【2020年】浙江省杭州市中考数学预测试题2套(含答案)
杭州2020中考数学综合模拟测试卷(含答案及解析)

2020杭州市各类高中招生模拟考试数学试题(含答案全解全析)(满分:120分时间:100分钟)第Ⅰ卷(选择题,共30分)一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1.下列“表情图”中,属于轴对称图形的是()2.下列计算正确的是()A.m3+m2=m5B.m3·m2=m6C.(1-m)(1+m)=m2-1D.--=-3.在▱ABCD中,下列结论一定正确的是()A.AC⊥BDB.∠A+∠B=180°C.AB=ADD.∠A≠∠C4.若a+b=3,a-b=7,则ab=()A.-10B.-40C.10D.405.根据2008~2012年杭州市实现地区生产总值(简称GDP,单位:亿元)统计图所提供的信息,下列判断正确的是()A.2010~2012年杭州市每年GDP增长率相同B.2012年杭州市的GDP比2008年翻一番C.2010年杭州市的GDP未达到5500亿元D.2008~2012年杭州市的GDP逐年增长6.如图,设k=甲图中阴影部分面积(a>b>0),则有()乙图中阴影部分面积A.k>2B.1<k<2C.<k<1D.0<k<7.在一个圆中,给出下列命题,其中正确的是()A.若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B.若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点C.若两条弦所在直线不平行,则这两条弦可能在圆内有公共点D.若两条弦平行,则这两条弦之间的距离一定小于圆的半径8.如图是某几何体的三视图,则该几何体的体积是()A.18B.54C.108D.2169.在Rt△ABC中,∠C=90°,若AB=4,sin A=,则斜边上的高等于()A. B.C. D.10.给出下列命题及函数y=x,y=x2和y=的图象.①如果>a>a2,那么0<a<1;②如果a2>a>,那么a>1;③如果>a2>a,那么-1<a<0;④如果a2>>a,那么a<-1.则()的命题是②③④A.正确的命题是①④B.错误..的命题只有③C.正确的命题是①②D.错误..第Ⅱ卷(非选择题,共90分)二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.32×3.14+3×(-9.42)=.12.把7的平方根和立方根按从小到大的顺序排列为.13.在Rt△ABC中,∠C=90°,AB=2BC,现给出下列结论:①sin A=;②cos B=;③tan A= ;④tan B=,其中正确的结论是(只需填上正确结论的序号).14.杭州市某4所高中近两年的最低录取分数线如下表(单位:分),设4所高中2011年和2012年的平均最低录取分数分别为,,则-=分.杭州市某4所高中最低录取分数线统计表15.四边形ABCD是直角梯形,AB∥CD,AB⊥BC,且BC=CD=2,AB=3.把梯形ABCD分别绕直线AB,CD旋转一周,所得几何体的表面积分别为S1,S2,则|S1-S2|=(平方单位).16.射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm为半径的圆与△ABC的边相切(切点在边上).请写出t可以取的一切值(单位:秒).三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(本小题满分6分)如图,四边形ABCD是矩形,用直尺和圆规作出∠A的平分线与BC边的垂直平分线的交点Q(不写作法,保留作图痕迹).连结QD,在新图形中,你发现了什么?请写出一条.18.(本小题满分8分)当x满足条件-时,求出方程x2-2x-4=0的根.--19.(本小题满分8分)如图,在等腰梯形ABCD中,AB∥DC,线段AG,BG分别交CD于点E,F,DE=CF.求证:△GAB是等腰三角形.20.(本小题满分10分)已知抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A,B(点A,B在原点O两侧),与y轴相交于点C,且点A,C在一次函数y2=x+n的图象上,线段AB长为16,线段OC长为8,当y1随着x的增大而减小时,求自变量x的取值范围.21.(本小题满分10分)某班有50位学生,每位学生都有一个序号,将50张编有学生序号(从1号到50号)的卡片(除张.卡片.序号不同外其他均相同)打乱顺序重新排列,从中任意抽取....1.(1)在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),求取到的卡片上序号是20的倍数或能整除20的概率;(2)若规定:取到的卡片上序号是k(k是满足1≤k≤50的整数),则序号是k的倍数或能整除k(不重复计数)的学生能参加某项活动,这一规定是否公平?请说明理由;(3)请你设计一个规定,能公平地选出10位学生参加某项活动,并说明你的规定是符合要求的.22.(本小题满分12分)(1)先求解下列两题:(i)如图①,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE,已知∠EDM=84°,求∠A的度数;图①(ii)如图②,在直角坐标系中,点A在y轴正半轴上,AC∥x轴,点B,C的横坐标都是3,且BC=2,点D在AC上,且横坐标为1,若反比例函数y=(x>0)的图象经过点B,D,求k的值;图②(2)解题后,你发现以上两小题有什么共同点?请简单地写出.23.(本小题满分12分)如图,已知正方形ABCD的边长为4,对称中心为点P,点F为BC边上一个动点,点E在AB边上,且满足条件∠EPF=45°,图中两块阴影部分图形关于直线AC成轴对称,设它们的面积和为S1.(1)求证:∠APE=∠CFP;(2)设四边形CMPF的面积为S2,CF=x,y=.①求y关于x的函数解析式和自变量x的取值范围,并求出y的最大值;②当图中两块阴影部分图形关于点P成中心对称时,求y的值.答案全解全析:1.D 由轴对称图形的性质可知选D.2.D 因为m2与m2不是同类项,不能合并,m3·m2=m5,(1-m)(1+m)=1-m2,--=-=-,故选D.3.B 因为▱ABCD中,AD平行于BC,所以∠A+∠B=180°,故选B.4.A 由a+b=3,a-b=7可解得a=5,b=-2,所以ab=-10.5.D 由题图得,A:2010年到2011年的GDP增长略大于1 000亿元,但2011年到2012年的GDP增长小于1 000亿元,故两次增长率必不相同.B:2012年的GDP小于8 000亿元,而2008年的GDP大于4 000亿元,所以没有翻一番.C:2010年的GDP接近6 000亿元,很显然超过5 500亿元.评析此题只要完全读一遍,就能得到正确的答案,并不需要逐个计算.6.B 由题意可知k=--=--==1+,因为a>b>0,所以0<<1,则1<k<2,故选B.7.C 因为A、B、D都可以画出反例,如下图,而C可以找到满足条件的图形,故选C. A:如图,则A不正确;B:如图,则B不正确;C:如图,则C正确;D:如图,则D不正确.8.C 由三视图可知该几何体是一个直六棱柱,体积=底面积×高=6××62×2=108,故选C.9.B 由sin A=,AB=4,可得sin B=,BC=,如图,过点C作AB的垂线交AB于点D,则根据sin B==,BC=,可得CD=,故选B.10.A 由题中图象可知③错误,满足②的还有-1<a<0,①,④正确.故选A.评析此题是数形结合的题目,求出交点坐标,再用平行于y轴的直线去寻找答案会很方便,要注意的是不要丢解.11.答案0解析32×3.14+3× -9.42 =9× 3.14-3.14)=0.12.答案-<<解析7的平方根有正负,需注意.13.答案②③④解析因为∠C=90°,AB=2BC,则该直角三角形是含30°角的直角三角形,则BC∶AB∶AC=1∶2∶,令BC=1,AB=2,AC=,作出图形.①sin A==,②cos B==,③tan A==,④tan B==,则答案为②③④.14.答案 4.75解析-=440.5-435.75=4.75(分).15.答案4π解析由题意可知,S1与S2的差即为以AB为轴旋转图形的侧面积与以CD为轴旋转图形的侧面积的差,所以|S1-S2|=(AB-CD ·2π·BC=4π.评析此题虽然是中等难度的题目,但是学生找不好方法会使计算繁琐.分析出AD和BC这两条线段两次旋转一周后所形成的面积是不变的,问题就比较好解决.16.答案 t=2或3≤t≤7或t=8解析因为该圆的半径为,圆心P从Q点开始运动时会与圆3次相切,而AM=MB,AC∥QN,所以MN为正三角形ABC的中位线,MN=2.(1)当圆与正三角形AB边相切时,如图1,则PD=,易得DM=1,PM=2,QP=2,则t=2.图1(2)当圆与正三角形AC边相切时,如图2,事实上圆的半径刚好等于AC与射线QN之间的距离,所以AP=,则PM=1,QP=3,同理,NP=1,QP=7,而在此期间圆始终与AC边相切,所以3≤t≤7.图2(3)当圆与正三角形BC边相切时,如图3,则PD=,易得DN=1,PN=2,则QP=8,则t=8.图3三、全面答一答17.解析作图如图.点Q即为所求作的点.发现:AQ⊥DQ △AQD是等腰直角三角形等).18.解析原不等式组可化为, .得2<x<4.由方程x2-2x-4=0,解得x1=1+,x2=1-.因为2=<<=3,所以3<x1<4,-2<x2<-1.所以,所求的根为x=1+.19.证明因为四边形ABCD是等腰梯形,AB∥DC,所以AD=BC,∠ADE=∠BCF,又因为DE=CF,所以△ADE≌△BCF,所以∠AED=∠BFC,又因为AB∥DC,所以∠AED=∠GAB,∠BFC=∠GBA,所以∠GAB=∠GBA,所以AG=BG,即△GAB是等腰三角形.20.解析分两种情况:(1)当点C在y轴正半轴时,n=c=8,则y2=x+8.令y2=0,得x=-6;令x=0,得y2=8.所以A(-6,0),C(0,8).因为抛物线在x轴上截得的线段AB长为16,点A与点B在原点两侧,所以点B的坐标为(10,0).设y1=a(x+6)(x-10),把C(0,8)代入得a=-,得y1=-x2+x+8.对称轴方程x=-=-=2.-因为函数y1随着x的增大而减小,所以所求自变量的取值范围是x>2.(2)当点C在y轴负半轴时,因为此时函数图象即为情况(1)的函数图象绕原点旋转180°,所以所求自变量的取值范围是x<-2.21.解析(1)因为是20的倍数或能整除20的序号共有2+5=7个,序号共有50个, 所以,所求的概率为P=.(2)不公平.如:序号为2的同学能参加活动的概率是=,而序号为47的同学能参加活动的概率是=≠,因为某些同学能参加活动的概率不相等,所以这一规定不公平.(3)开放题:如规定:把50位同学的卡片分成五组.第一组序号1至10,第二组序号11到20,第三组序号21到30,第四组序号31到40,第五组序号41到50,若抽出序号属于哪组,则哪组学生参加活动.在这一规定下,每位同学能参加活动的概率都是.即能公平地选出10位学生参加某项活动.又如规定:抽到的序号被5除,得五种可能,分别是余数为0,1,2,3,4,若抽到的序号被5除,余数为r(r=0,1,2,3,4),则序号被5除,余数为r的同学均参加活动.在这一规定下,每位同学能参加活动的概率都是.即能公平地选出10位学生参加某项活动.22.解析(1)(i)设∠A=x,因为AB=BC,所以∠BCA=x,所以∠CBD=2x.因为BC=CD,所以∠CDB=2x,所以∠ECD=2x+x=3x.因为CD=DE,所以∠CED=3x,所以∠EDM=3x+x=84°,所以x=21°,即∠A=21°.(ii)因为点B的横坐标是3,点D的横坐标是1,点B,D在双曲线y=上,所以设点B,D的坐标分别是B,,D(1,k).因为点C的横坐标是3,AC∥x轴,点D在AC上,所以点C的坐标是(3,k), 因为BC=2,所以k-=2,解得k=3.(2)两题都是求一个未知数(转化为解一元一次方程).23.解析(1)证明:因为∠EPF=45°,点P在AC上,所以∠APE+45°+∠CPF=180°.因为四边形ABCD是正方形,所以∠ACB=45°,所以∠CPF+45°+∠CFP=180°,所以∠APE=∠CFP.2 ①在△APE与△CFP中,∠PAE=∠PCF,∠APE=∠CFP,所以△APE∽△CFP,所以=,得AE=.因为点F,E分别在线段BC,AB上,∠EPF=45°,所以2≤x≤4,所以S△APE=×2·=,S△CFP=×2·x=x,S四边形PEBF=S△ABC--x=8--x 2≤x≤4 ,因为两块阴影部分图形关于直线AC成轴对称,所以S1=2S四边形PEBF,S2=2S△CFP,所以y==--=-8--1=-8-+1 2≤x≤4 ,所以x=2时,y取最大值1.②当两块阴影部分图形关于点P成中心对称时,BE=BF,所以AE=CF,所以=x,解得x=2(负值舍去)经检验,x=2是分式方程的解, 此时y=-+-1=-+-1=-1+2-1=2-2.。
2020-2021学年浙江省杭州市中考数学模拟卷2(原卷版+解析)(1)

2020-2021学年浙江省杭州市中考数学模拟卷2学校:___________姓名:___________班级:___________考号:___________一、单选题(本题有10小题,每小题4分,共40分每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(2019·浙江杭州市·九年级其他模拟)已知实数a ,b ,c 在数轴上的对应点位置如右图所示,则( )A .1a <B .11b >-C .0a c +>D .0a b +< 2.(2020·浙江杭州市·九年级期末)2016年国庆长假,杭州共接待游客1578.18万人次,用科学计数法表示1578.18万是( )A .51.5781810⨯B .61.5781810⨯C .71.5781810⨯D .81.5781810⨯ 3.(2018·浙江杭州市·九年级期末)已知:如图,点D 是等腰直角△ABC 的重心,其中△ACB=90°,将线段CD 绕点C 逆时针旋转90°得到线段CE ,连结DE ,若△ABC 的周长为6,则△DCE 的周长为( )A .B .C .4D .4.(2020·浙江杭州市·九年级期末)在样本方差的计算()()()22221210120202010S x x x ⎡⎤=-+-++-⎣⎦…中,数学10与20分别表示样本的( )A .样本容量,平均数B .平均数,样本容量C .样本容量,方差D .标准差,平均数5.(2019·浙江杭州市·九年级其他模拟)下列计算正确的是( )A .()()222222a b a b a b +-=-B .()222a b a b -=- C .()()22a b a b b a ---=- D .()222222a b a ab b +=++6.(2019·杭州绿城育华学校中考模拟)关于x 、y 的二元一次方程组59x y k x y k +=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,则k 的值是( ). A .34k =- B .34k = C .43k = D .43k =- 7.(2020·浙江杭州市·九年级期末)在ABC 中,10AB AC ==,72ABC ∠=︒,ABC ∠的角平分线交AC 于点D ,则CD 的长为( )A .5B .5-C .15-D .18.(2018·浙江杭州市·中考模拟)方程2269311x x x x x -+----=0的解的个数为( ) A .0个 B .1个 C .2个 D .3个 9.(2020·浙江杭州市·九年级期末)抛物线22y x x =+-与x 轴交于A 、B 两点,A 点在B 点左侧,与y 轴交于点C .若点E 在x 轴上,点P 在抛物线上,且以A 、C 、E 、P 为顶点的四边形是平行四边形,则符合条件的点E 有( )A .1个B .2个C .3个D .4个 10.(2019·浙江杭州市·九年级期末)如图,AB 是O 的直径,弦CD AB ⊥于点E ,G 是弧BC 上任意一点,线段AG 与DC 交于点F ,连接,,AD GD CG .若15,AG AF CD ⋅==O 的直径为( )A.4B.C D.二、填空题(本题有6小题,每小题5分,共30分)11.(2019·宁波市第二中学中考模拟)分解因式:24-=____________.a a12.(2020·浙江杭州市·九年级期末)有意义,则x的取值范围是____________ 13.(2020·浙江杭州市·九年级期末)一个布袋里有3个只有颜色不同的球,其中2个红球,1个白球.从布袋里摸出1个球不放回,再摸出1个球,摸出的2个球都是红球的概率是____.14.(2019·浙江杭州市·九年级其他模拟)如图,正ABC内接于圆,将AB沿AB折叠,AC沿AC折叠.若该圆的半径为_________.15.(2019·浙江杭州市·九年级其他模拟)如图,在正方形ABCD中,有面积为4的正、、、分别在边方形EFGH和面积为2的正方形PQMN、点E F P QAB BC CD AD、在边HG上,且组成的图形为轴对称图形,则正、、、上,点M N方形ABCD的面积为__________.16.(2020·浙江杭州市·九年级期末)如图,已知反比例函数y=﹣1x的图象与直线y=kx(k<0)相交于点A、B,以AB为底作等腰三角形,使△ACB=120°,且点C的位置随着k的不同取值而发生变化,但点C始终在某一函数图象上,则这个图象所对应的函数解析式为__.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(2016·浙江杭州市·九年级期末)某中学为了预测本校九年级女生“一分钟跳绳”项目考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图所示的部分频数分布直方图(从左到右依次分为第一小组,第二小组…第六小组,每小组含最小值不含最大值)和扇形统计图.根据统计图提供的信息解答下列问题:(1)补全频数分布直方图;(2)这个样本数据的中位数落在第小组,组距是;(3)若测试九年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校九年级女生共有550人,请估计该校九年级女生“一分钟跳绳”成绩为优秀的人数.18.(2021·浙江杭州市·九年级期末)已知二次函数()()1y x m x =+-的图象经过点()2,3-.(1)求这个二次函数的表达式.(2)画出这个函数的图象,并利用图象解决下列问题:△直接写出方程()()13x m x +-=-的解.△当x 满足什么条件时,0y >.19.(2020·浙江杭州市·九年级期末)如图,正方形ABCD 和正方形AEFG 有公共点A ,点B 在线段DG 上,(1)判断DG 与BE 的位置关系,并说明理由;(2)若正方形ABCD 的边长为2,正方形AEFG 的边长为BE 的长.20.(2020·浙江杭州市·九年级期末)如图,在平面直角坐标系中,O 为原点,直线AB分别交x 轴正半轴、y 轴负半轴于点B ,A ,与反比例函数的图象交于点C ,D ,CE x ⊥轴与点E .cos 5ABO ∠=,AB =1OE =.(1)求直线AB 和反比例函数的解析式;(2)求tan OCD ∠的值.21.(2019·浙江杭州市·九年级期末)如图,在Rt ABC 中,90C ∠=︒,以BC 为直径的O 交AB 于点D ,过点D 作ADE A ∠=∠,交AC 于点E .(1)求证:DE 是O 的切线; (2)若315,tan 4BC A ==,求DE 的长.22.(2019·浙江杭州市·九年级其他模拟)如图,已知一个三角形纸片,ABC BC 边的长为8,BC 边上的高为6,B 和C ∠都为锐角,M 为AB 一动点(点M 与点A 、B 不重合),过点M 作//MN BC ,交AC 于点N ,在AMN 中,设MN 的长为x ,MN 上的高为h .(1)请你用含x 的代数式表示h .(2)将AMN 沿MN 折叠,使AMN 落在四边形BCNM 所在平面,设点A 落在平面的点为1A ,1AMN与四边形BCNM 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少?23.(2020·浙江杭州市·九年级其他模拟)如图1,在矩形ABCD中,点E以lcm/s的速度从点A向点D运动,运动时间为t(s),连结BE,过点E作EF△BE,交CD于F,以EF为直径作△O.(1)求证:△1=△2;(2)如图2,连结BF,交△O于点G,并连结EG.已知AB=4,AD=6.△用含t的代数式表示DF的长△连结DG,若△EGD是以EG为腰的等腰三角形,求t的值;(3)连结OC,当tan△BFC=3时,恰有OC△EG,请直接写出tan△ABE的值.2020-2021学年浙江省杭州市中考数学模拟卷2学校:___________姓名:___________班级:___________考号:___________一、单选题(本题有10小题,每小题4分,共40分每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(2019·浙江杭州市·九年级其他模拟)已知实数a,b,c在数轴上的对应点位置如右图所示,则()A .1a <B .11b >-C .0a c +>D .0a b +<【答案】D解:由图可知: -2<a <-1<b <0<c <1,A 、1a >,故错误,不符合题意;B 、11b<-,故错误,不符合题意; C 、0a c +<,故错误,不符合题意;D 、0a b +<,故正确,符合题意;故选D .2.(2020·浙江杭州市·九年级期末)2016年国庆长假,杭州共接待游客1578.18万人次,用科学计数法表示1578.18万是( )A .51.5781810⨯B .61.5781810⨯C .71.5781810⨯D .81.5781810⨯【答案】C解:1578.18万=1.57818×107.故选:C .3.(2018·浙江杭州市·九年级期末)已知:如图,点D 是等腰直角△ABC 的重心,其中△ACB=90°,将线段CD 绕点C 逆时针旋转90°得到线段CE ,连结DE ,若△ABC 的周长为6,则△DCE 的周长为( )A .B .C .4D .【答案】A解:延长CD 交AB 于F .如图,∵点D 是等腰直角∵ABC 的重心,∵CF 平分AB ,CD=2DF ,∵CF=12AB=12•,∵CD=23CF=3CA , ∵线段CD 绕点C 逆时针旋转90°得到线段CE ,∵CD=CE ,∵DCE=90°,∵∵CDE 为等腰直角三角形,∵∵CDE∵∵CAB ,∵∵CDE 的周长:∵CAB 的周长=CD :, ∵∵CDE 的周长=23×6=2.故选A .4.(2020·浙江杭州市·九年级期末)在样本方差的计算()()()22221210120202010S x x x ⎡⎤=-+-++-⎣⎦…中,数学10与20分别表示样本的( )A .样本容量,平均数B .平均数,样本容量C .样本容量,方差D .标准差,平均数【答案】A 解:222212101[(20)(20)(20)]10S x x x =-+-+⋯+-, 所以样本容量是10,平均数是20.故选:A .5.(2019·浙江杭州市·九年级其他模拟)下列计算正确的是( )A .()()222222a b a b a b +-=-B .()222a b a b -=- C .()()22a b a b b a ---=- D .()222222a b a ab b +=++ 【答案】C解:A 、()()2222232a b a b a ab b +-=+-,故错误,不符合题意; B 、()2222a b a ab b -=-+,故错误,不符合题意;C 、()()22a b a b b a ---=-,故正确,符合题意;D 、()222244a b a ab b +=++,故错误,不符合题意;故选C . 6.(2019·杭州绿城育华学校中考模拟)关于x 、y 的二元一次方程组59x y k x y k +=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,则k 的值是( ). A .34k =- B .34k = C .43k = D .43k =- 【答案】B解:59①②+=⎧⎨-=⎩x y k x y k , ∵+∵得:2=14x k ,即=7x k ,把=7x k 代入∵得:75k y k +=,解得:2y k =-,则方程组的解为:=72⎧⎨=-⎩x k y k , 把=72⎧⎨=-⎩x k y k 代入二元一次方程236x y +=中得: ()27326⨯+⨯-=k k , 解得:34k =, 故选B.7.(2020·浙江杭州市·九年级期末)在ABC 中,10AB AC ==,72ABC ∠=︒,ABC ∠的角平分线交AC 于点D ,则CD 的长为( )A .5B.5- C.15-D.1【答案】C解:如图,∵AB=AC ,∵ABC=72°,∵∵C=72°,∵∵A=180°-2×72°=36°,∵BD 平分∵ABC ,∵∵ABD=∵CBD=36°,∵AD=BD ,∵BDC=72°,∵BC=BD ,在∵ABC 和∵BCD 中,∵A=∵CBD ,∵ABC=∵C ,∵∵ABC∵∵BCD ,∵AB BC BC CD=, 设CD=x ,则BD=AD=BC=10-x , ∵101010x x x-=-,解得:x=15+15-故选C .8.(2018·浙江杭州市·中考模拟)方程2269311x x x x x -+----=0的解的个数为( ) A .0个B .1个C .2个D .3个【答案】D解:去分母得:(x -3)2(x+1)+(x -3)=0,分解因式得:(x -3)[(x -3)(x+1)+1]=0,可得x -3=0或x 2-2x -2=0,解得:x=3或经检验x=3与则分式方程的解的个数为3个,故选:D .9.(2020·浙江杭州市·九年级期末)抛物线22y x x =+-与x 轴交于A 、B 两点,A 点在B 点左侧,与y 轴交于点C .若点E 在x 轴上,点P 在抛物线上,且以A 、C 、E 、P为顶点的四边形是平行四边形,则符合条件的点E有()A.1个B.2个C.3个D.4个【答案】D解:由图象可知,满足条件的A、C、E、P为顶点的四边形是平行四边形有四个,故选:D.⊥于点E,10.(2019·浙江杭州市·九年级期末)如图,AB是O的直径,弦CD ABAD GD CG.若G是弧BC上任意一点,线段AG与DC交于点F,连接,,⋅==O的直径为()15,AG AF CDA.4B.C D.【答案】C解:连接AC, BD弦CD AB ⊥于点E∴ AC=AD, 12DE CD ==∴=ACD ∠∠AGC=CAF ∠∠CAG∴ ∵ACF∵∵AGC ∴AC AF AG AC= ∴AC 2=15AG AF ⋅=∵ADE 是直角三角形,∵AED =90°,∴AE ===,=∠BAD ∠DAE ,∵AED =∵AD B=90°∴∵ADE∵∵ABD=AD AE AB AD,2AD AB AE =⋅22AD AB AE === 故答案选:C二、填空题(本题有6小题,每小题5分,共30分)11.(2019·宁波市第二中学中考模拟)分解因式:24a a -=____________.【答案】a (a -4)解:()24=4a a a a --12.(2020·浙江杭州市·九年级期末)有意义,则x 的取值范围是____________【答案】1x ≥-有意义,则x+1≥0,解得:x≥-1.故答案为:x≥-1.13.(2020·浙江杭州市·九年级期末)一个布袋里有3个只有颜色不同的球,其中2个红球,1个白球.从布袋里摸出1个球不放回,再摸出1个球,摸出的2个球都是红球的概率是____. 【答案】13解:画树状图如下:,一共6种可能,两次都摸到红球的有2种情况,∵摸出的2个球都是红球的概率是21=63故答案为:13. 14.(2019·浙江杭州市·九年级其他模拟)如图,正ABC 内接于圆,将AB 沿AB 折叠,AC 沿AC 折叠.若该圆的半径为_________.【答案】解:∵∵ABC 为正三角形,∵AB 和AC 折叠后交于外接圆圆心O ,∵阴影部分面积为∵BOC 的面积,过O 作OD∵BC ,垂足为D ,∵∵BOC=120°,∵∵OBC=∵OCB=30°,∵OD=12∵S 阴影=12⨯,故答案为:15.(2019·浙江杭州市·九年级其他模拟)如图,在正方形ABCD 中,有面积为4的正方形EFGH 和面积为2的正方形PQMN 、点E F P Q 、、、分别在边AB BC CD AD 、、、上,点M N 、在边HG 上,且组成的图形为轴对称图形,则正方形ABCD 的面积为__________.【答案】274解:如图,连接BD ,交PQ 于R ,交HG 于S ,交EF 于K ,正方形ABCD 中,有面积为4的正方形EFGH 和面积为2的正方形PQMN ,2EH EF ∴==,MQ QP == 又组成的图形为轴对称图形,BD ∴为对称轴,BEF ∴∆、DPQ ∆为等腰直角三角形,四边形EKSH 、四边形MSRQ 为矩形,112EK BK EF ∴===,12DR QR PQ ==2KN EH ==,RS MQ =123BD ∴=++,∴正方形ABCD 的面积221127(3224BD ==⨯+=故答案为:27416.(2020·浙江杭州市·九年级期末)如图,已知反比例函数y =﹣1x的图象与直线y =kx (k <0)相交于点A 、B ,以AB 为底作等腰三角形,使△ACB =120°,且点C 的位置随着k 的不同取值而发生变化,但点C 始终在某一函数图象上,则这个图象所对应的函数解析式为__.【答案】y =13x解:连接CO ,过点A 作AD ∵x 轴于点D ,过点C 作CE ∵x 轴于点E ,∵反比例函数y =1x-的图象与直线y =kx (k <0)相交于点A 、B ,∵ABC 是以AB 为底作的等腰三角形,∵ACB =120°,∵CO ∵AB ,∵CAB =30°,则∵AOD +∵COE =90°,∵∵DAO +∵AOD =90°,∵∵DAO =∵COE ,又∵∵ADO =∵CEO =90°,∵∵AOD ∵∵OCE , ∵AD OD OA EO CE OC===tan60°∵23AOD OCES S ∆∆==∵点A是双曲线y=1x-在第二象限分支上的一个动点,∵S∵AOD=12xy⨯=12∵S∵OCE=16,即12×OE×CE=16,∵OE×CE=13,∵这个图象所对应的函数解析式为y=13x.故答案为:y=13x.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(2016·浙江杭州市·九年级期末)某中学为了预测本校九年级女生“一分钟跳绳”项目考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图所示的部分频数分布直方图(从左到右依次分为第一小组,第二小组…第六小组,每小组含最小值不含最大值)和扇形统计图.根据统计图提供的信息解答下列问题:(1)补全频数分布直方图;(2)这个样本数据的中位数落在第小组,组距是;(3)若测试九年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校九年级女生共有550人,请估计该校九年级女生“一分钟跳绳”成绩为优秀的人数.【答案】(1)见解析;(2)三,20.(3)该校九年级女生跳绳成绩优秀的人数为231人.解:(1)10÷20%=50,50﹣38=12(人).频数分布直方图如下,(2)中位数在第三小组,组距是20.故答案分别为三,20.(3)(12+5+4)÷50=42% 550×42%=231(人),答:该校九年级女生跳绳成绩优秀的人数为231人.18.(2021·浙江杭州市·九年级期末)已知二次函数()()1y x m x =+-的图象经过点()2,3-.(1)求这个二次函数的表达式.(2)画出这个函数的图象,并利用图象解决下列问题:△直接写出方程()()13x m x +-=-的解.△当x 满足什么条件时,0y >.【答案】(1)()()51y x x =--;(2)∵12x =,24x =;∵1x <或5x > 解:(1)∵二次函数()()1y x m x =+-的图象经过点()2,3-,∵()()2213m +-=-,解得5m =-,∵()()51y x x =--;(2)由五点法可得如图所示:∵由图像可得:方程23x bx c ++=-的解是12x =,24x =;∵由图象可得,当0y >时,1x <或5x >.19.(2020·浙江杭州市·九年级期末)如图,正方形ABCD 和正方形AEFG 有公共点A ,点B 在线段DG 上,(1)判断DG 与BE 的位置关系,并说明理由;(2)若正方形ABCD 的边长为2,正方形AEFG的边长为BE 的长.【答案】(1)DG BE ⊥,理由见解析;(2+解:(1)DG BE ⊥, 理由如下:四边形ABCD ,四边形AEFG 是正方形,AB AD ∴=,DAB GAE ∠=∠,AE AG =,45ADB ABD ∠=∠=︒,DAG BAE ∴∠=∠,在DAG △和BAE △中,AD AB DAG BAE AG AE =⎧⎪∠=∠⎨⎪=⎩,()DAG BAE SAS ∴≅△△.DG BE ∴=,45ADG ABE ∠=∠=︒,90ABD ABE ∴∠+∠=︒,即90GBE ∠=︒.DG BE ∴⊥;(2)连接GE ,正方形ABCD 的边长为2,正方形AEFG的边长为BD ∴=,4GE =,设BE x =,则BG x =-在Rt BGE △中,利用勾股定理可得:222(4x x +-=,x ∴=BE ∴20.(2020·浙江杭州市·九年级期末)如图,在平面直角坐标系中,O 为原点,直线AB分别交x 轴正半轴、y 轴负半轴于点B ,A ,与反比例函数的图象交于点C ,D ,CE x ⊥轴与点E.cos ABO ∠=,AB =1OE =.(1)求直线AB 和反比例函数的解析式;(2)求tan OCD ∠的值.【答案】(1)112y x =-,32y x =;(2)47解:(1),∵OB=2,根据勾股定理得:OA=1,∵点B (2,0),点A (0,-1),设直线AB 的表达式为y=kx+b ,则021k b b =+⎧⎨-=⎩,解得:121k b ⎧=⎪⎨⎪=-⎩,∵直线AB :112y x =-, ∵OE=1, ∵点C 的横坐标为-1,代入直线AB 表达式,得,y=32-, ∵点C 的坐标为(-1,32-), -1×(32-)=32, ∵反比例函数表达式为:32y x=; (2)过点O 作AB 边上的高OF ,∵AB×OF=OA×OB ,, ∵OE=1,CE=32,2,10, ∵tan∵OCD=47OF FC =.21.(2019·浙江杭州市·九年级期末)如图,在Rt ABC 中,90C ∠=︒,以BC 为直径的O 交AB 于点D ,过点D 作ADE A ∠=∠,交AC 于点E .(1)求证:DE 是O 的切线;(2)若315,tan 4BC A ==,求DE 的长.【答案】(1)见解析;(2)10解:(1)证明:连接OD ,如图,∵90C ∠=︒,∵90A B ∠+∠=︒,∵OB OD =,∵B ODB ∠=∠,而ADE A ∠=∠,∵90ADE ODB ∠+∠=︒,∵90ODE ∠=︒,∵OD DE ⊥,∵DE 是O 的切线;(2)解:在Rt ABC 中,3tan 4BC A AC ==,∵415203AC =⨯=, ∵ED 和EC 为O 的切线,∵ED DC =,而ADE A ∠=∠,∵DE AE =, ∵1102AE CE DE AC ====, 即DE 的长为10.22.(2019·浙江杭州市·九年级其他模拟)如图,已知一个三角形纸片,ABC BC 边的长为8,BC 边上的高为6,B 和C ∠都为锐角,M 为AB 一动点(点M 与点A 、B 不重合),过点M 作//MN BC ,交AC 于点N ,在AMN 中,设MN 的长为x ,MN 上的高为h .(1)请你用含x 的代数式表示h .(2)将AMN 沿MN 折叠,使AMN 落在四边形BCNM 所在平面,设点A 落在平面的点为1A ,1AMN与四边形BCNM 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少?【答案】(1)34x h =;(2)x=163时,y 值最大为8. 解:(1)∵MN∵BC∵∵AMN∵∵ABC ∵68h x = ∵34x h =.(2)∵∵AMN∵∵A 1MN∵∵A 1MN 的边MN 上的高为h∵当点A 1落在四边形BCNM 内或BC 边上时211133(04)2248A MN y S MN h x x x x ∆==⋅=⋅=<≤ ∵当A 1落在四边形BCNM 外时,如图(4<x <8)设∵A 1EF 的边EF 上的高为h 1则h 1=2h -6=32x -6 ∵EF∵MN ∵∵A 1EF∵∵A 1MN∵∵A 1MN∵∵ABC∵∵A 1EF∵∵ABC∵121()6A EFABC S h S ∆∆= ∵S ∵ABC =12×6×8=24 ∵223632()24122462AEF x S x x ∆-=⨯=-+ ∵1122233912241224828A MN A EF y S S x x x x x ∆∆⎛⎫=-=--+=-+- ⎪⎝⎭ 所以y=-98x 2+12x -24(4<x <8) 综上所述当0<x≤4时,y=38x 2,取x=4,y max =6 当4<x <8时,y=-98x 2+12x -24,取x=163,y max =8∵当x=163时,y 值最大y max =8. 23.(2020·浙江杭州市·九年级其他模拟)如图1,在矩形ABCD 中,点E 以lcm/s 的速度从点A 向点D 运动,运动时间为t (s ),连结BE ,过点E 作EF△BE ,交CD 于F ,以EF 为直径作△O .(1)求证:△1=△2;(2)如图2,连结BF ,交△O 于点G ,并连结EG .已知AB=4,AD=6. △用含t 的代数式表示DF 的长△连结DG ,若△EGD 是以EG 为腰的等腰三角形,求t 的值;(3)连结OC ,当tan△BFC=3时,恰有OC△EG ,请直接写出tan△ABE 的值.【答案】(1)见解析;(2)∵DF=26t t 4-,∵t 的值为3或(3)tan∵ABE=1 解:(1)∵四边形ABCD 是矩形∵//AD BC ,90A ADC ∠=∠=︒∵1AEB ∠=∠∵EF BE ⊥∵90AEB DEF ∠+∠=︒∵290DEF ∠+∠=︒∵2AEB ∠=∠∵12∠=∠(2)∵∵90A ADC ∠=∠=︒,AEB EFD ∠=∠ ∵ABE DEF △△∽ ∵AB AE ED DF= ∵4AB =,AE t =,6DE t =- ∵46t t DF=- ∵264t t DF -= ∵当EG ED =时∵EGD EDG ∠=∠ ∵EGD EFD ∠=∠,EDG EFG ∠=∠ ∵EFD EFG AEB ∠=∠=∠ ∵A EDF BEF ∠=∠=∠ ∵BAE EDF BEF ∽∽ ∵AE EF DE AB BE AB== ∵AE DE =∵6t t =-∵3t =当GE GD =时,∵GED GDE ∠=∠ ∵EDG BFE ∠=∠,GED BFC ∠=∠ ∵BFE BFC ∠=∠∵90BEF C ∠=∠=︒,BF BF = ∵BEF BCF AAS ≌()∵6BE BC ==∵222AB AE BE +=∵22246t +=∵t =综上所述,若EGD 是以EG 为腰的等腰三角形,t 的值为3或 (3)1tan ABE ∠=理由:如图2,过O 作OH CD ⊥于H ∵3BC tan BFC CF∠== 设CF a =,3BC a =∵AE t =∵3DE a t =-∵OH CD ⊥,AD CD ⊥∵//OH DE∵OF OE = ∵1322a t OH DE -== ∵//OC EG ,EG FG ⊥∵OC FG ⊥∵3tan COH tan BFC ∠=∠=∵9332a t CH OH -==,732a t FH -= ∵73DF a t =-,83AB a t =- 由ABE DEF △△∽,得: AB AE ED DF = 即83373a t t a t a t-=-- 解得:12t a =,2145t a =∵218386AE t a tan ABE AB a t a a∠====--。
浙江省杭州2020年中考模拟试卷数学试题(含答案)

2020年浙江杭州中考模拟试卷数学考试题号一二三总分评分1.-23等于( )A. -6B. 6C. -8D. 82.在平面直角坐标系中,点关于原点对称的点的坐标是A. B. C. D.3.如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形的上底AD、下底BC以及腰AB均相切,切点分别是D、C、E.若半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是().A. 9B. 10C. 12D. 144.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B 种饮料单价为x元/瓶,那么下面所列方程正确的是( )A. 2(x-1)+3x=13B. 2(x+1)+3x=13C. 2x+3(x+1)=13D. 2x+3(x-1)=135.如图,这是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,根据统计图提供的信息,可得到该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A. 8,9B. 8,8.5C. 16,8.5D. 16,10.56.如图,AB和CD表示两根直立于地面的柱子,AC和BD表示起固定作用的两根钢筋,AC与BD相交于点M,已知AB=8m,CD=12m,则点M离地面的高度MH为( )A. 4 mB. mC. 5mD. m7.若等腰三角形中有一个角等于110°,则其它两个角的度数为().A. 70°B. 110°和70°C. 35°和35°D. 30°和70°8.已知点A,点B在一次函数y=kx+b(k,b为常数,且k≠0)的图象上,点A在第三象限,点B在第四象限,则下列判断一定正确的是()A. b<0B. b>0C. k<0D. k>09.身高相等的四名同学甲、乙、丙、丁参加风筝比赛,四人放出风筝的线长、线与地面的夹角如下表(假设风筝线是拉直的),则四名同学所放的风筝中最高的是()同学甲乙丙丁放出风筝线长140m 100m 95m 90m线与地面夹角30°45°45°60°A. 甲B. 乙C. 丙D. 丁10.已知抛物线与轴交于点A、B,与轴交于点C,则能使△ABC为等腰三角形抛物线的条数是()A. 5B. 4C. 3D. 2二、填空题:本大题有6个小题,每小题4分,共24分11.把多项式2x2y﹣4xy2+2y3分解因式的结果是________12.一组数据7,x,8,y,10,z,6的平均数为4,则x,y,z的平均数是________.13.若圆锥的地面半径为,侧面积为,则圆锥的母线是________ .14.如图,和分别是的直径和弦,且,,交于点,若,则的长是________.15.一次函数y = kx + b ,当- 3 £x £ 1时,对应的y 值为1 £y £ 9 ,则k + b =________;16.已知等腰中,,,,在线段上,是线段上的动点,的最小值是________.三、解答题:本大题有7个小题,共66分17.化简:18.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如表:(1)把表中所空各项数据填写完整;选手选拔成绩/环中位数平均数甲 10 9 8 8 10 9 ________ ________乙 10 10 8 10 7 ________ ________ 9(2(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.19.如图,已知:,,,点,分别在,上,连接,且,是上一点,的延长线交的延长线于点.(1)求证:;(2)求证:.20.大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x天的销售量p件与销售的天数x的关系如下表:x(天) 1 2 3 (50)p(件)118 116 114 (20)销售单价q(元/件)与x满足:当1≤x<25时q=x+60;当25≤x≤50时q=40+ .(1)请分析表格中销售量p与x的关系,求出销售量p与x的函数关系.(2)求该超市销售该新商品第x天获得的利润y元关于x的函数关系式.(3)这50天中,该超市第几天获得利润最大?最大利润为多少?21.某校数学兴趣小组开展了一次课外活动,过程如下:如图①,正方形ABCD中,AB=4,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合.三角板的一边交AB于点P,另一边交BC的延长线于点Q.(1)求证:AP=CQ;(2)如图②,小明在图1的基础上作∠PDQ的平分线DE交BC于点E,连接PE,他发现PE和QE存在一定的数量关系,请猜测他的结论并予以证明;(3)在(2)的条件下,若AP=1,求PE的长.22.已知直角梯形纸片OABC在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A (10,0),B(8,2 ),C(0,2 ),点T在线段OA上(不与线段端点重合),将纸片折叠,使点A落在射线AB上(记为点A′),折痕经过点T,折痕TP与射线AB交于点P,设点T的横坐标为t,折叠后纸片重叠部分(图中的阴影部分)的面积为S.(1)求∠OAB的度数,并求当点A′在线段AB上时,S关于t的函数关系式;(2)当纸片重叠部分的图形是四边形时,求t的取值范围;(3)S存在最大值吗?若存在,求出这个最大值,并求此时t的值;若不存在,请说明理由.23.如图,在⊙中,弦,相交于点,且.(1)求证:;(2)若,,当时,求:①图中阴影部分面积.②弧的长.答案解析部分一、选择题1.C2.C3.D4.A5.A6.B7.C8.A9.D10.B二、填空题11.2y(x﹣y)2【解答】解:原式=2y(x2﹣2xy+y2)=2y(x﹣y)2.故答案为:2y(x﹣y)2.12.-1【解答】解:∵一组数据7,x,8,y,10,z,6的平均数为4,∴=4,解得,x+y+z=﹣3,∴=﹣1,故答案为:﹣1.13.13【解答】设母线长为R,则:解得:故答案为13.14.5【解答】连接CD;Rt△AOB中,∠A=30°,OB=5,则AB=10,OA=5 ;在Rt△ACD中,∠A=30°,AD=2OA=10 ,∴AC=cos30°×10 =15,∴BC=AC-AB=15-10=5.故答案为515.9或1【解答】解:①当x=-3时,y=1;当x=1时,y=9,则解得:所以k + b =2+7=9;②当x=-3时,y=9;当x=1时,y=1,则解得:,所以k + b=-2+3=1.故答案为9或1.16.【解答】解:∵AC=BC,OC⊥AB,∴AB=2OB=6,∵OC=4,∴BC=5,∴A,B关于y轴对称,过A作AM⊥BC于M,交y轴于P,∵∠AMB=∠COB=90°,∠ABM=∠CBO,∴△ABM∽△CBO,∴,即,∴AM=,∴PM+PB的最小值是,故答案为:.三、解答题:本大题有7个小题,共66分.17. 解:===1【分析】根据同分母分式的减法法则计算,再根据完全平方公式展开,合并同类项后约分计算即可求解.18. (1)9,9,9,9.5(2)解:s2甲= [2×(8﹣9)2+2×(9﹣9)2+2×(10﹣9)2]=;s2乙= [(7﹣9)2+(8﹣9)2+(9﹣9)2+3×(10﹣9)2]=(3)解:我认为推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适【解答】解:(1)甲:将六次测试成绩按从小到大的顺序排列为:8,8,9,9,10,10,中位数为(9+9)÷2=9,平均数为(10+9+8+8+10+9)÷6=9;乙:第6次成绩为9×6﹣(10+10+8+10+7)=9,将六次测试成绩按从小到大的顺序排列为:7,8,9,10,10,10,中位数为(9+10)÷2=9.5;填表如下:选手选拔成绩/环中位数平均数甲10 9 8 8 10 9 9 9乙10 10 8 10 7 9 9.5 919. (1)证明:∵,,∴,,又∵,∴(2)证明:∵在△BGF中,∴∠HGF>∠GBF,∵,∴∠ADE=∠GBF,∴20. (1)解:设销售量p件与销售的天数x的函数解析式为p=kx+b,代入(1,118),(2,116)得解得因此销售量p件与销售的天数x的函数解析式为p=﹣2x+120(2)解:当1≤x<25时,y=(60+x﹣40)(﹣2x+120)=﹣2x2+80x+2400,当25≤x≤50时,y=(40+ ﹣40)(﹣2x+120)= ﹣2250(3)解:当1≤x<25时,y=﹣2x2+80x+2400,=﹣2(x﹣20)2+3200,∵﹣2<0,∴当x=20时,y有最大值y1,且y1=3200;当25≤x≤50时,y= ﹣2250;∵135000>0,∴随x的增大而减小,当x=25时,最大,∵y1>y2∴这50天中第20天时该超市获得利润最大,最大利润为3200元21. (1)证明:∵四边形ABCD是正方形,∴∠ADC=∠A=∠B=∠BCD=∠DCQ=90°,AD=BC=CD=AB=4,∵∠PDQ=90°,∴∠ADP=∠CDQ,在△APD和△CQD中,,∴△APD≌△CQD(ASA),∴AP=CQ(2)解;PE=QE,理由如下:由(1)得:△APD≌△CQD,∴PD=QD,∵DE平分∠PDQ,∴∠PDE=∠QDE,在△PDE和△QDE中,,∴△PDE≌△QDE(SAS),∴PE=QE(3)解:由(2)得:PE=QE,由(1)得:CQ=AP=1,∴BQ=BC+CQ=5,BP=AB﹣AP=3,设PE=QE=x,则BE=5﹣x,在Rt△BPE中,由勾股定理得:32+(5﹣x)2=x2,解得:x=3.4,即PE的长为3.422. (1)解:∵A,B两点的坐标分别是A(10,0)和B(8,2 ),∴tan∠OAB= = ,∴∠OAB=60°,当点A′在线段AB上时,∵∠OAB=60°,TA=TA′,∴△A′TA是等边三角形,且TP⊥AA′,∴TP=(10﹣t)sin60°= (10﹣t),A′P=AP= AT= (10﹣t),∴S=S△ATP= A′P•TP= (10﹣t)2,当A´与B重合时,AT=AB==4,所以此时6≤t<10(2)解:当点A′在线段AB的延长线上,且点P在线段AB(不与B重合)上时,纸片重叠部分的图形是四边形(如图①,其中E是TA′与CB的交点),假设点P与B重合时,AT=2AB=8,点T的坐标是(2,0),由(1)中求得当A´与B重合时,T的坐标是(6,0),则当纸片重叠部分的图形是四边形时,2<t<6(3)解:S存在最大值.①当6≤t<10时,S= (10﹣t)2,在对称轴t=10的左边,S的值随着t的增大而减小,∴当t=6时,S的值最大是2 ;②当2≤t<6时,由图①,重叠部分的面积S=S△A′TP﹣S△A′EB,∵△A′EB的高是A′B•sin60°,∴S= (10﹣t)2﹣(10﹣t﹣4)2×+ (﹣4)2×= (﹣t2+2t+30)=﹣(t﹣2)2+4 ,当t=2时,S的值最大是4 ;③当0<t≤2,即当点A′和点P都在线段AB的延长线上是(如图②,其中E是TA´与CB的交点,F是TP 与CB的交点),∵∠EFT=∠ETF,四边形ETAB是等腰梯形,∴EF=ET=AB=4,∴S= EF•OC= ×4×2 =4 .综上所述,S的最大值是4 ,此时t的值是t=2.23. (1)证明:连接,,∵,∴,∵,∴,∵,∴,∵,∴≌,∴.(2)解:作于,于,由()可知,∴,∵,,,,∴四边形是正方形,∴,∵,∴≌,∴,∵,,∴,,,∵,∴.①.②,∴,∴.。
2020年浙江省杭州市下城区中考数学模拟试卷含解析版

2020年浙江省杭州市下城区中考数学模拟试卷含解析版绝密★启⽤前2020年浙江省杭州市下城区中考数学模拟试卷注意事项:1.答题前填写好⾃⼰的姓名、班级、考号等信息2.请将答案正确填写在答题卡上,在试卷上作答⽆效,选择题需使⽤2B铅笔填涂⼀、选择题:本⼤题由10个⼩题,每⼩题3分,共30分.每⼩题给出的四个选项中,只有⼀项是符合要求的.1.计算:﹣2+3=()A.1B.﹣1C.5D.﹣52.⽤科学记数法表⽰23000为()A.23×1000B.2.3×103C.2.3×104D.(2.3)43.16的平⽅根是()A.±4B.±2C.4D.24.若数组2,2,x,3,4的平均数为3,则这组数中的()A.x=3B.中位数为3C.众数为3D.中位数为x 5.若x>y,a<1,则()A.x>y+1B.x+1>y+a C.ax>ay D.x﹣2>y﹣1 6.今年⽗亲的年龄是⼉⼦年龄的3倍,5年前⽗亲的年龄是⼉⼦年龄的4倍.设今年⼉⼦的年龄为x岁,则下列式⼦正确的是()A.4x﹣5=3(x﹣5)B.4x+5=3(x+5)C.3x+5=4(x+5)D.3x﹣5=4(x﹣5)7.如图是⼀个游戏转盘,⾃由转动转盘,当转盘停⽌后,若指针落在所⽰区域内事件发⽣的概率依次记为r,s,t,k,则()A.s B.s=3t C.k<r+t D.k+r<s+t8.如图,在△ABC中,AC=BC,过C作CD∥AB.若AD平分∠CAB,则下列说法错误的是()A.BC=CD B.BO:OC=AB:BCC.△CDO≌△BAO D.S△AOC:S△CDO=AB:BC9.四位同学在研究函数y=ax2+bx+c(a,b,c是常数)时,甲发现当x=﹣1时函数的最⼩值为﹣1;⼄发现4a﹣2b+c=0成⽴;丙发现当x<1时,函数值y随x的增⼤⽽增⼤;丁发现当x=5时,y=﹣4.已知这四位同学中只有⼀位发现的结论是错误的,则该同学是()A.甲B.⼄C.丙D.丁10.如图,AB为⊙O的直径,P为BA延长线上的⼀点,D在⊙O上(不与点A,点B重合),连接PD交⊙O于点C,且PC=OB.设∠P=α,∠B=β,下列说法正确的是()A.若β=30°,则∠D=120°B.若β=60°,则∠D=90°C.若α=10°,则=150°D.若α=15°,则=90°⼆、填空题:本⼤题有6个⼩题,每⼩题4分,共24分.11.(4分)xy+(﹣2xy)=.12.(4分)如图,若a∥b,∠3=130°,∠2=20°,则∠1的度数为.13.(4分)若多项式A满⾜,A?(﹣a+1)=a2﹣1,则A=.14.(4分)已知C是优弧AB的中点,若∠AOC=4∠B,OC=4,则AB=.15.(4分)函数y1=x﹣1和函数y2=的图象交于点M(m,1),N(n,﹣2),若﹣4<y1<y2<4,则x的取值范围为.16.(4分)如图,在△ABC中,AB=AC=10,E,D分别是AB,AC上的点,BE=4,CD =2,且BD=CE,则BD=.三、解答题:有7⼩题,共66分.解答应写出⽂字说明、证明过程或推演步骤17.(6分)在等腰三⾓形ABC中,底边BC为y,腰长AB长为x,若三⾓形ABC的周长为12,(1)求y关于x的函数表达式;(2)当腰长⽐底边的2倍多1时,求x的值.18.(8分)为了解⼋年级学⽣双休⽇的课外阅读情况,学校随机调查了该年级25名学⽣,得到了⼀组样本数据,其统计表如下:⼋年级25名学⽣双休⽇课外阅读时间统计表(1)请求出阅读时间为4⼩时的⼈数所占百分⽐;(2)试确定这个样本的众数和平均数.19.(8分)如图,直线l1∥l2∥l3,AC分别交l1,l2,l3于点A,B,C;DF分别交l1,l2,l3于点D,E,F;AC与DF交于点O.已知DE=3,EF=6,AB=4.(1)求AC的长;(2)若BE:CF=1:3,求OB:AB.20.(10分)如图,过点P作P A,PB,分别与以OA为半径的半圆切于A,B,延长AO交切线PB于点C,交半圆与于点D.(1)若PC=5,AC=4,求BC的长;(2)设DC:AD=1:2,求的值.21.(10分)在平⾯直⾓坐标系中,反⽐例函数y=(k是常数,且k≠0)的图象经过点A (b﹣1,2).(1)若b=4,求y关于x的函数表达式;(2)点B(﹣2,a)也在反⽐例函数y的图象上:①当﹣2<a≤3且a≠0时,求b的取值范围;②若B在第⼆象限,求证:2a﹣b>﹣1.22.(12分)如图,两条射线BA∥CD,PB和PC分别平分∠ABC和∠DCB,AD过点P,分别交AB,CD与点A,D.(1)求∠BPC的度数;(2)若AD⊥BA,∠BCD=60°,BP=2,求AB+CD的值;(3)若S△ABP为a,S△CDP为b,S△BPC为c,求证:a+b=c.23.(12分)在平⾯直⾓坐标系内,⼆次函数y1=ax2+(2﹣a)x+1与⼀次函数y2=﹣ax+b ﹣1(a,b为常数,且a≠0).(1)若y1,y2的图象都经过点(2,3),求y1,y2的表达式;(2)当y2经过点A(1,3),B(m,3a+3)时,y1也过A,B两点:①求m的值;②(x0,y1),(x0,y2)分别在y1,y2的图象上,实数t使得“当x0<﹣t+3或x0>2t﹣3时,y1>y2”,试求t的最⼩值.参考答案与试题解析⼀、选择题:本⼤题由10个⼩题,每⼩题3分,共30分.每⼩题给出的四个选项中,只有⼀项是符合要求的. 1.【解答】解:﹣2+3=+(3﹣2)=1.故选:A.2.【解答】解:⽤科学记数法表⽰23000为2.3×104.故选:C.3.【解答】解:∵(±4)2=16,∴16的平⽅根是±4,故选:A.4.【解答】解:根据平均数的定义可知,x=3×5﹣2﹣2﹣4﹣3=4,这组数据从⼩到⼤的顺序排列后,处于中间位置的数是3,那么由中位数的定义和众数的定义可知,这组数据的中位数是3,故选:B.5.【解答】解:由x>y,1>a,得到x+1>y+a,故选:B.6.【解答】解:设今年⼉⼦的年龄为x岁,则今年⽗亲的年龄为3x岁,依题意,得:3x﹣5=4(x﹣5).故选:D.7.【解答】解:扇形k的圆⼼⾓度数为:360°﹣60°﹣120°﹣45°=135°,∵s+t=,选项A正确;s=,故选项B错误;,即k>r+t,故选项C错误;,即k+r>s+t,故选项D错误.故选:A.8.【解答】解:A、∵AD平分∠CAB,∴∠CAD=∠BAD.∵CD∥AB,∴∠CDA=∠BAD,∴∠CAD=∠CDA,∴CD=CA=BC,选项A正确;B、∵CD∥AB,∴∠CDO=∠BAO,∠DCO=∠ABO,∴△AOB∽△DOC,∴==,选项B正确;C、∵△CDO∽△BAO,且没有相等的对应边,∴⽆法证出△CDO≌△BAO,选项C错误;D、∵△AOC与△COD同⾼∴=∵△CDO∽△BAO∴=∵AD平分∠CAB,∴∠CAD=∠BAD.∵CD∥AB,∴∠CDA=∠BAD,∴∠CAD=∠CDA,∴AC=CD,∵AC=BC,∴CD=BC,∴===选项D正确.故选:C.9.【解答】解:四⼈的结论如下:甲:b=2a,且a>0,b>0;⼄:4a﹣2b+c=0;丙:a<0,且;丁:25a+5b+c=﹣4.由于甲、丙的a正负恰好相反,则两个中必有⼀个错误,则⼄、丁必正确,联⽴,解得:21a+7b=﹣4,若甲正确,则b=2a,且21a+7b=﹣4,解得a=﹣,b=﹣不符题意,所以甲错误,丙正确;故选:A.10.【解答】解:如图,连接OC,OD.∵OD=OB,∴∠B=∠ODB=β,∴∠POD=∠B+∠ODB=2β,∵CP=CO=OD,∴∠P=∠COP=α,∠OCD=∠ODC,∵∠OCD=∠P+∠COP,∴∠ODC=2α,∵∠P+∠POD+∠ODP=180°,∴3α+2β=180°①,不妨设选项A正确,则α=30°,β=30°,显然不满⾜①,故假设错误.不妨设B正确,则α=30°,β=60°,显然不满⾜①,故假设错误.不妨设C正确,则α=10°,β=75°,满⾜条件①,故选项C正确.不妨设B正确,则α=15°,β=45°,显然不满⾜①,故假设错误.故选:C.⼆、填空题:本⼤题有6个⼩题,每⼩题4分,共24分.11.【解答】解:原式=(1﹣2)xy=﹣xy,故答案为:﹣xy12.【解答】解:∵a∥b,∴∠3=∠4=130°,∴∠5=130°,⼜∵∠2=20°,∴∠1=180°﹣20°﹣130°=30°,故答案为:30°.13.【解答】解:∵a2﹣1=(a+1)(a﹣1),A?(﹣a+1)=A?[﹣(a﹣1)]=﹣A?(a﹣1)=a2﹣1∴﹣A=a+1,∴A=﹣a﹣1故答案为:﹣a﹣114.【解答】解:如图,连接CO,延长CO交AB于H.∵=,∴CH⊥AB,AH=BH,∴∠AHO=90°,∵OA=OB,∴∠A=∠B,∵∠AOC=90°+∠A=4∠B,∴∠A=30°,∵OA=OC=4,∴OH=OA=2,∴AH=2,∴AB=4,故答案为4.15.【解答】解:∵函数y2=的图象过点M(m,1),N(n,﹣2),∴m=2,n=﹣1.如果y1>﹣4,那么x﹣1>﹣4,x>﹣3,如果y2<4,那么<4,x>或x<0.由图可知,若﹣4<y1<y2<4,则x的取值范围为﹣3<x<﹣1或<x<2.故答案为﹣3<x<﹣1或<x<2.16.【解答】解:如图,分别过点E,A,D作BC的垂线,垂⾜分别为M,H,N,则EM∥AH∥DN,BH=CH,∴△BME∽△BHA,∴====,∴设BM=2a,则BH=5a,BC=10a,∴MH=3a,∵AB=AC,∴∠ABC=∠ACB,⼜∵∠EMB=∠DNC=90°,∴△EBM∽△DCN,∴====2,∴CN=BM=a,设DN=x,则EM=2x,在Rt△EMC与Rt△DNB中,MC=8a,BN=9a,EM2+MC2=EC2,DN2+BN2=BD2,∵BD=CE,∴EM2+MC2=DN2+BN2,即(2x)2+(8a)2=x2+(9a)2,化简得,x2=a2,在Rt△DNC中,DN2+CN2=CD2,∴x2+a2=22,∴a2+a2=4,化简得,a2=,∴x2=,在Rt△BDN中,BD====2,故答案为:2.三、解答题:有7⼩题,共66分.解答应写出⽂字说明、证明过程或推演步骤17.【解答】解:(1)∵等腰三⾓形的腰长为x,底边长为y,周长为12,∴y=12﹣2x;(2)∵腰长⽐底边的2倍多1,∴x=2y+1,∴x=2(12﹣2x)+1,解得:x=5.18.【解答】解:(1)阅读量为4⼩时的有25﹣3﹣4﹣6﹣3﹣2=7,所以阅读时间为4⼩时的⼈数所占百分⽐为×100%=28%;(2)阅读量为4⼩时的⼈数最多,所以众数为4⼩时,排序后第13⼈的阅读时间为中位数,即3⼩时,所以中位数为3⼩时.19.【解答】解:(1)∵l1∥l2∥l3,∴,即,解得:AC=12;(2)∵l1∥l2∥l3,∴,∵AB=4,AC=12,∴BC=9,∴OB=,∴.20.【解答】解:(1)∵P A,PB是⊙O的切线∴P A=PB,∠P AC=90°∴AP==3∴PB=AP=3∴BC=PC﹣PB=2(2)连接OB,∵CD:AD=1:2,AD=2OD∴CD=OD=OB∴CO=2OB∵PB是⊙O切线∴OB⊥PC∴∠OBC=90°=∠P AC,且∠C=∠C∴△OBC∽△P AC∴∴PC=2P A,∴=21.【解答】解:(1)∵b=4,∴A(3,2),∵反⽐例函数y=(k是常数,且k≠0)的图象经过点A.∴k=3×2=6,∴y=;(2)①∵反⽐例函数y=(k是常数,且k≠0)的图象经过点A(b﹣1,2),点B(﹣2,a)也在反⽐例函数y的图象上,∴2(b﹣1)=﹣2a,∴a=1﹣b,∵﹣2<a≤3且a≠0,∴﹣2<1﹣b≤3,解得﹣2≤b<3且b≠1.②∵a=1﹣b,∴b=1﹣a,∵若B在第⼆象限,a>0,∴a﹣1>﹣1,∴﹣b=a﹣1>﹣1∴2a﹣b>﹣1.22.【解答】解:(1)∵BA∥CD,∴∠ABC+∠BCD=180°,∵PB和PC分别平分∠ABC和∠DCB,∴∠PBC=∠ABC,∠PCB=∠BCD,∴∠PBC+∠PCB=×(∠ABC+∠BCD)=90°,∴∠BPC=90°;(2)若∠BCD=60°,BP=2则∠ABP=∠ABC=60°,∠PCD=∠BCD=30°在Rt△ABP中,BP=2,AB=1在Rt△BCP中,CP=2在Rt△PCD中,PD=,CD=3∴AB+CD=4(3)如图,作PQ⊥BC∵∠ABP=∠QBP,∠BAP=∠BQP,BP=BP∴△ABP≌△BQP(AAS)同理△PQC≌△PCD(AAS)∴S△BCP=S△BPQ+S△PQC=S△ABP+S△PCD∴a+b=c23.【解答】解:(1)点(2,3)分别代⼊y1=ax2+(2﹣a)x+1与⼀次函数y2=﹣ax+b﹣1,得到:a=﹣1,b=2,∴y1=﹣x2+3x+1,y2=x+1,(2)①将点A(1,3),B(m,3a+3)代⼊y2=﹣ax+b﹣1,∴,∴m=﹣2,b﹣a=4,②将点A(1,3),B(m,3a+3)代⼊y1=ax2+(2﹣a)x+1,∴,∴a=3,∴b=7,∴y1=3x2﹣x+1,y2=﹣3x+6,∵(x0,y1),(x0,y2)分别在y1,y2的图象上,∴y1=3x02﹣x0+1,y2=﹣3x0+6,∵y1>y2,∴3x02﹣x0+1>﹣3x0+6,∴(x0﹣1)(3x0+5)>0,∴x0>1或x0<﹣,∵当x0<﹣t+3或x0>2t﹣3时,y1>y2,∴﹣t+3≤﹣或2t﹣3≥1,∴t≥,∴t的最⼩值是;。
2020年浙江省杭州市中考数学综合模拟试卷附解析

2020年浙江省杭州市中考数学综合模拟试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1. 小明在灯光照射下,影子在他的左侧,则灯泡在他的( ) A .正上方 B .左侧上方 C .右侧上方D .后方2.如图,⊙I 是ABC △的内切圆,D ,E ,F 为三个切点,若52DEF =∠,则A ∠的度数为( ) A .76B .68C .52D .383.如图两建筑物的水平距离为a 米,从A 点测得D 点的俯角为α,测得C 点的俯角为β,则较低建筑物CD 的高为( ) A .a 米 B .αtan a米 C .βtan a米 D .)tan (tan αβ-a 米4.已知方程220ax bx c ++-=的两根是-3、-1,则抛物线2y ax bx c =++必过点( ) A .(-3,0),(-1,0) B .(-3,-2),(-1,-2) C .(-3,2) ,(-1,2)D .不能确定5.下列四个点中,可能在反比例函数y =kx (k>0)的图象上的点是( ) A .(2,-3) B .(-4,-5)C .(-3,2)D .(2,0) 6.用反证法证明“在同一平面内,若a ⊥b ,b ⊥c ,则a ∥c ”时,应假设( )A .a 不垂直于cB .a ,c 都不垂直bC .a ⊥cD .a 与c 相交7.如图所示,直线a ,b 被直线c 所截,现给出下面四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能判定a ∥b 的条件的序号是( ) A .①②B .①③C .①④D .③④8.在□ABCD 中,对角线AC ,BD 的长分别为6和8,则边AB 的取值范围为( ) A .2<AB<14B .1<AB<7C .1<AB<5D .2<AB<109.20n n 为( ) A .2B .3C .4D .510.2007年我国铁路进行了第六次大提速,一列火车由甲市匀速驶往相距600 km 的乙市,火车的速度是200 km /h ,火车离乙市的距离S (单位:km )随行驶时间t (单位:h )变化的函数关系用图象表示正确的是( )A .B .C .D .11.等腰三角形的一边长是8,周长是l8,则它的腰长是( )A .8B .5C .2D .8或512.下列各直线的表示法中,正确的是( )A .B .C .D .13.第五次全国人13普查资料显示,2000年海南省总人口为786.75万,如图表示海南省 2000年接受初中教育这一类别的数据丢失了,那么,结合图中信息,可推知2000年海南省接受初中教育的人数为 ( ) A .24.94万B .255.69万C .270.64万D .137.21万2000年海南省受教育程度人口统计图二、填空题14.已知:若432zy x ==,则=+--+z y x z y x 22 . 15.如图所示的抛物线是二次函数2231y ax x a =-+-的图象,那么a 的值是 . 16.如果一个三角形的三边长分别为1,k ,3,化简7-4k 2-36k +81 -∣2k -3∣的结果是 .17.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那最省事的办法是带 去玻璃店.18.已知关于x 的不等式50x m -<只有两个正整数解,则m 的取值范围是 . 19.三角形三边长分别为 4,12a -,9,则a 的取值范围是 .20.在△ABC 中,AB = AC ,∠A 的外角等于 150°,则∠B 的外角等于 . 21.任意抛一枚一元的硬币,出现正面朝上与反面朝上的可能性的大小关系是 . 22.如图所示,在△ABC 中,∠B=35°,∠C=60°,AE 是∠BAC 的平分线,AD ⊥BC 于D ,则∠DAE 的度数为 .23.钟表在12时 15分时刻的时针与分针所成的角度是 .24.如图,直线AB 、CD 、EF 交于点O ,且∠EOD=90°,若∠COA=28°,则∠AOF 、∠BOC 和∠EOA 的度数分别是 、 、 .25.试求满足32x -<x 的值.三、解答题26.已知扇形的圆心角为 150°,扇形面积是240πcm 2,求扇形的弧长. 20π27.把下列多项式分解因式:(1)2m(a-b)-3n(b-a) (2)3123x x -(3)b a b a 4422+-- (4)4122-+-y y x28.用如图所示的大正方形纸片 1 张,小正方形纸片 1 张,长方形纸片 2 张,将它们拼成一个正方形,根据图示可以验证的等式是什么?222++=+a ab b a b2()29.丽水市为打造“浙江绿谷”品牌,决定在省城举办农副产品展销活动.某外贸公司推出品牌产品“山山牌”香菇、“奇尔”惠明茶共10 t前往参展,用6辆汽车装运,每辆汽车规定满载,且只能装运一种产品;因包装限制,每辆汽车满载时能装香菇l.5 t或茶叶2 t.问装运香菇、茶叶的汽车各需多少辆?30.检验括号中的数是否为方程的解:(1)5m-3=7(m=3,m=2)(2)4y+3=6y-7(y=4,y=5)【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.A3.D4.C5.B6.D7.A8.B9.D10.D11.DD13.B二、填空题 14.7415. 1- 16.117.③18.10<m ≤1519.-6<a<-220.105°21.相等22.12.5°23.82.5°24.62°,l52°,l80°25.-1,0,1三、解答题 26. 20π27.(1)(a-b)(2m+3n),(2)3x(1-2x)(1+2x),(3)(a-b)(a+b-4),(4)(x-y+21)(x+y-21)222a ab b a b++=+29.2()装运香菇、茶叶的汽车分别需要 4辆、2辆.30.(1)m=2是方程的解,m=3不是 (2)y=5 是方程的解,y=4不是。
2020年浙江省中考数学预测试卷(含答案)

浙江省中考数学预测试卷考生须知:1.全卷分试题卷Ⅰ、试题卷Ⅱ和答题卷.试题卷共6页,有三个大题,26个小题.满分为150分,考试时间为120分钟.2.请将姓名、准考证号分别填写在答题卷的规定位置上.3.答题时,把试题卷I的答案在答题卷I上对应的选项位置,用2B铅笔涂黑、涂满.将试题卷II的答案用黑色字迹钢笔或签字笔书写,答案必须按照题号顺序在答题卷II各题目规定区域内作答,做在试题卷上或超出答题卷区域书写的答案无效.4.不允许使用计算器,没有近似计算要求的试题,结果都不能用近似数表示.5.抛物线2y ax bx c=++的顶点坐标为24(,)24b ac ba a--.试题卷Ⅰ一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1.下列四个数中,最小..的数是(▲ ).A.2-B.1-C.0 D.22.函数1y x=-的自变量x的取值范围是(▲ ).A.1x<B.1x≠C.1x≥D.1x≤3.下列运算正确的是(▲ ).A.a+a=2a2B.a2·a=2a2C.(-ab)2=2ab2D.(2a)2 ÷a=4a4.下列图形中,既是轴对称图形又是中心对称图形的有(▲ ).A.4个B.3个C.2个D.1个5.将抛物线y=x2向下平移3个单位,再向右平移2个单位,那么得到的抛物线的解析式为(▲).A.y=(x﹣2)2﹣3B.y=(x﹣2)2+3C.y=(x+2)2﹣3D.y=(x+2)2+36.如图是一个由若干个棱长为1cm的正方体构成的几何体的三视图,则构成这个几何体的体积为(▲ )cm3.A.3 B.4 C.5 D.67.一把大遮阳伞,伞面撑开时可近似地看成是圆锥形,如图,它的母线长是2.5米,底面半径为2(第7题)(第6题)主视图左视图俯视图(第8题)PDCBAQ米,则做这把遮阳伞需用布料的面积是( ▲ )平方米(接缝不计).A .254π B .5π C .4π D .3π8.如图,菱形ABCD ,∠B =120°,P 、Q 分别是AD 、AC 的中点,如果 PQ =3,那么菱形ABCD的面积为( ▲ ).A .6B .183C .24D .3639.在如图的坐标平面上,有一条通过点(-3,-2)的直线l ,若四点(-2,a )、(0,b )、(c ,0)、(d ,-1)在l 上,则下列判断正确的是( ▲ ).A .a =3B .b >-2C .c <-3D .d =210.如图,直角三角板ABC 的斜边AB=12cm ,∠A=30°,将三角板ABC 绕点C 顺时针旋转90°至三角板A ′B ′C ′的位置后,再沿CB 方向向左平移,使点B ′落在原三角板ABC 的斜边AB 上,则三角板A ′B ′C ′平移的距离为( ▲ ).A .6cmB .()623cm -C .3 cmD .()436cm - 11.若某同学在一次综合性测试中语文、数学、英语、科学、社会5门学科的名次在其所在班级里都不超过3 (记第一名为1,第二名为2,第三名为3,依次类推且没有并列名次情况),则称该同学为超级学霸。
2020年浙江省杭州市中考数学模拟试卷及答案解析
2020年浙江省杭州市中考数学模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)小明测量身高后,用四舍五入法得知其身高约为1.71米,则他的身高测量值不可能是()A.1.705B.1.709C.1.713D.1.7182.(4分)下列语句写成数学式子正确的是()A.9是81的算术平方根:±=9B.5是(﹣5)2的算术平方根:±=5C.±6是36的平方根:=±6D.﹣2是4的负的平方根:﹣=﹣23.(4分)下列定理中,逆命题是假命题的是()A.在一个三角形中,等角对等边B.全等三角形对应角相等C.有一个角是60度的等腰三角形是等边三角形D.等腰三角形两个底角相等4.(4分)在一次数学竞赛中,竞赛题共有25道,每道题都给出4个答案,其中只有一个答案是正确的,选对得4分,不选或选错扣2分.规定得分不低于60分得奖,那么得奖者至少应选对()A.18道题B.19道题C.20道题D.21道题5.(4分)已知一个函数图象经过(1,﹣4),(2,﹣2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是()A.正比例函数B.一次函数C.反比例函数D.二次函数6.(4分)当k取不同的值时,y关于x的函数y=kx+2(k≠0)的图象为总是经过点(0,2)的直线,我们把所有这样的直线合起来,称为经过点(0,2)的“直线束”.那么,下面经过点(﹣1,2)的直线束的函数式是()A.y=kx﹣2(k≠0)B.y=kx+k+2(k≠0)C.y=kx﹣k+2(k≠0)D.y=kx+k﹣2(k≠0)7.(4分)在同一平面直角坐标系xOy中,函数y=kx+1与y=(k≠0)的图象可能是()A.B.C.D.8.(4分)我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”.如图是由弦图变化得到,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3.若S1+S2+S3=12,则下列关于S1、S2、S3的说法正确的是()A.S1=2B.S2=3C.S3=6D.S1+S3=89.(4分)如图,菱形ABCD的对角线AC与BD相交于O,∠ABC≠90°,则图中全等的三角形共有()。
浙江省杭州市2020年中考数学模拟试卷2及参考答案
浙江省杭州市2020年中考数学模拟试卷2一、选择题(本大题共10小题,每小题3分,共30分。
)1. 下列说法错误的是()A . 有理数和无理数统称为实数;B . 无限不循环小数是无理数;C . 是分数;D .是无理数2. 下列四个立体图形中,其主视图是轴对称图形但不是中心对称图形的是( )A .B .C .D .3. 如图所示的几何体的左视图是()A .B .C .D .4. 若2+2+2+2=2,则n=()A . ﹣1B . ﹣2C . 0D .5. 如图,一根直尺EF压在三角板的角∠BAC上,欲使CB∥EF,则应使∠ENB的度数为()A .B .C .D .6. 小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:抛掷次数100200300400500正面朝上的频数5398156202244若抛掷硬币的次数为1000,则“正面朝上”的频数最接近()A . 20B . 300C . 500D . 8007. 如图,点A在以BC为直径的⊙O内,且AB=AC,以点A为圆心,AC长为半径作弧,得到扇形ABC,剪下扇形ABC 围成一个圆锥(AB和AC重合),若∠BAC=120°,BC=2 ,则这个圆锥底面圆的半径是()A .B .C .D .8. 我国古代数学著作《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何?”大致意思是:“用一根绳子去量一根木条,绳子剩余4.5尺,将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”,设绳子长x尺,木条长y尺,根据题意所列方程组正确的是()n n n nA .B .C .D .9. 如图,点A 在双曲线y= 上,点B 在双曲线y= (k≠0)上,AB ∥x 轴,过点A 作AD ⊥x 轴于D .连接OB ,与AD 相交于点C ,若AC=2CD ,则k 的值为()A . 6B . 9C . 10D . 1210. 如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“ ”方向排序,如,, ,…,根据这个规律,第 个点的横坐标为()A . 44 B . 45 C . 46 D . 47二、填空题(本大题共6小题,每小题4分,共24分)11. 若代数式和 的值相等,则x=________.12. 计算 × 的值是________.13. 某校九年级科技小组,利用日晷原理,设计制造了一台简易的“日晷”,并在一个阳光明媚的日子里记录了不同时刻晷针的影长,其中10:00时的影长被墨水污染.请根据规律,判断10:00时,该晷针的影长是________cm.14. 在平面直角坐标系中,点A (2,0),B (0,4),求点C ,使以点B 、O 、C 为顶点的三角形与△ABO 全等,则点C的坐标为________.15. 二次函数y=ax +bx+c (a≠0)的图象如图所示,根据图象可知:方程ax +bx+c=k 有两个不相等的实数根,则k 的取值范围为________.16. 已知Rt △ABC 中,∠C =90°,BC =1,AC =4,如图所示把边长分别为x , x , x , …,x 的n 个正方形依次放入△ABC 中,则第n 个正方形的边长x =________(用含n 的式子表示,n≥1).22123n n三、解答题(本大题共7小题,共66分)17.(1)计算:;(2)先化简,再求值:,其中, .18. 某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)求图①中m的值;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这2500只鸡中,质量为2.0kg的约有多少只?19. 某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.(1)求第一次每支铅笔的进价是多少元?(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问每支售价至少是多少元?20. 如图,已知BD是矩形ABCD的对角线.(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明).(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由.21. 如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(12,0),B(8,6),C(0,6).动点P从点O出发,以每秒3个单位长度的速度沿边OA向终点A运动,动点Q从点B同时出发,以每秒2个单位长度的速度沿2边BC向终点C运动.设运动的时间为t秒,PQ=y.(1) 直接写出y 关于t 的函数解析式及t 的取值范围:,(2) 当PQ = 3 时,求t 的值,(3) 连接OB 交PQ 于点D ,若双曲线y= (k≠0)经过点D ,问k 的值是否变化?若不变化,请求出k 的值,若变化,请说明理由.22. 如图1,△ABC 是等腰直角三角形,∠BAC=90°,AB=AC ,四边形ADEF 是正方形,点B 、C 分别在边AD 、AF 上,此时BD=CF ,BD ⊥CF 成立.(1)当△ABC 绕点A 逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF 成立吗?若成立,请证明,若不成立,请说明理由;(2)当△ABC 绕点A 逆时针旋转45°时,如图3,延长BD 交CF 于点H .①求证:BD ⊥CF ;②当AB=2,AD=3 时,求线段DH 的长.23. 如图1,经过原点O 的抛物线y=ax +bx (a≠0)与x 轴交于另一点A( ,0),在第一象限内与直线y=x 交于点B (2,t ).(1) 求这条抛物线的表达式;(2) 在第四象限内的抛物线上有一点C ,满足以B ,O ,C 为顶点的三角形的面积为2,求点C 的坐标;(3) 如图2,若点M 在这条抛物线上,且∠MBO=∠ABO ,在(2)的条件下,是否存在点P ,使得△POC ∽△MOB ?若存在,求出点P 的坐标;若不存在,请说明理由.参考答案1.22.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.。
2020年浙江省杭州市中考数学模拟试题附解析
2020年浙江省杭州市中考数学模拟试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下面四幅图中,灯光与物体影子的位置最合理的选项是()A.B.C.D.2.已知二次函数y=ax2+bx+c (a≠0)的顶点坐标为M (2,-4 ),且其图象经过点A (0, 0 ),则a, b , c的值是()A.a=l, b=4, c=0 B.a=1,b=-4,c=0 C.a=-1,b=-1,c=0 D.a=1,b=-4,c=8 +的值是在()3.估算192A.5和 6之间B.6和 7之间C.7和8之间D.8和 9 之间4.若5b=,且点M(a,b)在第二象限,则点M的坐标是()a=,4A.(5,4)B.(-5,4)C.(-5,-4)D.(5,-4)5.某种奶制品的包装盒上注明“蛋白质≥2.9%”,它的含义是()A.蛋白质的含量是2.9% B.蛋白质的含量高于2. 9%C.蛋白质的含量不低于 2. 9% D.蛋白质的含量不高于 2. 9%6.根据图中所给数据,能得出()A.a∥b,c∥dB.a∥b,但c与d不平行C.c∥d,但a与b不平行D.a 与b,c 与d均不互相平行7.如图,AB∥CD,∠1=110°, ∠ECD =70°,∠E 等于()A.30°B. 40°C. 50°D. 60°8.已知113x y -=,则55x xy y x xy y+---等于( ) A .27- B .27 C .72 D .72-- 9.直线b 外有一点A ,A 到b 的距离为3 cm ,P 为直线b 上任意一点,则( )A .AP>3B .AP ≥3C .AP=3D .AP<3 10.已知∠AOB 与其内任意一点P ,若过点P 画一条直线与0A 平行,则这样的直线( )A .有且只有一条B .有两条C .有无数条D .不存在 二、填空题11.已知点P (a ,m )和Q (b ,m )是抛物线3422-+=x x y 上的两个不同点,则a +b = .12.已知扇形面积为 12π㎝,半径为 8 cm ,则扇形的弧长是 .13.选一个你喜欢的合理的实数x ,求二次根式1-2x 的值,则1-2x = .14.在梯形ABCD 中,AD ∥BC ,∠C=90°,且AB=AD ,连结BD ,过A 作BD 垂线交BC 于E ,连结ED ,如果EC=5 cm ,CD=12 cm ,那么梯形ABCD 的面积是 cm 2.15.如图,四边形的四条边AB 、BC 、CD 和DA ,它们的长分别是2、 5 .5、4,其中∠B =90°,那么四边形ABCD 的面积为 .16.如图所示,把一张长方形纸片ABCD 沿EF 折叠后,ED 与BC 的交点为G ,点D ,C 分别落在D ′,C ′位置,若∠EFG=55°,则∠l= , ∠2= .17.如图所示是某班50名学生身高的频数分布折线图,那么组中值为155cm 的学生有人,组中值为l65 cm 及165 cm 以上的学生占全班学生人数的 %.18.26x ++ =2(3)x +.19.李师傅随机抽查了某单位2009年4月份里6天的日用水量(单位:吨),结果如下:7,8,8,7,6,6.根据这些数据.估计4月份该单位的用水总量为 .20.如图,在长方形ABCD 中,AB =1,BC =2则AC =___________.21. 如图,△ABC 中,∠A=30°,以 BE 为边,将此三角形对折,其次,又以BA 为边,再一次对折,C 点落在BE 上,此时∠CDB= 80°,则原三角形的∠B 等于 .22.如图是一个个五叶风车示意图,它可以看做是由“基本图案” 绕着点O 通过 次旋转得到的.23.如图,若∠AOC=∠BOD=90°,∠AOB=55°,则∠DOC = .24.一个两位数,个位上的数字为a ,十位上的数字比个位上的数字大2,用代数式表示这个两位数为 .三、解答题25.已知y 是z 的一次函数,z 是x 的正比例函数,问:(1)y 是x 的一次函数吗?(2)若当5x =时,2y =-;当3x =-时,6y =;当=1x 时,求y 的值.26.已知:如图,AB=AD,AC=AE,∠BAD=∠CAE,则BC=DE ,请说明理由.27.图②、③、④、⑤分别由图①变换而成的,请你分析它们的形成过程.28.两个代数式的和是223x xy y -+,其中一个代数式是22x xy +,试求出另一个代数式.29.在图中的 9 个方格内填入 5 个2 和4个-2,使每行每列及斜对角的三个数的乘积都是 8.30.如图,在一个横截面为Rt △ABC 的物体中,∠ACB=90°,∠CAB=30°,BC=1米.工人师傅要把此物体搬到墙边,先将AB边放在地面(直线l)上,再按顺时针方向绕点B翻转到△A1BC1的位置(BC1在l上),最后沿射线BC1的方向平移到△A2B2C2的位置,其平移的距离为线段AC的长度(此时A2C2恰好靠在墙边).⑴请直接写出AB、AC的长;⑵画出.......,并求出该路径的长度(精确到0.1米)..在搬动此物体的整个过程中A.点所经过的路径【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.B4.B5.C6.B7.B8.B9.B10.A二、填空题-212.3π13.0(答案不惟一)14.18615.6+ 516.70°,ll0°17.15,6018.919.21020.521.75°22.△0AB,423.55°24.a+1120三、解答题25.(1)y是x 的一次函数 (2)226.证明△ABC≌△ADE,得BC=DE.27.由图①经过连续四次绕圆心顺时针旋转90°得到2x2-3xy+y229.填法不唯一,略30.(1)AB=2(米),AC=3(米);(2)画出A点经过的路径:经过的路径长4π/3+3≈5.9(米).。
【2020年】浙江省中考数学预测试题2套(含答案)
【2020年】浙江省中考数学预测试题(共2套题)预测试卷一一、选择题(本题共10小题,每小题3分,共30分)1. 2018的相反数是()A. 2018B. ﹣2018C.D.【答案】B【解析】分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.详解:因为与只有符号不同,的相反数是故选B.点睛:本题考查了相反数的概念,熟记相反数的定义是解题的关键.2. 计算﹣3a•(2b),正确的结果是()A. ﹣6abB. 6abC. ﹣abD. ab【答案】A【解析】分析:根据单项式的乘法解答即可.详解:-3a•(2b)=-6ab,故选:A.点睛:此题考查单项式的除法,关键是根据法则计算.3. 如图所示的几何体的左视图是()A. B. C. D.【答案】D【解析】从左边看是一个正方形,正方形的左上角是一个小正方形,故选C.4. 某工艺品厂草编车间共有16名工人,为了了解每个工人的日均生产能力,随机调查了某一天每个工人的生产件数.获得数据如下表:生产件数(件)10 11 12 13 14 15人数(人) 1 5 4 3 2 1则这一天16名工人生产件数的众数是()A. 5件B. 11件C. 12件D. 15件【答案】B【解析】分析:众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.详解:由表可知,11件的次数最多,所以众数为11件,故选:B.点睛:本题主要考查众数,解题的关键是掌握众数的定义:众数是指一组数据中出现次数最多的数据.5. 如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A. 20°B. 35°C. 40°D. 70°【答案】B【解析】分析:先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.再利用角平分线定义即可得出∠ACE=∠ACB=35°.详解:∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=∠ACB=35°.故选:B.点睛:本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.6. 如图,已知直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于M,N两点.若点M的坐标是(1,2),则点N的坐标是()A. (﹣1,﹣2)B. (﹣1,2)C. (1,﹣2)D. (﹣2,﹣1)【答案】A【解析】分析:直接利用正比例函数的性质得出M,N两点关于原点对称,进而得出答案.详解:∵直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于M,N两点,∴M,N两点关于原点对称,∵点M的坐标是(1,2),∴点N的坐标是(-1,-2).故选:A.点睛:此题主要考查了反比例函数与一次函数的交点问题,正确得出M,N两点位置关系是解题关键.7. 某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A. B. C. D.【答案】C【解析】分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.详解:将三个小区分别记为A、B、C,列表如下:A B CA (A,A)(B,A)(C,A)B (A,B)(B,B)(C,B)C (A,C)(B,C)(C,C)由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为.故选:C.点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.8. 如图,已知在△ABC中,∠BAC>90°,点D为BC的中点,点E在AC上,将△CDE沿DE折叠,使得点C 恰好落在BA的延长线上的点F处,连结AD,则下列结论不一定正确的是()A. AE=EFB. AB=2DEC. △ADF和△ADE的面积相等D. △ADE和△FDE的面积相等【答案】C【解析】分析:先判断出△BFC是直角三角形,再利用三角形的外角判断出A正确,进而判断出AE=CE,得出CE是△ABC的中位线判断出B正确,利用等式的性质判断出D正确.详解:如图,连接CF,∵点D是BC中点,∴BD=CD,由折叠知,∠ACB=∠DFE,CD=DF,∴BD=CD=DF,∴△BFC是直角三角形,∴∠BFC=90°,∵BD=DF,∴∠B=∠BFD,∴∠EAF=∠B+∠ACB=∠BFD+∠DFE=∠AFE,∴AE=EF,故A正确,由折叠知,EF=CE,∴AE=CE,∵BD=CD,∴DE是△ABC的中位线,∴AB=2DE,故B正确,∵AE=CE,∴S△ADE=S△CDE,由折叠知,△CDE≌△△FDE,∴S△CDE=S△FDE,∴S△ADE=S△FDE,故D正确,∴C选项不正确,故选:C.点睛:此题主要考查了折叠的性质,直角三角形的判定和性质,三角形的中位线定理,作出辅助线是解本题的关键.9. 尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点;②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;③连结OG.问:OG的长是多少?大臣给出的正确答案应是()A. rB. (1+)rC. (1+)rD. r【答案】D【解析】分析:如图连接CD,AC,DG,AG.在直角三角形即可解决问题;详解:如图连接CD,AC,DG,AG.∵AD是⊙O直径,∴∠ACD=90°,在Rt△ACD中,AD=2r,∠DAC=30°,∴AC=r,∵DG=AG=CA,OD=OA,∴OG⊥AD,∴∠GOA=90°,∴OG=r,故选:D.点睛:本题考查作图-复杂作图,正多边形与圆的关系,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.10. 在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是()A. a≤﹣1或≤a<B. ≤a<C. a≤或a>D. a≤﹣1或a≥【答案】A【解析】分析:根据二次函数的性质分两种情形讨论求解即可;详解:∵抛物线的解析式为y=ax2-x+2.观察图象可知当a<0时,x=-1时,y≤2时,满足条件,即a+3≤2,即a≤-1;当a>0时,x=2时,y≥1,且抛物线与直线MN有交点,满足条件,∴a≥,∵直线MN的解析式为y=-x+,由,消去y得到,3ax2-2x+1=0,∵△>0,∴a<,∴≤a<满足条件,综上所述,满足条件的a的值为a≤-1或≤a<,故选:A.点睛:本题考查二次函数的应用,二次函数的图象上的点的特征等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.二、填空题(本题共6小题,每小题4分,共24分)11. 二次根式中字母x的取值范围是_____.【答案】x≥3【解析】分析:由二次根式有意义的条件得出不等式,解不等式即可.详解:当x-3≥0时,二次根式有意义,则x≥3;故答案为:x≥3.点睛:本题考查了二次根式有意义的条件、不等式的解法;熟记二次根式有意义的条件是解决问题的关键.12. 当x=1时,分式的值是_____.【答案】【解析】由题意得:,解得:x=2. 故答案为:213. 如图,已知菱形ABCD,对角线AC,BD相交于点O.若tan∠BAC=,AC=6,则BD的长是_____.【答案】2【解析】分析:根据菱形的对角线互相垂直平分可得AC⊥BD,OA=AC=3,BD=2OB.再解Rt△OAB,根据tan∠BAC=,求出OB=1,那么BD=2.详解:∵四边形ABCD是菱形,AC=6,∴AC⊥BD,OA=AC=3,BD=2OB.在Rt△OAB中,∵∠AOD=90°,∴tan∠BAC=,∴OB=1,∴BD=2.故答案为2.点睛:本题考查了菱形的性质,解直角三角形,锐角三角函数的定义,掌握菱形的对角线互相垂直平分是解题的关键.14. 如图,已知△ABC的内切圆⊙O与BC边相切于点D,连结OB,OD.若∠ABC=40°,则∠BOD的度数是_____.【答案】70°【解析】分析:先根据三角形内心的性质和切线的性质得到OB平分∠ABC,OD⊥BC,则∠OBD=∠ABC=20°,然后利用互余计算∠BOD的度数.详解:∵△ABC的内切圆⊙O与BC边相切于点D,∴OB平分∠ABC,OD⊥BC,∴∠OBD=∠ABC=×40°=20°,∴∠BOD=90°-∠OBD=70°.故答案为70°.点睛:本题考查了三角形内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了等腰三角形的判定与性质和三角形的外接圆.15. 如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是_____.【答案】﹣2【解析】分析:根据正方形的性质结合题意,可得出点B的坐标为(-,-),再利用二次函数图象上点的坐标特征即可得出关于b的方程,解之即可得出结论.详解:∵四边形ABOC是正方形,∴点B的坐标为(-,-).∵抛物线y=ax2过点B,∴-=a(-)2,解得:b1=0(舍去),b2=-2.故答案为:-2.点睛:本题考查了抛物线与x轴的交点、二次函数图象上点的坐特征以及正方形的性质,利用正方形的性质结合二次函数图象上点的坐标特征,找出关于b的方程是解题的关键.16. 在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH 为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD的边长为,此时正方形EFGH的而积为5.问:当格点弦图中的正方形ABCD的边长为时,正方形EFGH的面积的所有可能值是_____(不包括5).【答案】9或13或49.【解析】分析:共有三种情况:①当DG=,CG=2时,满足DG2+CG2=CD2,此时HG=,可得正方形EFGH的面积为13;②当DG=8,CG=1时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH的面积为49;③当DG=7,CG=4时,满足DG2+CG2=CD2,此时HG=3,可得正方形EFGH的面积为9.详解:①当DG=,CG=2时,满足DG2+CG2=CD2,此时HG=,可得正方形EFGH的面积为13.②当DG=8,CG=1时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH的面积为49;③当DG=7,CG=4时,满足DG2+CG2=CD2,此时HG=3,可得正方形EFGH的面积为9.故答案为:9或13或49.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考填空题中的压轴题.三、解答题(本题有8个小题,共66分)17. 计算:(﹣6)2×(﹣).【答案】6【解析】分析:原式先计算乘方运算,再利用乘法分配律计算即可求出值.详解:原式=36×(-)=18-12=6.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18. 解不等式≤2,并把它的解表示在数轴上.【答案】x≤2,将不等式的解集表示在数轴上见解析.【解析】分析:先根据不等式的解法求解不等式,然后把它的解集表示在数轴上.详解:去分母,得:3x-2≤4,移项,得:3x≤4+2,合并同类项,得:3x≤6,系数化为1,得:x≤2,将不等式的解集表示在数轴上如下:点睛:本题考查了解一元一次不等式,解答本题的关键是掌握不等式的解法以及在数轴上表示不等式的解集.19. 已知抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),求a,b的值.【答案】a的值是1,b的值是﹣2.【解析】分析:根据抛物线y=ax2+bx-3(a≠0)经过点(-1,0),(3,0),可以求得a、b的值,本题得以解决.详解:∵抛物线y=ax2+bx-3(a≠0)经过点(-1,0),(3,0),∴,解得,,即a的值是1,b的值是-2.点睛:本题考查二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.20. 某校积极开展中学生社会实践活动,决定成立文明宣传、环境保护、交通监督三个志愿者队伍,每名学生最多选择一个队伍,为了了解学生的选择意向,随机抽取A,B,C,D四个班,共200名学生进行调查.将调查得到的数据进行整理,绘制成如下统计图(不完整)(1)求扇形统计图中交通监督所在扇形的圆心角度数;(2)求D班选择环境保护的学生人数,并补全折线统计图;(温馨提示:请画在答题卷相对应的图上)(3)若该校共有学生2500人,试估计该校选择文明宣传的学生人数.【答案】(1)97.2°;(2)D班选择环境保护的学生人数是15人;补全折线统计图见解析;(3)估计该校选择文明宣传的学生人数是950人.【解析】分析:(1)由折线图得出选择交通监督的人数,除以总人数得出选择交通监督的百分比,再乘以360°即可求出扇形统计图中交通监督所在扇形的圆心角度数;(2)用选择环境保护的学生总人数减去A,B,C三个班选择环境保护的学生人数即可得出D班选择环境保护的学生人数,进而补全折线图;(3)用2500乘以样本中选择文明宣传的学生所占的百分比即可.详解:(1)选择交通监督的人数是:12+15+13+14=54(人),选择交通监督的百分比是:×100%=27%,扇形统计图中交通监督所在扇形的圆心角度数是:360°×27%=97.2°;(2)D班选择环境保护的学生人数是:200×30%﹣15﹣14﹣16=15(人).补全折线统计图如图所示;(3)2500×(1﹣30%﹣27%﹣5%)=950(人),即估计该校选择文明宣传的学生人数是950人.点睛:本题考查折线统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件、利用数形结合的思想解答问题.21. 如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求的长.【答案】(1)证明见解析;(2)【解析】分析:(1)根据平行线的性质得出∠AEO=90°,再利用垂径直定理即可证明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省杭州市2020年中考数学预测试题含答案(共2套题)预测试卷一一、选择题(本大题共15小题,每小题3分,共45分。
下面每小题给出的四个选项中,有且只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内)1.(3分)如果a与﹣2互为相反数,那么a等于()A.﹣2 B.2 C.﹣ D.2.(3分)小明从正面观察如图所示的两个物体,看到的是()A.B.C.D.3.(3分)我市2018年的最高气温为39℃,最低气温为零下7℃,则计算2018年温差列式正确的()A.(+39)﹣(﹣7)B.(+39)+(+7)C.(+39)+(﹣7)D.(+39)﹣(+7)4.(3分)化简的结果是()A.﹣2 B.±2 C.2 D.45.(3分)下列各式计算正确的是()A.a12÷a6=a2 B.(x+y)2=x2+y2C.D.6.(3分)抛物线y=3(x﹣1)2+1的顶点坐标是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)7.(3分)如图,正方形硬纸片ABCD的边长是4,点E、F分别是AB、BC的中点,若沿左图中的虚线剪开,拼成如图的一座“小别墅”,则图中阴影部分的面积是()A.2 B.4 C.8 D.108.(3分)某青年排球队12名队员的年龄情况如表:年龄18 19 20 21 22人数 1 4 3 2 2则这个队队员年龄的众数和中位数是()A.19,20 B.19,19 C.19,20.5 D.20,199.(3分)某校九(1)班的全体同学最喜欢的球类运动用如图所示的统计图来表示,下面说法正确的是()A.从图中可以直接看出喜欢各种球类的具体人数B.从图中可以直接看出全班的总人数C.从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况D.从图中可以直接看出全班同学现在最喜欢各种球类的人数的大小关系10.(3分)如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.11.(3分)如图,在△ABC中,DE∥BC,DE分别与AB,AC相交于点D,E,若AD=4,DB=2,则DE:BC的值为()A.B.C.D.12.(3分)10名学生的平均成绩是x,如果另外5名学生每人得84分,那么整个组的平均成绩是()A.B.C.D.13.(3分)中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A.2 B.3 C.4 D.514.(3分)如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=()A.B.C.D.15.(3分)如图直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,将腰CD以D为中心逆时针旋转90°至ED,连AE、CE,则△ADE的面积是()A.1 B.2 C.3 D.不能确定二、填空题(本大题共5小题,每小题3分,共15分)16.(3分)P(3,﹣4)到x轴的距离是.17.(3分)用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示的正五边形ABCDE,其中∠BAC= 度.18.(3分)为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼条.19.(3分)马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(添加所有符合要求的正方形,添加的正方形用阴影表示).20.(3分)已知:2+=22×,3+=32×,4+=42×,5+=52×,…,若10+=102×符合前面式子的规律,则a+b= .三、解答题(本大题共6小题,共40分。
解答应写出文字说明,证明过程或推演步骤)21.(6分)(1)化简÷(x﹣).(2)解方程:+=3.22.(6分)阅读下列题目的解题过程:已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4(A)∴c2(a2﹣b2)=(a2+b2)(a2﹣b2)(B)∴c2=a2+b2(C)∴△ABC是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;(2)错误的原因为:;(3)本题正确的结论为:.23.(7分)某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示,其中BA是线段,且BA∥x轴,AC是射线.(1)当x≥30,求y与x之间的函数关系式;(2)若小李4月份上网20小时,他应付多少元的上网费用?(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?24.(7分)不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为.(1)试求袋中蓝球的个数;(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率.25.(6分)已知:如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:(1)△ADF≌△CBE;(2)EB∥DF.26.(8分)如图,△OAB是边长为2+的等边三角形,其中O是坐标原点,顶点B在y轴正方向上,将△OAB折叠,使点A落在边OB上,记为A′,折痕为EF.(1)当A′E∥x轴时,求点A′和E的坐标;(2)当A′E∥x轴,且抛物线y=﹣x2+bx+c经过点A′和E时,求抛物线与x轴的交点的坐标;(3)当点A′在OB上运动,但不与点O、B重合时,能否使△A′EF成为直角三角形?若能,请求出此时点A′的坐标;若不能,请你说明理由.参考答案与试题解析一、选择题(本大题共15小题,每小题3分,共45分。
下面每小题给出的四个选项中,有且只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内)1.(3分)如果a与﹣2互为相反数,那么a等于()A.﹣2 B.2 C.﹣ D.【分析】一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:﹣2的相反数是2,那么a等于2.故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)小明从正面观察如图所示的两个物体,看到的是()A.B.C.D.【分析】分别找出四个选项中图形是从哪个方位看到的,此题得解.【解答】解:A、从上面看到的图形;B、从右面看到的图形;C、从正面看到的图形;D、从左面看到的图形.故选:C.【点评】本题考查了简单组合体的三视图,观察组合体,找出它的三视图是解题的关键.3.(3分)我市2018年的最高气温为39℃,最低气温为零下7℃,则计算2018年温差列式正确的()A.(+39)﹣(﹣7)B.(+39)+(+7)C.(+39)+(﹣7)D.(+39)﹣(+7)【分析】根据题意列出算式即可.【解答】解:根据题意得:(+39)﹣(﹣7),故选:A.【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.4.(3分)化简的结果是()A.﹣2 B.±2 C.2 D.4【分析】本题可先将根号内的数化简,再开根号,根据开方的结果为正数可得出答案.【解答】解:==2.故选:C.【点评】本题考查了二次根式的化简,解此类题目要注意算术平方根为非负数.5.(3分)下列各式计算正确的是()A.a12÷a6=a2 B.(x+y)2=x2+y2C.D.【分析】此类题目难度不大,可用验算法解答.【解答】解:A、a12÷a6是同底数幂的除法,指数相减而不是相除,所以a12÷a6=a6,错误;B、(x+y)2为完全平方公式,应该等于x2+y2+2xy,错误;C、===﹣,错误;D、正确.故选:D.【点评】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.运算法则:①a m÷a n=a m﹣n,②÷=(a≥0,b>0).6.(3分)抛物线y=3(x﹣1)2+1的顶点坐标是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)【分析】已知抛物线顶点式y=a(x﹣h)2+k,顶点坐标是(h,k).【解答】解:∵抛物线y=3(x﹣1)2+1是顶点式,∴顶点坐标是(1,1).故选A.【点评】本题考查由抛物线的顶点坐标式写出抛物线顶点的坐标,比较容易.7.(3分)如图,正方形硬纸片ABCD的边长是4,点E、F分别是AB、BC的中点,若沿左图中的虚线剪开,拼成如图的一座“小别墅”,则图中阴影部分的面积是()A.2 B.4 C.8 D.10【分析】本题考查空间想象能力.【解答】解:阴影部分由一个等腰直角三角形和一个直角梯形组成,由第一个图形可知:阴影部分的两部分可构成正方形的四分之一,正方形的面积=4×4=16,∴图中阴影部分的面积是16÷4=4.故选:B.【点评】解决本题的关键是得到阴影部分的组成与原正方形面积之间的关系.8.(3分)某青年排球队12名队员的年龄情况如表:年龄18 19 20 21 22人数 1 4 3 2 2则这个队队员年龄的众数和中位数是()A.19,20 B.19,19 C.19,20.5 D.20,19【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.【解答】解:数据19出现了四次最多为众数;20和20处在第6位和第7位,其平均数是20,所以中位数是20.所以本题这组数据的中位数是20,众数是19.故选:A.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.9.(3分)某校九(1)班的全体同学最喜欢的球类运动用如图所示的统计图来表示,下面说法正确的是()A.从图中可以直接看出喜欢各种球类的具体人数B.从图中可以直接看出全班的总人数C.从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况D.从图中可以直接看出全班同学现在最喜欢各种球类的人数的大小关系【分析】利用扇形统计图的特点,可以得到各类所占的比例,但总数不确定,不能确定每类的具体人数.【解答】解:因为扇形统计图直接反映部分占总体的百分比大小,不能反映具体数量的多少和变化情况,所以A、B、C都错误,故选:D.【点评】本题考查了扇形统计图的知识,扇形统计图直接反映部分占总体的百分比大小.解题的关键是能够读懂扇形统计图并从中整理出进一步解题的有关信息.10.(3分)如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.【分析】根据正方形的性质求出∠ACB,根据相似三角形的判定定理判断即可.【解答】解:由正方形的性质可知,∠ACB=180°﹣45°=135°,A、C、D图形中的钝角都不等于135°,由勾股定理得,BC=,AC=2,对应的图形B中的边长分别为1和,∵=,∴图B中的三角形(阴影部分)与△ABC相似,故选:B.【点评】本题考查的是相似三角形的判定,掌握两组对应边的比相等且夹角对应相等的两个三角形相似是解题的关键.11.(3分)如图,在△ABC中,DE∥BC,DE分别与AB,AC相交于点D,E,若AD=4,DB=2,则DE:BC的值为()A.B.C.D.【分析】根据平行于三角形一边的直线和其他两边相交,所截得的三角形与原三角形相似,再根据相似三角形的对应边成比例解则可.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴===.故选:A.【点评】本题考查了相似三角形的判定和相似三角形的性质,对应边不要搞错.12.(3分)10名学生的平均成绩是x,如果另外5名学生每人得84分,那么整个组的平均成绩是()A.B.C.D.【分析】整个组的平均成绩=15名学生的总成绩÷15.【解答】解:先求出这15个人的总成绩10x+5×84=10x+420,再除以15可求得平均值为.故选B.【点评】此题考查了加权平均数的知识,解题的关键是求的15名学生的总成绩.13.(3分)中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A.2 B.3 C.4 D.5【分析】由图可知:2球体的重量=5圆柱体的重量,2正方体的重量=3圆柱体的重量.可设一个球体重x,圆柱重y,正方体重z.根据等量关系列方程即可得出答案.【解答】解:设一个球体重x,圆柱重y,正方体重z.根据等量关系列方程2x=5y;2z=3y,消去y可得:x=z,则3x=5z,即三个球体的重量等于五个正方体的重量.故选:D.【点评】此题的关键是找到球,正方体,圆柱体的关系.14.(3分)如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=()A.B.C.D.【分析】根据垂径定理先求BC一半的长,再求BC的长.【解答】解:设OA与BC相交于D点.∵AB=OA=OB=6∴△OAB是等边三角形.又根据垂径定理可得,OA平分BC,利用勾股定理可得BD==3所以BC=6.故选:A.【点评】本题的关键是利用垂径定理和勾股定理.15.(3分)如图直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,将腰CD以D为中心逆时针旋转90°至ED,连AE、CE,则△ADE的面积是()A.1 B.2 C.3 D.不能确定【分析】如图作辅助线,利用旋转和三角形全等证明△D CG与△DEF全等,再根据全等三角形对应边相等可得EF的长,即△ADE的高,然后得出三角形的面积.【解答】解:如图所示,作EF⊥AD交AD延长线于F,作DG⊥BC,∵CD以D为中心逆时针旋转90°至ED,∴∠EDF+∠CDF=90°,DE=CD,又∵∠CDF+∠CDG=90°,∴∠CDG=∠EDF,在△DCG与△DEF中,,∴△DCG≌△DEF(AAS),∴EF=CG,∵AD=2,BC=3,∴CG=BC﹣AD=3﹣2=1,∴EF=1,∴△ADE的面积是:×AD×EF=×2×1=1.故选:A.【点评】本题考查梯形的性质和旋转的性质:旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点为旋转中心;②旋转方向;③旋转角度.二、填空题(本大题共5小题,每小题3分,共15分)16.(3分)P(3,﹣4)到x轴的距离是 4 .【分析】根据点在坐标系中坐标的几何意义即可解答.【解答】解:根据点在坐标系中坐标的几何意义可知,P(3,﹣4)到x轴的距离是|﹣4|=4.故答案为:4.【点评】本题考查的是点的坐标的几何意义,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离.17.(3分)用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示的正五边形ABCDE,其中∠BAC= 36 度.【分析】利用多边形的内角和定理和等腰三角形的性质即可解决问题.【解答】解:∵∠ABC==108°,△ABC是等腰三角形,∴∠BAC=∠BCA=36度.【点评】本题主要考查了多边形的内角和定理和等腰三角形的性质.n边形的内角和为:180°(n﹣2).18.(3分)为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼20 000 条.【分析】捕捞200条,其中有标记的鱼有10条,即在样本中有标记的所占比例为,而在整体中有标记的共有1000条,根据所占比例即可解答.【解答】解:1000=20 000(条).故答案为:20000.【点评】本题考查的是通过样本去估计总体.19.(3分)马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(添加所有符合要求的正方形,添加的正方形用阴影表示).【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:,故答案为:.【点评】本题通过考查正方体的侧面展开图,展示了这样一个教学导向,教学中要让学生确实经历活动过程,而不要将活动层次停留于记忆水平.我们有些老师在教学“展开与折叠”时,不是去引导学生动手操作,而是给出几种结论,这样教出的学生肯定遇到动手操作题型时就束手无策了.20.(3分)已知:2+=22×,3+=32×,4+=42×,5+=52×,…,若10+=102×符合前面式子的规律,则a+b= 109 .【分析】要求a+b的值,首先应该认真仔细地观察题目给出的4个等式,找到它们的规律,即中,b=n+1,a=(n+1)2﹣1.【解答】解:根据题中材料可知=,∵10+=102×,∴b=10,a=99,a+b=109.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出式子的规律.三、解答题(本大题共6小题,共40分。