抛物线50题

合集下载

初中二次函数试题及答案

初中二次函数试题及答案

初中二次函数试题及答案一、选择题(每题3分,共30分)1. 二次函数y=ax^2+bx+c(a≠0)的图象开口向上,则a的取值范围是()A. a>0B. a<0C. a=0D. a≥02. 抛物线y=x^2-6x+8与x轴的交点个数是()A. 0个B. 1个C. 2个D. 3个3. 二次函数y=ax^2+bx+c(a≠0)的对称轴是直线x=1,则b的值为()A. 2aB. -2aC. 2D. -24. 若二次函数y=ax^2+bx+c(a≠0)的图象经过点(1,0),则a+b+c的值为()A. 0B. 1C. 2D. -15. 二次函数y=ax^2+bx+c(a≠0)的图象与y轴的交点坐标为(0,3),则c的值为()A. 3B. -3C. 0D. 16. 二次函数y=ax^2+bx+c(a≠0)的图象经过点(-1,0)和(3,0),则b的值为()A. -4aB. 4aC. -2aD. 2a7. 二次函数y=ax^2+bx+c(a≠0)的图象与x轴有两个交点,则b^2-4ac的值为()A. 大于0B. 等于0C. 小于0D. 不确定8. 二次函数y=ax^2+bx+c(a≠0)的图象开口向下,且经过点(1,0),则a的取值范围是()A. a>0B. a<0C. a=0D. a≥09. 二次函数y=ax^2+bx+c(a≠0)的图象经过点(2,3)和(-1,6),则a+b+c的值为()A. 1B. 2C. 3D. 410. 二次函数y=ax^2+bx+c(a≠0)的图象的顶点坐标为(2,-3),则b的值为()A. -4aB. 4aC. -8aD. 8a二、填空题(每题4分,共20分)1. 二次函数y=ax^2+bx+c(a≠0)的图象的顶点坐标为(h,k),则该函数的解析式可以表示为y=a(x-h)^2+k。

2. 二次函数y=ax^2+bx+c(a≠0)的图象与x轴的交点坐标可以通过解方程ax^2+bx+c=0得到。

听课手册 第50讲抛物线

听课手册 第50讲抛物线

听课手册第50讲抛物线1.抛物线的定义平面内与一个定点F和一条定直线l(l不经过点F)的距离的点的轨迹叫作抛物线,点F叫作抛物线的焦点,直线l叫作抛物线的准线.2.抛物线的标准方程和几何性质标准方程y2=2px(p>0)y2=-2px(p>0)图形(续表)标准方程y2=2px(p>0)y2=-2px(p>0)性质范围,y∈R ,y∈R准线方程x=-p2x=p2焦点F(p2,0)F(-p2,0)对称性关于对称顶点离心率e=焦半径|MF|=p2+x0|MF|=p2-x0(续表)标准方程x2=2py(p>0)x2=-2py(p>0)图形性质范围y≥0,x∈R y≤0,x∈R 准线方程y=-p2y=p2焦点F(0,p2)F(0,-p2)对称性关于对称顶点 离心率 e=焦半径|MF|=|MF|=常用结论1.焦半径:抛物线上的点P (x 0,y 0)与焦点F 之间的线段叫作抛物线的焦半径,记作r=|PF|. (1)y 2=2px (p>0),r=x 0+p 2;(2)y 2=-2px (p>0),r=-x 0+p 2;(3)x 2=2py (p>0),r=y 0+p 2;(4)x 2=-2py (p>0),r=-y 0+p 2.2.焦点弦的常用结论以抛物线y 2=2px (p>0)为例,设AB 是抛物线的过焦点的一条弦(焦点弦),F 是抛物线的焦点,A (x 1,y 1),B (x 2,y 2),A ,B 在准线上的射影分别为A 1,B 1,则有以下结论: (1)x 1x 2=p 24,y 1y 2=-p 2;(2)若直线AB 的倾斜角为θ,则|AF|=p1-cosθ,|BF|=p1+cosθ;(3)|AB|=x 1+x 2+p=2p sin 2θ(其中θ为直线AB 的倾斜角),抛物线的通径长为2p ,通径是最短的焦点弦;(4)S △AOB =p 22sinθ(其中θ为直线AB 的倾斜角);(5)1|AF|+1|BF|=2p(定值);(6)以AB 为直径的圆与抛物线的准线相切; (7)以AF (或BF )为直径的圆与y 轴相切; (8)以A 1B 1为直径的圆与直线AB 相切,切点为F ,∠A 1FB 1=90°;(9)A ,O ,B 1三点共线,B ,O ,A 1三点也共线. 3.y 2=ax (a ≠0)的焦点坐标为(a 4,0),准线方程为x=-a 4.题组一 常识题1.[教材改编] 抛物线8x 2+y=0的焦点坐标为 ,准线方程为 . 2.[教材改编] 抛物线y=ax 2(a ≠0)的准线方程是y=2,则a 的值为 .3.[教材改编] 若点P 到点F (0,2)的距离比它到直线y+4=0的距离小2,则点P 的轨迹方程为.4.[教材改编]抛物线y2=8x的焦点为F,P在抛物线上,若|PF|=4,则P点坐标为.5.[教材改编]过抛物线y2=4x的焦点的直线l交抛物线于P(x1,y1),Q(x2,y2)两点,如果x1+x2=4,则|PQ|等于.题组二常错题◆索引:忽视抛物线的类型;不注意抛物线方程的标准形式;在方程中没有限制条件p>0的情况下,p可以为负值.6.已知抛物线的顶点是坐标原点,对称轴为坐标轴,并且经过点P(-2,-4),则该抛物线的标准方程为.7.抛物线x2+2py=0的焦点到准线的距离为4,则p= .8.过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫作抛物线的通径,那么抛物线y=-12ax2(a≠0)的通径长为.探究点一抛物线的标准方程例1(1)已知抛物线的顶点在坐标原点,焦点为双曲线x 29-y27=1的右焦点,则此抛物线的方程为()A. y2=2xB. y2=4xC. y2=8xD. y2=16x(2)抛物线C:y2=2px(p>0)的焦点为F,点O是坐标原点,过点O,F的圆与抛物线C的准线相切,且该圆的面积为36π,则抛物线的方程为.[总结反思]求抛物线方程的基本方法是定义法和待定系数法:(1)定义法就是根据抛物线的定义得到其焦参数、焦点位置,然后根据抛物线方程的形式写出其方程.(2)待定系数法就是根据已知得到焦参数的方程,求出焦参数,求解的关键是求出焦参数p和确定抛物线的焦点位置,焦点在x轴上的抛物线的标准方程可以用y2=λx(λ≠0)表示,焦点在y轴上的抛物线的标准方程可以用x 2=λy (λ≠0)表示.变式题 (1)直线l 过抛物线y 2=-2px (p>0)的焦点,且与该抛物线交于A ,B 两点,若线段AB 的长是8,AB 的中点到y 轴的距离是2,则此抛物线的方程是 ( )A. y 2=-12xB. y 2=-8xC. y 2=-6xD. y 2=-4x(2)已知抛物线C 与双曲线x 2-y 2=1有相同的焦点,且顶点在原点,则抛物线C 的方程是( )A. y 2=±2√2xB. y 2=±2xC. y 2=±4x D. y 2=±4√2x探究点二 抛物线的定义有关问题 微点1 动弦中点到坐标轴距离最短问题例2 (1)已知抛物线x 2=4y 上有一条长为6的动弦AB ,则AB 的中点到x 轴的最短距离为 ( )A. 34B. 32 C. 1 D. 2(2)已知A (x 1,y 1),B (x 2,y 2)是抛物线y 2=4x 上的两个动点,且|AB|=8,则x 1+x 2的最小值是 ( )A. 4B. 6C. 8D. 10[总结反思] 将定长线段的中点到准线的距离转化为线段的两个端点到准线距离之和的一半,再根据三角形中两边之和大于第三边得出不等式,这是解决此类问题的一般方法.微点2 距离之和最小问题例3 (1)若点B 的坐标为(3,2),F 是抛物线y 2=6x 的焦点,点P 在抛物线上移动时,使|PF|+|PB|取得最小值的P 的坐标为 ( ) A. (0,0) B. (23,2)C. (1,√2)D. (2,2)(2)已知抛物线方程为y2=8x,直线l的方程为x-y+4=0,在抛物线上有一动点P到y轴的距离为d1,到直线l的距离为d2,则d1+d2的最小值为.[总结反思]利用抛物线的定义解决问题时,应灵活地进行抛物线上的点到焦点距离与其到准线距离之间的等价转化.“看到准线应该想到焦点,看到焦点应该想到准线”,这是解决抛物线距离有关问题的有效途径.涉及距离和最小值的两个常见转化策略:①将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解;②将抛物线上的点到焦点的距离转化为到准线的距离,利用“直线外一点与直线上所有点的连线中垂线段最短”原理解决.微点3焦点弦中距离之和最小问题例4(1)已知抛物线y2=4x,过焦点F的直线与抛物线交于A,B两点,过A,B作y轴的垂线,垂足分别为C,D,则|AC|+|BD|的最小值为.(2)[2018·江西上饶三模]已知抛物线y2=2x,焦点为F,过F点的直线交抛物线于A,B两点,则|AF|+2|BF|的最小值为.[总结反思]过抛物线的焦点且与抛物线的对称轴垂直的弦称为抛物线的通径,通径是抛物线过焦点的所有弦中最短的,若能将问题转化为与通径有关的问题,则可以用“通径最短”求最值.应用演练1.【微点1】定长为6的线段MN的两端点在抛物线y2=4x上移动,设点P为线段MN的中点,则点P 到y 轴的距离的最小值为 ( )A .6B .5C .3D .22.【微点3】[2018·重庆巴蜀中学月考] 直线l 过抛物线C :x 2=4y 的焦点F 且交抛物线C 于A ,B 两点,则|AF|+2|BF|的最小值为( )A. 3+2√2B. 2+3√2C. 6D. 43.【微点3】[2019·唐山海港高级中学模拟] 过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,则|AF|+|BF|的最小值是 ( ) A. 2 B. √2 C. 4 D. 2√24.【微点2】设P 是抛物线y 2=4x 上的一个动点,F 为其焦点,若B (3,4),则|PB|+|PF|的最小值为 .5.【微点2】已知M 是抛物线x 2=8y 上一点,F 为其焦点,点A 在圆C :(x+1)2+(y-5)2=1上,则|MA|+|MF|的最小值是 .探究点三 抛物线的几何性质例5 (1)[2018·东北三省三校一模] 抛物线y=4x 2的焦点到准线的距离为 ( ) A. 2 B. 1C. 12D. 18(2)[2018·厦门二模] 已知拋物线C :y 2=4x 的焦点为F ,过F 的直线与抛物线C 交于A ,B 两点,|AB|=6,则AB 的中点到y 轴的距离是 ( ) A. 1 B. 2 C. 3 D. 4[总结反思] 抛物线的几何性质主要表现为两点:一是抛物线上的点与焦点和准线的关系;二是抛物线的焦点弦,利用抛物线的定义以及一些常用结论公式即可解决问题.变式题 (1)过抛物线y 2=2px (p>0)的焦点F 作斜率大于0的直线交抛物线于A ,B 两点(A 在B 的上方),且与准线交于点C ,若CB⃗⃗⃗⃗⃗ =4BF ⃗⃗⃗⃗⃗ ,则|AF||BF|= ( ) A. 53B. 52C. 3D. 2(2)[2018·银川4月质检] 已知F 1,F 2分别为双曲线3x 2-y 2=3a 2(a>0)的左、右焦点,P 是抛物线y 2=8ax 与双曲线的一个交点,若|PF 1|+|PF 2|=12,则抛物线的准线方程为 ( )A. x=-4B. x=-3C. x=-2D. x=-1探究点四 直线与抛物线的位置关系例6 已知直线l 经过抛物线y 2=4x 的焦点且与此抛物线交于A (x 1,y 1),B (x 2,y 2)两点,|AB|<8,直线l 与抛物线y=x 2-4交于M ,N 两点,且M ,N 两点在y 轴的两侧.(1)证明:y 1y 2为定值;(2)求直线l 的斜率的取值范围;(3)若OM⃗⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗⃗ =-48(O 为坐标原点),求直线l 的方程.[总结反思]直线与抛物线相交问题处理规律:(1)凡涉及抛物线的弦长、弦的中点、弦的斜率问题时都要注意利用韦达定理,避免求交点坐标的复杂运算,特别是有关弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则使用弦长公式|AB|=√[(x1+x2)2-4x1x2](1+k2);(2)对于直线与抛物线相交、相切、中点弦、焦点弦问题,以及定值、存在性问题的处理,最好是作出草图,由图形结合几何性质作出解答,并注意“设而不求”“整体代入”“点差法”的灵活应用.变式题[2019·四川华蓥一中调研]已知抛物线C:y2=2px(p>0),斜率为1的直线l1交抛物线C于A,B两点,当直线l1过点(1,0)时,以AB为直径的圆与直线x=-1相切.(1)求抛物线C的方程;,且△OCD的面积是(2)与l1平行的直线l2交抛物线于C,D两点,若平行线l1,l2之间的距离为√22△OAB的面积的√3倍(O为坐标原点),求l1和l2的方程.完成课时作业(五十)。

中考数学二次函数压轴题集锦(50道含解析)

中考数学二次函数压轴题集锦(50道含解析)

中考数学二次函数压轴题集锦1.如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.2.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t 的取值范围.3.如图,在平面直角坐标系中,点A在抛物线y=﹣x2+4x上,且横坐标为1,点B与点A关于抛物线的对称轴对称,直线AB与y轴交于点C,点D为抛物线的顶点,点E的坐标为(1,1).(1)求线段AB的长;(2)点P为线段AB上方抛物线上的任意一点,过点P作AB的垂线交AB于点H,点F为y轴上一点,当△PBE的面积最大时,求PH+HF+FO的最小值;(3)在(2)中,PH+HF+FO取得最小值时,将△CFH绕点C顺时针旋转60°后得到△CF′H′,过点F'作CF′的垂线与直线AB交于点Q,点R为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使以点D,Q,R,S为顶点的四边形为菱形,若存在,请直接写出点S的坐标,若不存在,请说明理由.4.如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M 的坐标.5.如图,在平面直角坐标系xOy中,以直线x=对称轴的抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线l 与y轴交于点D.(1)求抛物线的函数表达式;(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若=,且△BCG与△BCD面积相等,求点G的坐标;(3)若在x轴上有且仅有一点P,使∠APB=90°,求k的值.6.如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.7.抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.(1)直接写出抛物线L的解析式;(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L 1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.8.在平面直角坐标系中,点O(0,0),点A(1,0).已知抛物线y=x2+mx﹣2m (m是常数),顶点为P.(Ⅰ)当抛物线经过点A时,求顶点P的坐标;(Ⅱ)若点P在x轴下方,当∠AOP=45°时,求抛物线的解析式;(Ⅲ)无论m取何值,该抛物线都经过定点H.当∠AHP=45°时,求抛物线的解析式.9.如图1,四边形OABC是矩形,点A的坐标为(3,0),点C的坐标为(0,6),点P从点O出发,沿OA以每秒1个单位长度的速度向点A出发,同时点Q从点A出发,沿AB以每秒2个单位长度的速度向点B运动,当点P与点A重合时运动停止.设运动时间为t秒.(1)当t=2时,线段PQ的中点坐标为;(2)当△CBQ与△PAQ相似时,求t的值;(3)当t=1时,抛物线y=x2+bx+c经过P,Q两点,与y轴交于点M,抛物线的顶点为K,如图2所示,问该抛物线上是否存在点D,使∠MQD=∠MKQ?若存在,求出所有满足条件的D的坐标;若不存在,说明理由.10.如图①,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(1,2)且与x轴相切于点B.(1)当x=2时,求⊙P的半径;(2)求y关于x的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;(3)请类比圆的定义(圆可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到的距离等于到的距离的所有点的集合.(4)当⊙P的半径为1时,若⊙P与以上(2)中所得函数图象相交于点C、D,其中交点D(m,n)在点C的右侧,请利用图②,求cos∠APD的大小.11.已知顶点为A抛物线经过点,点.(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN∥x 轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.12.在平面直角坐标系xOy中(如图).已知抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点B(0,),顶点为C,点D在其对称轴上且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.(1)求这条抛物线的表达式;(2)求线段CD的长;(3)将抛物线平移,使其顶点C移到原点O的位置,这时点P落在点E的位置,如果点M在y轴上,且以O、D、E、M为顶点的四边形面积为8,求点M的坐标.13.如图1,图形ABCD是由两个二次函数y1=kx2+m(k<0)与y2=ax2+b(a>0)的部分图象围成的封闭图形.已知A(1,0)、B(0,1)、D(0,﹣3).(1)直接写出这两个二次函数的表达式;(2)判断图形ABCD是否存在内接正方形(正方形的四个顶点在图形ABCD上),并说明理由;(3)如图2,连接BC,CD,AD,在坐标平面内,求使得△BDC与△ADE相似(其中点C与点E是对应顶点)的点E的坐标14.小贤与小杰在探究某类二次函数问题时,经历了如下过程:求解体验:(1)已知抛物线y=﹣x2+bx﹣3经过点(﹣1,0),则b= ,顶点坐标为,该抛物线关于点(0,1)成中心对称的抛物线表达式是.抽象感悟:我们定义:对于抛物线y=ax2+bx+c(a≠0),以y轴上的点M(0,m)为中心,作该抛物线关于点M对称的抛物线y′,则我们又称抛物线y′为抛物线y的“衍生抛物线”,点M为“衍生中心”.(2)已知抛物线y=﹣x2﹣2x+5关于点(0,m)的衍生抛物线为y′,若这两条抛物线有交点,求m的取值范围.问题解决:(3)已知抛物线y=ax2+2ax﹣b(a≠0)①若抛物线y的衍生抛物线为y′=bx2﹣2bx+a2(b≠0),两抛物线有两个交点,且恰好是它们的顶点,求a、b的值及衍生中心的坐标;②若抛物线y关于点(0,k+12)的衍生抛物线为y1,其顶点为A1;关于点(0,k+22)的衍生抛物线为y2,其顶点为A2;…;关于点(0,k+n2)的衍生抛物线为y n ,其顶点为An…(n为正整数).求AnAn+1的长(用含n的式子表示).15.如图,已知抛物线y=ax2+bx(a≠0)过点A(,﹣3)和点B(3,0).过点A作直线AC∥x轴,交y轴于点C.(1)求抛物线的解析式;(2)在抛物线上取一点P,过点P作直线AC的垂线,垂足为D.连接OA,使得以A,D,P为顶点的三角形与△AOC相似,求出对应点P的坐标;(3)抛物线上是否存在点Q,使得S△AOC =S△AOQ?若存在,求出点Q的坐标;若不存在,请说明理由.16.如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C 为顶点,直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.17.如图①,在平面直角坐标系xOy中,抛物线y=ax2+bx+3经过点A(﹣1,0)、B(3,0)两点,且与y轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、Q两点(点P在点Q的左侧),连接PQ,在线段PQ上方抛物线上有一动点D,连接DP、DQ.(1)若点P的横坐标为﹣,求△DPQ面积的最大值,并求此时点D的坐标;(Ⅱ)直尺在平移过程中,△DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.18.已知抛物线y=ax2+bx+c过点A(0,2).(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.19.如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.20.我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)①在“平行四边形,矩形,菱形,正方形”中,一定是“十字形”的有;②在凸四边形ABCD中,AB=AD且CB≠CD,则该四边形“十字形”.(填“是”或“不是”)(2)如图1,A,B,C,D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD交于点E,∠ADB﹣∠CDB=∠ABD﹣∠CBD,当6≤AC2+BD2≤7时,求OE 的取值范围;(3)如图2,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a,b,c为常数,a>0,c<0)与x轴交于A,C两点(点A在点C的左侧),B是抛物线与y轴的交点,点D的坐标为(0,﹣ac),记“十字形”ABCD的面积为S,记△AOB,△COD,△AOD,△BOC的面积分别为S1,S2,S3,S4.求同时满足下列三个条件的抛物线的解析式;①=;②=;③“十字形”ABCD的周长为12.21.如图1,抛物线y1=ax2﹣x+c与x轴交于点A和点B(1,0),与y轴交于点C(0,),抛物线y1的顶点为G,GM⊥x轴于点M.将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y2.(1)求抛物线y2的解析式;(2)如图2,在直线l上是否存在点T,使△TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由;(3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y2于点Q,点Q关于直线l的对称点为R,若以P,Q,R为顶点的三角形与△AMG全等,求直线PR的解析式.22.如图,已知直线y=﹣2x+4分别交x轴、y轴于点A、B,抛物线过A,B两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.(1)若抛物线的解析式为y=﹣2x2+2x+4,设其顶点为M,其对称轴交AB于点N.①求点M、N的坐标;②是否存在点P,使四边形MNPD为菱形?并说明理由;(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B、P、D为顶点的三角形与△AOB相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.23.如图,抛物线y=ax2+bx经过△OAB的三个顶点,其中点A(1,),点B(3,﹣),O为坐标原点.(1)求这条抛物线所对应的函数表达式;(2)若P(4,m),Q(t,n)为该抛物线上的两点,且n<m,求t的取值范围;(3)若C为线段AB上的一个动点,当点A,点B到直线OC的距离之和最大时,求∠BOC的大小及点C的坐标.24.如图,在平面直角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.(1)求抛物线C1的表达式;(2)直接用含t的代数式表示线段MN的长;(3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值;(4)在(3)的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点K,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q的坐标.25.在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.26.如图,在平面直角坐标系中,二次函数y=ax2+bx+c交x轴于点A(﹣4,0)、B(2,0),交y轴于点C(0,6),在y轴上有一点E(0,﹣2),连接AE.(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴上方的一个动点,求△ADE面积的最大值;(3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标,若不存在请说明理由.27.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣4,0),B(2,0),与y轴交于点C(0,4),线段BC的中垂线与对称轴l交于点D,与x轴交于点F,与BC交于点E,对称轴l与x轴交于点H.(1)求抛物线的函数表达式;(2)求点D的坐标;(3)点P为x轴上一点,⊙P与直线BC相切于点Q,与直线DE相切于点R.求点P的坐标;(4)点M为x轴上方抛物线上的点,在对称轴l上是否存在一点N,使得以点D,P,M,N为顶点的四边形是平行四边形?若存在,则直接写出N点坐标;若不存在,请说明理由.28.如图,抛物线y=ax2+bx(a≠0)交x轴正半轴于点A,直线y=2x经过抛物线的顶点M.已知该抛物线的对称轴为直线x=2,交x轴于点B.(1)求a,b的值.(2)P是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP,BP.设点P的横坐标为m,△OBP的面积为S,记K=.求K关于m的函数表达式及K的范围.29.抛物线y=﹣x2﹣x+与x轴交于点A,B(点A在点B的左边),与y轴交于点C,点D是该抛物线的顶点.(1)如图1,连接CD,求线段CD的长;(2)如图2,点P是直线AC上方抛物线上一点,PF⊥x轴于点F,PF与线段AC交于点E;将线段OB沿x轴左右平移,线段OB的对应线段是O1B1,当PE+EC的值最大时,求四边形PO1B1C周长的最小值,并求出对应的点O1的坐标;(3)如图3,点H是线段AB的中点,连接CH,将△OBC沿直线CH翻折至△O2B 2 C的位置,再将△O2B2C绕点B2旋转一周,在旋转过程中,点O2,C的对应点分别是点O3,C1,直线O3C1分别与直线AC,x轴交于点M,N.那么,在△O2B2C的整个旋转过程中,是否存在恰当的位置,使△AMN是以MN为腰的等腰三角形?若存在,请直接写出所有符合条件的线段O2M的长;若不存在,请说明理由.30.综合与探究如图,抛物线y=x﹣4与x轴交于A,B两点(点A在点B的左侧),与y 轴交于点C,连接AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q,过点P作PE∥AC交x轴于点E,交BC于点F.(1)求A,B,C三点的坐标;(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由;(3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值.31.如图,二次函数y=﹣+bx+2的图象与x轴交于点A、B,与y轴交于点C,点A的坐标为(﹣4,0),P是抛物线上一点(点P与点A、B、C不重合).(1)b= ,点B的坐标是;(2)设直线PB与直线AC相交于点M,是否存在这样的点P,使得PM:MB=1:2?若存在,求出点P的横坐标;若不存在,请说明理由;(3)连接AC、BC,判断∠CAB和∠CBA的数量关系,并说明理由.32.如图,在平面直角坐标系中,二次函数y=(x﹣a)(x﹣3)(0<a<3)的图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点D,过其顶点C作直线CP⊥x轴,垂足为点P,连接AD、BC.(1)求点A、B、D的坐标;(2)若△AOD与△BPC相似,求a的值;(3)点D、O、C、B能否在同一个圆上?若能,求出a的值;若不能,请说明理由.33.如图,已知二次函数y=ax2﹣(2a﹣)x+3的图象经过点A(4,0),与y 轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.(1)求a的值和直线AB的解析式;(2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S1,S2,若S1=4S2,求m的值;(3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱DEGH周长取最大值时,求点G的坐标.34.已知,点M为二次函数y=﹣(x﹣b)2+4b+1图象的顶点,直线y=mx+5分别交x轴正半轴,y轴于点A,B.(1)判断顶点M是否在直线y=4x+1上,并说明理由.(2)如图1,若二次函数图象也经过点A,B,且mx+5>﹣(x﹣b)2+4b+1,根据图象,写出x的取值范围.(3)如图2,点A坐标为(5,0),点M在△AOB内,若点C(,y1),D(,y 2)都在二次函数图象上,试比较y1与y2的大小.35.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣5交y轴于点A,交x轴于点B(﹣5,0)和点C(1,0),过点A作AD∥x轴交抛物线于点D.(1)求此抛物线的表达式;(2)点E是抛物线上一点,且点E关于x轴的对称点在直线AD上,求△EAD的面积;(3)若点P是直线AB下方的抛物线上一动点,当点P运动到某一位置时,△ABP 的面积最大,求出此时点P的坐标和△ABP的最大面积.36.已知抛物线F:y=x2+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣,0).(1)求抛物线F的解析式;(2)如图1,直线l:y=x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x2,y2)(点A在第二象限),求y2﹣y1的值(用含m的式子表示);(3)在(2)中,若m=,设点A′是点A关于原点O的对称点,如图2.①判断△AA′B的形状,并说明理由;②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.37.直线y=﹣x+3交x轴于点A,交y轴于点B,顶点为D的抛物线y=﹣x2+2mx ﹣3m经过点A,交x轴于另一点C,连接BD,AD,CD,如图所示.(1)直接写出抛物线的解析式和点A,C,D的坐标;(2)动点P在BD上以每秒2个单位长的速度由点B向点D运动,同时动点Q 在CA上以每秒3个单位长的速度由点C向点A运动,当其中一个点到达终点停止运动时,另一个点也随之停止运动,设运动时间为t秒.PQ交线段AD于点E.①当∠DPE=∠CAD时,求t的值;②过点E作EM⊥BD,垂足为点M,过点P作PN⊥BD交线段AB或AD于点N,当PN=EM时,求t的值.38.如图1,在平面直角坐标系中,直线y=x﹣1与抛物线y=﹣x2+bx+c交于A、B两点,其中A(m,0)、B(4,n),该抛物线与y轴交于点C,与x轴交于另一点D.(1)求m、n的值及该抛物线的解析式;(2)如图2,若点P为线段AD上的一动点(不与A、D重合),分别以AP、DP 为斜边,在直线AD的同侧作等腰直角△APM和等腰直角△DPN,连接MN,试确定△MPN面积最大时P点的坐标;(3)如图3,连接BD、CD,在线段CD上是否存在点Q,使得以A、D、Q为顶点的三角形与△ABD相似,若存在,请直接写出点Q的坐标;若不存在,请说明理由.39.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.40.如图1,在平面直角坐标系xOy中,已知点A和点B的坐标分别为A(﹣2,0),B(0,﹣6),将Rt△AOB绕点O按顺时针方向分别旋转90°,180°得到Rt△A1OC,Rt△EOF.抛物线C1经过点C,A,B;抛物线C2经过点C,E,F.(1)点C的坐标为,点E的坐标为;抛物线C的解析式1的解析式为;为.抛物线C2上的一个动点.(2)如果点P(x,y)是直线BC上方抛物线C1①若∠PCA=∠ABO时,求P点的坐标;②如图2,过点P作x轴的垂线交直线BC于点M,交抛物线C于点N,记2h=PM+NM+BM,求h与x的函数关系式,当﹣5≤x≤﹣2时,求h的取值范围.41.如图,抛物线y=ax2+bx+c与两坐标轴相交于点A(﹣1,0)、B(3,0)、C (0,3),D是抛物线的顶点,E是线段AB的中点.(1)求抛物线的解析式,并写出D点的坐标;(2)F(x,y)是抛物线上的动点:①当x>1,y>0时,求△BDF的面积的最大值;②当∠AEF=∠DBE时,求点F的坐标.42.如图,在平面直角坐标系中,矩形ABCD的对称中心为坐标原点O,AD⊥y 轴于点E(点A在点D的左侧),经过E、D两点的函数y=﹣x2+mx+1(x≥0)的图象记为G1,函数y=﹣x2﹣mx﹣1(x<0)的图象记为G2,其中m是常数,图象G1、G2合起来得到的图象记为G.设矩形ABCD的周长为L.(1)当点A的横坐标为﹣1时,求m的值;(2)求L与m之间的函数关系式;(3)当G2与矩形ABCD恰好有两个公共点时,求L的值;(4)设G在﹣4≤x≤2上最高点的纵坐标为y0,当≤y≤9时,直接写出L的取值范围.43.已知抛物线y=ax2+bx+c过点A(0,2),且抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为圆心,OA为半径的圆与抛物线的另两个交点为B,C,且B在C的左侧,△ABC有一个内角为60°.(1)求抛物线的解析式;(2)若MN与直线y=﹣2x平行,且M,N位于直线BC的两侧,y1>y2,解决以下问题:①求证:BC平分∠MBN;②求△MBC外心的纵坐标的取值范围.44.如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(4,0),与y 轴交于点C(0,4).(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,直接写出点D的坐标;②若△BCD是锐角三角形,直接写出点D的纵坐标n的取值范围.45.如图1,抛物线y=ax2+2x+c与x轴交于A(﹣4,0),B(1,0)两点,过点B的直线y=kx+分别与y轴及抛物线交于点C,D.(1)求直线和抛物线的表达式;(2)动点P从点O出发,在x轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t秒,当t为何值时,△PDC为直角三角形?请直接写出所有满足条件的t的值;(3)如图2,将直线BD沿y轴向下平移4个单位后,与x轴,y轴分别交于E,F两点,在抛物线的对称轴上是否存在点M,在直线EF上是否存在点N,使DM+MN 的值最小?若存在,求出其最小值及点M,N的坐标;若不存在,请说明理由.46.如图,已知抛物线y=ax2+bx﹣3与x轴交于点A(﹣3,0)和点B(1,0),交y轴于点C,过点C作CD∥x轴,交抛物线于点D.(1)求抛物线的解析式;(2)若直线y=m(﹣3<m<0)与线段AD、BD分别交于G、H两点,过G点作EG⊥x轴于点E,过点H作HF⊥x轴于点F,求矩形GEFH的最大面积;(3)若直线y=kx+1将四边形ABCD分成左、右两个部分,面积分别为S1,S2,且S1:S2=4:5,求k的值.47.如图,抛物线顶点P(1,4),与y轴交于点C(0,3),与x轴交于点A,B.(1)求抛物线的解析式.(2)Q是抛物线上除点P外一点,△BCQ与△BCP的面积相等,求点Q的坐标.(3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为D,E.是否存在点M,N使四边形MNED为正方形?如果存在,求正方形MNED 的边长;如果不存在,请说明理由.48.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线与x轴交于A、B两点,与y轴交于C点,其中A(1,0),C(0,3).(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.49.在平面直角坐标系中,二次函数y=ax2+x+c的图象经过点C(0,2)和点D (4,﹣2).点E是直线y=﹣x+2与二次函数图象在第一象限内的交点.(1)求二次函数的解析式及点E的坐标.(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,ME.求四边形COEM面积的最大值及此时点M的坐标.(3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标.50.如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.(1)求线段OC的长度;(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC 面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.一.解答题(共50小题)1.如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.【分析】(1)根据待定系数法即可求得;(2)根据抛物线的解析式求得B的坐标,然后根据勾股定理分别求得AB2=20,AC2=80,BC10,然后根据勾股定理的逆定理即可证得△ABC是直角三角形.(3)分别以A、C两点为圆心,AC长为半径画弧,与x轴交于三个点,由AC的垂直平分线与x轴交于一个点,即可求得点N的坐标;(4)设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,根据三角形相似对应边成比例求得MD=(n+2),然后根据S△AMN =S△ABN﹣S△BMN得出关于n的二次函数,根据函数解析式求得即可.【解答】解:(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x 轴交于点B、C,点C坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)如图,AB==2,BC=8﹣(﹣2)=10,AC==4,∴AB2+AC2=BC2,∴∠BAC=90°.∴AC⊥AB.∵AC∥MN,∴MN⊥AB.设点N的坐标为(n,0),则BN=n+2,∵MN∥AC,△BMN∽△BAC∴=,∴=,BM==,MN==,AM=AB﹣BM=2﹣==AM•MN∵S△AMN=××=﹣(n﹣3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3,0).∴当△AMN面积最大时,N点坐标为(3,0).【点评】本题是二次函数的综合题,解(1)的关键是待定系数法求解析式,解(2)的关键是勾股定理和逆定理,解(3)的关键是等腰三角形的性质,解(4)的关键是三角形相似的判定和性质以及函数的最值等.2.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t 的取值范围.【分析】(1)根据点A、B、C三点的坐标作出△ABC,利用“闭距离”的定义即可得;(2)由题意知y=kx在﹣1≤x≤1范围内函数图象为过原点的线段,再分别求得经过(1,﹣1)和(﹣1,﹣1)时k的值即可得;(3)分⊙T在△ABC的左侧、内部和右侧三种情况,利用“闭距离”的定义逐一判断即可得.【解答】解:(1)如图所示,点O到△ABC的距离的最小值为2,∴d(点O,△ABC)=2;(2)y=kx(k≠0)经过原点,在﹣1≤x≤1范围内,函数图象为线段,当y=kx(﹣1≤x≤1,k≠0)经过(1,﹣1)时,k=﹣1,此时d(G,△ABC)=1;当y=kx(﹣1≤x≤1,k≠0)经过(﹣1,﹣1)时,k=1,此时d(G,△ABC)=1;∴﹣1≤k≤1,∵k≠0,∴﹣1≤k≤1且k≠0;。

中考数学考点:专题(50)函数的应用(含答案)

中考数学考点:专题(50)函数的应用(含答案)

专题50 函数的应用 聚焦考点☆温习理解1.函数的应用主要涉及到经济决策、市场经济等方面的应用.2.利用函数知识解应用题的一般步骤: (1)设定实际问题中的变量;(2)建立变量与变量之间的函数关系,如:一次函数,二次函数或其他复合而成的函数式;(3)确定自变量的取值范围,保证自变量具有实际意义;(4)利用函数的性质解决问题;(5)写出答案.3.利用函数并与方程(组)、不等式(组)联系在一起解决实际生活中的利率、利润、租金、生产方案的设计问题.名师点睛☆典例分类考点典例一、一次函数相关应用题【例1】 (2015.陕西省,第21题,7分)(本题满分7分)胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费。

假设组团参加甲、乙两家旅行社两日游的人数均为x 人。

(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y (元)与x (人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你通过计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家。

【答案】(1)甲旅行社:x 85.0640y ⨯==x 544.乙旅行社:当20x ≤时,x 9.0640y ⨯==x 576.当x>20时,20)-x 0.75640209.0640y (⨯+⨯⨯==1920x 480+.(2)胡老师选择乙旅行社.【解析】×人数;乙总费用y=20个人九折的费用+超过的人数×报价×打折率,列出y关于x的函数关系式,(2)根据人数计算出甲乙两家的费用再比较大小,哪家小就选择哪家.考点:一次函数的应用、分类思想的应用.【点睛】本题根据实际问题考查了一次函数的运用.解决本题的关键是根据题意正确列出两种方案的解析式,进而计算出临界点x的取值,再进一步讨论.【举一反三】(2015·黑龙江哈尔滨)小明家、公交车站、学校在一条笔直的公路旁(小明家到这条公路的距离忽略不计)。

二次函数易错必考题简答题专训(含解析)

二次函数易错必考题简答题专训(含解析)

二次函数易错必考题简答题专训一.解答题(共50小题)1.在平面直角坐标系中,抛物线y=x2﹣4x+n(x>0)的图象记为G1,将G1绕坐标原点旋转180°得到图象G2,图象G1和G2合起来记为图象G.(1)若点P(﹣1,2)在图象G上,求n的值.(2)当n=﹣1时.①若Q(t,1)在图象G上,求t的值.②当k≤x≤3(k<3)时,图象G对应函数的最大值为5,最小值为﹣5,直接写出k的取值范围.(3)当以A(﹣3,3)、B(﹣3,﹣1)、C(2,﹣1)、D(2,3)为顶点的矩形ABCD 的边与图象G有且只有三个公共点时,直接写出n的取值范围.2.如图1,在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)与x轴分别交于A(﹣3,0),B两点,与y轴交于点C,抛物线的顶点E(﹣1,4),对称轴交x轴于点F.(1)请直接写出这条抛物线和直线AE、直线AC的解析式;(2)连接AC、AE、CE,判断△ACE的形状,并说明理由;(3)如图2,点D是抛物线上一动点,它的横坐标为m,且﹣3<m<﹣1,过点D作DK⊥x轴于点K,DK分别交线段AE、AC于点G、H.在点D的运动过程中,①DG、GH、HK这三条线段能否相等?若相等,请求出点D的坐标;若不相等,请说明理由;②在①的条件下,判断CG与AE的数量关系,并直接写出结论.3.如图,在平面直角坐标系中,直线y=﹣x+n与x轴,y轴分别交于点B,点C,抛物线y=ax2+bx+(a≠0)过B,C两点,且交x轴于另一点A(﹣2,0),连接AC.(1)求抛物线的表达式;(2)已知点P为第一象限内抛物线上一点,且点P的横坐标为m,请用含m的代数式表示点P到直线BC的距离;(3)抛物线上是否存在一点Q(点C除外),使以点Q,A,B为顶点的三角形与△ABC 相似?若存在,直接写出点Q的坐标;若不存在,请说明理由.4.已知抛物线y=ax2﹣2ax+3与x轴交于点A、B(A左B右),且AB=4,与y轴交于C 点.(1)求抛物线的解析式;(2)如图,证明:对于任意给定的一点P(0,b)(b>3),存在过点P的一条直线交抛物线于M、N两点,使得PM=MN成立;(3)将该抛物线在0≤x≤4间的部分记为图象G,将图象G在直线y=t上方的部分沿y =t翻折,其余部分保持不变,得到一个新的函数的图象,记这个函数的最大值为m,最小值为n,若m﹣n≤6,求t的取值范围.5.如图,抛物线y=﹣x﹣1与y轴交于点A,点B是抛物线上的一点,过点B作BC⊥x轴于点C,且点C的坐标为(9,0).(1)求直线AB的表达式;(2)若直线MN∥y轴,分别与抛物线,直线AB,x轴交于点M、N、Q,且点Q位于线段OC之间,求线段MN长度的最大值;(3)当四边形MNCB是平行四边形时,求点Q的坐标.6.在平面直角坐标系内,反比例函数和二次函数y=a(x2+x﹣1)的图象交于点A(1,a)和点B(﹣1,﹣a).(1)求直线AB与y轴的交点坐标;(2)要使上述反比例函数和二次函数在某一区域都是y随着x的增大而增大,求a应满足的条件以及x的取值范围;(3)设二次函数的图象的顶点为Q,当Q在以AB为直径的圆上时,求a的值.7.如图,对称轴为x=1的抛物线经过A(﹣1,0),B(2,﹣3)两点.(1)求抛物线的解析式;(2)P是抛物线上的动点,连接PO交直线AB于点Q,当Q是OP中点时,求点P的坐标;(3)C在直线AB上,D在抛物线上,E在坐标平面内,以B,C,D,E为顶点的四边形为正方形,直接写出点E的坐标.8.如图,抛物线y=ax2+bx+3与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P是抛物线上的动点,且满足S△P AO=2S△PCO,求出P点的坐标;(3)连接BC,点E是x轴一动点,点F是抛物线上一动点,若以B、C、E、F为顶点的四边形是平行四边形时,请直接写出点F的坐标.9.如图(1)已知矩形AOCD在平面直角坐标系xOy中,∠CAO=60°,OA=2,B点的坐标为(2,0),动点M以每秒2个单位长度的速度沿A→C→B运动(M点不与点A、点B重合),设运动时间为t秒.(1)求经过B、C、D三点的抛物线解析式;(2)点P在(1)中的抛物线上,当M为AC中点时,若△P AM≌△PDM,求点P的坐标;(3)当点M在CB上运动时,如图(2)过点M作ME⊥AD,MF⊥x轴,垂足分别为E、F,设矩形AEMF与△ABC重叠部分面积为S,求S与t的函数关系式,并求出S的最大值;(4)如图(3)点P在(1)中的抛物线上,Q是CA延长线上的一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB 的面积为2d,求点P的坐标.10.已知抛物线G:y=x2+(k﹣5)x+1﹣k,其中k为常数.(1)求证:无论k为何值,抛物线G总与x轴有两个交点;(2)若抛物线G的图象不经过第三象限,求k的取值范围;(3)对于一个函数,当自变量x取a时,函数值y也等于a,我们称a为这个函数的对等值.若函数y=x2+(k﹣5)x+1﹣k有两相异的对等值x1,x2,且x1<2<x2,求k的最大整数值.11.生产商对在甲、乙两地生产并销售的某产品进行研究后发现如下规律:每年年产量为x (吨)时所需的全部费用y(万元)与x满足关系式y=x2+5x+90,投人市场后当年能全部售10出,且在甲、乙两地每吨的售价P甲P乙(万元)均与x满足一次函数关系.(注:年利润=年销售额﹣全部费用)(1)当在甲地生产并销售x吨时,满足P甲=﹣x+14,求在甲地生成并销售20吨时利润为多少万元;(2)当在乙地生产并销售x吨时,P乙=﹣x+15,求在乙地当年的最大年利润应为多少万元?12.在平面直角坐标系xOy中,将点P1(a,b﹣a)定义为点P(a,b)的“关联点”.已知:点A(x,y)在函数y=x2的图象上(如图所示),点A的“关联点”是点A1.(1)请在如图的基础上画出函数y=x2﹣2的图象,简要说明画图方法;(2)如果点A1在函数y=x2﹣2的图象上,求点A1的坐标;(3)将点P2(a,b﹣na)称为点P(a,b)的“待定关联点”(其中,n≠0).如果点A (x,y)的“待定关联点”A2在函数y=x2﹣n的图象上,试用含n的代数式表示点A2的坐标.13.对于给定函数y=a1x2+b1x+c1(其中a1、b1、c1为常数,且a1≠0),则称函数y=(a1=a2,b1+b2=0,c1+c2=0)为函数y=a1x2+b1x+c1(其中a1,b1,c1为常数,且a1≠0)的“相关函数”,此“相关函数”的图象记为G.(1)已知函数y=﹣x2+4x+2.①直接写出这个函数的“相关函数”;②若点P(a,1)在“相关函数”的图象上,求a的值;③若直线y=m与图象G恰好有两个公共点,直接写出m的取值范围;(2)设函数y=﹣x2+nx+1(n>0)的相关函数的图象G在﹣4≤x≤2上的最高点的纵坐标为y0,当≤y0≤9时,直接写出n的取值范围.14.每年5月的第二个星期日即为母亲节,“父母恩深重,恩怜无歇时”,许多市民喜欢在母亲节为母亲送花,感恩母亲,祝福母亲.今年节日前夕,某花店采购了一批康乃馨,经分析上一年的销售情况,发现这种康乃馨每天的销售量y(支)是销售单价x(元)的一次函数,已知销售单价为7元/支时,销售量为16支;销售单价为8元/支时,销售量为14支.(1)求这种康乃馨每天的销售量y(支)关于销售单价x(元/支)的一次函数解析式;(2)若按去年方式销售,已知今年这种康乃馨的进价是每支5元,商家若想每天获得42元的利润,销售单价要定为多少元?(3)在(2)的条件下,当销售单价x为何值时,花店销售这种康乃馨每天获得的利润最大?并求出获得的最大利润.15.周师傅家的猕猴桃成熟上市后,她记录了10天的销售数量和销售单价,其中销售单价y(元/千克)与时间第x天(x为整数)的数量关系为y=﹣x+16,日销售量p(千克)与时间第x天(x为整数)的部分对应值如表所示:时间第x天135710日销量p(千克)320360400440500(1)从你学过的函数中,选择合适的函数类型刻画p随x的变化规律,请直接写出p与x的函数关系式及自变量x的取值范围;(2)在这10天中,哪一天销售额达到最大?最大销售额是多少元?(3)周师傅决定每销售1千克桃就捐款a(a>1)元,且希望每天的销售额不低于1500元以维持各项开支,求a的最大值.16.已知:抛物线y=x2﹣2x+m与y轴交于点C(0,﹣2),点D和点C关于抛物线对称轴对称.(1)求此抛物线的解析式和点D的坐标;(2)如果点M是抛物线的对称轴与x轴的交点,求MCD的周长.17.某公司生产的一种商品其售价是成本的 1.5倍,当售价降低5元时商品的利润率为25%.若不进行任何推广年销售量为1万件.为了获得更好的利益,公司准备拿出一定的资金做推广,根据经验,每年投入的推广费x万元时销售量y(万件)是x的二次函数:当x为1万元时,y是1.5(万件).当x为2万元时,y是1.8(万件).(1)求该商品每件的的成本与售价分别是多少元?(2)求出年利润与年推广费x的函数关系式;(3)如果投入的年推广告费为1万到3万元(包括1万和3万元),问推广费在什么范同内,公司获得的年利润随推广费的增大而增大?18.某玩具厂安排30人生产甲、乙两种玩具,已知每人每天生产20件甲种玩具或12件乙种玩具,甲种玩具每件利润18元,当参与生产乙种玩具的工人为10人时,乙种玩具每件利润为40元,在10人的基础上每增加1人,每件乙种玩具的利润下降1元,设每天安排x人生产甲种玩具,且不少于10人生产乙种玩具.(1)请根据以上信息完善下表:玩具工人数(人)每天产量(件)每件利润(元)甲x18乙(2)请求出销售甲乙两种玩具每天的总利润y(元)关于x(人)的表达式;(3)请你设计合理的工人分配方案,使得每天销售甲乙两种玩具的利润最大化,并求出这个最大利润.19.已知抛物线y=x2+(2m﹣1)x﹣2m(m>0.5)的最低点的纵坐标为﹣4.(1)求抛物线的解析式;(2)如图1,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,D为抛物线上的一点,BD平分四边形ABCD的面积,求点D的坐标;(3)如图2,平移抛物线y=x2+(2m﹣1)x﹣2m,使其顶点为坐标原点,直线y=﹣2上有一动点P,过点P作两条直线,分别与抛物线有唯一的公共点E、F(直线PE、PF 不与y轴平行),求证:直线EF恒过某一定点.20.某坦克部队需要经过一个拱桥(如图所示),拱桥的轮廓是抛物线形,拱高OC=6m,跨度AB=20m,有5根支柱:AG、MN、CD、EF、BH,相邻两支柱的距离均为5m.(1)以AB的中点为原点,AB所在直线为x轴,支柱CD所在直线为y轴,建立平面直角坐标系,求抛物线的解析式;(2)若支柱每米造价为2万元,求5根支柱的总造价;(3)拱桥下面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道是坦克的行进方向,现每辆坦克长4m,宽2m,高3m,行驶速度为24km/h,坦克允许并排行驶,坦克前后左右距离忽略不计,试问120辆该型号坦克从刚开始进入到全部通过这座长1000m的拱桥隧道所需最短时间为多少分钟?21.平面直角坐标系中,已知二次函数的图象经过点A(2,0)和点,直线l经过抛物线的顶点且与y轴垂直,垂足为Q.求该二次函数的表达式.22.如图,直线y=﹣x+1与x轴,y轴分别交于A,B两点,抛物线y=ax2+bx+c过点B,并且顶点D的坐标为(﹣2,﹣1).(1)求该抛物线的解析式;(2)若抛物线与直线AB的另一个交点为F,点C是线段BF的中点,过点C作BF的垂线交抛物线于点P,Q,求线段PQ的长度;(3)在(2)的条件下,点M是直线AB上一点,点N是线段PQ的中点,若PQ=2MN,直接写出点M的坐标.23.如图,已知抛物线y=﹣x2+bx+c经过点A(3,0),点B(0,3).点M(m,0)在线段OA上(与点A,O不重合),过点M作x轴的垂线与线段AB交于点P,与抛物线交于点Q,联结BQ.(1)求抛物线表达式;(2)联结OP,当∠BOP=∠PBQ时,求PQ的长度;(3)当△PBQ为等腰三角形时,求m的值.24.如图,将抛物线y=﹣x2+4平移后,新抛物线经过原抛物线的顶点C,新抛物线与x 轴正半轴交于点B,联结BC,tan B=4,设新抛物线与x轴的另一交点是A,新抛物线的顶点是D.(1)求点D的坐标;(2)设点E在新抛物线上,联结AC、DC,如果CE平分∠DCA,求点E的坐标.(3)在(2)的条件下,将抛物线y=﹣x2+4沿x轴左右平移,点C的对应点为F,当△DEF和△ABC相似时,请直接写出平移后得到抛物线的表达式.25.如图,抛物线与x轴相交于点A(﹣3,0)、点B(1,0),与y轴交于点C(0,3),点D是抛物线上一动点,联结OD交线段AC于点E.(1)求这条抛物线的解析式,并写出顶点坐标;(2)求∠ACB的正切值;(3)当△AOE与△ABC相似时,求点D的坐标.26.如图,在平面直角坐标系xOy中,抛物线y=x2+mx+n经过点B(6,1),C(5,0),且与y轴交于点A.(1)求抛物线的表达式及点A的坐标;(2)点P是y轴右侧抛物线上的一点,过点P作PQ⊥OA,交线段OA的延长线于点Q,如果∠P AB=45°.求证:△PQA∽△ACB;(3)若点F是线段AB(不包含端点)上的一点,且点F关于AC的对称点F′恰好在上述抛物线上,求FF′的长.27.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴的两个交点分别为A(﹣1,0),B(3,0),与y轴相交于点C.(1)求抛物线的表达式;(2)联结AC、BC,求∠ACB的正切值;(3)点P在抛物线上,且∠P AB=∠ACB,求点P的坐标.28.在平面直角坐标系xOy中(如图),已知抛物线y=ax2+(a+)x+c(a≠0)经过点A (﹣3,﹣2),与y轴交于点B(0,﹣2),抛物线的顶点为点C,对称轴与x轴交于点D.(1)求抛物线的表达式及点C的坐标;(2)点E是x轴正半轴上的一点,如果∠AED=∠BCD,求点E的坐标;(3)在(2)的条件下,点P是位于y轴左侧抛物线上的一点,如果△P AE是以AE为直角边的直角三角形,求点P的坐标.29.如图,若m是正数,直线l:y=﹣m与y轴交于点A;直线a:y=x+m与y轴交于点B;抛物线L:y=x2+mx的顶点为C,且L与x轴左交点为D.(1)若AB=12,求m的值,此时在抛物线的对称轴上存在一点P使得△OBP的周长最小,求点P坐标;(2)当点C在直线l上方时,求点C与直线l距离的最大值;(3)在抛物线L和直线a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出m=2020和m=2020.5时“美点”的个数.30.如图1,抛物线W:y=ax2﹣2的顶点为点A,与x轴的负半轴交于点D,直线AB交抛物线W于另一点C,点B的坐标为(1,0).(1)求直线AB的解析式;(2)过点C作CE⊥x轴,交x轴于点E,若AC平分∠DCE,求抛物线W的解析式;(3)若a=,将抛物线W向下平移m(m>0)个单位得到抛物线W1,如图2,记抛物线W1的顶点为A1,与x轴负半轴的交点为D1,与射线BC的交点为C1.问:在平移的过程中,tan∠D1C1B是否恒为定值?若是,请求出tan∠D1C1B的值;若不是,请说明理由.31.在平面直角坐标系中,点到直线的距离即为点到直线的垂线段的长.(1)如图1,取点M(1,0),则点M到直线l:y=x﹣1的距离为多少?(2)如图2,点P是反比例函数y=在第一象限上的一个点,过点P分别作PM⊥x轴,作PN⊥y轴,记P到直线MN的距离为d0,问是否存在点P,使d0=?若存在,求出点P的坐标,若不存在,请说明理由.(3)如图3,若直线y=kx+m与抛物线y=x2﹣4x相交于x轴上方两点A、B(A在B的左边).且∠AOB=90°,求点P(2,0)到直线y=kx+m的距离最大时,直线y=kx+m 的解析式.32.如图,直线y=﹣x+m与抛物线y=ax2+bx都经过点A(6,0),点B,过B作BH垂直x轴于H,OA=3OH.直线OC与抛物线AB段交于点C.(1)求抛物线的解析式;(2)当点C的纵坐标是时,求直线OC与直线AB的交点D的坐标;(3)在(2)的条件下将△OBH沿BA方向平移到△MPN,顶点P始终在线段AB上,求△MPN与△OAC公共部分面积的最大值.33.如图,抛物线y=ax2+bx﹣3经过点A(2,﹣3),与x轴负半轴交于点B,与y轴交于点C,且OC=3OB.(1)求抛物线的解析式;(2)抛物线的对称轴上有一点P,使PB+PC的值最小,求点P的坐标;(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.34.如图,抛物线y=﹣x2+bx+c交x轴于A,B两点,交y轴于点C,直线y=﹣x+2经过点B,C.(1)求抛物线的解析式;(2)点P是直线BC上方抛物线上一动点,设点P的横坐标为m.求△PBC面积最大值和此时m的值;(3)Q是抛物线上一点,若∠ABC=∠CBQ,直线BQ与y轴的交点M,请直接写出M 的坐标.35.利用函数图象探究方程x(|x|﹣2)=的实数根的个数.(1)设函数y=x(|x|﹣2),则这个函数的图象与直线y=的交点的横坐标就是方程x (|x|﹣2)=的实数根.(2)分类讨论:当x≤0时,y=﹣x2﹣2x;当x>0时,y=;(3)在给定的坐标系中,已经画出了当x≤0时的函数图象,请根据(2)中的解析式,通过描点,连线,画出当x>0时的函数图象.(4)在给定的坐标系中画直线y=、观察图象可知方程x(|x|﹣2)=的实数根有个.(5)深入探究:若关于x的方程2x(|x|﹣2)=m有三个不相等的实数根,且这三个实数根的和为负数,则m的取值范围是.36.如图1,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0)、C(3,0),点B为抛物线顶点,直线BD为抛物线的对称轴,点D在x轴上,连接AB、BC,∠ABC=90°,AB与y轴交于点E,连接CE.(1)求项点B的坐标并求出这条抛物线的解析式;(2)点P为第一象限抛物线上一个动点,设△PEC的面积为S,点P的横坐标为m,求S关于m的函数关系武,并求出S的最大值;(3)如图2,连接OB,抛物线上是否存在点Q,使直线QC与直线BC所夹锐角等于∠OBD,若存在请直接写出点Q的坐标;若不存在,说明理由.37.在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+ax+a(a≠0)交x轴于点A和点B(点A在点B左边),交y轴于点C,连接AC,tan∠CAO=3.(1)如图1,求抛物线的解析式;(2)如图2,D是第一象限的抛物线上一点,连接DB,将线段DB绕点D顺时针旋转90°,得到线段DE(点B与点E为对应点),点E恰好落在y轴上,求点D的坐标;(3)如图3,在(2)的条件下,过点D作x轴的垂线,垂足为H,点F在第二象限的抛物线上,连接DF交y轴于点G,连接GH,sin∠DGH=,以DF为边作正方形DFMN,P为FM上一点,连接PN,将△MPN沿PN翻折得到△TPN(点M与点T为对应点),连接DT并延长与NP的延长线交于点K,连接FK,若FK=,求cos∠KDN的值.38.定义:由两条与x轴有着相同的交点,并且开口方向相同的抛物线所围成的封闭曲线称为“月牙线”.如图,抛物线C1与抛物线C2组成一个开口向上的“月牙线”,抛物线C1与抛物线C2与x轴有相同的交点M,N(点M在点N的左侧),与y轴的交点分别为A,B且点A的坐标为(0,﹣3),抛物线C2的解析式为y=mx2+4mx﹣12m,(m>0).(1)请你根据“月牙线”的定义,设计一个开口向下.“月牙线”,直接写出两条抛物线的解析式;(2)求M,N两点的坐标;(3)在第三象限内的抛物线C1上是否存在一点P,使得△P AM的面积最大?若存在,求出△P AM的面积的最大值;若不存在,说明理由.39.如图,直线y=﹣x+3与x轴、y轴分别相交于点B、C,经过B、C两点的抛物线y=ax2+bx+c与x轴的另一个交点为A,顶点为P,且对称轴为直线x=2.点G是抛物线y =ax2+bx+c位于直线y=﹣x+3下方的任意一点,连接PB、GB、GC、AC.(1)求该抛物线的解析式;(2)求△GBC面积的最大值;(3)连接AC,在x轴上是否存在一点Q,使得以点P,B,Q为顶点的三角形与△ABC 相似?若存在,求出点Q的坐标;若不存在,请说明理由.40.如图,抛物线y=ax2+x+c交x轴于A,B两点,交y轴于点C.直线y=﹣+2经过点A,C.(1)求抛物线的解析式;(2)点P在抛物线在第一象限内的图象上,过点P作x轴的垂线,垂足为D,交直线AC于点E,连接PC,设点P的横坐标为m.①当△PCE是等腰三角形时,求m的值;②过点C作直线PD的垂线,垂足为F.点F关于直线PC的对称点为F′,当点F′落在坐标轴上时,请直接写出点P的坐标.41.已知二次函数y=ax2﹣2ax﹣2(a≠0).(1)该二次函数图象的对称轴是直线;(2)若该二次函数的图象开口向上,当﹣1≤x≤5时,函数图象的最高点为M,最低点为N,点M的纵坐标为,求点M和点N的坐标;(3)若该二次函数的图象开口向下,对于该二次函数图象上的两点A(x1,y1)、B(x2,y2),当x2≥3时,均有y1≥y2,请结合图象,直接写出x1的取值范围.42.如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c 经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为线段OA上一个动点,过点M垂直于x轴的直线与直线AB和抛物线分别交于点P、N.①试用含m的代数式表示线段PN的长;②求线段PN的最大值.43.如图,抛物线y=﹣x2+2x+6交x轴于A,B两点(点A在点B的右侧),交y轴于点C,顶点为D,对称轴分別交x轴、线段AC于点E、F.(1)求抛物线的对称轴及点A的坐标;(2)连结AD,CD,求△ACD的面积;(3)设动点P从点D出发,沿线段DE匀速向终点E运动,取△ACD一边的两端点和点P,若以这三点为顶点的三角形是等腰三角形,且P为顶角顶点,求所有满足条件的点P的坐标.44.已知抛物线y1=ax2+bx+c(a≠0,a≠c)与x轴交于点A(1,0),顶点为B.(Ⅰ)a=1时,c=3时,求抛物线的顶点B的坐标;(Ⅱ)求抛物线y1=ax2+bx+c与x轴的另一个公共点的坐标(用含a,c的式子表示);(Ⅲ)若直线y2=2x+m经过点B且与抛物线y1=ax2+bx+c交于另一点C(,b+8),求当x≥1时,y1的取值范围.45.如图,抛物线y=x2﹣2x﹣3与x轴分别交于A,B两点(点A在点B的左边),与y轴交于点C,顶点为D.(1)如图1,求△BCD的面积;(2)如图2,P是抛物线BD段上一动点,连接CP并延长交x轴于E,连接BD交PC 于F,当△CDF的面积与△BEF的面积相等时,求点E和点P的坐标.46.如图,已知二次函数的图象经过点A(4,4),B(5,0)和原点O,P为二次函数图象上的一个动点,过点P作x轴的垂线,垂足为D(m,0),并与直线OA相较于点C.(1)求出二次函数的解析式;(2)当点P在直线OA的上方时,求线段PC的最大值;(3)当点P在直线OA的上方时,是否存在一点P,使射线OP平分∠AOy,若存在,请求出P点坐标;若不存在.请说明理由;(4)当m>0时,探索是否存在点P,使得△PCO为等腰三角形,若存在,求出P点的坐标;若不存在,请说明理由.47.如图,已知一次函数y=kx+b的图象经过A(﹣1,﹣5),B(0,﹣4)两点且与x轴交于点C,二次函数y=ax2+bx+4的图象经过点A、点C.(1)求一次函数和二次函数的函数表达式;(2)连接OA,求∠OAB的正弦值;(3)若点D在x轴的正半轴上,是否存在以点D,C,B构成的三角形与△OAB相似?若存在,求出点D的坐标;若不存在,请说明理由.48.如图:抛物线y=x2+bx+c与直线y=﹣x﹣1交于点A,B.其中点B的横坐标为2.点P(m,n)是线段AB上的动点.(1)求抛物线的表达式;(2)过点P的直线垂直于x轴,交抛物线于点Q,求线段PQ的长度l与m的关系式,m为何值时,PQ最长?(3)在平角直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的四边形为整点四边形,在(2)的情况下,在平面内找出所有符合要求的整点R,使P、Q、B、R为整点平行四边形,请直接写出整点R的坐标.49.抛物线y=x2+bx+c与x轴交于点A和B(点A在点B的左侧),与y轴交于点C,OB =OC,点D(2,﹣3)在抛物线上.(1)求抛物线的解析式;(2)点P(m,km+1),m为任意实数,当m变化时,点P在直线l上运动,若点A,D到直线l的距离相等,求k的值;(3)M为抛物线在第一象限内一动点,若∠AMB>45°,求点M的横坐标x M的取值范围.50.在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A、B,C,已知A(﹣1,0),C(0,3).(1)求抛物线的解析式;(2)如图1,P为线段BC上一动点,过点P作y轴的平行线,交抛物线于点D,是否存在这样的P点,使线段PD的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)如图2,抛物线的顶点为E,EF⊥x轴于点F,N是直线EF上一动点,M(m,0)是x轴一个动点,请直接写出CN+MN+MB的最小值以及此时点M、N的坐标,直接写出结果不必说明理由.第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明二次函数简答题的初中数学组卷参考答案与试题解析一.解答题(共50小题)1.在平面直角坐标系中,抛物线y=x2﹣4x+n(x>0)的图象记为G1,将G1绕坐标原点旋转180°得到图象G2,图象G1和G2合起来记为图象G.(1)若点P(﹣1,2)在图象G上,求n的值.(2)当n=﹣1时.①若Q(t,1)在图象G上,求t的值.②当k≤x≤3(k<3)时,图象G对应函数的最大值为5,最小值为﹣5,直接写出k的取值范围.(3)当以A(﹣3,3)、B(﹣3,﹣1)、C(2,﹣1)、D(2,3)为顶点的矩形ABCD 的边与图象G有且只有三个公共点时,直接写出n的取值范围.【专题】535:二次函数图象及其性质;536:二次函数的应用;69:应用意识.【分析】(1)先求出图象G1和G2的解析式,分点P分别在图象G1和G2上两种情况讨论,可求n的值;(2)①先求出图象G1和G2的解析式,分点P分别在图象G1和G2上两种情况讨论,可求t的值;②结合图象1,可求k的取值范围;(3)结合图象,分类讨论可求解.【解答】解:(1)∵抛物线y=x2﹣4x+n=(x﹣2)2+n﹣4,∴顶点坐标为(2,n﹣4),∵将G1绕坐标原点旋转180°得到图象G2,∴图象G2的顶点坐标为(﹣2,﹣n+4),∴图象G2的解析式为:y=﹣(x+2)2+4﹣n,若点P(﹣1,2)在图象G1上,∴2=9+n﹣4,∴n=﹣3;若点P(﹣1,2)在图象G2上,∴2=﹣1+4﹣n,∴n=1;综上所述:点P(﹣1,2)在图象G上,n的值为﹣3或1;(2)①当n=﹣1时,则图象G1的解析式为:y=(x﹣2)2﹣5,图象G2的解析式为:y=﹣(x+2)2+5,若点Q(t,1)在图象G1上,∴1=(t﹣2)2﹣5,∴t=2±,若点Q(t,1)在图象G2上,∴1=﹣(t+2)2+5,∴t1=﹣4,t2=0②如图1,当x=2时,y=﹣5,当x=﹣2时,y=5,对于图象G1,在y轴右侧,当y=5时,则5=(x﹣2)2﹣5,∴x=2+>3,对于图象G2,在y轴左侧,当y=﹣5时,则﹣5=﹣(x+2)2+5,∴x=﹣2﹣,∵当k≤x≤3(k<3)时,图象G对应函数的最大值为5,最小值为﹣5,∴﹣2﹣≤k≤﹣2;(3)如图2,∵图象G2的解析式为:y=﹣(x+2)2+4﹣n,图象G1的解析式为:y=(x﹣2)2+n﹣4,∴图象G2的顶点坐标为(﹣2,﹣n+4),与y轴交点为(0,﹣n),图象G1的顶点坐标为(2,n﹣4),与y轴交点为(0,n),当n≤﹣1时,图象G1与矩形ABCD最多1个交点,图象G2与矩形ABCD最多1交点,当﹣1<n<0时,图象G1与矩形ABCD有1个交点,图象G2与矩形ABCD有3交点,当n=0时,图象G1与矩形ABCD有1个交点,图象G2与矩形ABCD有2交点,共三个交点,当0<n≤1时,图象G1与矩形ABCD有1个交点,图象G2与矩形ABCD有1交点,当1<n<3时,图象G1与矩形ABCD有1个交点,图象G2与矩形ABCD有2交点,共三个交点,当3≤n<7时,图象G1与矩形ABCD有2个交点,当3≤n<5时,图象G2与矩形ABCD 有2个交点,n=5时,图象G2与矩形ABCD有1个交点,n>5时,没有交点,∵矩形ABCD的边与图象G有且只有三个公共点,∴n=5,当n≥7时,图象G1与矩形ABCD最多1个交点,图象G2与矩形ABCD没有交点,综上所述:当n=0,n=5,1<n<3时,矩形ABCD的边与图象G有且只有三个公共点.【点评】本题是二次函数综合题,考查了二次函数的性质,二次函数的应用,利用数形结合思想解决问题是本题的关键.2.如图1,在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)与x轴分别交于A(﹣3,0),B两点,与y轴交于点C,抛物线的顶点E(﹣1,4),对称轴交x轴于点F.(1)请直接写出这条抛物线和直线AE、直线AC的解析式;(2)连接AC、AE、CE,判断△ACE的形状,并说明理由;(3)如图2,点D是抛物线上一动点,它的横坐标为m,且﹣3<m<﹣1,过点D作DK⊥x轴于点K,DK分别交线段AE、AC于点G、H.在点D的运动过程中,①DG、GH、HK这三条线段能否相等?若相等,请求出点D的坐标;若不相等,请说明理由;②在①的条件下,判断CG与AE的数量关系,并直接写出结论.【专题】16:压轴题;65:数据分析观念.【分析】(1)抛物线的表达式为:y=a(x+1)2+4=a(x2+2x+1)+4,即可求解;(2)则AC2=18,CE2=2,AE2=20,即可求解;(3)设出点D、G、H的坐标,求出:DG=﹣x2﹣2x+3﹣2x﹣6=﹣x2﹣4x﹣3;HK=x+3;GH=2x+6﹣x﹣3=x+3,即可求解;【解答】解:(1)抛物线的表达式为:y=a(x+1)2+4=a(x2+2x+1)+4,故a+4=3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2﹣2x+3;将点A、E的坐标代入一次函数表达式并解得:直线AE的表达式为:y=2x+6;同理可得:直线AC的表达式为:y=x+3;(2)点A、C、E的坐标分别为:(﹣3,0)、(0,3)、(﹣1,4),则AC2=18,CE2=2,AE2=20,故AC2+CE2=AE2,则△ACE为直角三角形;。

2020年九年级数学一题多问--一道二次函数经典题的50种问法(PDF版无答案)

2020年九年级数学一题多问--一道二次函数经典题的50种问法(PDF版无答案)

一道二次函数经典50问已知:如图,抛物线2y x bx c =++与x 轴交于A 、B 两点,与y 轴交于点C ,OA =OC =3,顶点为D 。

(1)求此抛物线的解析式;(2)判断△ACD 的形状,并说明理由;(3)求四边形ABCD 的面积;(4)在对称轴上找一点P ,使△BCP 的周长最小,求出点P 的坐标及△BPC 的周长。

XXXX(5)在直线AC 下方的抛物线有一点N ,过点N 作直线//l y 轴,交AC 于点M ,当点N 的坐标是多少时,线段MN 的长度最大?最大值是多少?(6)在直线AC 下方的抛物线上,是否存在一点N ,使△CAN 的面积最大?最大面积是多少?(7)在直线AC 下方的抛物线上,是否存在一点N ,使四边形ABCN 的面积最大?最大面积是多少?(8)在y 轴上是否存在一点E ,使△ADE 为直角三角形,若存在,求出点E 的坐标,若不存在,请说明理由。

XXXX(10)在抛物线上是否存在一点N ,使ABN ABC =S S △△,若存在,求出点N 的坐标,若不存在,请说明理由。

(11)在抛物线上是否存在一点H ,使BCH ABC =S S △△,若存在,求出点H 的坐标,若不存在,请说明理由。

(12)在抛物线上是否存在一点Q ,使AOQ COQ =S S △△,若存在,求出点Q 的坐标,若不存在,请说明理由。

XXXX(14)在抛物线上找一点F ,作FM ⊥x 轴,交AC 于点H ,使AC 平分△AFM(15)在抛物线的对称轴上有一点K ,在抛物线上有一点L ,若使A 、B 、K 、L 为顶点的四边形是平行四边形,求出K 、L 两点的坐标。

(16)作垂直于x 轴的直线x =-1,交直线AC 于点M ,交抛物线于点N ,若以A 、M 、N 、E 为顶点的四边形是平行四边形,求点E的坐标。

XXXX(17)在抛物线上是否存在一点P ,使∠POC =∠PCO ?若存在,求出点P 的坐标,若不存在,请说明理由。

高考数学复习考点知识与题型专题讲解60---抛物线

高考数学复习考点知识与题型专题讲解抛物线考试要求1.掌握抛物线的定义、几何图形、标准方程.2.掌握抛物线的简单几何性质(范围、对称性、顶点、离心率).3.了解抛物线的简单应用.知识梳理 1.抛物线的概念把平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的轨迹叫做抛物线,点F 叫做抛物线的焦点,直线l 叫做抛物线的准线. 2.抛物线的标准方程和简单几何性质标准方程y 2=2px (p >0) y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)图形范围 x ≥0,y ∈R x ≤0,y ∈R y ≥0,x ∈R y ≤0,x ∈R 焦点⎝ ⎛⎭⎪⎫p 2,0 ⎝ ⎛⎭⎪⎫-p 2,0 ⎝ ⎛⎭⎪⎫0,p 2 ⎝ ⎛⎭⎪⎫0,-p 2 准线方程x =-p 2x =p 2y =-p 2y =p 2对称轴x轴y轴顶点(0,0)离心率e=1常用结论抛物线焦点弦的几个常用结论设AB是过抛物线y2=2px(p>0)的焦点F的弦,若A(x1,y1),B(x2,y2),则(1)x1x2=p24,y1y2=-p2;(2)若A在第一象限,B在第四象限,则|AF|=p1-cosα,|BF|=p1+cosα,弦长|AB|=x1+x2+p=2psin2α(α为弦AB的倾斜角);(3)1|F A|+1|FB|=2p;(4)以弦AB为直径的圆与准线相切;(5)以AF或BF为直径的圆与y轴相切;(6)过焦点弦的端点的切线互相垂直且交点在准线上;(7)通径:过焦点与对称轴垂直的弦长等于2p.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内与一个定点F和一条定直线l的距离相等的点的轨迹是抛物线.(×)(2)方程y=4x2表示焦点在x轴上的抛物线,焦点坐标是(1,0).(×)(3)抛物线既是中心对称图形,又是轴对称图形.(×)(4)若直线与抛物线只有一个交点,则直线与抛物线相切.(×) 教材改编题1.抛物线y =2x 2的准线方程为() A .y =-18B .y =-14 C .y =-12D .y =-1 答案A解析由y =2x 2,得x 2=12y ,故抛物线y =2x 2的准线方程为y =-18.2.过抛物线y 2=4x 的焦点的直线l 交抛物线于P (x 1,y 1),Q (x 2,y 2)两点,如果x 1+x 2=6,则|PQ |等于() A .9B .8C .7D .6 答案B解析抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.根据题意可得, |PQ |=|PF |+|QF |=x 1+1+x 2+1 =x 1+x 2+2=8.3.已知抛物线C 与双曲线x 2-y 2=1有相同的焦点,且顶点在原点,则抛物线C 的方程是________. 答案y 2=±42x解析由已知可知双曲线的焦点为 (-2,0),(2,0).设抛物线方程为y 2=±2px (p >0),则p2=2, 所以p =22,所以抛物线方程为y 2=±42x .题型一 抛物线的定义和标准方程 命题点1定义及应用例1(1)(2020·全国Ⅰ)已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p 等于() A .2B .3C .6D .9 答案C解析设A (x ,y ),由抛物线的定义知,点A 到准线的距离为12,即x +p2=12. 又因为点A 到y 轴的距离为9,即x =9, 所以9+p2=12,解得p =6.(2)已知A (3,2),点F 为抛物线y 2=2x 的焦点,点P 在抛物线上移动,为使|P A |+|PF |取得最小值,则点P 的坐标为() A .(0,0) B .(2,2) C .(1,2) D.⎝ ⎛⎭⎪⎫12,1答案B解析如图所示,设点P 到准线的距离为d , 准线方程为x =-12, 所以|P A |+|PF |=|P A |+d ≥|AB | =3+12=72,当且仅当点P 为AB 与抛物线的交点时,|P A |+|PF |取得最小值, 此时点P 的坐标为(2,2).思维升华 “看到准线想到焦点,看到焦点想到准线”,许多抛物线问题均可根据定义获得简捷、直观的求解.“由数想形,由形想数,数形结合”是灵活解题的一条捷径.命题点2求标准方程例2(1)设抛物线y 2=2px 的焦点在直线2x +3y -8=0上,则该抛物线的准线方程为() A .x =-4B .x =-3 C .x =-2D .x =-1 答案A解析直线2x +3y -8=0与x 轴的交点为(4,0),∴抛物线y 2=2px 的焦点为(4,0),∴准线方程为x =-4.(2)已知抛物线C:y2=2px(p>0)的焦点为F,准线为l,点A是抛物线C上一点,AD⊥l,交l于D.若|AF|=4,∠DAF=60°,则抛物线C的方程为()A.y2=8x B.y2=4xC.y2=2x D.y2=x答案B解析根据抛物线的定义可得|AD|=|AF|=4,又∠DAF=60°,所以|AD|-p=|AF|cos60°=12|AF|,所以4-p=2,解得p=2,所以抛物线C的方程为y2=4x.教师备选1.已知抛物线y2=4x的焦点为F,M,N是抛物线上两个不同的点.若|MF|+|NF|=5,则线段MN的中点到y轴的距离为()A.3B.32C.5D.52答案B解析由题意知抛物线的准线方程为x=-1,分别过点M,N作准线的垂线,垂足为M′,N′(图略),根据抛物线的定义得|MF|=|MM′|,|NF|=|NN′|,所以|MF |+|NF |=|MM ′|+|NN ′|, 所以线段MN 的中点到准线的距离为12(|MF |+|NF |)=52,所以线段MN 的中点到y 轴的距离为52-1=32.2.(2022·济南模拟)已知抛物线x 2=2py (p >0),过焦点F 的直线与抛物线交于A ,B 两点(点A 在第一象限).若直线AB 的斜率为33,点A 的纵坐标为32,则p 的值为() A.14B.12C .1D .2 答案C解析由题意得,抛物线x 2=2py (p >0)的焦点在y 轴上, 准线方程为y =-p2, 设A (x A ,y A ), 则|AF |=y A +p 2=32+p2, 设直线AB 的倾斜角为α, 则tan α=33,因为α∈[0,π),所以α=π6, 所以|AF |=y A -p 2sin α=32-p2sin α=3-p2sin α=3-p 2×12=3-p , 所以3-p =32+p2,解得p =1.思维升华 求抛物线的标准方程的方法(1)定义法;(2)待定系数法:当焦点位置不确定时,分情况讨论.跟踪训练1(1)设抛物线的顶点为O ,焦点为F ,准线为l ,P 是抛物线上异于O 的一点,过P 作PQ ⊥l 于Q .则线段FQ 的垂直平分线() A .经过点O B .经过点PC .平行于直线OPD .垂直于直线OP 答案B解析连接PF (图略),由题意及抛物线的定义可知|PQ |=|FP |,则△QPF 为等腰三角形,故线段FQ 的垂直平分线经过点P .(2)《九章算术》是我国古代内容极为丰富的数学名著,第九章“勾股”,讲述了“勾股定理”及一些应用,直角三角形的三条边长分别称为“勾”“股”“弦”.设点F 是抛物线y 2=2px (p >0)的焦点,l 是该抛物线的准线,过抛物线上一点A 作准线的垂线,垂足为B ,直线AF 交准线l 于点C ,若Rt △ABC 的“勾”|AB |=3,“股”|CB |=33,则抛物线的方程为 ()A .y 2=2xB .y 2=3xC .y 2=4xD .y 2=6x 答案B解析如图,|AB |=3,|BC |=33, 则|AC |=32+(33)2=6,设直线l 与x 轴交于点H ,由|AB |=|AF |=3,|AC |=6,可知点F 为AC 的中点, 所以|FH |=12|AB |=32, 又|FH |=p ,所以p =32, 所以抛物线的方程为y 2=3x . 题型二 抛物线的几何性质例3(1)(2021·新高考全国Ⅱ)抛物线y 2=2px (p >0)的焦点到直线y =x +1的距离为2,则p 等于()A .1B .2C .22D .4 答案B解析抛物线的焦点坐标为⎝ ⎛⎭⎪⎫p 2,0,其到直线x -y +1=0的距离d =⎪⎪⎪⎪⎪⎪p 2-0+11+1=2,解得p =2(p =-6舍去).(2)已知弦AB 经过抛物线y 2=2px (p >0)的焦点F ,设A (x 1,y 1),B (x 2,y 2),则下列说法中错误的是()A .当AB 与x 轴垂直时,|AB |最小 B.1|AF |+1|BF |=2pC .以弦AB 为直径的圆与直线x =-p2相离 D .y 1y 2=-p 2 答案C解析当AB 与x 轴垂直时,AB 为抛物线的通径,是最短的焦点弦,即|AB |最小,A 正确; 设AB 方程为x =ty +p 2, 由⎩⎨⎧x =ty +p2,y 2=2px ,得y 2-2pty -p 2=0,∴y 1+y 2=2pt ,y 1y 2=-p 2,D 正确;∴x 1+x 2=y 21+y 222p =(y 1+y 2)2-2y 1y 22p=4p 2t 2+2p 22p=2pt 2+p ,x 1x 2=y 21y 224p 2=p 24,∴1|AF |+1|BF |=1x 1+p 2+1x 2+p 2=x 1+x 2+p x 1x 2+p 2(x 1+x 2)+p 24=2pt 2+2p p 2+p 2t 2=2p (t 2+1)p 2(t 2+1)=2p,B 正确; ∵AB 的中点到x =-p 2的距离为12(x 1+x 2+p )=12|AB |,∴以AB 为直径的圆与准线x =-p 2相切,C 错误.教师备选1.抛物线y 2=2px (p >0)准线上的点A 与抛物线上的点B 关于原点O 对称,线段AB 的垂直平分线OM 与抛物线交于点M ,若直线MB 经过点N (4,0),则抛物线的焦点坐标是()A .(4,0)B .(2,0)C .(1,0) D.⎝ ⎛⎭⎪⎫12,0 答案C解析设点B (x 1,y 1),M (x 2,y 2),则点A (-x 1,-y 1),可得-x 1=-p 2,则x 1=p 2,设直线MB 的方程为x =my +4,联立⎩⎪⎨⎪⎧x =my +4,y 2=2px ,可得y 2-2mpy -8p =0, 所以y 1y 2=-8p ,由题意可知,OB →·OM →=x 1x 2+y 1y 2=y 21y 224p 2+y 1y 2 =64p 24p 2-8p =16-8p =0,解得p =2.因此,抛物线的焦点为(1,0).2.(2022·唐山模拟)抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线r :y 2=x ,O 为坐标原点,一束平行于x 轴的光线l 1从点P ⎝ ⎛⎭⎪⎫4116,1射入,经过r 上的点A (x 1,y 1)反射后,再经r 上另一点B (x 2,y 2)反射后,沿直线l 2射出,经过点Q ,则下列结论错误的是()A .y 1y 2=-1B .|AB |=2516C .PB 平分∠ABQD .延长AO 交直线x =-14于点C ,则C ,B ,Q 三点共线答案A解析设抛物线的焦点为F ,则F ⎝ ⎛⎭⎪⎫14,0.因为P ⎝ ⎛⎭⎪⎫4116,1,且l 1∥x 轴,故A (1,1),故直线AF :y =1-01-14⎝ ⎛⎭⎪⎫x -14=43x -13.由⎩⎨⎧ y =43x -13,y 2=x ,可得y 2-34y -14=0,故y 1y 2=-14,故A 错误;又y 1=1,故y 2=-14,故B ⎝ ⎛⎭⎪⎫116,-14,故|AB |=1+116+12=2516,故B 正确;直线AO :y =x ,由⎩⎨⎧ y =x ,x =-14,可得C ⎝ ⎛⎭⎪⎫-14,-14,故y C =y 2, 所以C ,B ,Q 三点共线,故D 正确;因为|AP |=4116-1=2516=|AB |,故△APB 为等腰三角形,故∠ABP =∠APB ,而l 1∥l 2,故∠PBQ =∠APB ,即∠ABP =∠PBQ ,故PB 平分∠ABQ ,故C 正确.思维升华 应用抛物线的几何性质解题时,常结合图形思考,通过图形可以直观地看出抛物线的顶点、对称轴、开口方向等几何特征,体现了数形结合思想解题的直观性. 跟踪训练2(1)(2021·新高考全国Ⅰ)已知O 为坐标原点,抛物线C :y 2=2px (p >0)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ ⊥OP .若|FQ |=6,则C 的准线方程为______________.答案x =-32解析方法一(解直角三角形法)由题易得|OF |=p 2,|PF |=p ,∠OPF =∠PQF ,所以tan ∠OPF =tan ∠PQF ,所以|OF ||PF |=|PF ||FQ |,即p 2p =p 6,解得p =3,所以C 的准线方程为x =-32.方法二(应用射影定理法)由题易得|OF |=p 2,|PF |=p ,|PF |2=|OF |·|FQ |,即p 2=p 2×6,解得p =3或p =0(舍去),所以C 的准线方程为x =-32.(2)直线l 过抛物线C :y 2=2px (p >0)的焦点F (1,0),且与C 交于A ,B 两点,则p =______,1|AF |+1|BF |=________.答案21解析由p 2=1,得p =2.当直线l 的斜率不存在时,l :x =1与y 2=4x联立解得y =±2,此时|AF |=|BF |=2,所以1|AF |+1|BF |=12+12=1;当直线l 的斜率存在时,设l :y =k (x -1),代入抛物线方程,得k 2x 2-2(k 2+2)x +k 2=0, 设A (x 1,y 1),B (x 2,y 2),则x 1x 2=1,1|AF |+1|BF |=|AF |+|BF ||AF ||BF |=x 1+x 2+2(x 1+1)(x 2+1)=x 1+x 2+2x 1x 2+x 1+x 2+1 =x 1+x 2+21+x 1+x 2+1=1. 综上,1|AF |+1|BF |=1.题型三 直线与抛物线例4已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程;(2)若AP→=3PB →,求|AB |. 解设直线l :y =32x +t ,A (x 1,y 1),B (x 2,y 2).(1)由题设得F ⎝ ⎛⎭⎪⎫34,0, 故|AF |+|BF |=x 1+x 2+32.又|AF |+|BF |=4,所以x 1+x 2=52.由⎩⎨⎧ y =32x +t ,y 2=3x ,可得9x 2+12(t -1)x +4t 2=0,则x 1+x 2=-12(t -1)9.从而-12(t -1)9=52,得t =-78.所以l 的方程为y =32x -78.(2)由AP →=3PB →可得y 1=-3y 2. 由⎩⎨⎧ y =32x +t ,y 2=3x ,可得y 2-2y +2t =0,所以y 1+y 2=2,从而-3y 2+y 2=2,故y 2=-1,y 1=3.代入C 的方程得x 1=3,x 2=13,即A (3,3),B ⎝ ⎛⎭⎪⎫13,-1. 故|AB |=4133.教师备选如图,已知抛物线x 2=y ,点A ⎝ ⎛⎭⎪⎫-12,14,B ⎝ ⎛⎭⎪⎫32,94,抛物线上的点P (x ,y )⎝ ⎛⎭⎪⎫-12<x <32.过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围;(2)求|P A |·|PQ |的最大值.解(1)设直线AP 的斜率为k ,k =x 2-14x +12=x -12,因为-12<x <32,所以直线AP 斜率的取值范围是(-1,1).(2)由(1)得直线AP 的斜率为k ,x =k +12,则直线BQ 的斜率为-1k (k ≠0),设直线AP 的方程为kx -y +12k +14=0,直线BQ 的方程为x +ky -94k -32=0,联立直线AP 与BQ 的方程⎩⎪⎨⎪⎧ kx -y +12k +14=0,x +ky -94k -32=0,解得点Q 的横坐标是x Q =-k 2+4k +32(k 2+1).因为|P A |=1+k 2⎝ ⎛⎭⎪⎫x +12=1+k 2(k +1),|PQ |=1+k 2(x Q -x )=-(k -1)(k +1)2k 2+1,所以|P A |·|PQ |=-(k -1)(k +1)3.令f (k )=-(k -1)(k +1)3,因为f ′(k )=-(4k -2)(k +1)2, 所以f (k )在区间⎝ ⎛⎭⎪⎫-1,12上单调递增,⎝ ⎛⎭⎪⎫12,1上单调递减, 因此当k =12时,|P A |·|PQ |取得最大值2716.当k =0时,|P A |=1,|PQ |=1,|P A |·|PQ |=1,所以|P A |·|PQ |的最大值为2716. 思维升华 (1)求解直线与抛物线问题,一般利用方程法,但涉及抛物线的弦长、中点、距离等问题时,要注意“设而不求”“整体代入”“点差法”以及定义的灵活应用.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点(设焦点在x 轴的正半轴上),可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则可用弦长公式.跟踪训练3设抛物线C :y 2=2px (p >0)的焦点为F ,点A (0,2),O 为坐标原点,过F 的直线l 与C 交于M ,N 两点,当MA ⊥OA 时,|MF |=2.(1)求p 的值;(2)若AM →·AN→=0,求直线l 的方程. 解(1)当MA ⊥OA 时,此时点M 的纵坐标为2,其横坐标x M =2p .因为|MF |=2,根据抛物线的定义,得|MF |=2p +p 2=2,解得p =2.(2)由(1)知,抛物线C 的方程为y 2=4x ,点F 的坐标为(1,0).设直线l :x =ky +1,点M (x 1,y 1),N (x 2,y 2),联立⎩⎪⎨⎪⎧ x =ky +1,y 2=4x ,化简可得y 2-4ky -4=0,则y 1+y 2=4k ,y 1y 2=-4.根据题意AM →=(x 1,y 1-2),AN →=(x 2,y 2-2),且AM →·AN →=0,所以x 1x 2+(y 1-2)(y 2-2)=0.将x 1x 2=y 21y 2216=1,y 1+y 2=4k ,y 1y 2=-4代入化简可得4-2×4k -4+1=0,解得k =18,所以直线l 的方程为x =18y +1,即8x -y -8=0.课时精练1.抛物线x 2=12y 的焦点到准线的距离是()A .2B .1C.12D.14答案D解析抛物线标准方程x 2=2py (p >0)中p 的几何意义为抛物线的焦点到准线的距离,由x 2=12y 得p =14.2.若抛物线y 2=2px (p >0)的焦点到准线的距离为2,过焦点的直线与抛物线交于A ,B 两点,且|AB |=8,则弦AB 的中点到y 轴的距离为()A .2B .3C .4D .6答案B解析因为抛物线y 2=2px (p >0)的焦点到准线的距离为2,所以p =2,抛物线方程为y 2=4x .过焦点的直线与抛物线交于A,B两点,设A(x1,y1),B(x2,y2),由抛物线的定义得,焦点弦|AB|=x1+x2+p,所以8=x1+x2+2,则x1+x2=6,所以AB的中点到y轴的距离为d=x1+x22=62=3.3.(2022·桂林模拟)已知抛物线y=12x2的焦点为F,准线为l,M在l上,线段MF与抛物线交于N点,若|MN|=2|NF|,则|MF|等于()A.2B.3C.2D. 3答案C解析如图,过N作准线的垂线NH,垂足为H,设l与y轴的交点为K.根据抛物线的定义可知|NH|=|NF|,在Rt△NHM中,|MN|=2|NH|,则∠NMH=45°.在Rt△MFK中,∠FMK=45°,所以|MF|=2|FK|.而|FK|=1,所以|MF|= 2.4.中国古代桥梁的建筑艺术,有不少是世界桥梁史上的创举,充分显示了中国劳动人民的非凡智慧.一个抛物线型拱桥,当水面离拱顶2m时,水面宽8m.若水面下降1m,则水面宽度为()A.26mB.46mC.42mD.12m答案B解析由题意,以拱桥顶点为原点,建立平面直角坐标系,设抛物线方程为x2=-2py(p>0),由题意知,抛物线经过点A(-4,-2)和点B(4,-2),代入抛物线方程解得p=4,所以抛物线方程为x2=-8y,水面下降1米,即y=-3,解得x1=26,x2=-26,所以此时水面宽度d=2x1=4 6.5.已知抛物线y 2=2px (p >0)的焦点F 到准线的距离为4,直线l 过点F 且与抛物线交于A (x 1,y 1),B (x 2,y 2)两点,若M (m ,2)是线段AB 的中点,则下列结论不正确的是()A .p =4B .抛物线方程为y 2=16xC .直线l 的方程为y =2x -4D .|AB |=10答案B解析由焦点F 到准线的距离为4,根据抛物线的定义可知p =4,故A 正确;则抛物线方程为y 2=8x ,故B 错误;焦点F (2,0),则y 21=8x 1,y 22=8x 2,若M (m ,2)是线段AB 的中点,则y 1+y 2=4,∴y 21-y 22=8x 1-8x 2,即y 1-y 2x 1-x 2=8y 1+y 2=84=2, ∴直线l 的方程为y =2x -4,故C 正确;又由⎩⎪⎨⎪⎧y 2=8x ,y =2x -4,可得x 2-6x +4=0,∴x 1+x 2=6,∴|AB |=|AF |+|BF |=x 1+x 2+4=10,故D 正确.6.已知A ,B 为抛物线x 2=2py (p >0)上的两个动点,以AB 为直径的圆C 经过抛物线的焦点F ,且面积为2π,若过圆心C 作该抛物线准线l 的垂线CD ,垂足为D ,则|CD |的最大值为()A .2B.2C.22D.12答案A解析根据题意,2π=π⎝ ⎛⎭⎪⎫|AB |22, ∴|AB |=2 2.设|AF |=a ,|BF |=b ,过点A 作AQ ⊥l 于Q ,过点B 作BP ⊥l 于P ,如图,由抛物线定义,得|AF |=|AQ |,|BF |=|BP |,∴在四边形ABPQ 中,2|CD |=|AQ |+|BP |=a +b ,由勾股定理得,8=a 2+b 2,∵|CD |2=⎝ ⎛⎭⎪⎫a +b 22=a 2+b 2+2ab 4=8+2ab 4 =2+ab 2≤2+a 2+b 24=4,∴|CD |≤2(当且仅当a =b 时,等号成立).7.(2021·北京)已知抛物线C :y 2=4x ,焦点为F ,点M 为抛物线C 上的点,且|FM |=6,则M 的横坐标是________,作MN ⊥x 轴于N ,则S △FMN =________.答案54 5解析因为抛物线的方程为y 2=4x ,故p =2且F (1,0),因为|MF |=6,所以x M +p 2=6,解得x M =5,故y M =±25,所以S △FMN =12×(5-1)×25=4 5.8.(2020·新高考全国Ⅰ)斜率为3的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则|AB |=________.答案163解析如图,由题意得,抛物线的焦点为F (1,0),设直线AB 的方程为y =3(x -1).由⎩⎪⎨⎪⎧y =3(x -1),y 2=4x ,得3x 2-10x +3=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=103,所以|AB |=x 1+x 2+2=163.9.过抛物线C :x 2=2py (p >0)的焦点F 作直线l 与抛物线C 交于A ,B 两点,当点A 的纵坐标为1时,|AF |=2.(1)求抛物线C 的方程;(2)若抛物线C 上存在点M (-2,y 0),使得MA ⊥MB ,求直线l 的方程.解(1)抛物线C :x 2=2py (p >0)的准线方程为y =-p 2,焦点为F ⎝ ⎛⎭⎪⎫0,p 2. ∵当点A 的纵坐标为1时,|AF |=2,∴1+p 2=2,解得p =2,∴抛物线C 的方程为x 2=4y .(2)∵点M (-2,y 0)在抛物线C 上,∴y 0=(-2)24=1.又F (0,1),∴设直线l 的方程为y =kx +1.由⎩⎪⎨⎪⎧y =kx +1,x 2=4y ,得x 2-4kx -4=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4,MA →=(x 1+2,y 1-1), MB →=(x 2+2,y 2-1). ∵MA ⊥MB ,∴MA →·MB→=0, ∴(x 1+2)(x 2+2)+(y 1-1)(y 2-1)=0,∴-4+8k +4-4k 2=0,解得k =2或k =0.当k =0时,l 过点M (舍去),∴k =2,∴直线l 的方程为y =2x +1.10.已知抛物线E :y 2=2px (p >0),过点P (3,0)的直线l 交抛物线E 于A ,B ,且OA →·OB →=-3(O 为坐标原点).(1)求抛物线E 的方程;(2)求△AOB 面积的最小值.解(1)设直线l 为x =ty +3,代入E :y 2=2px 整理得y 2-2pty -6p =0,设A (x 1,y 1),B (x 2,y 2),所以y 1+y 2=2pt ,y 1y 2=-6p ,所以x 1x 2=(y 1y 2)24p 2=(-6p )24p 2=9,由OA →·OB→=-3, 即x 1x 2+y 1y 2=-3,得9-6p =-3,所以p =2,所以所求抛物线E 的方程为y 2=4x .(2)由(1)得y 1+y 2=4t ,y 1y 2=-12,|AB |=1+t 2(4t )2+48 =41+t 2t 2+3,点O 到直线l 的距离为d =31+t 2,则S △AOB =12|AB |·d=12×31+t 2×41+t 2t 2+3 =6t 2+3≥63,当t =0时,等号成立,故当t =0时,△AOB 面积有最小值6 3.11.设F 为抛物线y 2=2x 的焦点,A ,B ,C 为抛物线上三点,若F 为△ABC 的重心,则|F A →|+|FB →|+|FC →|的值为() A .1B .2C .3D .4答案C解析由题意可知,点F 的坐标为⎝ ⎛⎭⎪⎫12,0, 又F 为△ABC 的重心,故x A +x B +x C 3=12, 即x A +x B +x C =32.又由抛物线的定义可知|F A →|+|FB →|+|FC →|=x A +x B +x C +32=32+32=3. 12.某农场为节水推行喷灌技术,喷头装在管柱OA 的顶端A 处,喷出的水流在各个方向上呈抛物线状,如图所示.现要求水流最高点B 离地面4m ,点B 到管柱OA 所在直线的距离为3m ,且水流落在地面上以O 为圆心,以7m 为半径的圆上,则管柱OA 的高度为()A.53mB.74mC.94mD.73m答案B解析以B 为坐标原点建立平面直角坐标系,如图所示,记BM ⊥OC 且垂足为M ,A 在y 轴上的投影为D ,设抛物线方程为x 2=-2py (p >0),由题意可知|AD |=3,|BM |=4,|OC |=7,所以|MC |=|OC |-|AD |=7-3=4,所以C (4,-4),代入抛物线方程可知16=8p ,所以p =2,所以抛物线方程为x 2=-4y ,又因为x A =-3,所以y A =y D =-94,所以|BD |=94,所以|OA |=|DM |=|BM |-|BD |=4-94=74,所以OA 的高度为74m.13.已知抛物线C :y 2=2px (p >0)过点P (1,1),则下列结论不正确的是()A .点P 到抛物线焦点的距离为54B .过点P 作过抛物线焦点的直线交抛物线于点Q ,则△OPQ 的面积为532C .过点P 与抛物线相切的直线方程为x -2y +1=0D .过点P 作两条斜率互为相反数的直线交抛物线于M ,N 两点,则直线MN 的斜率为12答案D解析因为抛物线C :y 2=2px (p >0)过点P (1,1),所以p =12,所以抛物线方程为y 2=x ,焦点坐标为F ⎝ ⎛⎭⎪⎫14,0.对于A ,|PF |=1+14=54,A 正确;对于B ,k PF =43,所以l PF :y =43⎝ ⎛⎭⎪⎫x -14, 与y 2=x 联立得4y 2-3y -1=0,所以y 1+y 2=34,y 1y 2=-14,所以S △OPQ =12|OF |·|y 1-y 2|=12×14×(y 1+y 2)2-4y 1y 2=532,B 正确; 对于C ,依题意斜率存在,设直线方程为y -1=k (x -1),与y 2=x 联立得ky 2-y +1-k =0,Δ=1-4k (1-k )=0,即4k 2-4k +1=0,解得k =12,所以切线方程为x -2y +1=0,C 正确;对于D ,依题意斜率存在,设l PM :y -1=k ′(x -1),与y 2=x 联立得k ′y 2-y +1-k ′=0,所以y M +1=1k ′, 即y M =1k ′-1,则x M =⎝ ⎛⎭⎪⎫1k ′-12, 所以点M ⎝ ⎛⎭⎪⎫⎝ ⎛⎭⎪⎫1k ′-12,1k ′-1, 同理N ⎝ ⎛⎭⎪⎫⎝ ⎛⎭⎪⎫-1k ′-12,-1k ′-1, 所以k MN =1k ′-1-⎝ ⎛⎭⎪⎫-1k ′-1⎝ ⎛⎭⎪⎫1k ′-12-⎝ ⎛⎭⎪⎫-1k ′-12 =2k ′-4k ′=-12,D 错误. 14.已知P 为抛物线C :y =x 2上一动点,直线l :y =2x -4与x 轴,y 轴交于M ,N 两点,点A (2,-4),且AP →=λAM →+μAN →,则λ+μ的最小值为________.答案74解析由题意得M (2,0),N (0,-4),设P (x ,y ),由AP→=λAM →+μAN → 得(x -2,y +4)=λ(0,4)+μ(-2,0).所以x -2=-2μ,y +4=4λ.因此λ+μ=y +44-x -22=x 24-x 2+2=⎝ ⎛⎭⎪⎫x 2-122+74≥74,故λ+μ的最小值为74.15.已知抛物线C :y 2=4x ,其准线与x 轴交于点M ,过其焦点F 的直线与抛物线相交于A ,B 两点,记直线MA ,MB 的斜率分别为k 1,k 2,则1k 21+1k 22的最小值为() A .1B .2C .3D .4答案B解析由题意,可得焦点坐标F (1,0),准线方程为x =-1,可得M (-1,0),设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为x =my +1,联立方程⎩⎪⎨⎪⎧x =my +1,y 2=4x ,可得y 2-4my -4=0,则y 1+y 2=4m ,y 1·y 2=-4,因为1k 1=x 1+1y 1=my 1+1+1y 1=m +2y 1, 1k 2=x 2+1y 2=my 2+1+1y 2=m +2y 2,所以1k 21+1k 22=⎝⎛⎭⎪⎫m +2y 12+⎝ ⎛⎭⎪⎫m +2y 22 =2m 2+4m ⎝ ⎛⎭⎪⎫1y 1+1y 2+4⎝ ⎛⎭⎪⎫1y 21+1y 22 =2m 2+4m ·y 1+y 2y 1·y 2+4·(y 1+y 2)2-2y 1·y 2y 21·y 22 =2m 2+4m ·4m -4+4·16m 2+816=2m 2+2, 所以当且仅当m =0时,1k 21+1k 22取得最小值为2. 16.已知曲线C :y =x 22,D 为直线y =-12上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点;(2)若以E ⎝ ⎛⎭⎪⎫0,52为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.(1)证明设D ⎝ ⎛⎭⎪⎫t ,-12,A (x 1,y 1), 则x 21=2y 1.因为y ′=x ,所以切线DA 的斜率为x 1,故y 1+12x 1-t =x 1,整理得2tx 1-2y 1+1=0.设B (x 2,y 2),同理可得2tx 2-2y 2+1=0. 故直线AB 的方程为2tx -2y +1=0.所以直线AB 过定点⎝ ⎛⎭⎪⎫0,12. (2)解由(1)得直线AB 的方程为y =tx +12.由⎩⎪⎨⎪⎧ y =tx +12,y =x 22,可得x 2-2tx -1=0.于是x 1+x 2=2t ,x 1x 2=-1, y 1+y 2=t (x 1+x 2)+1=2t 2+1, |AB |=1+t 2|x 1-x 2| =1+t 2×(x 1+x 2)2-4x 1x 2 =2(t 2+1).设d 1,d 2分别为点D ,E 到直线AB 的距离, 则d 1=t 2+1,d 2=2t 2+1. 因此,四边形ADBE 的面积S =12|AB |(d 1+d 2)=(t 2+3)t 2+1.设M 为线段AB 的中点,则M ⎝ ⎛⎭⎪⎫t ,t 2+12. 因为EM→⊥AB →,而EM →=(t ,t 2-2),AB →与向量(1,t )平行,所以t +(t 2-2)t =0,解得t =0或t =±1.当t =0时,S =3;当t =±1时,S =4 2. 因此,四边形ADBE 的面积为3或4 2.。

中考数学专题练习二次函数50题

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

初中数学二次函数压轴题集锦(50道含解析)

1.如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C 坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.2.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.3.如图,在平面直角坐标系中,点A在抛物线y=﹣x2+4x上,且横坐标为1,点B与点A关于抛物线的对称轴对称,直线AB与y轴交于点C,点D为抛物线的顶点,点E的坐标为(1,1).(1)求线段AB的长;(2)点P为线段AB上方抛物线上的任意一点,过点P作AB的垂线交AB于点H,点F为y轴上一点,当△PBE的面积最大时,求PH+HF+FO的最小值;(3)在(2)中,PH+HF+FO取得最小值时,将△CFH绕点C顺时针旋转60°后得到△CF′H′,过点F'作CF′的垂线与直线AB交于点Q,点R为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使以点D,Q,R,S为顶点的四边形为菱形,若存在,请直接写出点S的坐标,若不存在,请说明理由.4.如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.5.如图,在平面直角坐标系xOy中,以直线x=对称轴的抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线l与y轴交于点D.(1)求抛物线的函数表达式;(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若=,且△BCG与△BCD面积相等,求点G的坐标;(3)若在x轴上有且仅有一点P,使∠APB=90°,求k的值.6.如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.7.抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.(1)直接写出抛物线L的解析式;(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.8.在平面直角坐标系中,点O(0,0),点A(1,0).已知抛物线y=x2+mx﹣2m(m是常数),顶点为P.(Ⅰ)当抛物线经过点A时,求顶点P的坐标;(Ⅱ)若点P在x轴下方,当∠AOP=45°时,求抛物线的解析式;(Ⅲ)无论m取何值,该抛物线都经过定点H.当∠AHP=45°时,求抛物线的解析式.9.如图1,四边形OABC是矩形,点A的坐标为(3,0),点C的坐标为(0,6),点P从点O出发,沿OA以每秒1个单位长度的速度向点A出发,同时点Q从点A出发,沿AB以每秒2个单位长度的速度向点B运动,当点P与点A重合时运动停止.设运动时间为t秒.(1)当t=2时,线段PQ的中点坐标为;(2)当△CBQ与△PAQ相似时,求t的值;(3)当t=1时,抛物线y=x2+bx+c经过P,Q两点,与y轴交于点M,抛物线的顶点为K,如图2所示,问该抛物线上是否存在点D,使∠MQD=∠MKQ?若存在,求出所有满足条件的D的坐标;若不存在,说明理由.10.如图①,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(1,2)且与x轴相切于点B.(1)当x=2时,求⊙P的半径;(2)求y关于x的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;(3)请类比圆的定义(圆可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到的距离等于到的距离的所有点的集合.(4)当⊙P的半径为1时,若⊙P与以上(2)中所得函数图象相交于点C、D,其中交点D(m,n)在点C 的右侧,请利用图②,求cos∠APD的大小.11.已知顶点为A抛物线经过点,点.(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.12.在平面直角坐标系xOy中(如图).已知抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点B(0,),顶点为C,点D在其对称轴上且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.(1)求这条抛物线的表达式;(2)求线段CD的长;(3)将抛物线平移,使其顶点C移到原点O的位置,这时点P落在点E的位置,如果点M在y轴上,且以O、D、E、M为顶点的四边形面积为8,求点M的坐标.13.如图1,图形ABCD是由两个二次函数y1=kx2+m(k<0)与y2=ax2+b(a>0)的部分图象围成的封闭图形.已知A(1,0)、B(0,1)、D(0,﹣3).(1)直接写出这两个二次函数的表达式;(2)判断图形ABCD是否存在内接正方形(正方形的四个顶点在图形ABCD上),并说明理由;(3)如图2,连接BC,CD,AD,在坐标平面内,求使得△BDC与△ADE相似(其中点C与点E是对应顶点)的点E的坐标14.小贤与小杰在探究某类二次函数问题时,经历了如下过程:求解体验:(1)已知抛物线y=﹣x2+bx﹣3经过点(﹣1,0),则b=,顶点坐标为,该抛物线关于点(0,1)成中心对称的抛物线表达式是.抽象感悟:我们定义:对于抛物线y=ax2+bx+c(a≠0),以y轴上的点M(0,m)为中心,作该抛物线关于点M对称的抛物线y′,则我们又称抛物线y′为抛物线y的“衍生抛物线”,点M为“衍生中心”.(2)已知抛物线y=﹣x2﹣2x+5关于点(0,m)的衍生抛物线为y′,若这两条抛物线有交点,求m的取值范围.问题解决:(3)已知抛物线y=ax2+2ax﹣b(a≠0)①若抛物线y的衍生抛物线为y′=bx2﹣2bx+a2(b≠0),两抛物线有两个交点,且恰好是它们的顶点,求a、b的值及衍生中心的坐标;②若抛物线y关于点(0,k+12)的衍生抛物线为y1,其顶点为A1;关于点(0,k+22)的衍生抛物线为y2,其顶点为A2;…;关于点(0,k+n2)的衍生抛物线为y n,其顶点为A n…(n为正整数).求A n A n+1的长(用含n的式子表示).15.如图,已知抛物线y=ax2+bx(a≠0)过点A(,﹣3)和点B(3,0).过点A作直线AC∥x轴,交y轴于点C.(1)求抛物线的解析式;(2)在抛物线上取一点P,过点P作直线AC的垂线,垂足为D.连接OA,使得以A,D,P为顶点的三角形与△AOC相似,求出对应点P的坐标;=S△AOQ?若存在,求出点Q的坐标;若不存在,请说明理由.(3)抛物线上是否存在点Q,使得S△AOC16.如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.17.如图①,在平面直角坐标系xOy中,抛物线y=ax2+bx+3经过点A(﹣1,0)、B(3,0)两点,且与y 轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、Q两点(点P在点Q的左侧),连接PQ,在线段PQ上方抛物线上有一动点D,连接DP、DQ.(1)若点P的横坐标为﹣,求△DPQ面积的最大值,并求此时点D的坐标;(Ⅱ)直尺在平移过程中,△DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.18.已知抛物线y=ax2+bx+c过点A(0,2).(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.19.如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.20.我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)①在“平行四边形,矩形,菱形,正方形”中,一定是“十字形”的有;②在凸四边形ABCD中,AB=AD且CB≠CD,则该四边形“十字形”.(填“是”或“不是”)(2)如图1,A,B,C,D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD交于点E,∠ADB ﹣∠CDB=∠ABD﹣∠CBD,当6≤AC2+BD2≤7时,求OE的取值范围;(3)如图2,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a,b,c为常数,a>0,c<0)与x轴交于A,C两点(点A在点C的左侧),B是抛物线与y轴的交点,点D的坐标为(0,﹣ac),记“十字形”ABCD 的面积为S,记△AOB,△COD,△AOD,△BOC的面积分别为S1,S2,S3,S4.求同时满足下列三个条件的抛物线的解析式;①=;②=;③“十字形”ABCD的周长为12.21.如图1,抛物线y 1=ax 2﹣x +c 与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,),抛物线y 1的顶点为G ,GM ⊥x 轴于点M .将抛物线y 1平移后得到顶点为B 且对称轴为直线l 的抛物线y 2.(1)求抛物线y 2的解析式;(2)如图2,在直线l 上是否存在点T ,使△TAC 是等腰三角形?若存在,请求出所有点T 的坐标;若不存在,请说明理由;(3)点P 为抛物线y 1上一动点,过点P 作y 轴的平行线交抛物线y 2于点Q ,点Q 关于直线l 的对称点为R ,若以P ,Q ,R 为顶点的三角形与△AMG 全等,求直线PR 的解析式.22.如图,已知直线y=﹣2x +4分别交x 轴、y 轴于点A 、B ,抛物线过A ,B 两点,点P 是线段AB 上一动点,过点P 作PC ⊥x 轴于点C ,交抛物线于点D .(1)若抛物线的解析式为y=﹣2x 2+2x +4,设其顶点为M ,其对称轴交AB 于点N .①求点M 、N 的坐标;②是否存在点P ,使四边形MNPD 为菱形?并说明理由;(2)当点P 的横坐标为1时,是否存在这样的抛物线,使得以B 、P 、D 为顶点的三角形与△AOB 相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.23.如图,抛物线y=ax 2+bx 经过△OAB 的三个顶点,其中点A (1,),点B (3,﹣),O 为坐标原点.(1)求这条抛物线所对应的函数表达式;(2)若P (4,m ),Q (t ,n )为该抛物线上的两点,且n <m ,求t 的取值范围;(3)若C 为线段AB 上的一个动点,当点A ,点B 到直线OC 的距离之和最大时,求∠BOC 的大小及点C 的坐标.24.如图,在平面直角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.(1)求抛物线C1的表达式;(2)直接用含t的代数式表示线段MN的长;(3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值;(4)在(3)的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点K,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q的坐标.25.在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=x 与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M到点F 的距离总是相等,求定点F的坐标.26.如图,在平面直角坐标系中,二次函数y=ax2+bx+c交x轴于点A(﹣4,0)、B(2,0),交y轴于点C (0,6),在y轴上有一点E(0,﹣2),连接AE.(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴上方的一个动点,求△ADE面积的最大值;(3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标,若不存在请说明理由.27.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣4,0),B(2,0),与y轴交于点C(0,4),线段BC的中垂线与对称轴l交于点D,与x轴交于点F,与BC交于点E,对称轴l与x轴交于点H.(1)求抛物线的函数表达式;(2)求点D的坐标;(3)点P为x轴上一点,⊙P与直线BC相切于点Q,与直线DE相切于点R.求点P的坐标;(4)点M为x轴上方抛物线上的点,在对称轴l上是否存在一点N,使得以点D,P,M,N为顶点的四边形是平行四边形?若存在,则直接写出N点坐标;若不存在,请说明理由.28.如图,抛物线y=ax2+bx(a≠0)交x轴正半轴于点A,直线y=2x经过抛物线的顶点M.已知该抛物线的对称轴为直线x=2,交x轴于点B.(1)求a,b的值.(2)P是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP,BP.设点P的横坐标为m,△OBP的面积为S,记K=.求K关于m的函数表达式及K的范围.29.抛物线y=﹣x2﹣x+与x轴交于点A,B(点A在点B的左边),与y轴交于点C,点D是该抛物线的顶点.(1)如图1,连接CD,求线段CD的长;(2)如图2,点P是直线AC上方抛物线上一点,PF⊥x轴于点F,PF与线段AC交于点E;将线段OB沿x轴左右平移,线段OB的对应线段是O1B1,当PE+EC的值最大时,求四边形PO1B1C周长的最小值,并求出对应的点O1的坐标;(3)如图3,点H是线段AB的中点,连接CH,将△OBC沿直线CH翻折至△O2B2C的位置,再将△O2B2C 绕点B2旋转一周,在旋转过程中,点O2,C的对应点分别是点O3,C1,直线O3C1分别与直线AC,x轴交于点M,N.那么,在△O2B2C的整个旋转过程中,是否存在恰当的位置,使△AMN是以MN为腰的等腰三角形?若存在,请直接写出所有符合条件的线段O2M30.综合与探究如图,抛物线y=x﹣4与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q,过点P作PE∥AC交x轴于点E,交BC于点F.(1)求A,B,C三点的坐标;(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由;(3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值.31.如图,二次函数y=﹣+bx+2的图象与x轴交于点A、B,与y轴交于点C,点A的坐标为(﹣4,0),P是抛物线上一点(点P与点A、B、C不重合).(1)b=,点B的坐标是;(2)设直线PB与直线AC相交于点M,是否存在这样的点P,使得PM:MB=1:2?若存在,求出点P的横坐标;若不存在,请说明理由;(3)连接AC、BC,判断∠CAB和∠CBA的数量关系,并说明理由.32A、B(点A在点B的左侧),与y轴交于点D,过其顶点C作直线CP⊥x轴,垂足为点P,连接AD、BC.(1)求点A、B、D的坐标;(2)若△AOD与△BPC相似,求a的值;(3)点D、O、C、B能否在同一个圆上?若能,求出a的值;若不能,请说明理由.33.如图,已知二次函数y=ax2﹣(2a﹣)x+3的图象经过点A(4,0),与y轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.(1)求a的值和直线AB的解析式;(2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S1,S2,若S1=4S2,求m的值;(3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱DEGH周长取最大值时,求点G的坐标.34.已知,点M为二次函数y=﹣(x﹣b)2+4b+1图象的顶点,直线y=mx+5分别交x轴正半轴,y轴于点A,B.(1)判断顶点M是否在直线y=4x+1上,并说明理由.(2)如图1,若二次函数图象也经过点A,B,且mx+5>﹣(x﹣b)2+4b+1,根据图象,写出x的取值范围.(3)如图2,点A坐标为(5,0),点M在△AOB内,若点C(,y1),D(,y2)都在二次函数图象上,试比较y1与y2的大小.35.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣5交y轴于点A,交x轴于点B(﹣5,0)和点C(1,0),过点A作AD∥x轴交抛物线于点D.(1)求此抛物线的表达式;(2)点E是抛物线上一点,且点E关于x轴的对称点在直线AD上,求△EAD的面积;(3)若点P是直线AB下方的抛物线上一动点,当点P运动到某一位置时,△ABP的面积最大,求出此时点P的坐标和△ABP的最大面积.36.已知抛物线F:y=x2+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣,0).(1)求抛物线F的解析式;(2)如图1,直线l:y=x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x2,y2)(点A在第二象限),求y2﹣y1的值(用含m的式子表示);(3)在(2)中,若m=,设点A′是点A关于原点O的对称点,如图2.①判断△AA′B的形状,并说明理由;②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.37.直线y=﹣x+3交x轴于点A,交y轴于点B,顶点为D的抛物线y=﹣x2+2mx﹣3m经过点A,交x 轴于另一点C,连接BD,AD,CD,如图所示.(1)直接写出抛物线的解析式和点A,C,D的坐标;(2)动点P在BD上以每秒2个单位长的速度由点B向点D运动,同时动点Q在CA上以每秒3个单位长的速度由点C向点A运动,当其中一个点到达终点停止运动时,另一个点也随之停止运动,设运动时间为t 秒.PQ交线段AD于点E.①当∠DPE=∠CAD时,求t的值;②过点E作EM⊥BD,垂足为点M,过点P作PN⊥BD交线段AB或AD于点N,当PN=EM时,求t的值.38.如图1,在平面直角坐标系中,直线y=x﹣1与抛物线y=﹣x2+bx+c交于A、B两点,其中A(m,0)、B(4,n),该抛物线与y轴交于点C,与x轴交于另一点D.(1)求m、n的值及该抛物线的解析式;(2)如图2,若点P为线段AD上的一动点(不与A、D重合),分别以AP、DP为斜边,在直线AD的同侧作等腰直角△APM和等腰直角△DPN,连接MN,试确定△MPN面积最大时P点的坐标;(3)如图3,连接BD、CD,在线段CD上是否存在点Q,使得以A、D、Q为顶点的三角形与△ABD相似,若存在,请直接写出点Q的坐标;若不存在,请说明理由.39.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.40.如图1,在平面直角坐标系xOy中,已知点A和点B的坐标分别为A(﹣2,0),B(0,﹣6),将Rt △AOB绕点O按顺时针方向分别旋转90°,180°得到Rt△A1OC,Rt△EOF.抛物线C1经过点C,A,B;抛物线C2经过点C,E,F.(1)点C的坐标为,点E的坐标为;抛物线C1的解析式为.抛物线C2的解析式为;(2)如果点P(x,y)是直线BC上方抛物线C1上的一个动点.①若∠PCA=∠ABO时,求P点的坐标;②如图2,过点P作x轴的垂线交直线BC于点M,交抛物线C2于点N,记h=PM+NM+BM,求h与x的函数关系式,当﹣5≤x≤﹣2时,求h的取值范围.41.如图,抛物线y=ax2+bx+c与两坐标轴相交于点A(﹣1,0)、B(3,0)、C(0,3),D是抛物线的顶点,E是线段AB的中点.(1)求抛物线的解析式,并写出D点的坐标;(2)F(x,y)是抛物线上的动点:①当x>1,y>0时,求△BDF的面积的最大值;②当∠AEF=∠DBE时,求点F的坐标.42.如图,在平面直角坐标系中,矩形ABCD的对称中心为坐标原点O,AD⊥y轴于点E(点A在点D的左侧),经过E、D两点的函数y=﹣x2+mx+1(x≥0)的图象记为G1,函数y=﹣x2﹣mx﹣1(x<0)的图象记为G2,其中m是常数,图象G1、G2合起来得到的图象记为G.设矩形ABCD的周长为L.(1)当点A的横坐标为﹣1时,求m的值;(2)求L与m之间的函数关系式;(3)当G2与矩形ABCD恰好有两个公共点时,求L的值;(4)设G在﹣4≤x≤2上最高点的纵坐标为y0,当≤y0≤9时,直接写出L的取值范围.43.已知抛物线y=ax2+bx+c过点A(0,2),且抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为圆心,OA为半径的圆与抛物线的另两个交点为B,C,且B在C的左侧,△ABC有一个内角为60°.(1)求抛物线的解析式;(2)若MN与直线y=﹣2x平行,且M,N位于直线BC的两侧,y1>y2,解决以下问题:①求证:BC平分∠MBN;②求△MBC外心的纵坐标的取值范围.44.如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(4,0),与y轴交于点C(0,4).(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF 的最大值;(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,直接写出点D的坐标;②若△BCD是锐角三角形,直接写出点D的纵坐标n的取值范围.45.如图1,抛物线y=ax2+2x+c与x轴交于A(﹣4,0),B(1,0)两点,过点B的直线y=kx+分别与y 轴及抛物线交于点C,D.(1)求直线和抛物线的表达式;(2)动点P从点O出发,在x轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t秒,当t为何值时,△PDC为直角三角形?请直接写出所有满足条件的t的值;(3)如图2,将直线BD沿y轴向下平移4个单位后,与x轴,y轴分别交于E,F两点,在抛物线的对称轴上是否存在点M,在直线EF上是否存在点N,使DM+MN的值最小?若存在,求出其最小值及点M,N的坐标;若不存在,请说明理由.46.如图,已知抛物线y=ax2+bx﹣3与x轴交于点A(﹣3,0)和点B(1,0),交y轴于点C,过点C作CD∥x轴,交抛物线于点D.(1)求抛物线的解析式;(2)若直线y=m(﹣3<m<0)与线段AD、BD分别交于G、H两点,过G点作EG⊥x轴于点E,过点H 作HF⊥x轴于点F,求矩形GEFH的最大面积;(3)若直线y=kx+1将四边形ABCD分成左、右两个部分,面积分别为S1,S2,且S1:S2=4:5,求k的值.47.如图,抛物线顶点P(1,4),与y轴交于点C(0,3),与x轴交于点A,B.(1)求抛物线的解析式.(2)Q是抛物线上除点P外一点,△BCQ与△BCP的面积相等,求点Q的坐标.(3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为D,E.是否存在点M,N使四边形MNED为正方形?如果存在,求正方形MNED的边长;如果不存在,请说明理由.48.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线与x轴交于A、B两点,与y 轴交于C点,其中A(1,0),C(0,3).(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.49.在平面直角坐标系中,二次函数y=ax2+x+c的图象经过点C(0,2)和点D(4,﹣2).点E是直线y=﹣x+2与二次函数图象在第一象限内的交点.(1)求二次函数的解析式及点E的坐标.(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,ME.求四边形COEM 面积的最大值及此时点M的坐标.(3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标.50.如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.(1)求线段OC的长度;(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.答案解析一.解答题(共50小题)1.如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C 坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.【分析】(1)根据待定系数法即可求得;(2)根据抛物线的解析式求得B的坐标,然后根据勾股定理分别求得AB2=20,AC2=80,BC10,然后根据勾股定理的逆定理即可证得△ABC是直角三角形.(3)分别以A、C两点为圆心,AC长为半径画弧,与x轴交于三个点,由AC的垂直平分线与x轴交于一个点,即可求得点N的坐标;(4)设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,根据三角形相似对应边成比例求=S△ABN﹣S△BMN得MD=(n+2),然后根据S△AMN得出关于n的二次函数,根据函数解析式求得即可.【解答】解:(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)如图,AB==2,BC=8﹣(﹣2)=10,AC==4,∴AB2+AC2=BC2,∴∠BAC=90°.∴AC⊥AB.∵AC∥MN,∴MN⊥AB.设点N的坐标为(n,0),则BN=n+2,∵MN∥AC,△BMN∽△BAC∴=,∴=,BM==,MN==,AM=AB﹣BM=2﹣=∵S△AMN=AM•MN=××=﹣(n﹣3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3,0).∴当△AMN面积最大时,N点坐标为(3,0).【点评】本题是二次函数的综合题,解(1)的关键是待定系数法求解析式,解(2)的关键是勾股定理和逆定理,解(3)的关键是等腰三角形的性质,解(4)的关键是三角形相似的判定和性质以及函数的最值等.2.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.【分析】(1)根据点A、B、C三点的坐标作出△ABC,利用“闭距离”的定义即可得;(2)由题意知y=kx在﹣1≤x≤1范围内函数图象为过原点的线段,再分别求得经过(1,﹣1)和(﹣1,﹣1)时k的值即可得;(3)分⊙T在△ABC的左侧、内部和右侧三种情况,利用“闭距离”的定义逐一判断即可得.【解答】解:(1)如图所示,点O到△ABC的距离的最小值为2,。

中考数学压轴题50题精选及答案(全)(1)

交于点 A, B .过点 A 分别作 AC x 轴,AE y 轴,垂足分别为 C, E ;过点 B 分别作 BF x 轴,
BD y 轴,垂足分别为 F,D,AC 与 BD 交于点 K ,连接 CD . (1)若点 A,B 在反比例函数 y k 的图象的同一分支上,如图 1,试证明: x S ① 四边形AEDK S四边形CFBK ;
长;若改变,请说明理由;
②当点 N 在线段 DC 上时(如图 3),是否存在点 P ,使 △PMN 为等腰三角形?若存在,请求出 所有满足要求的 x 的值;若不存在,请说明理由.
A
D
A
ND
A
D
N
E
F
EP
F
E
P
F
B
CB
CB
C
M
M
图1图2图3AD (第 25 题) A
D
E
F
E
F
B
C
图 4(备用)
B
C
图 5(备用)
(3)若矩形 DEFG 从原点出发,沿 x 轴的反方向以每秒 1 个单位长度的速度平移,
设移动时间为 t(0 ≤ t ≤12) 秒,矩形 DEFG 与 △ABC 重叠部分的面积为 S ,求 S 关
t 的函数关系式,并写出相应的 t 的取值范围.
y
l2
l1
ED
C
A O F (G)B x (第 26 题)
(1)求边 OA 在旋转过程中所扫过的面积; (2)旋转过程中,当 MN 和 AC 平行时,求正方形
OABC 旋转的度数; (3)设 MBN 的周长为 p ,在旋转正方形 OABC
y yx
A M
B
的过程中, p 值是否有变化?请证明你的结论.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题(题型注释)1.抛物线0212=+x y 的准线方程为 ( ) A.41=x B.41-=x C.81=x D.81-=x 答案:1.C2.抛物线281x y -=的准线方程是( ) A . 321=x B . 2=y C . 321=y D . 2-=y 答案:2.B 3.过抛物线x y 42=的焦点所作直线中,被抛物线截得弦长为8的直线有( )A. 1条B. 2条C. 3条D. 不确定答案:3.B4.抛物线22(0)y px p =>焦点为F ,O 为坐标原点,M 为抛物线上一点,且||4||MF OF =,MFO ∆ 的面积为 )A . 26y x =B .28y x =C .216y x =D .2152y x =答案:4.B5.已知抛物线1)0(222222=->=b y a x p px y 与双曲线有相同的焦点F ,点A 是两曲线的交点,且AF ⊥x 轴,则双曲线的离心率为( )A .215+B .12+C .13+D .2122+答案:5.B6.设点M 为抛物线2(0)y ax a =>上的动点,点(1,1)A 为抛物线内部一点,F 为抛物线的焦点,若MA MF +的最小值为2,则a 的值为 ( ) A .2 B .4 C .6 D .8答案:6.B7.设点M 为抛物线2(0)y ax a =>上的动点,点(1,1)A 为抛物线内部一点,F 为抛物线的焦点,若MA MF +的最小值为2,则a 的值为 ( ) A .2 B .4 C .6 D .8答案:7.B8.两个正数,a b 的等差中项是92,等比中项是且a b >,则抛物线2by x a=-的焦点坐标( ) (A) 5(,0)16-(B) 1(,0)5(C ) 1(,0)5- (D )2(,0)5- 答案:8.C 略9.抛物线y =2x 2的准线方程为( ) A .y =-18 B .y =-14 C .y =-12D .y =-1 答案:9.A10.抛物线顶点在原点,焦y 轴上,其上一点P(m, 1) 到焦点距离为,则抛物线方程为( ) A .28x y = B .28x y =-C .216x y =D .216x y =-答案:10.C11.已知点P 为抛物线y2=4x 上一点,设P 到此抛物线的准线的距离为d1,到直线x+2y+10=0的距离为d2,则d1+d2的最小值为 ( )A .511B .511C .5511D .555答案:11.C 略12.若抛物线22(0)y px p =>上一点到焦点和抛物线对称轴的距离分别为10和6,则抛物线方程为( )A.24y x = B.236y x = C.24y x =或236y x = D.28y x =或232y x =答案:12.C 略13.已知抛物线y x 42=的焦点为F ,过点F 的直线与抛物线交于A 、B ,过A 、B 分别作抛物线的两条切线21,l l ,若直线21,l l 交于点M ,则点M 所在的直线为( ) A .4-=y B. 2-=y C .1-=yD.21-=y答案:13.C 略14.若抛物线42xy -=上一点M 到焦点F 的距离为1,则点M 的横坐标为A.89-B.87-C.1617-D.1615- 答案:14.D 略15.抛物线212y x =-的准线与双曲线22193x y -=的两条渐近线所围成的三角形的面积等于( )A.2答案:15.A 略16.抛物线22y x =的焦点坐标是 ( ) A .)0,1(B .)41,0(C .)0,41(D .)81,0(答案:16.D 略17.抛物线214x y=的焦点坐标是( )A .()0,1B .10,16⎛⎫ ⎪⎝⎭ C .10,4⎛⎫⎪⎝⎭D .()0,4答案:17.A 略18.过抛物线y 2=4x 的焦点作直线l 交抛物线于A 、B 两点,若线段AB 中点的横坐标为3,则|AB|等于( )ks5uA .10B .8C .6D .4答案:18.B19.已知F 为抛物线py x22=)0(>p 的焦点,M 为其上一点,且p MF 2||=,则直线MF 的斜率为( ).答案:19.B 略20.过抛物线24y x =的焦点F 的直线交抛物线于,A B 两点,点O 是原点,若3AF =;则AOB ∆的面积为 ( )A .2B C .2D .答案:20.C 略二、填空题(题型注释)21.定义:曲线C 上的点到直线l 的距离的最小值称为曲线c 到直线l 的距离,已知:曲线C 1 : y = x 2+a 到l : y = x 的距离等于曲线C 2 : x 2+ (y+4)2= 2到直线l : y = x 的距离,则实数a=答案: 21.9422.已知P 为抛物线C :x y 42=上的一点,F 为抛物线C 的焦点,其准线与x 轴交于点N ,直线NP 与抛物线交于另一点Q ,且QF PF 3=,则点P 坐标为 ▲ .答案:22.)32,3(± 略23.过抛物线24y x =的焦点,方向向量为的直线方程是 ▲ .答案:0y -=略24.在抛物线)0(52≠-+=a ax x y 上取横坐标为2,421=-=x x 的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆365522=+y x 相切,则抛物线顶点的坐标为________.答案:24.()2,9--25.抛物线x y 82=的焦点坐标为 ▲ .答案:25.)0,2(略26.对于抛物线24y x =上任意一点Q ,点(,0)P a 都满足PQ a ≥,则a 的取值范围是___________.答案:26.(],2-∞略27.已知抛物线2:2(0),C y px p M=>点的坐标为(12,8),N 点在抛物线C 上,且满足3,4ON OM = O 为坐标原点.则抛物线C 的方程____________。

答案:27.24y x = 略28.已知直线y a =交抛物线2y x =于A 、B 两点,若该抛物线上存在点C,使得ACB ∠为直角,则a 的取值范围为___________.答案:28.1a ≥29.设F 为抛物线24y x =的焦点,A 、B 、C 为该抛物线上三点,若0FA FB FC ++=,则FA FB FC ++=.答案:29.630.已知直线y a =交抛物线2y x =于A 、B 两点,若该抛物线上存在点C,使得ACB ∠为直角,则a 的取值范围为___________.答案:30.1a ≥31.设F 为抛物线24y x =的焦点,A 、B 、C 为该抛物线上三点,若0FA FB FC ++=,则FA FB FC ++=.答案:31.632.已知F 是抛物线2y x =的焦点,M 、N 是该抛物线上的两点,3MF NF +=,则线段MN 的中点到x 轴的距离为__________.答案:32.54略33.已知当抛物线型拱桥的顶点距水面2米时,量得水面宽8米。

当水面升高1米后,水面宽度是________米.答案:33.24略34.抛物线24y x =的焦点为F ,准线为l ,经过Fx 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是答案:34.略35.已知当抛物线型拱桥的顶点距水面2米时,量得水面宽8米。

当水面升高1米后,水面宽度是________米.答案:35.24略36.如图,南北方向的公路l ,A 地在公路正东2 km 处,B 地在A 东偏北300方向23 km 处,河流沿岸曲线PQ 上任意一点到公 路l 和到A 地距离相等。

现要在曲线PQ 上一处建一座码头, 向 A 、B 两地运货物,经测算,从M 到A 、到B 修建费用都为a万元/km,那么,修建这条公路的总费用最低是_______________万元.答案:36.略37.设抛物线24y x =的准线为l ,P 为抛物线上的点,PQ l ⊥,垂足为Q ,若PQF ∆得面积与POF ∆的面积之比为3:1,则P 点坐标是 .答案:37.(2-,,(2,38.抛物线24x y =的焦点坐标是 ▲ .答案:38.(0,1) 略39.抛物线24x y =的焦点坐标是 ▲ .答案:39.(0,1) 略40.设动点P 是抛物线y=2x2+1上任意一点,定点A (0,1),点M 分PA 所成的比为2,则点M 的轨迹方程是______________.答案:40.3162-=x y略三、解答题(题型注释)41.(1)直线b x y l +=:与抛物线C y x 4:2=相切于点A,求实数b 的值,及点A的坐标.(2)在抛物线24y x =上求一点,使这点到直线45y x =-的距离最短。

答案:41.(1)由24y x b x y=+⎧⎨=⎩得2440x x b --=. ()*因为直线l 与抛物线C 相切,所以2(4)4(4)0b ∆=--⨯-=,解得1b =-; 代入方程()*即为2440x x -+=,解得2x =,y=1,故点A (2,1). (2)设点2(,4)P t t ,距离为d ,2d ==当12t =时,d 取得最小值,此时1(,1)2P 为所求的点。

略42.(本小题满分12分)正方形ABCD 的顶点A ,C 在抛物线y 2=4x 上,一条对角线BD 在直线y =-12x +2上.(Ⅰ)求AC 所在的直线方程; (Ⅱ)求正方形ABCD 的面积.答案:42.(1)由题意可知:AC⊥BD.设AC 所在的直线方程为y =2x +b ,由得:4x 2+4(b -1)x +b 2=0. 设A(x 1,y 1),C(x 2,y 2),43.(本小题满分13分)设抛物线C 的方程为x 2=4y ,M 为直线l :y=-m(m>0)上任意一点,过点M 作抛物线C 的两条切线MA ,MB ,切点分别为A,B .(Ⅰ)当M 的坐标为(0,-l )时,求过M ,A ,B 三点的圆的标准方程,并判断直线l 与此圆的位置关系;(Ⅱ)当m 变化时,试探究直线l 上是否存在点M ,使MA ⊥MB?若存在,有几个这样的点,若不存在,请说明理由。

答案:43.(Ⅰ)当M 的坐标为(01)-,时,设过M 点的切线方程为1y kx =-,代入24x y =,整理得2440x kx -+=,① 令2(4)440k ∆=-⨯=,解得1k =±, 代入方程①得2x =±,故得(21)A ,,(21)B -,.因为M 到AB 的中点(0,1)的距离为2,从而过M A B ,,三点的圆的标准方程为22(1)4x y +-=.易知此圆与直线l :y=-1相切. ………………………………………………………(6分) (Ⅱ)设切点分别为11()A x y ,、22()B x y ,,直线l 上的点为M 00()x y ,, 过抛物线上点11()A x y ,的切线方程为11()y y k x x -=-,因为2114x y =,12x k = ,从而过抛物线上点11()A x y ,的切线方程为111()2x y y x x -=-,又切线过点00()M x y ,, 所以得2110024x x y x =-,即21010240x x x y -+=.同理可得过点22()B x y ,的切线方程为22020240x x x y -+=,………………………(8分) 因为12MA x k =,22MB xk =且12x x ,是方程200240x x x y -+=的两实根, 从而,12012024x x x x x y +=⎧⎨=⎩,,所以12022MA MB x x k k y ⋅=⨯=, 当01y =-,即1m =时,直线l 上任意一点M 均有MA ⊥MB ,…………………………………………………(10分) 当01y ≠-,即m ≠1时,MA 与MB 不垂直.综上所述,当m =1时,直线l 上存在无穷多个点M ,使MA ⊥MB ,当m ≠1时,直线l 上不存在满足条件的点M.……………………………………………………………(13分)44.过点)2,1(-M 的直线01:=-+y x l 与抛物线2x y =交于A 、B 两点;(Ⅰ)求线段AB 的长;(Ⅱ)求点M 到A 、B 两点的距离之积;(12分)答案:44.解:点)2,1(-M 在直线l 上,直线l 的倾斜角为43π,所以直线l 的参数方程为)(43sin243cos 1为参数t t y t x ⎪⎩⎪⎨⎧+=+-=ππ,即)(222221为参数t t y t x ⎪⎪⎩⎪⎪⎨⎧+=--=,代入抛物线方程,得0222=-+t t , 设该方程的两个根为1t、2t ,则221-=+t t ,221-=⋅t t所以弦长为212 (102)41882AB t t =-==-⨯=10.12||||||18MA MB t t ⋅==2=.略45.已知椭圆G 的中心是原点O ,对称轴是坐标轴,抛物线x y 342=的焦点是G 的一个焦点,且离心率23=e 。

相关文档
最新文档