超声波换能器原理

合集下载

超声换能器的原理及设计

超声换能器的原理及设计

超声换能器的原理及设计超声波换能器是超声波焊接机的高频机械振动源及作用,就是将超声波发生器输出的电能或者磁能转换成相同频率的机械振动,超声焊接机用的换能器,目前有两种,一种是,磁致伸缩型换能器,另一种是压电陶瓷换能器磁致伸缩式换能器,由于效率低,性价比低,还需外加直流极化磁场,因此目前超声焊接机已经很少使用。

压电陶瓷换能器基本原理是建立在晶体材料的压电效应基础上的,这种材料为压电晶体材料,在超声焊接机主要用的是压电陶瓷产量,这种材料在成熟外地发生形变时,在压电陶瓷晶体表面,会出现电荷,晶体内部产生电场,反之,当晶体呈受外电场作用时,金片会发生形变,这种现状称之为压电效应,前者称正电效应,或者称逆电效应。

超声波换能器是超声振动系统的核心部件,超声波换能器设计的好坏,关系到焊接机工作的效率,稳定性及寿命等,在市场上采用大部分的压电陶瓷换能器,按照振动形式区别种类很多,如径向振动模式,纵向复合式振动模式,剪切振动模式,厚度振动模式等。

超声波塑料焊接机工作时加工塑料工件,需要的是高频率的纵向振动。

使得工件的上下模上下高频振动融化焊接层得到焊接效果。

压电换能器的结构:压电陶瓷换能器的结构,由压电陶瓷晶片,电极片,前后盖等组成。

后盖板一般用质量较大的钢制成前盖板由质量轻的,高强度铝合金或者钛合金制造而成,它是利用了压电陶瓷的纵向效应器,陶瓷元件的极化方向,电场方向,机械振动方向,三者一致。

这种换能器称纵向复合振动换能器,它的长度方向尺寸远大于它们的宽度。

图3-1为国内外焊接机常用的政治使用图与结构图,图中两端是两块金属盖板,中间是压电陶瓷元件堆,压电陶瓷一般是纵向极化的带孔圆片,一根应立螺杆,将这三部分紧固在一起着,称为预应力螺杆。

他只陶瓷元件,具有较大的抗压强度,同时在大功率驱动下,陶瓷元件取压缩状态,从而避免膨胀所造成的破裂这种换能器通过改变前后盖的材料尺寸来控制换能器的频率带宽,前后增速比和有效机电耦合系数等性能参数。

新型超声换能器的设计原理与应用

新型超声换能器的设计原理与应用

新型超声换能器的设计原理与应用新型超声换能器的设计原理与应用1. 引言在现代科技发展的今天,超声技术在各个领域的应用越来越广泛。

作为一种能够产生高频声波并将其转化为其他形式能量的装置,超声换能器在医疗、工业、通信等领域发挥着重要的作用。

本文将深入探讨新型超声换能器的设计原理与应用,旨在帮助读者更全面地理解这一领域的知识。

2. 超声换能器的基本原理超声换能器是一种能够将电能转化为声能或声能转化为电能的装置。

其基本原理是利用压电材料的压电效应或逆压电效应来实现能量的转换。

当施加外加电场时,压电材料会产生机械应变,从而产生声波。

逆压电效应则是指在超声波的作用下,压电材料会产生电荷,从而转化为电能。

3. 新型超声换能器的设计原理3.1 材料选择新型超声换能器的设计首先要考虑材料的选择。

常用的压电材料有PZT陶瓷、PZT单晶、PVDF等。

不同材料具有不同的压电系数和机械性能,因此在选择时需要根据具体需求进行权衡。

3.2 结构设计结构设计是超声换能器设计中的关键环节。

传统的压电换能器一般采用表面贴装方式,但这种结构存在粘接问题和能量密度限制等局限性。

新型超声换能器通过优化结构设计,可以提高换能效率和频率响应,如采用双晶换能器和双接触换能器等。

3.3 电极设计电极的设计对超声换能器的电性能和机械性能有着重要影响。

新型超声换能器可以采用分叉电极设计或等效电路设计,以提高耦合效率和能量转化效率。

4. 新型超声换能器的应用4.1 医疗领域在医疗领域,新型超声换能器广泛应用于医学成像、超声治疗、超声导引等方面。

超声图像设备利用超声换能器将电能转化为声能,并通过人体组织的反射返回的声波来进行成像。

4.2 工业领域在工业领域,新型超声换能器可以应用于无损检测、测量和控制等方面。

超声换能器可以用于检测材料的缺陷、测量液位和压力、控制液体流量等。

4.3 通信领域在通信领域,新型超声换能器可用于声表面波传感器和超声波射频识别等应用。

超声波换能器工作原理

超声波换能器工作原理

2、超声波换能器的工作原理(1)超声波换能器:一种能把高频电能转化为机械能的一种装置,一般有磁致伸缩式和压电陶瓷式。

电源输出到超声波发生器,再到超声波换能器,一般还要经过超声波导出、接收装置就可以产生超声波了。

(2) 超声波换能器的组成:包括外壳、匹配层即声窗、压电陶瓷圆盘换能器、背衬、引出电缆,其特征在于它还包括阵列接收器,它由引出电缆、换能器、金属圆环、橡胶垫圈组成。

(3)超声波换能器的原理与作用:超声波换能器即是谐振于超声频率的压电陶瓷,由材料的压电效应将电信号转换为机械振动.超声波换能器是一种能量转换器件,它的功能是将输入的电功率转换成机械功率(即超声波)再传递出去,面它自身消耗很少的一部分功率。

超声波换能器的种类:可分为压电换能器、夹心换能器、柱型换能器、倒喇叭型换能器等等。

40kHZ超声波发射/接收电路综述40kHZ超声波发射电路(1)40kHZ超声波发射电路之一,由F1~F3三门振荡器在F3的输出为40kHZ方波,工作频率主要由C1、R1和RP决定,用RP可调电阻来调节频率。

F3的输出激励换能器T40-16的一端和反向器F4,F4输出激励换能器T40-16的另一端,因此,加入F4使激励电压提高了一倍。

电容C3、C2平衡F3和F4的输出,使波形稳定。

电路中反向器F1~F4用CC4069六反向器中的四个反向器,剩余两个不用(输入端应接地)。

电源用9V叠层电池。

测量F3输出频率应为40kHZ±2kHZ,否则应调节RP。

发射超声波信号大于8m。

40kHZ超声波发射电路(2)40kHZ超声波发射电路之二,电路中晶体管VT1、VT2组成强反馈稳频振荡器,振荡频率等于超声波换能器T40-16的共振频率。

T40-16是反馈耦合元件,对于电路来说又是输出换能器。

T40-16两端的振荡波形近似于方波,电压振幅接近电源电压。

S是电源开关,按一下S,便能驱动T40-16发射出一串40kHZ超声波信号。

超声波换能器原理知识大普及

超声波换能器原理知识大普及

超声波换能器原理知识大普及在对超声波焊接机、超声波清洗机等设备的了解过程中,都会看到超声波换能器的身影,那么超声波换能器究竟是个什么设备呢?它主要完成哪些功能呢?又是利用什么原理来完成的呢?接下来就让小编带您一探究竟!一、超声波换能器简介超声波换能器,英文名称为Ultrasonictransducer,是一种将高频电能转换为机械能的能量转换器件。

其常被用于超声波清洗机、超声波焊接机、三氯机、气相机等设备中,在农业、工业、生活、交通运输、军事、医疗等领域内都得到了广泛的应用。

超声波换能器二、超声波换能器结构超声波换能器主要包括外壳、声窗(匹配层)、压电陶瓷圆盘换能器、背衬、引出电缆、Cymbal阵列接收器等几大部分构成。

其中,压电陶瓷圆盘换能器起到的作用和一般的换能器相同,主要用于发射并接受超声波;而在压电陶瓷圆盘换能器的上面是Cymbal阵列接收器,主要由引出电缆、Cymbal换能器、金属圆环和橡胶垫圈组成,用作超声波接收器,接受压电陶瓷圆盘换能器频带外产生的多普勒回拨信号。

超声波换能器结构三、超声波换能器原理超声波换能器,其实就是频率与其谐振频率相同的压电陶瓷,利用的是材料的压电效应将电能转换为机械振动。

一般情况下,先由超声波发生器产生超声波,经超声波换能器将其转换为机械振动,再经超声波导出装置、超声波接收装置便可产生超声波。

超声波换能器原理四、超声波换能器应用(1)超声波清洗机利用超声波在清洗液中不断地进行传播来清洗物体上的污垢,其超声波振动频率便是由超声波换能器决定的,可根据清洗物来设定不同的频率以达到清洗的目的。

(2)超声波焊接机利用超声波换能器产生超声波振动,振动产生摩擦使得焊区局部熔化进而接合在一起。

(3)超声波马达中并不含有超声波换能器,只是将其定子近似为换能器,利用逆压电效应产生超声波振动,通过定子与转子的摩擦进而带动转子转动。

(4)超声波减肥利用超声波换能器产生机械振动,将脂肪细胞振碎并排出体外,进而达到减肥的效果。

超声波换能器的结构及原理

超声波换能器的结构及原理

超声波换能器的结构及原理超声波的发射和接收,需要一种电-声之间的能量转换装置,这就是换能器。

超声换能器,也即超声传感器,是超声波流量计中的重要组成部分。

通常所说的超声换能器一般是指电声换能器,它是一种既可以把电能转化为声能、又可以把声能转化为电能的器件或装置。

换能器处在发射状态时,将电能转换为机械能,再将机械能转换为声能;反之,当换能器处在接收状态时,将声能转换为机械能,再转换为电能。

超声换能器通常都有一个电的储能元件和一个机械振动系统。

人们为研究和应用超声波,己发明设计并制成了许多类型的超声波发生器,目前使用较多的是压电型超声波发生器,而压电材料有单晶体的、多晶体复合的,如石英单晶体,钛酸钡压电陶瓷、锆钛酸铅压电陶瓷复合晶体(PZT)、PVDF等。

压电型超声波换能器是借助压电晶体的谐振来工作的,即晶体的压电效应和逆压电效应。

其结构原理如图3所示:图3超声波换能器结构原理图超声波换能器是一个超声频电子振荡器,当把振荡器产生的超声频电压加到超声换能器的压电晶体上时,压电晶体组件就在电场作用下产生纵运动。

压电组件振荡时,仿佛是一个小活塞,其振幅很小,约为(1~10) m ,但这种振动的加速度很大,约(10~10 3 ) g,这样就可以把电磁振荡能量转化为机械振动量,若这种能量沿一定方向传播出去,就形成超声波。

当在超声换能器的两电极施加脉冲信号时,压电晶片就会发生共振,并带动谐振子振动,并推动周围介质振动,从而产生超声波。

相反,电极间未加电压,则当共振板接收到回波信号时,由逆压电效应,将压迫两压电晶片振动,从而将机械能转换为电信号,此时的传感器就成了超声波接收器。

通常压电型超声波换能器可以等效地看作一个电压源和一个电容器的串联电路,如图 4(a)所示,也可以等效为一个电流源和一个电容器地并联电路,如图4(b)所示。

如果用导线将压电换能器和测量仪器连接时,则应考虑连接导线地等效电容、等效电阻、前置放大器地输入电阻、输入电容。

超声波换能器原理

超声波换能器原理

超声波换能器原理超声波换能器是一种能够将电能转化为超声波能量的装置,它在医疗、工业、生活等领域都有着广泛的应用。

超声波换能器的原理是基于压电效应,通过压电晶体的振动来产生超声波。

本文将介绍超声波换能器的原理及其应用。

超声波换能器是利用压电效应将电能转化为机械能,再将机械能转化为超声波能量的装置。

压电效应是指某些晶体在受到外力作用时会产生电荷分布不均,从而产生电势差的现象。

当外加电压施加在压电晶体上时,晶体会发生形变,产生机械振动。

这种振动会以超声波的形式传播出去。

超声波换能器通常由压电晶体、声阻抗匹配层、声透镜、保护层等部分组成。

压电晶体是超声波换能器的核心部件,它能够将电能转化为机械能,产生超声波。

声阻抗匹配层用于提高能量传输效率,减少反射损失。

声透镜用于聚焦超声波,控制超声波的传播方向和范围。

保护层则用于保护压电晶体不受外界环境的影响。

超声波换能器在医疗领域有着广泛的应用。

它可以用于超声波造影、超声波治疗、超声波手术等方面。

在超声波造影中,超声波换能器将电能转化为超声波能量,通过人体组织的不同反射特性来获取影像信息。

在超声波治疗中,超声波换能器的超声波能量可以用于治疗肿瘤、消炎止痛等。

在超声波手术中,超声波换能器可以用于切割、凝固组织,实现无创手术。

除医疗领域外,超声波换能器还在工业领域有着重要的应用。

例如超声波清洗、超声波焊接、超声波测厚等方面。

在超声波清洗中,超声波换能器的超声波能量可以将污垢从物体表面去除,实现高效清洗。

在超声波焊接中,超声波换能器可以利用超声波的振动作用将材料焊接在一起。

在超声波测厚中,超声波换能器可以利用超声波的穿透性来测量材料的厚度。

总之,超声波换能器是一种能够将电能转化为超声波能量的装置,其原理是基于压电效应。

它在医疗、工业、生活等领域都有着广泛的应用。

通过对超声波换能器原理的深入了解,我们可以更好地应用和改进这一技术,为人类的生活和工作带来更多的便利和效益。

超声波换能器工作原理

超声波换能器工作原理

超声波换能器工作原理
超声波换能器是一种将电能转化为声能的器件。

其工作原理基于压电效应和逆压电效应。

压电效应指的是当某些晶体在受到外加电压的作用下,会发生形变或产生电荷,这种晶体被称为压电晶体。

例如,一些合成的晶体材料,如钛酸铅(PZT),在受到压力变化时,会在晶
格中产生电荷。

通过将电压施加在压电晶体上,可以引起晶体的形变。

逆压电效应是指压电晶体在受到外力(声波)作用下会发生电荷的变化。

当声波传播到压电晶体上时,晶体会产生变形,从而在晶格中产生电荷。

这个电荷可以被采集和测量。

基于以上原理,超声波换能器通过将电压施加在压电晶体上,引起晶体的形变。

当外界传来声波时,压电晶体会产生电荷的变化。

这个电荷变化可以被测量,从而得到声波的信息。

超声波换能器在超声波成像、声纳、声测、牙科器械等领域广泛应用。

其优势包括频率范围宽、输出功率高、响应速度快等。

超声波换能器的原理和使用

超声波换能器的原理和使用

超声波换能器是一种能量转换器件,它的功能是将输入的电功率转换成机械功率(即超声波)再传递出去,而它自身消耗很少一部分功率(小于10%)。

所以,使用超声波换能器最主要考虑的问题就是与输入输出端的匹配,其次是机械安装和配合尺寸。

超声波换能器分类:1、柱型2、倒喇叭型3、钢后盖型4、中间夹铝片型主要适用于超声波塑料焊接机、超声波切割刀、超声波金属焊接机,超声波清洗机,超声波声化学设备等。

超声波换能器在合适的电场激励下能发生有规律的振动,其振幅一般10μm左右,这样的振幅要直接完成焊接和加工工序是不够的。

连上通过合理设计的变幅杆后,超声波的振幅可以在很大的范围内变化,只要材料强度足够,振幅可以超过100μm。

因加工方式和要求不同,换能器的工作方式大致可分为连续工作(如花边机,CD机,清洗机,拉链机)和脉冲工作(如塑料焊机),不同的工作方式对换能器的要求是不同的。

一般而言,连续式工作几乎没有停顿时间,但工作电流不是很大,脉冲工作是间歇的,有停顿,但瞬间电流很大。

平均而言,二种状态的功率都是很大的。

使用超声波换能器最主要考虑的问题就是与输入输出端的匹配,其次是机械安装和配合尺寸。

换能器的频率相对而言还比较直观些。

该频率是指用频率(函数)发生器,毫伏表,示波器等通过传输线路法测得的频率,或用网络阻抗分析仪等类似仪表测得的频率。

一般通称小信号频率。

与它相对应的是上机频率,即客户将换能器通过电缆连到机箱上,通电后空载或有载时测得的实际工作频率。

因客户匹配电路各不相同,同样的换能器在不同的驱动电源(电箱)表现出来的频率是不同的,这样的频率不能作为交流讨论的依据。

让换能器和驱动电源、模具良好配合以形成一台完整的超声波设备可以简称为匹配。

由于匹配对整机性能的影响是决定性的,无论怎样强调匹配的重要性都不为过。

匹配最主要考虑的因素是换能器的电容量,其次是换能器的频率。

换能器与驱动电源的匹配主要有4个方面,即阻抗匹配、频率匹配、功率匹配、容抗匹配。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图1.4 电磁-声换能器在导电金属中激发超声波的基本作用原理示意图 在图1.4中,Bz为方向平行与板面的磁感应强度,Br为方向垂直与板面的磁感应强度;g为涡流的电流密度,它与输入电流方向相反。根据右手定则可确定洛伦 兹力F的方向在(a)中垂直于Bz与g的平面(垂直于板面)--激发纵波,在(b)中垂直于Br与g的平面(平行于板面)--激发横波。 根据电磁感应原理,在感应磁场B中作用于以速度V移动的电荷e上的力F(即洛伦兹力)有:F~eVB。当把通有交变电流i的线圈置于导电体上时,导电体中的 微小体积元dV中感应出以e和V确定的电流密度为g的涡电流。因此:F~gB,矢量g、B和F相互垂直且g与i反向(注意,由于交变电流存在趋肤效应,故dV应是 靠近导电体的表面)。 在接收超声波(如反射回波)时,响应于声压作用力使体积元dV在恒磁场B中振动,因此受力F’~eV’B,V’为振动速度。此力使带电质点运动产生电流密度 为g的交变电流即涡流。该涡流使配置在导电体上的检测线圈中感应产生感应电势(感应的交变电流)作为接收信号,其频率与接收到的超声波有相同的频 率,其大小则随磁场的增大而增加。
图1.2 电磁式换能器基本结构示意图 在发射声波的状态下,通以交变电流的励磁线圈将产生交变磁场,由于衔铁上的磁通量发生变化,从而对衔铁产生交变的电磁作用力,即带动振动膜片发生振 动并推动相邻的传声介质而发射声波。 在接收声波时,与衔铁相连的振动膜片受声波(声压)作用而发生振动,导致衔铁与磁铁间的间隙大小发生交变变化,这将影响到磁路中的磁阻发生交变变 化,于是磁通量发生交变变化,这将使检测线圈两端产生交变的感应电势即可作为输出信号。 常见的电磁式换能器有励磁式扬声器、耳机、拾音器和话筒等,如音响装置中的高音扬声器。 5.电磁-声换能器(又称涡流-声换能器):利用电动力学法在导电金属中产生超声波的装置,其基本结构如图1.3所示。
1-3
图1.3 电磁-声换能器基本结构示意图 将通有交变电流的激磁线圈至于导电金属之上,线圈产生的交变磁场作用于导电金属并感应出涡电流,该涡流位于另一外加恒磁场(如永久磁铁或直流电磁 铁)中时,带电质点在磁场中流动时受到垂直于磁场方向和质点运动方向的力-洛伦兹力作用而发生位移,从而激发出超声波,视作用力的分力方向(水平分 量与垂直分量)可以同时激发出纵波与横波,其频率与通入交变电流的频率相同。这种方法又称重叠磁场法,其基本作用原理见图1.4:
§1.1 换能器的用途和基本原理 一.换能器的广义概念 用于实现不同形式的能量相互转换的仪器或器件可以通称为换能器。例如: 把音频电信号转换成可闻声,或者把可闻声转换成音频电信号,实现电能与声能相互转换的电声换能器,如扬声器(喇叭)、耳机、话筒等; 实现电能与磁能相互转换的电磁换能器,如通以电流而可以产生磁场力的电磁铁,又如录音磁头可以把音频电信号转换成磁信号而记录到磁带上,或者把磁带 上的磁信号转换成音频电信号,然后经放大处理,再由电声换能器转换成可闻声。 实现电能与机械能相互转换的机电换能器,如电动机是输入电流产生磁场力,然后推动电枢转动,而发电机则因电枢转动并通过磁场作用而产生电流。又如电 唱机的拾音头,唱针沿唱片沟纹槽移动而产生音频机械振动并转换输出音频电信号,经放大处理后再由电声换能器转换成可闻声。 实现电能与光能相互转换的光电换能器如白炽灯泡、太阳能蓄电池(光电池)、光电二极管等电激发光器件。 此外,还有实现电能与化学能相互转换的器件,如蓄电池放电时是把化学能转变为电能,而它在充电时则又将电能转换为化学能。实现电能与热能相互转换的 器件就更多了,如电炉、电烤箱、电饭煲、电炒锅、电热杯、电热毯、电热梳、电烙铁、电熨斗等是由电能单向转换为热能的器件,而热电偶则是由热能转换 为电能的器件,家用电器中新兴的电磁灶,是由电能激励的磁场作用在金属器皿上形成涡电流而使金属器皿发热,微波炉是由电能激发出微波(电磁能)再进 一步使食物发热... 总而言之,能够起到转换能量形式的器件种类繁多并且还会不断有新的类型出现,从广义上讲,可以笼统地把它们都称为换能器。但是,在检测技术中所讲的 换能器是有着特定的定义的,也就是本教材所要阐述的换能器。 二.换能器的标准定义 在工程检测技术中所讲的换能器,是特指能够从一个系统接收信号而向另一系统输出信号,接收信号与输出信号属于不同的能量形式,但输出信号能表现输入 信号某些特征的器件。因此,作为一个换能器系统,通常需要包含一个储能元件,在它工作时,储能元件将一种形式的能量储存起来并转换成另一种形式的能 量输出。在实际应用中,要求换能器能把某种不容易或不便测试与处理的能量转换成另一种容易进一步处理或便于测试的能量,从而有可能对原来的输入能量 进行评定或分析研究。例如测定环境噪声用的声级计,它可以把一定程度的环境噪声转换成一定大小的电信号,从而可以进一步定量地显示出环境噪声的强度 大小。又如利用漏磁特性的无损检测技术中应用的换能器(探头),可以把被充磁工件上有缺陷存在处的漏磁通转换成电信号,经处理后可以显示缺陷的存在 和评定缺陷的大小。在利用涡流特性的无损检测技术中,由仪器产生的交变电流激励探头产生交变磁场,从而在导电工件上感生涡电流(涡流),工件上有缺 陷存在处的涡流大小会发生变化,使反作用于探头的磁场发生变化,由于该磁场的变化将引起探头中检测线圈的感应电流变化,从而可以根据这种变化判断缺 陷的存在与大小。 在工程检测技术中应用的换能器种类很多,下面仅就最常用的几种电声换能器的基本原理做一简单介绍。 三.常用电声换能器的基本原理 1.压电式换能器:压电式换能器利用了某些单晶材料的压电效应和某些多晶材料的电致伸缩效应。 [1]压电效应 某些单晶材料的结构具有非对称特性,当这些材料受到外加应力作用而产生应变时,其内部晶格结构的变化(形变)会破坏原来宏观表现为电中性的状态,产 生极化电场(电极化),所产生的电场(电极化强度)与应变的大小成正比。这种现象称为正压电效应,它是由居里兄弟于1880年发现的。随后,在1881年又 进一步发现这类单晶材料还具有逆压电效应,即具有正压电效应的材料在受到外加电场作用时,会有应力和应变产生,其应变与外电场的大小成正比。 压电效应是晶体结构的一个特性,它与晶体结构的非对称性有关,而压电效应的大小及性质则与施加的应力或电场对晶体结晶轴的相对方向有关。
具有压电效应的单晶材料种类很多,最常用的如天然石英(SiO2)晶体,以及人工单晶材料如硫酸锂(Li2SO4)、铌酸锂(LiNbO3)等等。 [2]电致伸缩效应 某些多晶材料中存在有自发形成的分子集团,即所谓“电畴”,它具有一定的极化,并且沿极化方向的长度往往与其他方向的长度不同。当有外加电场作用 时,电畴会发生转动,使其极化方向与外加电场方向趋于一致,从而使该材料沿外加电场方向的长度将发生变化,表现为弹性应变。这种现象称为电致伸缩效 应。
1-1Leabharlann 电致伸缩效应也有逆效应,即具有电致伸缩效应的多晶材料在经受外加应力产生应变时,其总的极化强度将会发生变化,即表现为电极化(产生电场)。 因此,电致伸缩效应可以说与电极化现象有关(自极化)。 从上述的压电效应和电致伸缩效应的结果来看,两者有几乎相同的表现形式。其中,正压电效应的表现结果与逆电致伸缩效应相当,而逆压电效应的表现结果 则与正电致伸缩效应相当。因此就宏观上来看,在实际应用中常把两者通称为压电效应,但必须注意到它们的物理意义有实质上的不同。在超声检测技术中, 对压电材料施加交变电场,该材料将沿电场方向发生交变应变,从而能在与它紧密接触的介质中激发出机械振动波-超声波。反之,对压电材料施加交变应力 (即受到超声波的作用)而使该材料发生交变应变时,则会在该材料上产生交变电场,从而达到接收超声波的目的。 利用电致伸缩效应现象的压电换能器常用压电陶瓷,如锆钛酸铅(PZT)、钛酸钡(BaTiO3)、铌酸铅(PbNb2O3)等。 压电式换能器的主要特点是电声转换效率高,特别是接收灵敏度高,但其机械强度较低(脆性大),因而在大功率应用上受到限制(不过目前的最新技术已能 达到数百瓦到上千瓦的声辐射功率)。此外,某些单晶材料容易溶于水而失效(水解)。 2.磁致伸缩式换能器 磁致伸缩式换能器利用了磁致伸缩效应,这时特定合金材料结晶结构的物理特性,即某些铁磁体及其合金,以及某些铁氧体中的磁畴,在其自发磁化方向上的 长度可能与其它方向上的不同。当有外加磁场作用时,由于这种磁畴将发生转动,使其磁化方向尽量与外磁场方向趋于一致,从而使该材料沿外磁场方向的长 度将发生变化,表现为弹性应变(当然,这种变形引起的应变是很小的,约在10-5~10-6之间)。这种现象即是磁致伸缩效应。相反,具有磁致伸缩效应的材料 在经受外加应力或应变时,其磁化强度也会发生改变,此即为逆磁致伸缩效应。 这样,在对磁致伸缩材料施以交变磁场时,该材料将沿磁力线方向发生磁致形变,从而可以在与它表面紧密接触的介质中激发出机械振动波-超声波。同样, 利用逆磁致伸缩效应则可达到接收超声波的目的:施加到磁致伸缩材料上的应变(弹性应力-超声波作用力)将使处在外加磁场中的该材料其磁场的磁通密度 发生变化(此即所谓磁弹性效应),从而使位于该材料表面上的检测线圈中将因磁通密度变化而产生感应电势,可以用作磁弹性效应的信号,达到接收超声波 的效果(注意磁场方向应和应力方向-超声波产生的质点振动方向一致)。 根据磁致伸缩的变化状态,可以分为: [1]线型磁致伸缩:在发生应变时,材料的体积不变,但在长度方向上伸缩变化的程度大,这是磁致伸缩式换能器主要应用的类型。但是,它只能在居里温度 以下的情况发生,若温度超过居里点后将只能存在体积型磁致伸缩。 [2]体积型磁致伸缩:在发生应变时,材料的体积也会发生变化。 磁致伸缩式换能器主要用于低频大功率的场合,这与其频率受限制和受磁性材料特性参数限制的因素有关,它特别是在功率超声应用领域中有着广泛应用,其 特点主要是机械强度高,性能稳定,水密要求低(不会水解)。但是,它的涡流和磁滞损耗较大,电声转换效率不如压电式换能器,而且通常需要有较大的激 励电能以用于大功率场合。 需要注意的是,在施以交变磁场时,由于趋肤效应的影响会使透入深度受到限制,因此这种磁致伸缩效应所波及的范围仅限于材料表面。在产生超声波时,超 声波的强弱取决于材料表层交变磁场的强度,此外,传声介质与材料表面接触的紧密程度(声耦合)也极为重要。 常用于磁致伸缩式换能器的材料有金属镍、金属钴、铁钴合金、铁镍合金、镍铁氧体、镍锌铁氧体、镍铜铁氧体等。 3.电动式换能器 这是一种把电能转换成机械能,或把机械能转换为电能的装置,其结构如图1.1所示,与膜片相连的圆筒上有细漆包线缠绕的线圈即音圈,该圆筒套在中心磁 导体上。
相关文档
最新文档