大学物理1期末复习题
大学物理(1)总复习

k a b k(k 1,2,3,...;k只能取整数) a
计算缺级的基本公式。
[B ]
16
补:若用衍射光栅准确测定一单色可见光的波长,在下列各种 光栅常数的光栅中选用哪一种最好?
(A) 5.0×10-1 mm. (B) 1.0×10-1 mm.
(C) 1.0×10-2 mm. (D) 1.0×10-3 mm.
(A) 1.5J (C) 4.5J
(B) 3J (D) -1.5J
F
d
r
1m(v 2
2 2
v12 ),
v
v
2 x
v
2 y
vx
dx dt
5,v y
dy dt
t,
v12
29,v
2 2
41
[B ]
4
4、对质点组有以下几种说法:
(1)质点组总动量的改变与内力无关。
(2)质点组总动能的改变与内力无关。
(3)质点组机械能的改变与保守内力无关。
v 0, t 3
[B ]
r xi yj
v
d
r
d
x
i
d
y
j
dt dt dt
v
v
2 x
v
2 y
d
x
2
d
y
2
dt dt
2
2. 质量为2kg的质点,受力F = t i(SI)的作用,t =0 时刻该质点以v =6i m·s-1的速度通过坐标原点,则该 质点任意时刻的位置矢量为
25
20.一绝热容器被隔板分成两半,一半是真空,另一半是理想 气体。若把隔板抽出,气体将进行自由膨胀,达到平衡后
(A)温度不变,熵增加. (B)温度升高,熵增加. (C)温度降低,熵增加. (D)温度不变,熵不变.
大学物理(一)题库1(黄时中)

⼤学物理(⼀)题库1(黄时中)⼤学物理(1)期末复习题库第⼀篇⼒学⼀、判断题1. 平均速度和瞬时速度通常都是相等的。
()2. 若⼒⽮量F 沿任何闭合路径的积分0=??Ll d F ,则该⼒为保守⼒() 3. 任意刚体的形状、⼤⼩和质量确定,则该刚体的转动惯量⼤⼩确定。
()4. 在狭义相对论时空观下,⼀个惯性系中同时(异地)发⽣的两件事,在另⼀个与它相对运动的惯性系中则⼀定不同时发⽣。
()5. 物体做曲线运动时,速度⽅向⼀定在运动轨道的切线⽅向,法向分速度恒为零,因此其法向加速度也⼀定为零。
()6. 在太阳系中,⾏星相对于太阳的的⾓动量不守恒。
()7. 因为 r r ?=?,所以速率等于速度的⼤⼩。
()8. 物体的运动⽅向与合外⼒⽅向不⼀定相同。
()。
9. 若系统外⼒所作的功0≠ext W ,只要0int,=+non ext W W ,则系统机械能保持不变。
()10. 在⾼速飞⾏的光⼦⽕箭中的观测者观测到地球上的钟变慢了,则地球上的观测者可认为光⼦⽕箭中的钟变快了。
()11. 假设光⼦在某惯性系中的速度为c ,那么存在这样的⼀个惯性系,光⼦在这个惯性系中的速度不等于c 。
()。
12. ⼀物体可以具有恒定的速率但仍有变化的速度()13. 物体运动的⽅向⼀定与它所受的合外⼒⽅向相同()14. 物体运动的速率不变,所受合外⼒⼀定为零()15. 相对论的运动时钟变慢和长度收缩效应是⼀种普遍的时空属性,与过程的具体性质⽆关()16. 质点作圆周运动的加速度不⼀定指向圆⼼。
()17. 有⼀竖直悬挂的均匀直棒,可绕位于悬挂点并垂直于棒的⼀端的⽔平轴⽆摩擦转动,原静⽌在平衡位置。
当⼀质量为m 的⼩球⽔平飞来,并与棒的下端垂直地相撞,则在⽔平⽅向上该系统的动量守恒。
()18. ⼀物体可具有机械能⽽⽆动量,但不可能具有动量⽽⽆机械能。
()19. 内⼒不改变质点系的总动量,它也不改变质点的总动能。
()20. 在某个惯性系中同时发⽣在相同地点的两个事件,对于相对该系有相对运动的其它惯性系⼀定是不同时的。
大学物理一综合复习资料

《大学物理(一)》综合复习资料一.选择题1. 某人骑自行车以速率V 向正西方行驶,遇到由北向南刮的风(设风速大小也为V ),则他感到风是从(A )东北方向吹来.(B )东南方向吹来.(C )西北方向吹来.(D )西南方向吹来.[ ]2.一质点在平面上运动,已知质点位置矢量的表示式为j bt i at r22+=(其中a 、b 为常量)则该质点作(A )匀速直线运动.(B )变速直线运动.(C )抛物线运动.(D )一般曲线运动.[ ]3.一轻绳绕在有水平轮的定滑轮上,滑轮质量为m ,绳下端挂一物体.物体所受重力为P,滑轮的角加速度为β.若将物体去掉而以与P相等的力直接向下拉绳子,滑轮的角加速度β将(A )不变.(B )变小.(C )变大.(D )无法判断. 4. 质点系的内力可以改变(A )系统的总质量.(B )系统的总动量.(C )系统的总动能.(D )系统的总动量. 5.一弹簧振子作简谐振动,当位移为振幅的一半时,其动能为总能量的 (A )1/2 .(B )1/4.(C )2/1.(D) 3/4.(E )2/3.[ ]6.一弹簧振子作简谐振动,总能量为E 1,如果简谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量E 1变为(A )4/1E .(B ) 2/1E .(C )12E .(D )14E .[ ]7.在波长为λ的驻波中,两个相邻波腹之间的距离为 (A )λ/4. (B )λ/2.(C ) 3λ/4 . (D )λ.[ ]8.一平面简谐波沿x 轴负方向传播.已知x =b 处质点的振动方程为)cos(0φω+=t y ,波速为u ,则波动方程为:(A ))cos(0ϕω+++=u x b t A y .(B )⎥⎦⎤⎢⎣⎡++-=0)(cos ϕωu x b t A y . (C )⎥⎦⎤⎢⎣⎡+-+=0)(cos ϕωu b x t A y .(D )⎥⎦⎤⎢⎣⎡+-+=0)(cos ϕωu x b t A y . [ ]9.物体在恒力F 作用下作直线运动,在时间1t ∆内速度由0增加到v ,在时间2t ∆内速度由v 增加到2v ,设F 在1t ∆内作的功是W 1,冲量是I l ,F 在2t ∆内作的功是W 2,冲量是I 2,那么(A ) W 2=W 1,I 2 >I 1.(B ) W 2=W 1 , I 2<I 1.(C ) W 2>W 1,I 2= I 1.(D) W 2<W l ,I 2=I 1 .[ ]10.如图所示,有一个小块物体,置于一个光滑的水平桌面上,有一绳其一端连结此物体,另一端穿过桌面中心的小孔,该物体原以角速度ω在距孔为R 的圆周上转动,今将绳从小孔缓慢往下拉.则物体(A )动能不变,动量改变.(B )动量不变,动能改变.(C )角动量不变,动量不变. (D )角动量改变,动量改变. (E )角动量不变,动能、动量都改变.[ ]二.填空题1.一个质点的运动方程为26t t x -=(SI ),则在t 由0至4s 的时间间隔内,质点的位移大小为 ,在t 由0到4s 的时间间用内质点走过的路程为 .2. 如图所示,Ox 轴沿水平方向,Oy 轴竖直向下,在0=t 时刻将质量为m 的质点由a 处静止释放,让它自由下落,则在任意时刻t ,质点所受的对点O 的力矩M= ;在任意时刻t ,质点对原点O 的角动量L= .3.二质点的质量分别为1m 、2m . 当它们之间的距离由a 缩短到b 时,万有引力所做的功为 .4.动量定理的内容是 ,其数学表达式可写 .动量守恒的条件是 .5.一质点作半径为0.l m 的圆周运动,其运动方程为:2214t +=πθ (SI ),则其切向加速度为t a = .6.质量为M 的物体A 静止于水平面上,它与平面之间的滑动摩擦系数为μ,另一质量为m 的小球B 以沿水平方向向右的速度v与物体A 发生完全非弹性碰撞.则碰后它们在水平方向滑过的距离L = .7.简谐振动的振动曲线如图所示,相应的以余弦函数表示的振动方程为 .8.一质点同时参与了两个同方向的简谐振动,它们的振动方程分别为)4/cos(05.01πω+=t x (SI ),)12/19cos(05.01πω+=t x (SI ).其合振运动的振动方程为x = .9.一弹簧振子系统具有1.OJ 的振动能量,0.10m 的振幅和1.0m /s 的最大速率,则弹簧的倔强系数为 ,振子的振动频率为 .10.质量为m 的物体和一个轻弹簧组成弹簧振子,其固有振动周期为T .当它作振幅为A 的自由简谐振动时,其振动能量E=. 三.计算题1.质量为M =1.5kg 的物体,用一根长为 l =1.25 m 的细绳悬挂在天花板上.今有一质量为m =10g 的子弹以0v =500m/s 的水平速度射穿物体,刚穿出物体时子弹的速度大小m/s 300 v ,设穿透时间极短.求:(l )子弹刚穿出时绳中张力的大小; (2)子弹在穿透过程中所受的冲量.2.某弹簧不遵守胡克定律,若施力F ,则相应伸长为x ,力与伸长的关系为F =52.8 x 十38.4x 2(SI )求:(1)将弹簧从定长1x =0.5m 拉伸到定长2x =1.00m 外力所需做的功.(2)将弹簧横放在水平光滑桌面上,一端固定,另一端系一个质量为2.17kg 的物体,然后将弹簧拉伸到一定长2x = 1.00m,再将物体有静止释放,求当弹簧回到1x =0.5m 时,物体的速率. (3)此弹簧的弹力是保守力吗?3.一简谐波沿OX 轴正方向传播,波长λ=4m ,周期T =4s ,已知x =0处质点的振动曲线如图所示,(l )写出x =0处质点的振动方程; (2)写出波的表达式;(3)画出t =1s 时刻的波形曲线.Ml答案一.选择题1.(C )2.(B ) 3.(C ) 4.(C )5.(D ) 6.(D ) 7.(B ) 8.(C ) 9.(C) 10.(E) 二.填空题1. 8m 2分 10m 2分2. k mbg2分 k mbgt2分3. )11(21ba m Gm -- 4. 质点系所受合外力的冲量等于质点系(系统)动量的增量. 1分i i i i t t v m v m dt F 2121∑∑⎰-= 2分系统所受合外力等于零. 1分 5. 0.12m/s6. μ+g m M mv 22)(2)(7. )2/cos(04.0ππ-t(其中振相1分,周期1分,初相2分) 8. )12/23cos(05.0π+ωt (SI ) 或)12/cos(05.0πω-t (SI ) 9. 2×102N /m; 1.6Hz.10. 222/2T mA π.三.计算题1.解:(1)穿透时间极短,故可认为物体未离开平衡位置.因此作用于子弹、物体系统上的外力均在铅直方向,故系统在水平方向上动量守恒.令子弹穿出物体的水平速度为v ',有: v M mv mv '+=0 2分s m M v v m v /3/4/)(0,=-= 1分N l Mv Mg T 1.17/2=+= 2分 (2)方向为正方向)设00(v mv mv t f-=∆ 3分 s N •-=2 2分 负号表示冲量方向与0v方向相反. 2分2.解:(l )外力做的功 ⎰•=r d F W ⎰+=21)4.388.52(2x xdx x x J 31= 4分(2)设弹力为F ', =221mv W x d F x x -=•'⎰21 3m W v /2-= 1分s m v /34.5= l 分(3)此力为保守力,因为其功的值仅与弹簧的始末态有关. 3分3.解:(1))3/21cos(10220π+π⨯=-t y (SI ) 3分(2))3/)4/4/(2cos[1022π+-π⨯=-x t y (SI ) 3分(3) t =1s 时,波形方程: )6/521cos[1022π-π⨯=-x y (SI ) 2分故有如图的曲线. 4分(注:可编辑下载,若有不当之处,请指正,谢谢!)。
大学物理期末复习题及答案

j i r )()(t y t x +=大学物理期末复习题力学局部一、填空题:,则质点的速度为,加速度为。
2.一质点作直线运动,其运动方程为221)s m 1()s m 2(m 2t t x --⋅-⋅+=,则从0=t 到s 4=t 时间间隔内质点的位移大小质点的路程。
3.设质点沿x 轴作直线运动,加速度t a )s m 2(3-⋅=,在0=t 时刻,质点的位置坐标0=x 且00=v ,则在时刻t ,质点的速度,和位置。
4.一物体在外力作用下由静止沿直线开场运动。
第一阶段中速度从零增至v,第二阶段中速度从v 增至2v ,在这两个阶段中外力做功之比为。
5.一质点作斜上抛运动〔忽略空气阻力〕。
质点在运动过程中,切向加速度是,法向加速度是 ,合加速度是。
〔填变化的或不变的〕6.质量m =40 kg 的箱子放在卡车的车厢底板上,箱子与底板之间的静摩擦系数为s =,滑动摩擦系数为k =,试分别写出在以下情况下,作用在箱子上的摩擦力的大小和方向.(1)卡车以a = 2 m/s 2的加速度行驶,f =_________,方向_________.(2)卡车以a = -5 m/s 2的加速度急刹车,f =________,方向________.7.有一单摆,在小球摆动过程中,小球的动量;小球与地球组成的系统机械能;小球对细绳悬点的角动量〔不计空气阻力〕.〔填守恒或不守恒〕二、单项选择题:1.以下说法中哪一个是正确的〔〕〔A 〕加速度恒定不变时,质点运动方向也不变 〔B 〕平均速率等于平均速度的大小 〔C 〕当物体的速度为零时,其加速度必为零 〔D 〕质点作曲线运动时,质点速度大小的变化产生切向加速度,速度方向的变化产生法向加速度。
2.质点沿Ox 轴运动方程是m 5)s m 4()s m 1(122+⋅-⋅=--t t x ,则前s 3内它的〔〕 〔A 〕位移和路程都是m 3 〔B 〕位移和路程都是-m 3 〔C 〕位移为-m 3,路程为m 3〔D 〕位移为-m 3,路程为m 53. 以下哪一种说法是正确的〔〕〔A 〕运动物体加速度越大,速度越快〔B 〕作直线运动的物体,加速度越来越小,速度也越来越小〔C 〕切向加速度为正值时,质点运动加快〔D 〕法向加速度越大,质点运动的法向速度变化越快4.一质点在平面上运动,质点的位置矢量的表示式为j i r 22bt at +=〔其中a 、b 为常量〕,则该质点作〔〕〔A 〕匀速直线运动 〔B 〕变速直线运动〔C 〕抛物线运动〔D 〕一般曲线运动5. 用细绳系一小球,使之在竖直平面内作圆周运动,当小球运动到最高点时,它〔 〕 〔A 〕将受到重力,绳的拉力和向心力的作用〔B 〕将受到重力,绳的拉力和离心力的作用〔C 〕绳子的拉力可能为零〔D 〕小球可能处于受力平衡状态6.功的概念有以下几种说法〔1〕保守力作功时,系统内相应的势能增加〔2〕质点运动经一闭合路径,保守力对质点作的功为零〔3〕作用力和反作用力大小相等,方向相反,所以两者作功的代数和必为零以上论述中,哪些是正确的〔〕〔A 〕〔1〕〔2〕〔B 〕〔2〕〔3〕〔C 〕只有〔2〕〔D 〕只有〔3〕7.质量为m 的宇宙飞船返回地球时,将发动机关闭,可以认为它仅在地球引力场中运动,当它从与地球中心距离为1R 下降到距离地球中心2R 时,它的动能的增量为〔〕〔A 〕2E R mm G ⋅〔B 〕2121E R R R R m Gm -〔C 〕2121E R R R m Gm -〔D 〕222121E R R R R m Gm --8.以下说法中哪个或哪些是正确的〔〕〔1〕作用在定轴转动刚体上的力越大,刚体转动的角加速度应越大。
大学物理A1期末复习1(质点、质点组力学)

v0
θ
0270一船以速度 v 0 在静水湖中匀速直线航行,
一乘客以初速 v1 在船中竖直向上抛出一石子,
则站在岸上的观察者看石子运动的轨迹是_____. 取抛出点为原点,x轴沿 v 0 方向,y轴沿竖直向上 方向,石子的轨迹方程是_______. v石岸 =v石船 +v 船岸 =v1 v0 斜抛
x1 ln k (t1 t0 ) k t x0
1 x1 t ln k x0
质量为0.25kg的质点,受力 F ti ( SI ) 的作用,式中t为时间。t=0时该质点以 v 2 j ( SI )
的速度通过坐标原点,则该质点任意时刻的位 置矢量=?
F ma ti
F T m1a T m2 g m2a
F m2 g a m1 m2
m2 T ( F m1 g ) m1 m2
F
T
m1 m2
(注意加速度的正方向应一致)
0351一圆锥摆摆长为l、摆锤质量为m,在水平 面上作匀速圆周运动,摆线与铅直线夹角,则 (1) 摆线的张力T=_______; (2) 摆锤的速率v=_____. l 2 (分解T) T sin m v / l sin
v kx ,
dv dv dx dv 2 v a k x, dt dx dx dt
F Ma Mk x
2
该质点从x=x0点运动到x=x1处所经历的时间 △t=___________。 x1 t1 dx dx v kx , x kdt , dt x0 t0
M g R g G 2 ,通过求导,得 2 2% R g R
0624分别画出物体A、B、C、D的受力图: (1) 被水平力F压在墙上保持静止的两个木块 A和B; (2) 被水平力F拉着在水平桌面上一起做匀速 运动的木块C和D. (各接触面均粗糙)
大一物理学期末试题及答案

大一物理学期末试题及答案一、选择题(每题2分,共20分)1. 光速在真空中是多少?A. 299,792,458米/秒B. 299,792,458千米/秒C. 299,792,458厘米/秒D. 299,792,458毫米/秒答案:A2. 牛顿第二定律的公式是什么?A. F = maB. F = mvC. F = m/aD. F = v/a答案:A3. 以下哪个不是电磁波的类型?A. 无线电波B. 可见光C. X射线D. 声波答案:D...20. 根据热力学第二定律,以下哪个陈述是正确的?A. 能量守恒B. 熵总是增加C. 热量可以自发地从低温物体传递到高温物体D. 所有自发过程都是可逆的答案:B二、填空题(每空1分,共10分)1. 根据牛顿第一定律,如果一个物体不受外力作用,它将保持_______状态或_______状态。
答案:静止;匀速直线运动2. 电磁波的频率与波长的关系是_______。
答案:成反比...10. 绝对零度是_______开尔文。
答案:0三、简答题(每题5分,共20分)1. 简述牛顿第三定律的内容。
答案:牛顿第三定律,又称作用与反作用定律,指出对于任何两个相互作用的物体,它们之间的作用力和反作用力总是大小相等、方向相反。
2. 什么是相对论?答案:相对论是爱因斯坦提出的物理理论,主要包括狭义相对论和广义相对论。
狭义相对论基于光速不变原理和相对性原理,广义相对论则是引力作为时空弯曲的几何效应的理论。
...四、计算题(每题10分,共30分)1. 一个质量为2千克的物体,受到一个恒定的力F=10牛顿。
如果这个力作用了4秒,求物体的最终速度。
答案:根据牛顿第二定律,F = ma,可以求得加速度a = F/m = 10 N / 2 kg = 5 m/s²。
根据速度与加速度的关系,v = at,物体的最终速度为v = 5 m/s² × 4 s = 20 m/s。
大学物理第一学期期末试题及答案
大学物理1期末试题及答案一、选择题(共21分) 1. (本题3分)质点沿半径为R 的圆周运动,运动学方程为232t θ=+ (SI) ,则t 时刻质点的角加速度和法向加速度大小分别为A. 4 rad/s 2 和4R m/s 2 ;B. 4 rad/s 2和16Rt 2 m/s 2 ;C. 4t rad/s 2和16Rt 2 m/s 2 ;D. 4t rad/s 2和4Rt 2 m/s 2 . [ ] 2. (本题3分)已知一个闭合的高斯面所包围的体积内电荷代数和0q ∑= ,则可肯定 A. 高斯面上各点电场强度均为零;B. 穿过高斯面上任意一个小面元的电场强度通量均为零;C. 穿过闭合高斯面的电场强度通量等于零;D. 说明静电场的电场线是闭合曲线. [ ] 3. (本题3分)两个同心均匀带电球面,半径分别为a R 和b R ( a b R R <), 所带电荷分别为a q 和b q .设某点与球心相距r ,当a b R r R <<时,取无限远处为零电势,该点的电势为 A. 014a b q q r ε+⋅π; B. 014a bq q rε-⋅π; C.014a b b q q r R ε⎛⎫⋅+ ⎪⎝⎭π; D. 014a b a b q q R R ε⎛⎫⋅+ ⎪⎝⎭π. [ ] 4. (本题3分)如图所示,流出纸面的电流为2I ,流进纸面的电流为 I ,该两电流均为恒定电流.H 为该两电流在空间各处所产生的磁场的磁场强度.d LH l ⋅⎰ 表示 H 沿图中所示闭合曲线L 的线积分,此曲线在中间相交,其正方向由箭头所示.下列各式中正确的是 A. d LH l I ⋅=⎰; B.d 3LH l I ⋅=⎰;C.d LH l I ⋅=-⎰; D.d 30LH l μI ⋅=⎰. [ ]5. (本题3分)如图所示,在竖直放置的长直导线AB 附近,有一水平放置的有限长直导线CD ,C 端到长直导线的距离为a ,CD 长为b ,若AB 中通以电流I 1,CD 中通以电流I 2,则导线CD 所受安培力的大小为:I 2 abC I 1(A) b I xI F 2102πμ=; (B) b I b a I F 210)(+=πμ; (C) a b a I I F +ln2=210πμ; (D) ab II F ln 2210πμ=. [ ] 6. (本题3分)面积为S 和2S 的两圆线圈1、2如图放置,通有相同的电流I .线圈1的电流所产生的通过线圈2的磁通用21Φ表示,线圈2的电流所产生的通过线圈1的磁通用12Φ表示,则21Φ和12Φ的大小关系为A. 12Φ;B. 2112ΦΦ>;C. 2112ΦΦ=;D. 211212ΦΦ=. [ ]7. (本题3分)(1) 对某观察者来说,发生在某惯性系中同一地点、同一时刻的两个事件,对于相对该惯性系作匀速直线运动的其它惯性系中的观察者来说,它们是否同时发生?(2) 在某惯性系中发生于同一时刻、不同地点的两个事件,它们在其它惯性系中是否同时发生?关于上述两个问题的正确答案是A. (1)同时,(2)不同时;B.(1)不同时,(2)同时;C. (1)同时,(2)同时;D. (1)不同时,(2)不同时. [ ] 二、填空题(共21分,每题3分) 8.(本题3分)质量 2 kg m = 的质点在力12F t i = (SI)的作用下,从静止出发沿x 轴正向作直线运动,前三秒内该力所作的功为_______________. 9(本题3分)长为l 、质量为M 的匀质杆可绕通过杆一端O 的水平光滑固定轴转动,转动惯量为213Ml ,开始时杆竖直下垂,如图所示.有一质量为m 的子弹以水平速度0v 射入杆上A 点,并嵌在杆中,23lOA =,则子弹射入后瞬间杆的角速度 =____________________. 10(本题3分)长为L 的直导线上均匀地分布着线电荷密度为λ的电荷,在导线的延长线上与导线一端相距 a 处的P 点的电势的大小为___________________.11(本题3分)长直电缆由一个圆柱导体和一共轴圆筒状导体组成,两导体中有等值反向均匀电流I 通过,其间充满磁导率为μ的均匀磁介质.介质中离中心轴距离为r 的某点处的磁场强度大小 ,磁感强度的大小 . 12(本题3分)一平面线圈由半径为0.2 m 的1/4圆弧和相互垂直的二直线组成,通以电流 2 A ,把它放在磁感强度为0.5 T 的均匀磁场中,线圈平面与磁场垂直时(如图),圆弧AC 段所受的磁力______________N ;线圈所受的磁力矩___________ Nm 。
大学物理1期末考试复习试卷原题与答案
⼤学物理1期末考试复习试卷原题与答案⼤学物理1期末考试复习,试卷原题与答案⼒学8.A质量为m的⼩球,⽤轻绳AB、BC连接,如图,其中AB⽔平.剪断绳AB 前后的瞬间,绳BC中的张⼒⽐T : T′=____________________.9.⼀圆锥摆摆长为l、摆锤质量为m,在⽔平⾯上作匀速圆周运动,摆线与铅直线夹⾓θ,则(1) 摆线的张⼒T=_____________________;(2) 摆锤的速率v=_____________________.12.⼀光滑的内表⾯半径为10 cm的半球形碗,以匀⾓速度ω绕其对称OC 旋转.已知放在碗内表⾯上的⼀个⼩球P相对于碗静⽌,其位置⾼于碗底4cm,则由此可推知碗旋转的⾓速度约为(A) 10 rad/s.(B) 13 rad/s.(C) 17 rad/s (D) 18 rad/s.[]13.质量为m的⼩球,放在光滑的⽊板和光滑的墙壁之间,并保持平衡,如图所⽰.设⽊板和墙壁之间的夹⾓为α,当α逐渐增⼤时,⼩球对⽊板的压⼒将(A) 增加(B) 减少.(C) 不变.(D) 先是增加,后⼜减⼩.压⼒增减的分界⾓为α=45°.[ ]15.m m⼀圆盘正绕垂直于盘⾯的⽔平光滑固定轴O转动,如图射来两个质量相同,速度⼤⼩相同,⽅向相反并在⼀条直线上的⼦弹,⼦弹射⼊圆盘并且留在盘内,则⼦弹射⼊后的瞬间,圆盘的⾓速度ω(A) 增⼤.(B) 不变.(C) 减⼩.(D) 不能确定定.()16.如图所⽰,A、B为两个相同的绕着轻绳的定滑轮.A滑轮挂⼀质量为M的物体,B滑轮受拉⼒F,⽽且F=Mg.设A、B两滑轮的⾓加速度分别为βA和βB,不计滑轮轴的摩擦,则有(A) βA=βB.(B) βA>βB.(C) βA<βB.(D) 开始时βA=βB,以后βA<βB.18. 有两个半径相同,质量相等的细圆环A和B.A环的质量分布均匀,B环的质量分布不均匀.它们对通过环⼼并与环⾯垂直的轴的转动惯量分别为J A和J B,则(A) J A>J B(B) J A<J B.(C) J A =J B.(D) 不能确定J A、J B哪个⼤.22. ⼀⼈坐在转椅上,双⼿各持⼀哑铃,哑铃与转轴的距离各为0.6 m.先让⼈体以5 rad/s的⾓速度随转椅旋转.此后,⼈将哑铃拉回使与转轴距离为0.2 m.⼈体和转椅对轴的转动惯量为5 kg·m2,并视为不变.每⼀哑铃的质量为5 kg可视为质点.哑铃被拉回后,⼈体的⾓速度ω=__________________________.28.质量m=1.1 kg的匀质圆盘,可以绕通过其中⼼且垂直盘⾯的⽔平光滑固定轴转动,对轴的转动惯量J=221mr(r为盘的半径).圆盘边缘绕有绳⼦,绳⼦下端挂⼀质量m1=1.0 kg的物体,如图所⽰.起初在圆盘上加⼀恒⼒矩使物体以速率v0=0.6 m/s匀速上升,如撤去所加⼒矩,问经历多少时间圆盘开始作反⽅向转动.静电学1. 如图所⽰,两个同⼼球壳.内球壳半径为R 1,均匀带有电荷Q ;外球壳半径为R 2,壳的厚度忽略,原先不带电,但与地相连接.设地为电势零点,则在两球之间、距离球⼼为r 的P 点处电场强度的⼤⼩与电势分别为:(A) E =204r Q επ,U =r Q04επ.(B) E =204r Q επ,U =???? ??-πr R Q11410ε.(C) E =204r Qεπ,U =??-π20114R r Q ε.(D) E =0,U =204R Qεπ.[]10.E图中曲线表⽰⼀种轴对称性静电场的场强⼤⼩E 的分布,r 表⽰离对称轴的距离,这是由____________________________________产⽣的电场.14. ⼀半径为R 的均匀带电球⾯,其电荷⾯密度为σ.若规定⽆穷远处为电势零点,则该球⾯上的电势U =____________________.17.Lq如图所⽰,真空中⼀长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的⼀端距离为d 的P 点的电场强度.28. 关于⾼斯定理,下列说法中哪⼀个是正确的? (A) ⾼斯⾯内不包围⾃由电荷,则⾯上各点电位移⽮量D 为零.(B)⾼斯⾯上处处D为零,则⾯内必不存在⾃由电荷.(C)⾼斯⾯的D通量仅与⾯内⾃由电荷有关.(D) 以上说法都不正确. ( )q⼀空⼼导体球壳,其内、外半径分别为R 1和R 2,带电荷q ,如图所⽰.当球壳中⼼处再放⼀电荷为q 的点电荷时,则导体球壳的电势(设⽆穷远处为电势零点)为(A) 104R qεπ. (B) 204R qεπ. (C) 102R q επ . (D)20R q ε2π.[]35.如图所⽰,将⼀负电荷从⽆穷远处移到⼀个不带电的导体附近,则导体内的电场强度______________,导体的电势______________.(填增⼤、不变、减⼩)36. ⼀⾦属球壳的内、外半径分别为R1和R2,带电荷为Q.在球⼼处有⼀电荷为q的点电荷,则球壳内表⾯上的电荷⾯密度σ =______________.38. 地球表⾯附近的电场强度为100 N/C.如果把地球看作半径为6.4×105m的导体球,则地球表⾯的电荷Q=___________________.(2/CmN1094129=πε)40. 地球表⾯附近的电场强度约为100 N /C,⽅向垂直地⾯向下,假设地球上的电荷都均匀分布在地表⾯上,则地⾯带_____电,电荷⾯密度σ=__________.(真空介电常量ε 0 = 8.85×10-12 C2/(N·m2) )41. 12σda厚度为d的“⽆限⼤”均匀带电导体板两表⾯单位⾯积上电荷之和为σ.试求图⽰离左板⾯距离为a的⼀点与离右板⾯距离为b的⼀点之间的电势差.42. 半径分别为 1.0 cm与 2.0 cm的两个球形导体,各带电荷 1.0×10-8 C,两球相距很远.若⽤细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(22/CmN109419=πε)43.半径分别为R1和R2 (R2 > R1 )的两个同⼼导体薄球壳,分别带有电荷Q1和Q2,今将内球壳⽤细导线与远处半径为r的导体球相联,如图所⽰, 导体球原来不带电,试求相联后导体球所带电荷q.稳恒磁场习题1. 有⼀个圆形回路1及⼀个正⽅形回路2,圆直径和正⽅形的边长相等,⼆者中通有⼤⼩相等的电流,它们在各⾃中⼼产⽣的磁感强度的⼤⼩之⽐B 1 / B 2为(A) 0.90. (B) 1.00. (C)1.11.(D)1.22.[]2.边长为l 的正⽅形线圈中通有电流I ,此线圈在A 点(见图)产⽣的磁感强度B 为 (A) l I π420µ. (B) lI π220µ.(C)lI π02µ. (D) 以上均不对.[]3.通有电流I 的⽆限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的⼤⼩B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O .(C) B Q > B O > B P . (D) B O > B Q > B P . ( )4.⽆限长载流空⼼圆柱导体的内外半径分别为a、b,电流在导体截⾯上均匀分布,则空间各处的B的⼤⼩与场点到圆柱中⼼轴线的距离r的关系定性地如图所⽰.正确的图是[]11. ⼀质点带有电荷q =8.0×10-10 C,以速度v =3.0×105 m·s-1在半径为R =6.00×10-3 m的圆周上,作匀速圆周运动.该带电质点在轨道中⼼所产⽣的磁感强度B =__________________,该带电质点轨道运动的磁矩p m=___________________.(µ0 =4π×10-7 H·m-1) 12. 载有⼀定电流的圆线圈在周围空间产⽣的磁场与圆线圈半径R有关,当圆线圈半径增⼤时,(1)圆线圈中⼼点(即圆⼼)的磁场__________________________(2.)圆线圈轴线上各点的磁场__________________________________________________________________________________________________.14. ⼀条⽆限长直导线载有10 A的电流.在离它0.5 m远的地⽅它产⽣的磁感强度B为______________________.⼀条长直载流导线,在离它1 cm处产⽣的磁感强度是10-4T,它所载的电流为__________________________.两根长直导线通有电流I,图⽰有三种环路;在每种情况下,??lB等于:____________________________________(对环路a).___________________________________(对环路b).____________________________________(对环路c).16.设氢原⼦基态的电⼦轨道半径为a0,求由于电⼦的轨道运动(如图)在原⼦核处(圆⼼处)产⽣的磁感强度的⼤⼩和⽅向.19.⼀根半径为R的长直导线载有电流I,作⼀宽为R、长为l的假想平⾯S,如图所⽰。
大学物理(一)期末考试真题
大学物理(一)期末考试真题一、大学物理期末选择题复习1.一个质点在做圆周运动时,则有( )(A) 切向加速度一定改变,法向加速度也改变(B) 切向加速度可能不变,法向加速度一定改变(C) 切向加速度可能不变,法向加速度不变(D) 切向加速度一定改变,法向加速度不变答案B2.将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( )(A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 答案A3.在图(a)和(b)中各有一半径相同的圆形回路L 1 、L 2 ,圆周内有电流I 1 、I 2 ,其分布相同,且均在真空中,但在(b)图中L 2 回路外有电流I 3 ,P 1 、P 2 为两圆形回路上的对应点,则( )(A ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B = (B ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B = (C ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B ≠ (D ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B ≠ 答案C4. 如图所示,质量为m 的物体用平行于斜面的细线连结并置于光滑的斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为( )(A )sin g θ (B )cos g θ (C )tan g θ (D )cot g θ答案 D5. 对功的概念有以下几种说法:(1)保守力作正功时,系统内相应的势能增加;(2)质点运动经一闭合路径,保守力对质点作的功为零;(3)作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零。
下列对上述说法判断正确的是( )(A )(1)、(2)是正确的 (B )(2)、(3)是正确的(C )只有(2)是正确的 (D )只有(3)是正确的答案 C6. 有两个力作用在一个有固定转轴的刚体上:(1)这两个力都平行于轴作用时,它们对轴的合力距一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力距可能是零;(3)当这两个力的合力为零时,它们对轴的合力距也一定是零;(4)当这两个力对轴的合力距为零时,它们的合力也一定为零。
大学物理期末考试试题
大学物理期末考试试题一、选择题(每题2分,共20分)1. 根据牛顿第二定律,若物体的质量不变,作用力增大时,其加速度将如何变化?A. 保持不变B. 减小C. 增大D. 先增大后减小2. 波长为λ的单色光在折射率为n的介质中传播,其波长将如何变化?A. 保持不变B. 增大C. 减小D. 无法确定3. 理想气体状态方程为PV=nRT,其中P、V、n、R和T分别代表什么?A. 压力、体积、摩尔数、气体常数、温度B. 功率、速度、质量、电阻、时间C. 动量、体积、质量、力常数、温度D. 以上都不是4. 根据能量守恒定律,一个物体在没有外力作用下,其总能量将如何变化?A. 保持不变B. 增大C. 减小D. 先增大后减小5. 电磁波的频率与波长的关系是什么?A. 频率与波长成正比B. 频率与波长成反比C. 频率与波长无关D. 频率与波长成二次方关系6. 根据热力学第一定律,系统与外界交换热量时,其内能的变化与什么有关?A. 只与系统做功有关B. 只与系统吸收的热量有关C. 与系统做功和吸收的热量都有关D. 与系统做功和放出的热量都有关7. 什么是相对论中的时间膨胀效应?A. 运动的物体质量会增加B. 运动的物体长度会缩短C. 运动的物体时间会变慢D. 运动的物体温度会升高8. 什么是麦克斯韦方程组?A. 描述电磁场与电荷和电流关系的四个基本方程B. 描述物体运动的四个基本方程C. 描述热力学过程的四个基本方程D. 描述量子态的四个基本方程9. 什么是光电效应?A. 光照射到金属表面时,金属会释放电子的现象B. 电子在金属表面受到光的照射而加速运动的现象C. 光通过介质时,介质的折射率发生变化的现象D. 光通过介质时,介质的温度发生变化的现象10. 什么是量子力学的不确定性原理?A. 粒子的位置和动量不能同时准确测量B. 粒子的速度和加速度不能同时准确测量C. 粒子的能量和时间不能同时准确测量D. 粒子的电荷和质量不能同时准确测量二、简答题(每题10分,共30分)11. 简述牛顿第三定律的内容及其在日常生活中的应用实例。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理1期末复习题(力学部分)第一章重点:质点运动求导法和积分法,圆周运动角量和线量。
第二章重点:牛顿第二运动定律的应用(变形积分) 第三章重点:动量守恒定律和机械能守恒定律 第四章重点:刚体定轴转动定律和角动量守恒定律1.一质点沿半径为0.1=R m 的圆周作逆时针方向的圆周运动,质点在0~t 这段时间内所经过的路程为422t tS ππ+=,式中S 以m 计,t 以s 计, 则在t 时刻质点的角速度为 22t ππ+rad/s , 角加速度为 2/2s rad π。
(求导法)2.质点沿x 轴作直线运动,其加速度t a 4=m/s 2,在0=t 时刻,00=v ,100=x m ,则该质点 的运动方程为=x 33210t x += 。
(积分法)3.一质点从静止出发绕半径R 的圆周作匀变速圆周运动,角加速度为β,则该质点走完半周所经历的时间为_____βπ2_ _____。
(积分法)4.伽利略相对性原理表明对于不同的惯性系牛顿力学的规律都具有相同的形式。
5.一质量为kg m 2=的质点在力()()N t F x 32+=作用下由静止开始运动,若此力作用在质点上的时间为s 2,则该力在这s 2内冲量的大小=I 10 NS ;质点在第s 2末的速度大小为 5 m/s 。
(动量定理和变力做功)6.一质点在平面内运动, 其1c r =,2/c dt dv =;1c 、2c 为大于零的常数,则该质点作 匀加速圆周运动 。
7.一质点受力26x F -=的作用,式中x 以m 计,F 以N 计,则质点从0.1=x m 沿X 轴运动到x=2.0 m 时,该力对质点所作的功=A J 14-。
(变力做功) 8.一滑冰者开始自转时其动能为20021ωJ ,当她将手臂收回, 其转动惯量减少为3J ,则她此时自转的角速度=ω 03ω 。
(角动量守恒定律)9.一质量为m 半径为R 的滑轮,如图所示,用细绳绕在其边缘,绳的另一端系一个质量也为m 的物体。
设绳的长度不变,绳与滑轮间无相对滑动,且不计滑轮与轴间的摩擦力矩,则滑轮的角加速度Rg32 ;若用力mg F =拉绳的一端,则滑轮的角加速度为 Rg2 。
(转动定律)10.一刚体绕定轴转动,初角速度80=ωrad/s ,现在大小为8(N ·m )的恒力矩作用下,刚体转动的角速度在2秒时间内均匀减速到4=ωrad/s ,则刚体在此恒力矩的作用下的角加速度=α____2/2s rad -__ _____,刚体对此轴的转动惯量=J 4kg •m 2 。
(转动定律) 11.一质点在平面内运动,其运动方程为 22 ,441x t y t t =⎧⎨=++⎩,式中x 、y 以m 计,t 以秒s 计,求:(1) 以t 为变量,写出质点位置矢量的表达式; (2) 轨迹方程;(3) 计算在1~2s 这段时间内质点的位移、平均速度; (4) t 时刻的速度表达式;(5) 计算在1~2s 这段时间内质点的平均加速度;在11=t s 时刻的瞬时加速度。
解:(1) ())m (14422j t t i t r+++=;(2)2)1(+=x y ;(3)(m)162Δj r+=i ; (m/s)162j+=i v ;(4))m/s ()48(2j t i dtrd ++==v ;(5) )(m/s 82j =a ;)(m/s 82j =1a (求导法)12.摩托快艇以速率0v 行驶,它受到的摩擦阻力与速度平方成正比,设比例系数为常数k ,即可表示为2kv F -=。
设快艇的质量为m ,当快艇发动机关闭后,(1)求速度随时间的变化规律;(2)求路程随时间的变化规律。
解:(1)2dvkv m dt-=mF0201vt v k dv dt v m =-⎰⎰ 00mv v m kv t =+ (2)0000xtmv dx dt m kv t =+⎰⎰0(1)kv t mx Ln k m =+(牛二定律变形积分)13.如图所示,两个带理想弹簧缓冲器的小车A和B ,质量分别为1m 和2m ,B 不动,A 以速度0v与B 碰撞,如已知两车的缓冲弹簧的倔强系数分别为1k 和2k ,在不计摩擦的情况下,求两车相对静止时,其间的作用力为多大?(弹簧质量忽略而不计)。
解:系统动量守恒: 1012()m v m m v =+系统机械能守恒: 2222101211221111()2222m v m m v k x k x =+++两车相对静止时弹力相等: 1122F k x k x ==F=02121212121][v k k kk m m m m +⋅+ (动量守恒和机械能守恒定律)14.有一质量为1m 长为l 的均匀细棒,静止平放在光滑的水平桌面上,它可绕通过其中点O 且与桌面垂直的固定光滑轴转动。
另有一水平运动的质量为2m 的子弹以速度v 射入杆端,其方向与杆及轴正交,求碰撞后棒端所获得的角速度。
解:系统角动量守恒: 2J 2lm v ω=总2212()122m l lJ m =+总 2126 (3)v m m m lω=+ (角动量守恒定律)电磁学部分第五章重点:点电荷系(矢量和)、均匀带电体(积分法)、对称性电场(高斯定理,分段积分)的电场强度E 和电势V 的计算。
第七章重点:简单形状载流导线(矢量和)、对称性磁场(安培环路定理)的磁感应强度BBA 1m2mv1k2k的计算,安培力F 的计算。
第八章重点:感生电动势(法拉第电磁感应定律)和动生电动势i ε的计算,磁通量m φ的计算。
1.一半径为R 的半圆细环上均匀地分布电荷Q ,求环心处的电场强度.[分析] 在求环心处的电场强度时,不能将带电半圆环视作点电荷.现将其抽象为带电半圆弧线。
在弧线上取线dl ,其电荷dl RQdq π=,此电荷元可视为点电荷,它在点O 的电场强度2041rdqdE πε=,因圆环上的电荷对y 轴呈对称性分布,电场分布也是轴对称的,则有0=⎰LxdE,点O 的合电场强度⎰=LydEE ,统一积分变量可求得E .解: (1)建立坐标系;(2)取电荷元dl RQdq π= (3)写2041rdq dE πε=(4)分解到对称轴方向θπεcos 4120r dqdE y =(5)积分:dl R QRE LO πθπε⋅⋅-=⎰2cos 41 由几何关系θRd dl =,统一积分变量后,有2022220202c o s 4R Q d R Q E επθθεπππ-=-=⎰-,方向沿y 轴负方向.(积分法五步走)2.两条无限长平行直导线相距为0r ,均匀带有等量异号电荷,电荷线密度为.λ(1)求两导线构成的平面上任一点的电场强度(设该点到其中一线的垂直距离为x ); (2)求每一根导线 上单位长度导线受到另一根导线上电荷作用的电场力.[分析]在两导线构成的平面上任一点的电场强度为两导线单独在此所激发的电场rE 02πελ=的叠加.解: 设点P 在导线构成的平面上,+E 、-E 分别表示正、负带电导线在P 点的电场强度,则有i x r x E E E⎪⎪⎭⎫ ⎝⎛-+=+=-+00112πελ()i x r x r -=0002πελ(矢量和)3.设均强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.[分析] 方法1:由电场强度通量的定义,对半球面S 求积分,即⎰⋅=ΦSS S d E.方法2:作半径为R 的平面S '与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理∑⎰==⋅01q dS E Sε 这表明穿过闭合曲面的净通量为零,穿入平面S '的电场强度通量在数值上等于穿出半球面S 的电场强度通量. 因而⎰⎰'⋅-=⋅=ΦSS S d E S d E解: 由于闭合曲面内无电荷分布,根据高斯定理,有 ⎰⎰'⋅-=⋅=ΦSS S d E S d E依照约定取闭合曲面的外法线方向为面元dS 的方向,E R R E 22cos πππ=⋅⋅-=Φ (高斯定理和电通量定义式)4.在电荷体密度为ρ的均匀带电球体中,存在一个球形空腔,若将带电体球心O 指向球形空腔球心O '的矢量用a 表示(图8-17).试证明球形空腔中任一点的电场强度为a E3ερ= [分析] 本题带电体的电荷分布不满足球对称,其电场分布也不是球对称分布,因此无法直接利用高斯定理求电场的分布,但可用补偿法求解.挖去球形空腔的带电球体在电学上等效于一个完整的、电荷体密度为ρ的均匀带电球和一个电荷体密度为ρ-、球心在O '的带电小球体(半径等于空腔球体的半径).大小球体在空腔内P 点产生的电场强度分别为1E 、2E ,则P 点的电场强度为两者矢量和。
. 证: 带电球体内部一点的电场强度为 r E 03ερ=所以 1013r E ερ=;2023r E ερ-=()210213r r E E E-=+=ερ 根据几何关系a r r=-21,上式可改写为a E 03ερ= (等效法和高斯定理)5.一无限长、半径为R 的圆柱体上电荷均匀分布.圆柱体单位长度的电荷为λ,用高斯定理求圆柱体内距离为r 处的电场强度.[分析] 无限长圆柱体的电荷具有轴对称分布,电场强度也为轴对称分布,且沿径矢方向.取同轴柱面为高斯面,电场强度在圆柱侧面上大小相等,且与柱面正交.在圆柱的两个底面上,电场强度与底面平行,0=⋅dS E ,对电场强度通量的贡献为零.整个高斯面的电场强度通量为⎰⋅=⋅rL E dS E π2由于圆柱体电荷均匀分布,电荷体密度E,出于高斯面内的总电荷L rq ∑⋅=2πρ由高⎰∑=⋅0εq dS E 可解得电场强度的分布. 解: 取同轴柱面为高斯面,由上述分析得 L r RL r rL E 2202012ελπρεπ=⋅=⋅202RrE πελ=(高斯定理) 6.两个带有等量异号电荷的无限长同轴圆柱面,半径分别为1R 和()122R R R >,单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1)1R r <,(2)21R r R <<,(3)2R r > [分析] 电荷分布在无限长同轴圆柱面上,电场强度也必定程轴对称分布,沿径向方向.去同轴圆柱为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=⋅,2rL E dS E π求出不同半径高斯面内的电荷∑q .利用高斯定理可解得各区域电场的分布.解: 作同轴圆柱面为高斯面,根据高斯定理 ∑=⋅02επqrL E1R r <,∑=0q01=E21R r R <<,∑=L q λrE 022πελ=2R r >,∑=0q03=E在带电面附近,电场强度大小不连续,电场强度有一跃变 0022εσπλπελ===∆rL L r E (高斯定理) 7.如图所示,有三个点电荷 321Q Q Q 、、沿一条直线等间距分布,已知其中任一点电荷所受合力均为零,且Q Q Q ==21.求在固定1Q 、3Q 的情况下,将2Q 从点O 移到无穷远处外力所作的功.[分析] 由库仑力的定义,根据1Q 、3Q 所受合力为零可求得42Q Q -=.外力作功W '应等于电场力作功W 的负值,即W W '-=.求电场力作功可根据功电场力作的功与电势能差的关系,有()0202V Q V V Q W =-=∞其中0V 是点电荷1Q 、3Q 在点O 产生的电势(取无穷远处为零电势).:解 在任一点电荷所受合力均为零时Q Q 412-=,并由电势的叠加1Q 、3Q 在O 的电势dQ dQ dQ V 003010244πεπεπε=+=将2Q 从点O 推到无穷远处的过程中,外力作功 dQ V Q W 02028πε=-=' (受力平衡、点电荷系电势、电场力做功)8.已知均匀带电长直线附近的电场强度近似为r e rE02πελ=λ为电荷线密度. (1)在求在1r r =和2r r =两点间的电势差;(2)在点电荷的电场中,我们曾取∞−→−r 处的电势为零,求均匀带电长直线附近的电势时,能否这样取?试说明. 解 )(1由于电场力作功与路径无关,若取径矢为积分路径,则有12012ln 221r r r dr E U r r ⎰=⋅=∆επλ(电势差定义式)(2)不能. 严格地讲,电场强度 rE 02πελ=只适用于无限长的均匀带电直线,而此时电荷分布在无限空间,∞→r 处的电势应与直线上的电势相等.9.两个同心球面的半径分别为1R 和2R ,各自带有电荷1Q 和2Q .求:(1)各区域电势分布,并画出分布曲线;(2)两球面间的电势差为多少?[分析] 由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由⎰⎰∞∞⋅=⋅=rPP dr E l d E V 可求得电势分布.解: 由高斯定理可求得电场分布01=E 1R r < 20124r Q E πε=21R r R <<202134rQ Q E πε+= 2R r > 由电势 ⎰∞⋅=rdr E V 可求得区域的电势分布.当 1R r ≤时,有dr E dr E dr E V R R R R r⋅+⋅+⋅=⎰⎰⎰∞221132112021210141140R Q Q R R Q πεπε++⎪⎪⎭⎫ ⎝⎛-+= 20210144R Q R Q πεπε+=当21R r R ≤≤时,有dr E dr E V R R r⋅+⋅=⎰⎰∞22322202121014114R Q Q R r Q πεπε++⎪⎪⎭⎫ ⎝⎛-=2020144R Q rQ πεπε+=当1R r ≥ 时,有⎪⎪⎭⎫⎝⎛-=⋅=⎰∞210133114R R Q dr E V rπε(先用高斯定理求场强E,再用分段积分求电势V)10.两个很长的共轴圆柱面()m R m R 10.0,100.3221=⨯=,带有等量异号的电荷,两者的电势差为450V .求:(1)圆柱面单位长度上带有多少电荷?(2)两圆柱面之间的电场强度. 解 由8的结果,两圆柱面之间的电场 rE 02πελ= 根据电势差的定义有12012ln 221R R dr E U R R ⎰=⋅=∆πελ 解得 1812120101.2ln2--⋅⨯==m C R R U πελ V rr E 11074.3220⨯==πελ 两柱面间电场强度的大小与r 成反比. (电势差定义式)11.在Oxy 面上倒扣着半径为R 的半球面,半球面上电荷均匀分布,电荷密度为σ.A 点的坐标为()20R ,,B 点的坐标为()23R ,求电势差AB U . [分析] 电势的叠加是标量的叠加,根据对称性,带电半球面在Oxy 平面上各点产生的电势显然就等于带电球面在改点的电势的一半.据此,可先求出一个完整球面在B A 、间的电势差AB U ',再求出半球面时的电势差AB U .由于带电球面内等电势,球面内A 点的电势,故()B R ABAB V V U U '-'='=2121 其中R V '是带电球表面的电势,B V '是带电球面在B 点的电势. 解 假设将半球面扩展为带有相同电荷面密度σ的一个完整球面,此时在B A 、两点的电势分别为RAV RRQ V '==='004εσπε020324εσεσπεRr R r QV B ==='则半球面在B A 、两点的电势差 ()0621εσR V V U B R AB ='-'==∆(点电荷电势式和电势差定义式)12.在半径为1R 的长直导线外,套有氯丁橡胶绝缘护套,护套外半径为2R ,相对电容率为r ε.设沿轴线单位长度上,导线的电荷密度为λ.试求介质层内的E D 、和P .[分析] 将长直导线视作无限长,自由电荷均匀分布在导线表面.在绝缘介质层的内、外表面分别出现极化电荷,这些电荷在内外表面呈均匀分布,所以电场是轴对称分布.取同轴柱面为高斯面,由介中的高斯定理可得电位移矢量D 的分布.在介质中E D r εε0=,E D P0ε-=,可进一步求得电场强度E 和电极化强度矢量P 的分布.解 由介质中的高斯定理,有⎰=⋅=⋅L rL D S d D λπ2得 rD πλ2= 在均匀各向同性介质中 rDE r rεπελεε002==r r e r E D P πλεε2110⎪⎪⎭⎫ ⎝⎛-=-= (有电介质时的高斯定理)13.设有两个薄导体同心球壳A 与B ,它们的半径分别为cm R 101=与cm R 203=,并分别带有电荷C C 78100.1100.4--⨯⨯-与.球壳间有两层介质,内层介质的0.2,0.421==r r εε外层介质的,其分界面的半径为.152cm R =球壳B 外为空气.求:(1)两球间的电势差AB U ;(2)离球心cm 30的电场强度;(3)2球A 的电势.[分析] 自由电荷和极化电荷均匀分布在球面上,电场呈球对称分布.取同心球面为高斯面,根据介质中的高斯定理可求得介质中的电场分布.由电势差和电场强度的积分关系可求得两导体球壳间的电势差,由于电荷分布在有限空间,通常取无穷远处为零电势⎰∞⋅=AA dl E V解 (1)由介质中的高斯定理,有124Q rD dS D =⋅=⋅⎰π得 221214r e r Q D D π== r r e r D E 21011εε=R r R <<1r r r e rQ D E 220120224επεεε==32R r R <<两球壳间的电势差 ⎰⋅=31R R AB dl E Udl E dl E R R R R ⋅+⋅=⎰⎰322121⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=3220121101114114R R Q R R Q r r επεεπε V 2100.6⨯-= (2)同理由高斯定理可得 1320213100.64-⋅⨯=+=m V e e rQ Q E r rπε (3)取无穷远处电势为零,则 V R Q Q U dl E U V AB BAB A 330213101.24⨯=++=+=⎰∞πε(先由电介质中高斯定理求D 分布,再求E 分布,再分段积分求V 分布)14. 如图所示,几种载流导线在平面内分布,电流均为I ,它们在点O 的磁感应强度各为多少?[分析] 应用磁场叠加原理求解.将不同形状的载流导线分解成长直部分和圆弧部分,它们各自在点O 处所激发的磁感强度较容易求得,则总的磁感强度3210B B B B++=. 解 (a) 长直电流对点O 而言,它在延长线上点O 产生的磁场为零,则点O 处总的磁感强度为41圆弧电流所激发,故有: RIB 800μ=,方向垂直纸面向外Θ.(b) 将载流导线看作圆电流和长直电流,由叠加原理可得.RIRIB πμμ22000-= , 方向垂直纸面向里 ⊗(c) 将载流导线看作21圆电流和两段半无限长直电流,由叠加原理可得 RIR I R I R I R I B 42444000000μπμμπμπμ+=++=,方向垂直纸面向外. Θ (矢量和)15.载流长直导线的电流为I ,试求通过矩形线圈ABCD 的磁通量.[分析] 由于矩形平面上各点的磁感应强度不同,故磁通量BS ≠Φ.为此,可在矩形平面上取一矩形面元ldx dS =()[]b 1011-图,载流长直导线的磁场穿过该面元的磁通量为 ldx xIdS B d πμ20=⋅=Φ 矩形平面的总磁通量⎰Φ=Φd 解 由上述分析可得矩形平面的总磁通量 1200ln 2221d dIl ldx x I d d πμπμ==Φ⎰(积分法四步走) 16.有同轴电缆,其尺寸如图所示.两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑.试计算以下各处的磁感应强度:(1);1R r <(2)21R r R <<;(3)32R r R <<;(4)3R r >.画出r B -图线.[分析] 同轴电缆导体内的电流均匀分布,其磁场呈轴对称,取半径为r 的同心圆为积分路径,⎰⋅=⋅r B l d B π2 ,利用安培环路定理∑⎰=⋅I l d B 0μ,可解得各区域的磁感强度.解 由上述分析得1R r < 22112r R Ir B ππμπ=⋅ 21012R IrB πμ=21R r R << I r B 022μπ=⋅rIB πμ202=31R r R << ()()⎥⎦⎤⎢⎣⎡---=⋅I R R R r I r B 2223222032ππμπ 2223223032R R r R r I B --=πμ 3R r > ()0204=-=⋅I I r B μπ04=B磁感强度()r B 的分布曲线略。