的利用,两者共用一套计算机系统,大大节省了成本,这种检测方法尤其适用于像外场飞机探伤检查等这种的需要同时使用多种探伤手段的情况[6]。
3 电涡流传感器的工程应用几乎所有的金属材料都会在其表面产生感应电涡流,因此,利用电涡流效应,不仅可以识别金属目标物体存在与否,还可以实现激励线圈平面与金属物体之间距离的精确测量。
利用电涡流原理,可在不接触金属目标的情况下,准确的探测到金属物体的存在,而且不受激励线圈与被测物体之间的非金属介质的影响,是非常理想的非接触式测量传感器。
由于是非接触测量工作方式,不受油污、灰尘等外界非金属因素的影响,寿命较长,在各种恶劣条件下均可使用。
目前,电涡流传感器已经被广泛的应用于实现金属物体的位置、位移和接近程度的非接触测量,对一些大型的旋转机械轴的径向振动、键相器、轴向位移、胀差、偏心、轴转速以及零件尺寸的检验等进行在线检测和保护。
近年来,电涡流传感器又被应用于铁路机车速度与路程的测量、磁悬浮轴承位移的测量等,不仅有精确的测量精度,而且结构简单,性能也不受天气等环境因素的影响,有较强的耐用性与可靠性。
电涡流传感器的部分应用如图3-1,3-2,3-3,3-4,3-5,3-6和3-7所示[8]。
图3-1 偏心与振动检测图3-2 测量径向跳动图3-3 多传感器测量弯曲变形图3-4 转速测量图3-5 油管探伤图3-6 金属薄膜厚度测量图3-7 注塑机开合模间隙测量电涡流探头线圈作为敏感元件,其特性阻抗受到诸多因素影响,包括金属材料的尺寸、形状、厚度、距离、电导率、磁导率、表面因素等。
在这些因素中,只要将其余因素固定,就可以用电涡流传感器来测量剩下的一个因素。