动能定理题型及例题讲解
动能定理题型及例题讲解

动能定理题型及例题讲解动能定理是物理学中的一个重要定理,描述了物体的动能与物体受力产生的功之间的关系。
动能定理的数学表达式是:动能的变化量等于物体受力所产生的功。
动能定理可以用来研究运动物体的动能与受到的力与加速度的关系,进而预测物体的行为元素、制造机器等。
动能定理题型:1. 给出物体的初速度和末速度,求物体所受到的力所做的功;2. 给出物体的初速度和末速度,求物体从初速度到末速度所经过的路程;3. 以动能定理为基础,解决与碰撞有关的问题。
例题讲解:【例题1】一个质量为 2kg 的物体,以 10m/s 的速度移动,在 100N 的恒力作用下移动了 5s,这个物体的末速度是多少?解答:根据动能定理,物体动能的变化量等于所受到的力所做的功(KE= W)。
可以用以下公式计算物体末速度:v^2 = v0^2 + 2ad,其中v为物体末速度,v0为物体初速度,d为物体运动路程,a为物体加速度。
由于物体是在恒力的作用下移动了 5s,我们可以计算其加速度:F=ma,a=F/m=100N/2kg=50m/s^2物体的起点速度为 10m/s,这意味着 v0 = 10m/s。
为了计算物体的末速度,我们需要知道物体移动的路程。
d = 1/2at^2 = 1/2* 50m/s^2 * 5s^2 = 125m现在我们可以使用上面的公式计算出物体的末速度:v^2 = v0^2 + 2adv^2 = (10 m/s)^2 + 2*(50 m/s^2)*125 mv^2 = 100 m^2/s^2+ 12500 m^2/s^2v^2 = 12600 m^2/s^2v = √(12600 m^2/s^2) ≈ 112.25 m/s因此,这个物体的末速度约为 112.25 m/s。
【例题2】一颗质量为 500g 的小球位于 500m 高的悬崖上。
该小球自由落体直落地面,那么它击中地面时的速度是多少?解答:这道题可以用动能定理和重力势能来解决。
动能定理典型分类例题经典题型

动能定理典型分类例题经典题型动能定理典型分类例题模型一:水平面问题1.两个质量相同的物体在水平面上以相同的初动能滑动,最终都静止,它们滑行的距离相同。
2.两个质量相同的物体在水平面上以相同的初速度滑动,最终都静止,它们滑行的距离相同。
3.一个质量为1kg的物体在不光滑的水平面上静止,施加水平外力F=2N使其滑行5m,然后撤去外力F,求物体还能滑多远。
答案为1.95m。
4.一个质量为1kg的物体在不光滑的水平面上静止,施加斜向上与水平面成37度的外力F=2N使其滑行5m,然后撤去水平外力F,求物体还能滑多远。
答案为0.98m。
5.一辆汽车在滑动摩擦系数为0.7的路面上行驶,刹车后轮子只滑动不滚动,从刹车开始到汽车停下来,汽车前进12m。
求刹车前汽车的行驶速度。
答案为10.95m/s。
6.一个质量为M的列车沿水平直线轨道以速度V匀速前进,末节车厢质量为m,在中途脱节,司机发觉时,机车已行驶L的距离,于是立即关闭油门,除去牵引力。
设运动的阻力与质量成正比,机车的牵引力是恒定的。
当列车的两部分都停止时,它们的距离为L×m/(M+m)。
模型二:斜面问题基础1.一个质量为2kg的物体在沿斜面方向拉力F=40N的作用下从静止出发沿倾角为37度的斜面上滑,物体与斜面的摩擦系数为0.40,求物体在斜面上滑行5m时的速度。
答案为6.31m/s。
基础2.一个质量为2kg的物体在水平力F=40N的作用下从静止出发沿倾角为37度的斜面上滑,物体与斜面的摩擦系数为0.40,求物体在斜面上滑行5m时的速度。
答案为6.31m/s。
基础3.一个物体以某一速度从斜面底沿斜面上滑,当它滑行4m后速度变为零,然后再下滑到斜面底。
已知斜面长5m,高3m,物体和斜面间的摩擦系数μ=0.25.求物体开始上滑时的速度及物体返回到斜面底时的速度。
答案为3.46m/s和6.71m/s。
典型例题1.一个质量为m的木块以v=10m/s初速度沿倾角为30度的斜面上滑,物体与斜面的摩擦系数为0.2,求物体在斜面上滑行5m时的速度。
(完整版)动能定理经典题型总结,推荐文档

21222121mv mv W -=动能和动能定理一、知识聚焦1、动能:物体由于运动而具有的能量叫动能. 表达式:Ek = 动能是标量,是状态量 单位:焦耳( J )221mv 2、动能定理内容:合力对物体所做的功等于物体动能的变化。
3、动能定理表达式:二、经典例题例1、(课本例题)一架喷气式飞机,质量m=5×103 kg ,起飞过程中从静止开始滑跑的路程为s =5.3×102m时,达到起飞速度v=60m/s ,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k=0.02),求飞机受到的牵引力. 分析: 研究对象:飞机研究过程:从静止→起飞(V=60m/s )适用公式:动能定理:2022121mv mv W -=合 表达式:=-S f F )(221mv得到牵引力:N kmg S mv F 42108.12⨯=+=例2、将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。
(g 取10m/s2)提示 石头的整个下落过程分为两段,如图5—45所示,第一段是空中的自由下落运动,只受重力作用;第二段是在泥潭中的运动,受重力和泥的阻力。
两阶段的联系是,前一段的末速度等于后一段的初速度。
考虑用牛顿第二定律与运动学公式求解,或者由动能定理求解。
解析 这里提供三种解法。
解法一(应用牛顿第二定律与运动学公式求解):石头在空中做自由落体运动,落地速度gH v 2=在泥潭中的运动阶段,设石头做减速运动的加速度的大小为a ,则有v2=2ah ,解得g hH a =由牛顿第二定律,ma mg F =-所以泥对石头的平均阻力N=820N 。
10205.005.02)()(⨯⨯+=⋅+=+=+=mg h h H g h H g m a g m F 例题3、如图所示,倾角θ=37°的斜面底端B 平滑连接着半径r =0.40m 的竖直光滑圆轨道。
动能定理的典型例题

“动能定理”的典型例题【例1】质量为m=2kg的物体,在水平面上以v1= 6m/s的速度匀速向西运动,若有一个F=8N、方向向北的恒定力作用于物体,在t=2s内物体的动能增加了[ ]A.28J B.64J C.32J D.36J E.100J【分析】物体原来在平衡力作用下西行,受向北的恒力F作用后将做类似于平抛的曲线运动(见图).物体在向北方向上的加速度2s后在向北方向上的速度分量故2s后物体的合速度所以物体在2s内增加的动能为也可以根据力对物体做动能定理来计算.由于在这个过程中,可以看作物体只受外力F作用,在这个力方向上的位移外力F对物体做的功W =Fs= 8×8J=64J,故物体动能的增加【答】B.【说明】由上述计算可知,动能定理在曲线运动中同样适用,而且十分简捷.有的学生认为,物体在向西方向上不受外力,保持原动运能不变,向北方向上受到外力后,向北方向上的动能增加了即整个物体的动能增加了64J,故选B.必须注意,这种看法是错误的.动能是一个标量(不同于动量),不能分解.外力对物体做功引起物体动能的变化,是对整个物体而言的,它没有分量式(不同于物体在某方向上不受外力,该方向上动量守恒的分量式).上述计算结果的巧合是由于v2与v1互成90°角的缘故.【例2】一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行一段距离后停止,量得停止处对开始运动处的水平距离为s(见图),不考虑物体滑至斜面底端的碰撞作用,并认为斜面与水平面对物体的动摩擦因数相同,求摩擦因数μ.【分析】以物体为研究对象,它从静止开始运动,最后又静止在平面上,整个过程中物体的动能没有变化,即E k2=E k1=0.可以根据全过程中功与物体动能的变化上找出联系.【解】物体沿斜面下滑时,重力和摩擦力对物体做功(支持力不做功),设斜面倾角为α,斜坡长L,则重力和摩擦力的功分别为W G= mgsinαL,W f1= -μmgcosαL.在平面上滑行时仅有摩擦力做功(重力和支持力不做功),设平面上滑行距离为s2,则W f2= -μmgs2.整个运动过程中所有外力的功为W=W G+W f1+W f2,=mgsinαL - μumgcosαL- μmgs2.根据动能定理,W=E k2-E k1,式中s1为斜面底端与物体初位置间水平距离,故【说明】本题也可运用牛顿第二定律结合运动学公式求解.物体沿斜面下滑时的加速度物体在平面上滑行时的加速度比较这两种解法,可以看到,应用动能定理求解时,只需考虑始末运动状态,无需关注运动过程中的细节变化(如从斜面到平面的运动情况的变化),显得更为简捷.本题也为我们提供了一种测定动摩擦因数的方法.厢所受阻力不变,对车厢的牵引力应增加[ ]A.1×103N B.2×103NC.4×103N D.条件不足,无法判断【分析】矿砂落入车厢后,受到车厢板摩擦力f的作用,使它做加速运动,经时间△t后矿砂的速度达到车厢的速度v=2m/s,这段时间内矿砂的位移因此选△t内落下的矿砂△m为研究对象,以将接角车箱板和达到速度v=2m/s两时刻为始末两状态时,动能增量由功与动能变化的关系得在这过程中,车厢板同时受到矿砂的反作用f′,其大小也为4×103N,方向与原运动方向相反,所以,为保持车厢的匀速运动需增加的牵引力为【答】C.【说明】常有人误认为矿砂落入车厢内,矿砂的位移就是车厢的位移s =v t,于是得车厢应增加的牵引力大小为这是不正确的,因为在矿砂将接触车厢板到两者以共同速度v=2m/s运动的过程中,车厢和矿砂做两种不同的运动,矿砂的速度小于车厢的速度,它们之间才存在着因相对滑动而出现的滑动摩擦力.也正是由于滑动摩擦力的存在,车厢所增加的牵引力做的功并没有完全转化为矿砂的动能,其中有一部分消耗在克服摩擦做功而转化为热能.!iedtxx(`stylebkzd', `1107P02.htm')【例4】一辆车通过一根跨过定滑轮的绳PQ提升井中质量为m为物体,如图a所示.绳的P端拴在车后的挂钩上,Q端拴在物体上.设绳的总长不变、绳的质量、定滑轮的质量和尺寸,滑轮上的摩擦都忽略不计.开始时,车在A点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H.提升时,车加速向左运动,沿水平方向从A经过B驶向C.设A到B 的距离也为H.车过B点时的速度为v B.求在车由A移到B的过程中,绳Q端的拉力对物体做的功.【分析】汽车从A到B把物体提升的过程中,物体只受到拉力和重力的作用,根据物体速度的变化和上升高度,由动能定理即得.【解】以物体为研究对象,开始时其动能E k1=0.随着车的加速拖动,重物上升,同时速度也不断增加.当车子运动到B点时,重物获得一定的上升速度v Q,这个速度也就是收绳的速度,它等于车速沿绳子方向的一个分量(图b),即于是重物的动能增为在这个提升过程中,重物受到绳中拉力T、重力mg.物体上升的高度和重力的功分别为于是由动能定理得即所以绳子拉力对物体做的功【说明】必须注意,速度分解跟力的分解一样,两个分速度的方向应该根据运动的实际效果确定.车子向左运动时,绳端(P)除了有沿绳子方向的运动趋势外(每一瞬间绳处于张紧的状态),还参予了绕O点的转动运动(绳与竖直方向间夹角不断变化),因此还应该有一个绕O点转动的速度,这个速度垂直于绳长方向.所以车子运动到B点时的速度分解图应如图6所示,由此得拉绳的速度V b1(即提升重物的速度v Q)与车速v B的关系为【例5】在平直公路上,汽车由静止开始作匀速运动,当速度达到v m后立即关闭发动机直到停止,v-t图像如图所示.设汽车的牵引力为F,摩擦力为f,全过程中牵引力做功W1,克服摩擦力做功W2,则[ ]A.F:f = 1:3 B.F:f = 4:1C.W1:W2= 1:1 D.W1:W2 = 1:3【分析】在t = 0~1s内,汽车在牵引力F和摩擦力f共同作用下作匀加速运动,设加速度为a1.由牛顿第二定律F-f = ma1.在t=l~4s内,汽车仅受摩擦力作用作匀减速滑行,设加速度为a2,则-f = ma2.由于两过程中加速度大小之比为在前、后两过程中,根据合力的动能定理可知,∴ W F=W f1+W f2=W f。
动能定理应用典型例题及解析

动能定理应用典型例题及解析
动能定理是经典力学中非常重要的一个定理,它描述了物体的动能与物体所受力的关系。
动能定理的数学表达式是:$K = \frac{1}{2}mv^2$,其中,$K$表示物体的动能,$m$表示物体的质量,$v$表示物体的速度。
下面是一个应用动能定理的典型例题及解析:
【例题】一个质量为 $m$ 的物体在 $t=0$ 时刻从高为 $h$ 的平台上自由落下,其速度在落地瞬间达到最大值 $v$。
假设空气阻力可以忽略不计,求物体与地面接触瞬间物体的动能。
【解析】由于物体自由落下,因此只受到重力的作用,根据牛顿第二定律,物体的加速度为 $g$,即 $a=g$。
根据匀加速直线运动的公式,可以得到物体从高为 $h$ 的平台上落到地面所需的时间为$t=\sqrt{\frac{2h}{g}}$,物体在落地瞬间的速度为$v=\sqrt{2gh}$。
根据动能定理,物体在落地瞬间的动能为:
$K = \frac{1}{2}mv^2 = \frac{1}{2}m(2gh) = mgh$
因此,物体与地面接触瞬间物体的动能为 $mgh$。
以上就是一个简单的应用动能定理的例题及解析。
动能定理是物理学中一个非常重要的定理,涉及到许多不同的物理问题,需要我们在学习时认真掌握并多做练习。
动能定理应用典型例题及解析

动能定理应用典型例题及解析
例题:一物体质量为2kg,速度为5m/s,撞向另一物体,两物体碰撞后,第一个物体反弹回来,速度为3m/s。
第二个物体
的质量为3kg,碰撞后向前运动的速度为多少?
解析:
首先,我们要明确动能定理的公式:
动能定理公式:$E_k=\frac{1}{2}mv^2$
动能定理的原理:物体所具有的动能的增量等于所受动力的功。
根据动能定理的公式,我们可以计算出碰撞前后两个物体的动能,然后通过它们在碰撞过程中的总动能守恒,来求解所需的速度。
1. 碰撞前,第一个物体的动能为:
$E_{k1}=\frac{1}{2}mv^2=\frac{1}{2} \times 2 \times 5^2=25
J$
2. 碰撞后,第一个物体的动能为:
$E'_{k1}=\frac{1}{2}mv'^2=\frac{1}{2} \times 2 \times 3^2=9 J$ 其中,$v'$表示第一个物体反弹后的速度。
3. 碰撞后,第二个物体的动能为:
$E_{k2}=\frac{1}{2}mv^2=\frac{1}{2} \times 3 \times v_f^2$ 其中,$v_f$表示第二个物体碰撞后向前运动的速度。
4. 动能守恒式:
$E_{k1}+E_{k2}=E'_{k1}+E'_{k2}$
代入数值,得到:
$25+\frac{1}{2} \times 3 \times v_f^2=9+\frac{1}{2} \times 3 \times v_f^2$
化简后得到$v_f=\frac{4}{3}m/s$。
因此,第二个物体碰撞后向前运动的速度为4/3m/s。
动能定理典型例题解析

动能定理典型例题解析动能定理是描述物体在运动过程中动能的变化情况的重要定律。
本文将通过解析几个典型的例题,深入探讨动能定理在物理学中的应用。
例题1:自由落体物体的动能变化假设一个质量为m的物体从高度h自由落下,忽略空气阻力。
求物体下落到地面时的动能变化。
解析:根据动能定理,动能的变化等于力做功的变化。
在自由下落的过程中,物体只受重力作用,而重力做的功等于质量乘以高度的变化。
因此,动能的变化为:$$ \\Delta KE = -mgh $$若取下落物体的位置高度为0,则最后动能为0,从高度h下降为0的过程中其动能减少为-mgh。
例题2:弹簧振子的动能变化考虑一个质量为m的弹簧振子,振子静止时拉伸了一段距离x。
当振子释放后振动,达到最大位移A时,求振子的动能变化。
解析:弹簧振子具有弹簧势能和动能。
在静止时,只有势能;在振动的过程中,势能和动能不断转化。
根据动能定理,动能变化等于合外力做的功。
在弹簧振动中,合外力主要是弹簧力,且弹簧力与位移成正比。
因此,动能的变化为:$$ \\Delta KE = -\\frac{1}{2} kA^2 $$振子从最大位移A回到平衡位置时动能增加1/2kA^2。
在振子做简谐振动的周期内,动能一直在势能和动能之间不断变化。
总结通过以上两个例题的分析,可以看出动能定理在不同情况下的应用。
动能定理是描述物体运动过程中动能变化的基本定律,它揭示了能量在运动过程中的转化与守恒规律,为分析力学中的问题提供了重要的工具和思路。
在物理学教学和研究中,动能定理都起到了不可替代的作用。
希望通过本文的讨论,读者能更深入理解动能定理的重要性和应用,为进一步学习物理学奠定基础。
以上是本文对动能定理中的典型例题进行详细解析的内容。
愿读者在学习物理学的道路上能够有所收获。
请保持好奇心,发现世界的美好!。
动能定理典型例题附答案

1、如图所示,质量m=0.5kg 的小球从距地面高H=5m 处自由下落,到达地面恰能沿凹陷于地面的半圆形槽壁运动,半圆槽半径R=0.4m.小球到达槽最低点时的速率为10m /s ,并继续滑槽壁运动直至槽左端边缘飞出,竖直上升,落下后恰好又沿槽壁运动直至从槽右端边缘飞出,竖直上升、落下,如此反复几次.设摩擦力大小恒定不变:(1)求小球第一次离槽上升的高度h.(2)小球最多能飞出槽外几次? (g 取10m /s 2)2、如图所示,斜面倾角为θ,滑块质量为m ,滑块与斜面的动摩擦因数为μ,从距挡板为s 0的位置以v 0的速度沿斜面向上滑行.设重力沿斜面的分力大于滑动摩擦力,且每次与P 碰撞前后的速度大小保持不变,斜面足够长.求滑块从开始运动到最后停止滑行的总路程s.3、有一个竖直放置的圆形轨道,半径为R ,由左右两部分组成。
如图所示,右半部分AEB 是光滑的,左半部分BFA是粗糙的.现在最低点A 给一个质量为m 的小球一个水平向右的初速度,使小球沿轨道恰好运动到最高点B ,小球在B 点又能沿BFA 轨道回到点A ,到达A 点时对轨道的压力为4mg1、求小球在A 点的速度v 02、求小球由BFA 回到A 点克服阻力做的功4、如图所示,质量为m 的小球用长为L 的轻质细线悬于O 点,与O 点处于同一水平线上的P 点处有一根光滑的细钉,已知OP = L /2,在A 点给小球一个水平向左的初速度v 0,发现小球恰能到达跟P 点在同一竖直线上的最高点B .则:(1)小球到达B 点时的速率?(2)若不计空气阻力,则初速度v 0为多少?(3)若初速度v 0=3gL ,则在小球从A 到B 的过程中克服空气阻力做了多少功?5、如图所示,倾角θ=37°的斜面底端B 平滑连接着半径r =0.40m的竖直光滑圆轨道。
质量m =0.50kg 的小物块,从距地面h =2.7m 处沿斜面由静止开始下滑,小物块与斜面间的动摩擦因数μ=0.25,求:(sin 37°=0.6,cos 37°=0.8,g =10m/s 2)(1)物块滑到斜面底端B 时的速度大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动能定理题型及例题讲解
动能定理是物理学中的一个重要定理,描述了物体的动能与力的关系。
根据动能定理,物体的动能的变化等于作用在物体上的合外力的做功。
动能定理题型主要包括以下几类:
1. 给定物体的质量、速度和加速度,求物体所受合外力的大小和方向。
例题:一个质量为2kg的物体以速度10m/s向东运动,在2s内速度变为20m/s向东,求物体所受合外力的大小和方向。
2. 给定物体的质量、速度和作用在物体上的合外力,求物体的加速度。
例题:一个质量为3kg的物体受到作用力为15N的力,使其速度从5m/s增加到15m/s,求物体的加速度。
3. 给定物体的质量、速度和加速度,求物体在某段距离上所做的功。
例题:一个质量为4kg的物体以速度10m/s向东运动,在2s内速度变为20m/s向东,求物体在这段距离上所做的功。
4. 给定物体的质量、速度和作用在物体上的合外力,求物体在某段距离上所做的功。
例题:一个质量为5kg的物体受到作用力为20N的力,使其速度从8m/s增加到20m/s,求物体在这段距离上所做的功。
解题时,首先需要根据题目给出的条件,利用动能定理的公式进行计算。
公式为:物体的动能变化等于作用在物体上的合外力的做功,即ΔKE = W。
然后,根据题目所求的量,进行代入计算。
注意单位的转换,确保计算结果的准确性。
最后,根据题目所给的信息,判断物体所受合外力的方向以及物体在某段距离上所做的功的正负。
通过练习动能定理题型,可以帮助学生巩固对动能定理的理解,并提高解题能力。
在解题过程中,需要灵活运用物理学的知识,结合实际情况进行分析和计算,培养学生的物理思维能力和解决问题的能力。