电磁场与电磁波试题答案
《电磁场与电磁波》期末复习题及答案

《电磁场与电磁波》期末复习题及答案一,单项选择题1.电磁波的极化特性由__B ___决定。
A.磁场强度B.电场强度C.电场强度和磁场强度D. 矢量磁位2.下述关于介质中静电场的基本方程不正确的是__D ___A. ρ??=DB. 0??=EC. 0C d ?=? E lD.0S q d ε?=? E S 3. 一半径为a 的圆环(环面法向矢量z = n e )通过电流I ,则圆环中心处的磁感应强度B 为__D ___A. 02r Ia μe B.02I a φμe C. 02z Ia μe D. 02z I a μπe4. 下列关于电力线的描述正确的是__D ___A.是表示电子在电场中运动的轨迹B. 只能表示E 的方向,不能表示E 的大小C. 曲线上各点E 的量值是恒定的D. 既能表示E 的方向,又能表示E 的大小5. 0??=B 说明__A ___A. 磁场是无旋场B. 磁场是无散场C. 空间不存在电流D. 以上都不是6. 下列关于交变电磁场描述正确的是__C ___A. 电场和磁场振幅相同,方向不同B. 电场和磁场振幅不同,方向相同C. 电场和磁场处处正交D. 电场和磁场振幅相同,方向也相同7.关于时变电磁场的叙述中,不正确的是:(D )A. 电场是有旋场B. 电场和磁场相互激发C.电荷可以激发电场D. 磁场是有源场8. 以下关于在导电媒质中传播的电磁波的叙述中,正确的是__B ___A. 不再是平面波B. 电场和磁场不同相C.振幅不变D. 以TE波形式传播9. 两个载流线圈之间存在互感,对互感没有影响的是_C ____A. 线圈的尺寸B. 两个线圈的相对位置C. 线圈上的电流D. 空间介质10. 用镜像法求解静电场边值问题时,判断镜像电荷的选取是否正确的根据__C ___A. 镜像电荷是否对称B.电位?所满足的方程是否改变C. 边界条件是否保持不变D. 同时选择B和C11. 区域V全部全部用非导电媒质填充,当此区域中的电磁场能量减少时,一定是_A ___A. 能量流出了区域B.能量在区域中被损耗C.电磁场做了功D. 同时选择A和C12. 磁感应强度为(32)x y z B axe y z e ze =+-+ , 试确定常数a 的值。
《电磁场与电磁波》课后习题解答(全)

(3)
【习题3.4】
解:(1)在区域中,传导电流密度为0,即J=0
将 表示为复数形式,有
由复数形式的麦克斯韦方程,可得电场的复数形式
所以,电场的瞬时值形式为
(2) 处的表面电流密度
(3) 处的表面电荷密度
(4) 处的位移电流密度
【习题3.5】
解:传导电流密度 (A/ )
位移电流密度
【习题3.6】
(2)内导体表面的电流密度
(3)
所以,在 中的位移电流
【习题2.13】
解:(1)将 表示为复数形式:
则由时谐形式的麦克斯韦方程可得:
而磁场的瞬时表达式为
(2)z=0处导体表面的电流密度为
z=d处导体表面的电流密度为
【习题2.14】
已知正弦电磁场的电场瞬时值为
式中
试求:(1)电场的复矢量;
(2)磁场的复矢量和瞬时值。
由安培环路定律: ,按照上图所示线路积分有
等式左边
等号右边为闭合回路穿过的总电流
所以
写成矢量式为
将 代入得
【习题3.18】
解:当 时, ,
当 时, ,
这表明 和 是理想导电壁得表面,不存在电场的切向分量 和磁场的法向分量 。
在 表面,法线
所以
在 表面,法线
所以
【习题3.19】
证明:考虑极化后的麦克斯韦第一方程
(1)
和 (2)
若采用库仑规范,即 (3)
对(1)式两边取散度,有
将(2)、(3)式代入,得
故电流连续性也是满足的。
【习题4.3】解:
【习题4.4】
证明:因为 即
故 满足连续性方程。
另外, 满足洛仑兹条件。
《电磁场与电磁波》必考复习题(2013年)有答案

为体积 V 内总的损耗功率。
(E H) dS ——单位时间内通过曲面 S
S
进入体积 V 的电磁能量。
物理意义: 在单位时间内, 通过曲面 S 进入体积 V 的电磁能量等于体积 V 中 所增加的电磁场能量与损耗的能量之和——能量守恒! 。 8.什么是波的极化?说明极化分类及判断规则。 答:波的极化:在电磁波传播空间给定点处,电场强度矢量的端点随时间变化的 轨迹, 或者说是在空间给定点上电场强度矢量的取向随时间变化的特性分为线极 化、圆极化、椭圆极化三种。 判断规则:根据两正交分量的振幅或/和两者初相角的相对大小来确定,如 果 y x 0或 ,则为线极化;若 E ym E xm ,且 y x / 2 , 则是圆极化波;其它情况是椭圆极化波。 9.分别定性说明均匀平面波在理想介质中、导电媒质中的传播特性。 答:理想介质中的均匀平面波的传播特点: 电场、磁场与传播方向之间相互垂直,是横电磁波(TEM 波) ; 无衰减,电场与磁场的振幅不变; 波阻抗为实数,电场与磁场同相位; 电磁波的相速与频率无关,无色散; 电场能量密度等于磁场能量密度,能量的传输速度等于相速。 导电媒质中均匀平面波的传播特点: ●电场强度 E 、 磁场强度 H 与波的传播方向相互垂直, 是横电磁波 (TEM 波) ; ●媒质的本征阻抗为复数,电场与磁场相位不同,磁场滞后于电场 角; ●在波的传播过程中,电场与磁场的振幅呈指数衰减; ●电磁波的相速不仅与媒质参数有关,而且与频率有关 (有色散) ; ●平均磁场能量密度大于平均电场能量密度。 10.简要说明行波、驻波、行驻波之间的区别。 答:行波的振幅不变,其驻波比为 1;驻波的振幅最小值是零,其驻波比为无穷
《电磁场与电磁波》试题答案(卷二)

一、问答题:(共30分) 1、(6分)说明什么是标量、常标量、标量场。
标量:只有大小特征,没有方向特征。
常标量:标量的大小与空间坐标无关。
标量场:由标量的空间分布构成。
2、(5分)矢量场的通量与散度、环量与旋度间有何关系?散度是通过包围单位体积闭合面的通量。
旋度是矢量沿包围单位面积的闭合曲线的最大环量。
3、(8分)比较矩形波导与圆波导中的电磁波特性。
从波形,截止波长、工作模式、主模、功率与损耗等方面比较。
4、(6分)什么是平面波、行波、驻波?驻波是如何形成的?平面波:等相位面为平面。
行波:无限大理想介质中传输的平面波。
驻波:平面波在空间没有移动,只是在原处上下波动。
5、(5分)电流元的远区场的特性如何?从波形、E 与H 的关系、距离、极化、方向性等方面说明。
二、分析计算:(共41分) 1、(6分)已知矢量z y x a e e e A 3-+=,z x e e B -=3,且矢量A 与B 互相垂直,求常数a 。
3,0,0,=∴==•∴⊥a a -3B A B A 即2、(6分)使用散度定理求矢量222z y e xy e A z y +=对一个中心在原点的单位立方体表面的积分。
()0)2(4)4(425.05.02225.05.0222====+=+=•∇=•⎰⎰⎰⎰⎰⎰⎰⎰⎰--dy dy z y dydz z y dydz zx y y x dv z y xy Adv ds A vv3、(8分)内外半径分别为a 、b 的球形电容器,内外导体间填充媒质为空气,求该球形电容器的电容。
()abU q C abdr E U r q E qq l b a r r ln 2ln22πε==περ==πε=-+⎰和分别为设内外导体表面带电量4、(8分)已知空气中无源电磁波的电场强度()m V y t e E x /12.31036.9cos 15.08-⨯= ,求平均坡印廷矢量。
2214.314.38/12015.015.012015.0/)14.31036.9cos(12015.0m W e S e e E e e H m V y t e H y avyj x yj z z π==π-=-⨯⋅π÷-=--5、(13分)理想媒质(0,,9===σμμεεo o )中平面电磁波的电场为()z j y x e e j e E π---=20410(1)确定该电磁波的极化方式。
《电磁场与电磁波》试题12及答案

《电磁场与电磁波》试题(12)1. (12分)无限长同轴电缆内导体半径为R 1,外导体半径为R 2,内外导体之间的电压为U 。
现固定外导体半径R 2,调整内导体半径R 1,问:(1)内外导体半径的比值R 1 /R 2为多少时内导体表面上的电场强度最小,和最小电场强度E min =?;(2)此时电缆的特性阻抗Z 0为多少?(设该同轴电缆中介质的参数为μ0和ε0)。
2. (12分)距半径为R 的导体球心d (d >R )处有一点电荷q 。
问需要在球上加多少电荷Q 才可以使作用于q 上的力为零,此时球面电位ϕ为多少?3. (10分)半径为R 的薄金属圆柱壳等分为二,互相绝缘又紧密靠近,如图所示。
上半圆柱壳的电位为(+U ),下半圆柱壳的电位为(-U )。
圆柱壳内充满介电常数为ε的均匀电介质,且无空间电荷分布。
写出阴影区内静电场的边值问题。
题3图 题4图4. (10分)图示装置用以测量磁性材料的特性,上下为两个几何形状对称,相对磁导率为μr1的U 形磁轭,被测样品的相对磁导率为μr2(磁轭和样品的磁导率均远大于μ0),磁化线圈的匝数为N ,电流为I ,尺寸如图所示。
求:(1)样品中的磁场强度H ;(2)样品中的磁化强度M 与线圈电流I 间的关系。
5. (12分)面积为A 的平行圆形极板电容器,板间距离为d ,外加低频电压,板间介质的电导率为γ,介电常数为ε。
求电源提供的复功率S 。
6. (12分)一内阻为50Ω的信号源,通过50cm 长的无损耗传输线向负载馈电,传输线上电磁波的波长为100cm ,传输线终端负载Z L =50+j100Ω,信号源的电压t U u m S ωcos =,传输线单位长度的电感L 0=0.25μH ,单位长度的电容C 0=100pF 。
求:(1)电源的频率;(2)传输线始端和终端的电压、电流相量; (3)负载与传输线上电压最大值处间的距离;(4)传输线上的驻波比。
7. (10分)均匀平面波从理想介质(μr =1,εr =16)垂直入射到理想导体表面上,测得理想介质中电场强度最大值为200V/m ,第一个最大电场强度值与理想导体表面的距离为1m ,求:(1)该平面波的频率和相位常数;(2)试写出介质中电场和磁场的瞬时表达式。
电磁场与电磁波试题含答案

。
作用下,完全脱离分子的内部束缚力时,我们把这种
二、简述题
(每小题 5 分,共 20 分)
11.简述恒定磁场的性质,并写出其两个基本方程。 12.试写出在理想导体表面电位所满足的边界条件。 13.试简述静电平衡状态下带电导体的性质。 14.什么是色散?色散将对信号产生什么影响?
三、计算题
(每小题 10 分,共 30 分)
2 3 z 15.标量场 x, y, z x y e ,在点 P1,1,0 处
7
(1)求出其梯度的大小 (2)求梯度的方向 16.矢量
ˆ x 2e ˆy Ae
ˆ x 3e ˆ z ,求 B , e
(1) A B (2) A B 17.矢量场 A 的表达式为
(1) 写出电场强度和磁场强度的复数表达式
1 S av E0 H 0 cos( e m ) 2 (2) 证明其坡印廷矢量的平均值为:
五、综合题 (10 分)
21.设沿 z 方向传播的均匀平面电磁波垂直入射到理想导体,如图 2 所示,该电磁波电场
ˆ x E0 e jz Ee 只有 x 分量即
4.在理想导体的表面, 的切向分量等于零。
A 5.矢量场 (r ) 穿过闭合曲面 S 的通量的表达式为:
6.电磁波从一种媒质入射到理想 表面时,电磁波将发生全反射。 。 7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于 8.如果两个不等于零的矢量的
。
等于零,则此两个矢量必然相互垂直。 关系。 函
区域 1 图2
区域 2
《电磁场与电磁波》试题(4)
一、填空题(每小题 1 分,共 10 分) ˆ ˆ ˆ A 1.矢量 e x e y e z 的大小为
电磁场与电磁波复习题(含答案)
电磁场与电磁波复习题(含答案)电磁场与电磁波复习题⼀、填空题1、⽮量的通量物理含义是⽮量穿过曲⾯的⽮量线总数,散度的物理意义⽮量场中任意⼀点处通量对体积的变化率。
散度与通量的关系是⽮量场中任意⼀点处通量对体积的变化率。
2、散度在直⾓坐标系的表达式 z A y A x A z yxA A ??++=??=ρρdiv ;散度在圆柱坐标系下的表达;3、⽮量函数的环量定义⽮量A 沿空间有向闭合曲线C 的线积分,旋度的定义过点P 作⼀微⼩曲⾯S,它的边界曲线记为L,⾯的法线⽅与曲线绕向成右⼿螺旋法则。
当S 点P 时,存在极限环量密度。
⼆者的关系 ndS dC e A ρρ?=rot ;旋度的物理意义点P 的旋度的⼤⼩是该点环量密度的最⼤值;点P 的旋度的⽅向是该点最⼤环量密度的⽅向。
4.⽮量的旋度在直⾓坐标系下的表达式。
5、梯度的物理意义标量场的梯度是⼀个⽮量,是空间坐标点的函数。
梯度的⼤⼩为该点标量函数?的最⼤变化率,即该点最⼤⽅向导数;梯度的⽅向为该点最⼤⽅向导数的⽅向,即与等值线(⾯)相垂直的⽅向,它指向函数的增加⽅向等值⾯、⽅向导数与梯度的关系是梯度的⼤⼩为该点标量函数的最⼤变化率,即该点最⼤⽅向导数;梯度的⽅向为该点最⼤⽅向导数的⽅向,即与等值线(⾯)相垂直的⽅向,它指向函数的增加⽅向.; 6、⽤⽅向余弦cos ,cos ,cos αβγ写出直⾓坐标系中单位⽮量l e r 的表达式;7、直⾓坐标系下⽅向导数u的数学表达式是,梯度的表达式8、亥姆霍兹定理的表述在有限区域内,⽮量场由它的散度、旋度及边界条件唯⼀地确定,说明的问题是⽮量场的散度应满⾜的关系及旋度应满⾜的关系决定了⽮量场的基本性质。
9、麦克斯韦⽅程组的积分形式分别为 0()s l s s l sD dS Q BE dl dS t B dS D H dl J dS t ?=??=-??=?=+r r r r r r r r g r r r r r g ????其物理描述分别为10、麦克斯韦⽅程组的微分形式分别为 020E /E /t B 0B //t B c J E ρεε??=??=-=??=+??r r r r r r r其物理意义分别为11、时谐场是激励源按照单⼀频率随时间作正弦变化时所激发的也随时间按照正弦变化的场,⼀般采⽤时谐场来分析时变电磁场的⼀般规律,是因为任何时变周期函数都可以⽤正弦函数表⽰的傅⾥叶级数来表⽰;在线性条件下,可以使⽤叠加原理。
《电磁场与电磁波》试题8及答案
6.两相距很近的等值异性的点电荷称为。
7.恒定磁场是场,故磁感应强度沿任一闭合曲面的积分等于零。
8.如果两个不等于零的矢量的叉积等于零,则此两个矢量必然相互。
9.对平面电磁波而言,其电场、磁场和波的三者符合右手螺旋关系。
10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是连续的场,因此,它可用磁矢位函数的来表示。
(2)求出媒质1中电磁波的相速。
解
(1)媒质2电磁波的波阻抗
(2)媒质1中电磁波的相速
(2)矢量场 的在点 处的大小
解:
(1)
(2)矢量场 的在点 处的大小为:
(3分)
(2分)
四、应用题(每小题10分,共30分)
18.自由空间中一点电荷电量为2C,位于 处,设观察点位于 处,求
(1)观察点处的电位
(2)观察点处的电场强度。
解:
(1)任意点 处的电位
(3分)
将观察点代入
(2分)
(2)
源点位置矢量
设上极板的电荷密度为 ,则
(1分)
极板上的电荷密度与电场法向分量的关系为
(2分)
由于平行板间为均匀电场,故
(2分)
(2)由:
(3分)
将上面电场代入得:
(2分)
五、综合题(10分)
21.平面电磁波在 的媒质1中沿 方向传播,在 处垂直入射到 的媒质2中, 。极化为 方向,如图3所示。
(1)求出媒质2电磁波的波阻抗;
(1)电容器间电场强度;
(2)电容器极板间电压。
五、综合题(10分)
21.平面电磁波在 的媒质1中沿 方向传播,在 处垂直入射到 的媒质2中, 。
极化为 方向,如图3所示。
电磁场与电磁波课后习题及答案七章习题解答 (2)
解将电场、磁场写成复数形式
平均坡印廷矢量为
故穿过r=1000m的半球壳的平均功率为
式中dS为球坐标的面积元矢量,对积分有贡献是
故
7.21在自由空间中, 。试求 平面内的边长为30mm和15mm长方形面积的总功率。
解将已知的电场写成复数形式
得与 相伴的磁场
故平均坡印廷矢量为
解自由空间的相位常数
,故
在理想电介质中,相位常数 ,故
电介质中的波速则为
7.10在自由空间中,某均匀平面波的波长为12cm;当该平面波进入到某无损耗媒质时,波长变为8cm,且已知此时的 , 。求该均匀平面波的频率以及无损耗媒质的 、 。
解自由空间中,波的相速 ,故波的频率为
在无损耗媒质中,波的相速为
对于z>0的区域,求 。
解
可见,在f=1.5MHz的频率该导体可视为良导体。故
分界面上的透射系数为
入射波电场的复数表示式可写为
则z>0区域的透射波电场的复数形式为
与之相伴的磁场为
则
7.14一圆极化波垂直入射到一介质板上,入射波电场为
求反射波与透射波的电场,它们的极化情况又如何?
解设媒质1为空气,其本征阻抗为 ;介质板的本征阻抗为 。故分界面上的反射系数和透射系数分别为
则穿过z=0平面上 的长方形面积的总功率为
7.22均匀平面波的电场强度为
(1)运用麦克斯韦方程求出H:(2)若该波在z=0处迁到一理想导体平面,求出z<0区域内的E和H;(3)求理想导体上的电流密度。
解(1)将已知的电场写成复数形式
由 得
写成瞬时值表示式
(2)均匀平面波垂直入射到理想导体平面上会产生全反射,反射波的电场为
电磁场与电磁波_章六习题答案
显然 。
解:⑴ , , ,
入射波电场的复数表示式和瞬时值表示式分别为
入射波磁场的复数表示式和瞬时值表示式分别为
⑵反射波电场的复数表示式和瞬时值表示式分别为
反射波磁场的复数表示式和瞬时值表示式分别为
⑶空气中合成波电场的复数表示式和瞬时值表示式分别为
空气中合成波磁场的复数表示式和瞬时值表示式分别为
⑷由 ,且离导体最近,得到 ,即z=-3/2m
⑴反射系数、透射系数、驻波比。
⑵入射波、反射波和透射波的电场和磁场、
⑶入射波、反射波和透射波的平均功率密度。
解:设入射波为 方向上的线极化波,沿 方向传播。
1波阻抗为
,
反射系数、透射系数和驻波比分别为
, ,
2入射波、反射波和透射波的电场和磁场:
, ,
,
∴ ,
,
,
3入射功率、反射功率和透射波的平均功率密度为
第6章平面电磁波
点评:
1、6-8题坡印廷矢量单位, ,这里原答案有误!
2、6-13题第四问应为右旋圆极化波。
3、6-19题第三问和第四问,原答案错误。这里在介质一中,z<0。
4、矢量书写一定引起重视,和标量书写要分清,结果若是确切的数值则单位一定要标清楚。
5、马上期末考试,那些对参考答案借鉴过多的同学务必抓紧时间把每道题目弄懂!本章是考试重点,大家务必弄懂每道题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 《电磁场与电磁波》试题1 一、填空题(每小题1分,共10分) 1.在均匀各向同性线性媒质中,设媒质的导磁率为,则磁感应强度B和磁场H满足的方程为:。 2.设线性各向同性的均匀媒质中,02称为方程。 3.时变电磁场中,数学表达式HES称为。 4.在理想导体的表面,的切向分量等于零。
5.矢量场)(rA穿过闭合曲面S的通量的表达式为:。 6.电磁波从一种媒质入射到理想表面时,电磁波将发生全反射。 7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于。 8.如果两个不等于零的矢量的等于零,则此两个矢量必然相互垂直。 9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合关系。 10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用函数的旋度来表示。 二、简述题(每小题5分,共20分)
11.已知麦克斯韦第二方程为tBE,试说明其物理意义,并写出方程的积分形式。 12.试简述唯一性定理,并说明其意义。 13.什么是群速?试写出群速与相速之间的关系式。 14.写出位移电流的表达式,它的提出有何意义? 三、计算题(每小题10分,共30分) 15.按要求完成下列题目
(1)判断矢量函数yxexzeyBˆˆ2是否是某区域的磁通量密度? (2)如果是,求相应的电流分布。
16.矢量zyxeeeAˆ3ˆˆ2,zyxeeeBˆˆ3ˆ5,求 (1)BA (2)BA 17.在无源的自由空间中,电场强度复矢量的表达式为 jkzyxeEeEeE004ˆ3ˆ
(1) 试写出其时间表达式; (2) 说明电磁波的传播方向; 四、应用题(每小题10分,共30分)
18.均匀带电导体球,半径为a,带电量为Q。试求 (1) 球内任一点的电场强度 (2) 球外任一点的电位移矢量。 2
19.设无限长直导线与矩形回路共面,(如图1所示), (1)判断通过矩形回路中的磁感应强度的方向(在图中标出); (2)设矩形回路的法向为穿出纸面,求通过矩形回路中的磁通量。
20.如图2所示的导体槽,底部保持电位为0U,其余两面电位为零, (1) 写出电位满足的方程; (2) 求槽内的电位分布
五、综合题(10 分) 21.设沿z方向传播的均匀平面电磁波垂直入射到理想导体,如图3所示,该电磁波电场只有x分量即 zjxeEeE
0ˆ
(1) 求出入射波磁场表达式; (2) 画出区域1中反射波电、磁场的方向。
区域1 区域2 图3
无穷远 图2
图1 3
《电磁场与电磁波》试题2 一、填空题(每小题1分,共10分)
1.在均匀各向同性线性媒质中,设媒质的介电常数为,则电位移矢量D和电场E满足的方程为:。 2.设线性各向同性的均匀媒质中电位为,媒质的介电常数为,电荷体密度为V,电位所满足的方程为。 3.时变电磁场中,坡印廷矢量的数学表达式为。 4.在理想导体的表面,电场强度的分量等于零。
5.表达式SdrAS称为矢量场)(rA穿过闭合曲面S的。 6.电磁波从一种媒质入射到理想导体表面时,电磁波将发生。 7.静电场是保守场,故电场强度沿任一条闭合路径的积分等于。 8.如果两个不等于零的矢量的点积等于零,则此两个矢量必然相互。 9.对横电磁波而言,在波的传播方向上电场、磁场分量为。 10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是场,因此,它可用磁矢位函数的旋度来表示。 二、 简述题(每小题5分,共20分) 11.试简述磁通连续性原理,并写出其数学表达式。 12.简述亥姆霍兹定理,并说明其意义。
13.已知麦克斯韦第二方程为SdtBldESC,试说明其物理意义,并写出方程的微分形式。 14.什么是电磁波的极化?极化分为哪三种? 三、计算题(每小题10分,共30分)
15.矢量函数zxeyzeyxAˆˆ2,试求 (1)A (2)A 16.矢量zxeeAˆ2ˆ2,yxeeBˆˆ,求 (1)BA (2)求出两矢量的夹角
17.方程222),,(zyxzyxu给出一球族,求 (1)求该标量场的梯度;
(2)求出通过点0,2,1处的单位法向矢量。 四、应用题(每小题10分,共30分)
18.放在坐标原点的点电荷在空间任一点r处产生的电场强度表达式为
rerqEˆ420 4
(1)求出电力线方程;(2)画出电力线。 19.设点电荷位于金属直角劈上方,如图1所示,求 (1) 画出镜像电荷所在的位置
(2) 直角劈内任意一点),,(zyx处的电位表达式
20.设时变电磁场的电场强度和磁场强度分别为: )cos(0etEE)cos(0mtHH
(1) 写出电场强度和磁场强度的复数表达式
(2) 证明其坡印廷矢量的平均值为:)cos(2100meavHES 五、综合题(10分)
21.设沿z方向传播的均匀平面电磁波垂直入射到理想导体,如图2所示,该电磁波电场只有x分量即 zjxeEeE
0ˆ
(3) 求出反射波电场的表达式; (4) 求出区域1 媒质的波阻抗。
《电磁场与电磁波》试题3 一、填空题(每小题 1 分,共 10 分)
1.静电场中,在给定的边界条件下,拉普拉斯方程或方程的解是唯一的,这一定理称为唯一性定理。 2.在自由空间中电磁波的传播速度为m/s。 3.磁感应强度沿任一曲面S的积分称为穿过曲面S的。 4.麦克斯韦方程是经典理论的核心。 5.在无源区域中,变化的电场产生磁场,变化的磁场产生,使电磁场以波的形式传播出去,即电磁波。 6.在导电媒质中,电磁波的传播速度随频率变化的现象称为。
区域1 区域2 图2
图1 5
7.电磁场在两种不同媒质分界面上满足的方程称为。 8.两个相互靠近、又相互绝缘的任意形状的可以构成电容器。 9.电介质中的束缚电荷在外加电场作用下,完全脱离分子的内部束缚力时,我们把这种现象称为。 10.所谓分离变量法,就是将一个函数表示成几个单变量函数乘积的方法。 二、简述题(每小题 5分,共 20 分)
11.已知麦克斯韦第一方程为tDJH,试说明其物理意义,并写出方程的积分形式。 12.试简述什么是均匀平面波。 13.试简述静电场的性质,并写出静电场的两个基本方程。 14.试写出泊松方程的表达式,并说明其意义。 三、计算题(每小题10 分,共30分)
15.用球坐标表示的场225ˆreEr,求 (1) 在直角坐标中点(-3,4,5)处的E; (2) 在直角坐标中点(-3,4,5)处的xE分量 16.矢量函数zyxexeyexAˆˆˆ2,试求 (1)A (2)若在xy平面上有一边长为2的正方形,且正方形的中心在坐标原点,试求该矢量A穿过此正方形的通量。
17.已知某二维标量场22),(yxyxu,求 (1)标量函数的梯度;
(2)求出通过点0,1处梯度的大小。 四、应用题(每小题 10分,共30分)
18.在无源的自由空间中,电场强度复矢量的表达式为 jkzxeEeE03ˆ (3) 试写出其时间表达式; (4) 判断其属于什么极化。
19.两点电荷C41q,位于x轴上4x处,C42q位于轴上4y处,求空间点4,0,0处的 (1) 电位; (2) 求出该点处的电场强度矢量。
20.如图1所示的二维区域,上部保持电位为0U,其余三面电位为零, (1) 写出电位满足的方程和电位函数的边界条件 (2) 求槽内的电位分布 6
五、综合题(10 分) 21.设沿z方向传播的均匀平面电磁波垂直入射到理想导体,如图2所示,该电磁波为沿x方向的线极化,设电场强度幅度为0E,传播常数为。 (5) 试写出均匀平面电磁波入射波电场的表达式; (6) 求出反射系数。
《电磁场与电磁波》试题(4) 一、填空题(每小题 1 分,共 10 分) 1.矢量zyxeeeAˆˆˆ的大小为。 2.由相对于观察者静止的,且其电量不随时间变化的电荷所产生的电场称为。 3.若电磁波的电场强度矢量的方向随时间变化所描绘的轨迹是直线,则波称为。 4.从矢量场的整体而言,无散场的不能处处为零。 5.在无源区域中,变化的电场产生磁场,变化的磁场产生电场,使电磁场以的形式传播出去,即电磁波。 6.随时间变化的电磁场称为场。 7.从场角度来讲,电流是电流密度矢量场的。
8.一个微小电流环,设其半径为a、电流为I,则磁偶极矩矢量的大小为。 9.电介质中的束缚电荷在外加作用下,完全脱离分子的内部束缚力时,我们把这种现象称为击穿。 10.法拉第电磁感应定律的微分形式为。 二、简述题(每小题 5分,共 20 分) 11.简述恒定磁场的性质,并写出其两个基本方程。 12.试写出在理想导体表面电位所满足的边界条件。 13.试简述静电平衡状态下带电导体的性质。 14.什么是色散?色散将对信号产生什么影响?
区域1 区域2 图2
图1 b a