超声换能器工作原理
超声波换能器工作原理

2、超声波换能器的工作原理(1) 超声波换能器:一种能把高频电能转化为机械能的一种装置,一般有磁致伸缩式和压 电陶瓷式。
电源输出到 超声波发生器,再到超声波换能器,一般还要经过 超声波导出、接收 装置就可以产生超声波了。
(2) 超声波换能器的组成:包括外壳、匹配层即声窗、压电陶瓷圆盘换能器、背衬、引出 电缆,其特征在于它还包括阵列接收器, 它由引出电缆、换能器、金属圆环、橡胶垫圈组成。
(3) 超声波换能器的原理与作用:超声波换能器即是谐振于超声频率的压电陶瓷,由材料 的压电效应将电信号转换为机械振动•超声波换能器是一种能量转换器件,它的功能是将输入的电功率转换成机械功率(即超声波)再传递出去,面它自身消耗很少的一部分功率。
超声波换能器的种类:可分为压电换能器、 夹心换能器、柱型换能器、倒喇叭型换能器等等。
40kHZ超声波发射/接收电路综述40kHZ 超声波发射电路 ⑴10kHz 因声波发射器]1 )40kHZ 超声波发射电路之一,由 F1~F3三门振荡器在F3的输出为40kHZ 方波,工作 频率主要由C1、R1和RP 决定,用RP 可调电阻来调节频率。
F3的输出激励换能器 T40-16的一端和反向器 F4, F4输出激励换能器 T40-16的另一端,因此,加入 F4使激励电压提高 了一倍。
电容 C3、C2平衡F3和F4的输出,使波形稳定。
电路中反向器 F1~F4用CC4069 六反向器中的四个反向器,剩余两个不用(输入端应接地)。
电源用 9V 叠层电池。
测量F3输出频率应为40kHZ ± 2kHZ 否则应调节 RR 发射超声波信号大于 8m 。
40kHZ 超声波发射电路 ⑵1615?F100— ^500T40-1640kHz 趙声波发射器(40kHZ超声波发射电路之二,电路中晶体管VT1、VT2组成强反馈稳频振荡器,振荡频16 510VT(9013氓4148率等于超声波换能器T40-16的共振频率。
超声波换能器原理知识大普及

超声波换能器原理知识大普及在对超声波焊接机、超声波清洗机等设备的了解过程中,都会看到超声波换能器的身影,那么超声波换能器究竟是个什么设备呢?它主要完成哪些功能呢?又是利用什么原理来完成的呢?接下来就让小编带您一探究竟!一、超声波换能器简介超声波换能器,英文名称为Ultrasonictransducer,是一种将高频电能转换为机械能的能量转换器件。
其常被用于超声波清洗机、超声波焊接机、三氯机、气相机等设备中,在农业、工业、生活、交通运输、军事、医疗等领域内都得到了广泛的应用。
超声波换能器二、超声波换能器结构超声波换能器主要包括外壳、声窗(匹配层)、压电陶瓷圆盘换能器、背衬、引出电缆、Cymbal阵列接收器等几大部分构成。
其中,压电陶瓷圆盘换能器起到的作用和一般的换能器相同,主要用于发射并接受超声波;而在压电陶瓷圆盘换能器的上面是Cymbal阵列接收器,主要由引出电缆、Cymbal换能器、金属圆环和橡胶垫圈组成,用作超声波接收器,接受压电陶瓷圆盘换能器频带外产生的多普勒回拨信号。
超声波换能器结构三、超声波换能器原理超声波换能器,其实就是频率与其谐振频率相同的压电陶瓷,利用的是材料的压电效应将电能转换为机械振动。
一般情况下,先由超声波发生器产生超声波,经超声波换能器将其转换为机械振动,再经超声波导出装置、超声波接收装置便可产生超声波。
超声波换能器原理四、超声波换能器应用(1)超声波清洗机利用超声波在清洗液中不断地进行传播来清洗物体上的污垢,其超声波振动频率便是由超声波换能器决定的,可根据清洗物来设定不同的频率以达到清洗的目的。
(2)超声波焊接机利用超声波换能器产生超声波振动,振动产生摩擦使得焊区局部熔化进而接合在一起。
(3)超声波马达中并不含有超声波换能器,只是将其定子近似为换能器,利用逆压电效应产生超声波振动,通过定子与转子的摩擦进而带动转子转动。
(4)超声波减肥利用超声波换能器产生机械振动,将脂肪细胞振碎并排出体外,进而达到减肥的效果。
超声波换能器工作原理

2、超声波换能器的工作原理(1)超声波换能器:一种能把高频电能转化为机械能的一种装置,一般有磁致伸缩式和压电陶瓷式。
电源输出到超声波发生器,再到超声波换能器,一般还要经过超声波导出、接收装置就可以产生超声波了。
(2) 超声波换能器的组成:包括外壳、匹配层即声窗、压电陶瓷圆盘换能器、背衬、引出电缆,其特征在于它还包括阵列接收器,它由引出电缆、换能器、金属圆环、橡胶垫圈组成。
(3)超声波换能器的原理与作用:超声波换能器即是谐振于超声频率的压电陶瓷,由材料的压电效应将电信号转换为机械振动.超声波换能器是一种能量转换器件,它的功能是将输入的电功率转换成机械功率(即超声波)再传递出去,面它自身消耗很少的一部分功率。
超声波换能器的种类:可分为压电换能器、夹心换能器、柱型换能器、倒喇叭型换能器等等。
40kHZ超声波发射/接收电路综述40kHZ超声波发射电路(1)40kHZ超声波发射电路之一,由F1~F3三门振荡器在F3的输出为40kHZ方波,工作频率主要由C1、R1和RP决定,用RP可调电阻来调节频率。
F3的输出激励换能器T40-16的一端和反向器F4,F4输出激励换能器T40-16的另一端,因此,加入F4使激励电压提高了一倍。
电容C3、C2平衡F3和F4的输出,使波形稳定。
电路中反向器F1~F4用CC4069六反向器中的四个反向器,剩余两个不用(输入端应接地)。
电源用9V叠层电池。
测量F3输出频率应为40kHZ±2kHZ,否则应调节RP。
发射超声波信号大于8m。
40kHZ超声波发射电路(2)40kHZ超声波发射电路之二,电路中晶体管VT1、VT2组成强反馈稳频振荡器,振荡频率等于超声波换能器T40-16的共振频率。
T40-16是反馈耦合元件,对于电路来说又是输出换能器。
T40-16两端的振荡波形近似于方波,电压振幅接近电源电压。
S是电源开关,按一下S,便能驱动T40-16发射出一串40kHZ超声波信号。
超声波换能器工作原理

超声波换能器工作原理
超声波换能器是一种将电能转化为声能的器件。
其工作原理基于压电效应和逆压电效应。
压电效应指的是当某些晶体在受到外加电压的作用下,会发生形变或产生电荷,这种晶体被称为压电晶体。
例如,一些合成的晶体材料,如钛酸铅(PZT),在受到压力变化时,会在晶
格中产生电荷。
通过将电压施加在压电晶体上,可以引起晶体的形变。
逆压电效应是指压电晶体在受到外力(声波)作用下会发生电荷的变化。
当声波传播到压电晶体上时,晶体会产生变形,从而在晶格中产生电荷。
这个电荷可以被采集和测量。
基于以上原理,超声波换能器通过将电压施加在压电晶体上,引起晶体的形变。
当外界传来声波时,压电晶体会产生电荷的变化。
这个电荷变化可以被测量,从而得到声波的信息。
超声波换能器在超声波成像、声纳、声测、牙科器械等领域广泛应用。
其优势包括频率范围宽、输出功率高、响应速度快等。
超声波换能器的原理和使用

超声波换能器是一种能量转换器件,它的功能是将输入的电功率转换成机械功率(即超声波)再传递出去,而它自身消耗很少一部分功率(小于10%)。
所以,使用超声波换能器最主要考虑的问题就是与输入输出端的匹配,其次是机械安装和配合尺寸。
超声波换能器分类:1、柱型2、倒喇叭型3、钢后盖型4、中间夹铝片型主要适用于超声波塑料焊接机、超声波切割刀、超声波金属焊接机,超声波清洗机,超声波声化学设备等。
超声波换能器在合适的电场激励下能发生有规律的振动,其振幅一般10μm左右,这样的振幅要直接完成焊接和加工工序是不够的。
连上通过合理设计的变幅杆后,超声波的振幅可以在很大的范围内变化,只要材料强度足够,振幅可以超过100μm。
因加工方式和要求不同,换能器的工作方式大致可分为连续工作(如花边机,CD机,清洗机,拉链机)和脉冲工作(如塑料焊机),不同的工作方式对换能器的要求是不同的。
一般而言,连续式工作几乎没有停顿时间,但工作电流不是很大,脉冲工作是间歇的,有停顿,但瞬间电流很大。
平均而言,二种状态的功率都是很大的。
使用超声波换能器最主要考虑的问题就是与输入输出端的匹配,其次是机械安装和配合尺寸。
换能器的频率相对而言还比较直观些。
该频率是指用频率(函数)发生器,毫伏表,示波器等通过传输线路法测得的频率,或用网络阻抗分析仪等类似仪表测得的频率。
一般通称小信号频率。
与它相对应的是上机频率,即客户将换能器通过电缆连到机箱上,通电后空载或有载时测得的实际工作频率。
因客户匹配电路各不相同,同样的换能器在不同的驱动电源(电箱)表现出来的频率是不同的,这样的频率不能作为交流讨论的依据。
让换能器和驱动电源、模具良好配合以形成一台完整的超声波设备可以简称为匹配。
由于匹配对整机性能的影响是决定性的,无论怎样强调匹配的重要性都不为过。
匹配最主要考虑的因素是换能器的电容量,其次是换能器的频率。
换能器与驱动电源的匹配主要有4个方面,即阻抗匹配、频率匹配、功率匹配、容抗匹配。
超声换能器的原理

超声换能器的原理
超声换能器是一种能够将电能转化为声能的装置。
它由压电材料制成,压电材料的晶粒排列规则,通过外加电场的作用而发生微小的位移。
当外加电场的方向周期性变化时,压电片中的晶粒也会周期性地振动。
这样,压电片就会产生声波,进而将电能转化为声能。
超声换能器的工作原理基于压电效应和反压电效应。
压电效应指的是某些特定的晶体或陶瓷材料在受到力或压力作用下会产生电荷分布不对称,从而生成电压。
反压电效应则是指当这些晶体或陶瓷材料受到外加电压时,会发生形变或位移。
在超声换能器中,应用了压电和反压电效应。
压电片是超声换能器的关键组件,它通常由PZT(铅酸钛锆)陶瓷材料制成。
当外加电压施加到压电片上时,它会引起压电片的厚度发生微小的周期性变化。
这个变化导致了超声波的产生和发射。
同时,当超声波通过压电片时,它也会使压电片发生反压电效应,产生微小的电压信号。
超声波在超声换能器中的传播是由压电片的振动和反压电效应共同完成的。
压电片的振动激发了超声波的产生,并将声波传送到被测物体。
当超声波在物体中传播时,它会遇到不同的介质和物体界面,从而发生折射、反射和散射。
当超声波反射回超声换能器时,它会导致压电片发生反压电效应,产生电压信号。
通过测量这个信号,我们可以获取被测物体的信息,例如距离、形状和物性等。
总之,超声换能器利用压电效应和反压电效应,将电能转化为声能,并实现声能和电能之间的相互转换。
它在医学、工业、军事等领域有着广泛的应用,如超声成像、超声清洗和超声检测等。
超声换能器工作原理

超声换能器工作原理1.引言1.1 概述概述超声换能器是一种重要的电声转换器件,广泛应用于工业、医学、科研等领域。
它通过电能与机械振动的转换,实现了声波的产生和接收。
在不同的应用领域中,它具有不同的工作原理和结构。
超声换能器的工作原理基于压电效应和回声原理。
当施加高频电场到压电材料上时,由于压电效应的存在,压电材料会发生微小的形变。
这种形变将产生机械振动,并通过传导介质传播出去,形成了超声波。
超声波在超声换能器的结构中发挥着至关重要的作用。
超声换能器的结构通常由压电材料和负载材料组成。
压电材料是产生超声波的关键部分,它具有良好的压电性能。
负载材料用于接收超声波,并将其转换回电能。
除了压电材料和负载材料,超声换能器还包括了传导介质和机械辐射面等组成部分。
超声换能器广泛应用于医学领域,例如超声检测和超声治疗。
它可以通过发射和接收超声波来对人体进行观察和治疗。
在工业领域,超声换能器可用于测量、清洁和焊接等应用中。
此外,随着科技的发展,超声换能器还有着广阔的应用前景,尤其是在无线电通信、物联网和汽车技术等领域。
总体而言,超声换能器是一种具有重要作用的电声转换器件。
通过压电效应和回声原理,它实现了电能与声能的相互转换。
在不同的应用领域中,超声换能器发挥着重要的作用,并且有着广阔的发展前景。
通过进一步研究和技术创新,相信超声换能器将在未来的科技领域中发挥更大的作用。
1.2 文章结构文章结构部分的内容:本文共分为引言、正文和结论三个部分进行叙述。
引言部分主要概述了超声换能器工作原理的研究背景和重要性。
首先介绍了超声换能器的定义和作用,然后简要解释了超声换能器的结构和组成。
最后明确了本文的目的,即深入分析和总结超声换能器的工作原理,展望其在未来的应用前景。
正文部分是本文的重点部分,主要讲述了超声换能器的工作原理。
首先详细介绍了超声换能器的定义和作用,包括其在医学、工业和生物科学等领域的广泛应用。
然后着重解释了超声换能器的结构和组成,包括压电材料和电极的选择以及超声波的产生和传播原理。
超声波换能器的结构及原理

超声波换能器的结构及原理超声波的发射和接收,需要一种电-声之间的能量转换装置,这就是换能器。
超声换能器,也即超声传感器,是超声波流量计中的重要组成部分。
通常所说的超声换能器一般是指电声换能器,它是一种既可以把电能转化为声能、又可以把声能转化为电能的器件或装置。
换能器处在发射状态时,将电能转换为机械能,再将机械能转换为声能;反之,当换能器处在接收状态时,将声能转换为机械能,再转换为电能。
超声换能器通常都有一个电的储能元件和一个机械振动系统。
人们为研究和应用超声波,己发明设计并制成了许多类型的超声波发生器,目前使用较多的是压电型超声波发生器,而压电材料有单晶体的、多晶体复合的,如石英单晶体,钛酸钡压电陶瓷、锆钛酸铅压电陶瓷复合晶体(PZT)、PVDF等。
压电型超声波换能器是借助压电晶体的谐振来工作的,即晶体的压电效应和逆压电效应。
其结构原理如图3所示:图3超声波换能器结构原理图超声波换能器是一个超声频电子振荡器,当把振荡器产生的超声频电压加到超声换能器的压电晶体上时,压电晶体组件就在电场作用下产生纵运动。
压电组件振荡时,仿佛是一个小活塞,其振幅很小,约为(1~10) m ,但这种振动的加速度很大,约(10~10 3 ) g,这样就可以把电磁振荡能量转化为机械振动量,若这种能量沿一定方向传播出去,就形成超声波。
当在超声换能器的两电极施加脉冲信号时,压电晶片就会发生共振,并带动谐振子振动,并推动周围介质振动,从而产生超声波。
相反,电极间未加电压,则当共振板接收到回波信号时,由逆压电效应,将压迫两压电晶片振动,从而将机械能转换为电信号,此时的传感器就成了超声波接收器。
通常压电型超声波换能器可以等效地看作一个电压源和一个电容器的串联电路,如图 4(a)所示,也可以等效为一个电流源和一个电容器地并联电路,如图4(b)所示。
如果用导线将压电换能器和测量仪器连接时,则应考虑连接导线地等效电容、等效电阻、前置放大器地输入电阻、输入电容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超声换能器工作原理
超声波换能器:一种能把高频电能转化为机械能的一种装置,一般有磁致伸缩式和压电陶瓷式。
电源输出到超声波发生器,再到超声波换能器,一般还要经过超声波导出装置就可以产生超声波了。
超声波换能器的组成:包括外壳、匹配层即声窗、压电陶瓷圆盘换能器、背衬、引出电缆,其特征在于它还包括阵列接收器,它由引出电缆、换能器、金属圆环、橡胶垫圈组成。
超声波换能器的原理与作用:超声波换能器即是谐振于超声频率的压电陶瓷,由材料的压电效应将电信号转换为机械振动.超声波换能器是一种能量转换器件,它的功能是将输入的电功率转换成机械功率(即超声波)再传递出去,自身消耗很少的一部分功率。
另外由于单个换能器承受功率有限,故通常采用多个换能器组合而成,来达到功率要求,称之为换能器功率合成。
通常采用变幅杆合成方式完成。