材料力学组合变形
09.材料力学-组合变形

2 1 , 2 0, 3 2 2 2 2 2
然后,选用强度理论建立强度条件。因手柄用钢材制成,应 选用第三或第四强度理论。若采用第三强度理论,可得其强度 条件为
2
2
r 3 4
2
2
≤
作出AB杆的弯矩图和AC段的轴力图,如图(c)所示。从图中 可以看出, C 点截面左侧,其弯矩值为最大,而轴力与其它截 面相同,故为危险截面。 开始试算时,可以先不考虑轴力Fx的影响,只根据弯曲强度
条件选取工字钢。这时截面系数为
W≥
M 120 10 m 120cm 100 106
350
M
FN
(a)
(b)
t .max
(c)
c.max
21
解:首先,根据截面尺寸计算横 截面面积,确定截面形心位置,求 出截面对形心主惯性轴y的主惯性矩
y1
z0
y
z1
50
Iy。计算结果为
150 50 150
A 15103 mm2 ,z1 75 mm, I y 531010 mm
30
若采用第四强度理论,可将上述三个主应力代入公式,其 强度条件成
r 4 2 3 2 ≤
若将式
M W
MT WP
2 M 2 MT
代入上两式,并注意到对圆截面杆有 WP = 2W ,则以上两式 改写成
r3
r4
W
2 M 2 0.75M T
≤ ≤
A1 Wz1
200
300
200 P
350000 350 50 6 0.2 0.3 0.2 0.32 11.7 MPa
材料力学组合变形

组合变形和叠加原理 拉伸或压缩与弯曲旳组合 扭转与弯曲旳组合
目录
§8-1 组合变形和叠加原理
一、组合变形旳概念
构件在荷载作用下发生两种或两种以上旳基本变形,则构件 旳变形称为组合变形.
l 基本变形 u 拉伸、压缩
u 剪切
u 扭转
u 弯曲
二、处理组合变形问题旳基本措施-叠加法
叠加原理旳成立要求:内力、应力、应变、变形等与外力之 间成线性关系.
M A(F) 0
F 42 kN
H 40 kN, V 12.8 kN
l 内力图 l 危险截面
C 截面
M C 12 kNm, N 40 kN
l 设计截面旳一般环节
u 先根据弯曲正应力选择工字钢型号; u 再按组合变形旳最大正应力校核强度,必要时选择大一号或 大二号旳工字钢; u 若剪力较大时,还需校核剪切强度。
按第四强度理论
Qy My T
r4
1 W
Mz Qz
M 2 0.75T 2 47.4 MPa [ ]
(3) 曲柄旳强度计算
l 危险截面 III-III截面
l 计算内力 u 取下半部分
Qx Qz
N R2 C1 13 kN Mx m H2 d /2
765 Nm
M z R2 (a b / 2) 660 Nm
横截面上任意一点 ( z, y) 处旳正应 力计算公式为
1.拉伸正应力
FN
A
2.弯曲正应力
Mz y
Iz
FN Mz y
A Iz
( z,y)
Mz
z
O
x
FN
y
3.危险截面旳拟定
作内力图
F1
轴力
《材料力学组合变形》课件

拉伸与压缩组合变形的分析方法
01
02
03
弹性分析方法
基于弹性力学的基本原理 ,通过求解弹性方程来分 析杆件内部的应力和应变 分布。
塑性分析方法
在材料进入塑性阶段后, 采用塑性力学的基本理论 来分析杆件的承载能力和 变形行为。
材料力学在组合变形中的应用实例
01
02
03
04
桥梁工程
桥梁的受力分析、桥墩的稳定 性分析等。
建筑结构
高层建筑、大跨度结构的受力 分析、抗震设计等。
机械工程
机械零件的强度、刚度和稳定 性分析,如轴、轴承、齿轮等
。
航空航天
飞机和航天器的结构分析、材 料选择和制造工艺等。
材料力学在组合变形中的发展趋势
特点
剪切与扭转组合变形具有复杂性和多样性,其变形行为受到多种因素的影响,如 材料的性质、杆件的长度和截面尺寸、剪切和扭转的相对大小等。
剪切与扭转组合变形的分析方法
1 2 3
工程近似法
在分析剪切与扭转组合变形时,通常采用工程近 似法,通过简化模型和假设来计算杆件的应力和 变形。
有限元法
有限元法是一种数值分析方法,可以模拟杆件在 剪切与扭转组合变形中的真实行为,提供更精确 的结果。
弯曲组合变形的分析方法
叠加法
刚度矩阵法
叠加法是分析弯曲组合变形的基本方 法之一。该方法基于线性弹性力学理 论,认为各种基本变形的应力、应变 分量可以分别计算,然后按照线性叠 加原理得到最终的应力、应变分布。
刚度矩阵法是通过建立物体内任意一 点的应力、应变与外力之间的关系, 来求解复杂变形问题的一种方法。对 于弯曲组合变形,可以通过构建系统 的刚度矩阵来求解。
材料力学 组合变形完整版

x
(竖直xz面My) C
B
D
A
材料力学
组合变形/扭转与弯曲的组合
根据内力图分析
可能的危险截面:B和D
思考
如何通过计算确定危险截面的位置?
y
M
My
z
Mz
由于圆形截面的特殊性, 可将弯矩平行四边形合成
危险截面为B
材料力学
组合变形/扭转与弯曲的组合
4.确定危险点及应力状态
危险点的位置
y
y
M
My
z
Mz
M
z
T
材料力学
组合变形/扭转与弯曲的组合
危险点的应力状态
y
M
z
T
二向应力状态
材料力学
组合变形/扭转与弯曲的组合
5.根据强度理论进行强度校核 要求回顾如何根据材料选择强度理论
钢属于塑性材料,按第三或第四强度理论校核
第三强度理论校核: 1 3 []
第四强度理论校核:
材料力学
组合变形/扭转与弯曲的组合
2FL
FL
材料力学
3. 根据弯矩图确定可能的危险截面
竖直xy面:
FL
水平xz面:
2FL
FL
结论: 危险截面可 能是中点或 固定端。
材料力学
4. 通过叠加求危险截面的最大正应力
z
z
y
y
Mxy Mxz Wz Wy
Mxy 2 Mxz 2
材料力学
W
y
竖直xy面:
FL
Z
水平xz面:
2FL
σmax=|σ’+σmax| σmax≤[σ]
②扭转与弯曲组合
《材料力学》课程讲解课件第八章组合变形

强度条件(简单应力状态)——
max
对有棱角的截面,最大的正应力发生在棱角点处,且处于单向应力状态。
max
N A
M zmax Wz
M ymax Wy
x
对于无棱角的截面如何进行强度计算——
1、确定中性轴的位置;
y
F z
M z F ey M y F ez
ez F ey z
y
zk yk z
y
x
1、荷载的分解
F
Fy F cos
Fz F sin
z
2、任意横截面任意点的“σ”
x
F
y
(1)内力: M z (x) Fy x F cos x
M y (x) Fz x F sin x
(2)应力:
Mz k
M z yk Iz
My k
M y zk Iy
(应力的 “+”、“-” 由变形判断)
F
1, 首先将斜弯曲分解
为两个平面弯曲的叠加 Fy F cos
z
L2
L2
Fz F sin
z
2, 确定两个平面弯曲的最大弯矩
y
Mz
Fy L 4
M
y
Fz L 4
3, 计算最大正应力并校核强度
max
My Wy
Mz Wz
217.8MPa
查表: Wy 692.2cm3
4, 讨论 0
y
Wz 70.758cm3
的直径为d3,用第四强度理论设计的直径为d4,则d3 ___=__ d4。
(填“>”、“<”或“=”)
因受拉弯组合变形的杆件,危险点上只有正应力,而无切应力,
r3 1 3 2 4 2
r4
材料力学10组合变形

材料力学10组合变形组合变形是指当结构受到外力作用时,由于各个零件的不同材料及尺寸性质的差异,导致各个零件产生不同的变形现象,从而使整个结构发生整体的变形。
组合变形是结构力学的重要内容,对于工程结构的设计、安全性评估和结构稳定性分析都至关重要。
本文将介绍组合变形的概念、分析方法和影响因素。
组合变形的概念:组合变形是指由于结构中不同零件的尺寸和材料性质的不一致,而导致结构在受力时产生的整体变形。
组合变形分为两类:一是刚体体变形,即结构在受力作用下整体平移、旋转或缩放;二是构件本身变形,即结构中各零件由于尺寸和材料的不一致而产生的内部变形。
组合变形的分析方法:组合变形的分析方法主要有两种:力法和位移法。
力法是指根据梁的变形方程和杨氏模量的定义,通过计算各零件在各个截面上的张力或弯矩,从而得到整体的变形情况。
位移法是指根据构件的位移和应变关系,通过求解位移方程组,从而得到整体的变形情况。
力法和位移法都是基于弹性理论,适用于较小变形和线性弹性材料的情况。
组合变形的影响因素:组合变形的大小与结构的几何形状、零件尺寸和材料性质有关。
影响组合变形的因素主要有以下几个方面:1.结构的几何形状:结构的几何形状对组合变形有重要影响。
例如,在长梁的弯曲变形中,梁的长度和曲率半径都会影响变形的大小。
2.零件的尺寸:零件的尺寸对组合变形有重要影响。
例如,在梁的弯曲变形中,梁的截面积和转动惯量会影响变形的大小。
3.零件的材料性质:零件的材料性质对组合变形有重要影响。
例如,在梁的弯曲变形中,梁的弹性模量和截面剪切模量会影响变形的大小。
4.外力的作用方式:外力的作用方式对组合变形有重要影响。
例如,在梁的弯曲变形中,集中力和均布力对变形的影响是不同的。
除了以上几个因素外,结构的边界条件和连接方式也会影响组合变形的大小。
此外,在实际工程中,结构中可能存在的缝隙、温度变化、材料老化等因素也会对组合变形产生影响。
对于设计工程结构来说,合理控制组合变形是非常重要的。
材料力学第八章组合变形
例题: 图示吊车大梁,由32a热轧普通工字钢制成,许 用应力 [σ]=160MPa ,L=4m 。起吊的重物重量F =80kN,且作用在梁的中点,作用线与y轴之间的夹角α =5°,试校核吊车大梁的强度是否安全。
F
Fy F cos 50
L2
L2
解:1. 外力分解
Fy F cos 80 cos 50 79.7kN Fz F sin 80 sin 50 6.96kN
材料力学
Mechanics of Materials
例:图示梁,已知F1=800N,F2=1650N,截面宽度 b=90mm,高度h=180mm。求:
1、梁上的max及所在位置; 2、若改为a=130mm的正方形截面,梁上的max; 3、若改为d=130mm圆形截面,梁上的max。
F2
F1 z
32
32 6
d3
72.6mm
取 d 73mm
构件在荷载的作用 下如发生两种或两种以 上基本形式的变形,且 几种变形所对应的应力 (和变形)属于同一数 量级,则构件的变形称 为组合变形。
❖组合变形的分析方法 线弹性小变形范围内,采用叠加原理
材料力学
Mechanics of Materials
二.组合变形分析方法 条件:线弹性小变形
组合 变形
0.642q 106 31.5 103
0.266q 106 237 103
160MPa
q 7.44kN / m
材料力学
Mechanics of Materials
M zD 0.456q
M zA 0.266q
z
M yD 0.444q
M yA 0.642q
A截面
y
max
材料力学组合变形
解:(1)计算横截面的形心、 面积、惯性矩
A 15000mm2
M FN
z0 75mm z1 125 mm I y 5.31107 mm4 (2)立柱横截面的内力
50
FN F
150
M F350 75103
50
150
0.425F
A 15000mm2
§6-2 拉伸(或压缩)与弯曲的组合
一、受力特点
作用在杆件上的外力既有轴向拉( 压 )力,还有横向力
二、变形特点
杆件将发生拉伸 (压缩 )与弯曲组合变形
示例1 F1 产生弯曲变形
F2
F2 产生拉伸变形 示例2 Fy 产生弯曲变形
Fx 产生拉伸变形
F1 F2
Fy
F
Fx
三、内力分析
横截面上内力
1.拉(压) :轴力 FN (axial force)
§6-1 组合变形与叠加原理
基本变形 构件只发生一种变形;
轴向拉压、扭转、平面弯曲、剪切;
组合变形:
构件在外载的作用下,同时发生两种或两种以上基本变形。
F2 F1
F
M F
z
x y
P q
hg
水坝
1、研究方法:
将复杂变形分解成基本变形; 独立计算每一基本变形的各自的内力、应力、应变、位移。
叠加
形成构件在组合变形下的内力、应力、应变、位移。
查型钢表,可选用16号钢,W 141 cm3, A 26.1cm2,
按弯压组合强度条件,可知C点左侧截面下边缘各点压应
力最大:
cmax
FN A
M max W
94.3MPa
说明所选工字钢合适。
例6.2 铸铁压力机框架,立柱横截面尺寸如图所示,
材料力学第十章 组合变形
r 3 2 4 2
r3
2 M y M z2 T 2
W
M 2 T 2 W
r 4 3
2
2
2 M y M z2 0.75T 2
r4
W
M 2 0.75T 2 W
例3 图示空心圆杆,
内径d=24mm,外
径D=30mm, P1=600N, []=100MPa,试用 第三强度理论校核 A
Lmax D1
⑤变形计算
ymax D 2
f f
2 y 2 z
fz
f
tg
fy fz
f fy
当j = 时,即为平面弯曲。
例1结构如图,P过形心且与z轴成j角,求此梁的最大应力与挠度。 解:危险点分析如图 中性轴 h Pz
x
Py
P z j z
D2 P 变形计算 Py y
P
P
10203 [ 1020252 ] 12 7.27105 mm4
M 5P 3 500Nm 10
P N M
20 20
y yC z
应力分析如图
100
N M z max max A I yc
P
100 103 500 55 103 6 800 10 7.27107
P Mz y Myz x A Iz Iy
三、中性轴方程
P M z y0 M y z0 x 0 A Iz Iy
对于偏心拉压问题 P Py y Pz z P yP y0 z P z0 P 0 P 0 (1 2 2 )0 y 2 2 A Aiz Aiy A iz iy y
1
材料力学- 8组合变形
D
A P
C
d
B
Q
l/2
D
l/2
解:
B
A P
mA
C
Q Q 1 mC QD 2 A M C
Ql/4
B
(1)受力分析与计算简 图:将载荷Q向轮心平移 (2)内力分析,画出弯 矩图和扭矩图;找出危险 面和危险点:危险面在中 点C处 (3)代公式:求最大安 全载荷Q
d
T
QD/2
r3
设计中常采用的简便方法:
因为偏心距较大,弯曲应力 是主要的,故先考虑按弯曲强 度条件 设计截面尺寸
M Wz 6000 6 35 10 d 3 32
解得立柱的近似直径 取d=12.5cm,再代 入偏心拉伸的强 度条件校核
d 0.12 m
15000 6000 3.14 0.1252 3.14 0.1253 4 32 32.4 106 32.4MPa 35MPa
M 2 T2 [ ] Wz
l/2
D
l/2
Ql Q M 0.8 0.2Q 4 4
B
A P
mA
C
d
T
Q Q 1 mC QD 2 A M C
Ql/4
QD Q 0.36 0.18Q 2 2
r3
B
M 2 T2 [ ] Wz
Wz
ቤተ መጻሕፍቲ ባይዱ 3
32
T
QD/2
(1)计算内力
将立柱假想地截开,取上段为 研究对象,由平衡条件,求出 立柱的轴力和弯矩分别为
F
N
FN P 15000 N M Pe 15000 0.4 6000N m