材料力学B试题8组合变形
材料力学组合变形习题

材料力学组合变形习题L1AL101ADB (3)偏心压缩时,截面的中性轴与外力作用点位于截面形心的两侧,则外力作用点 到形心之距离e和中性轴到形心距离d之间的关系有四种答案:(A ) e=d; (B ) e>d;(C ) e越小,d越大; (D ) e越大,d越小。
正确答案是______。
答案(C )1BL102ADB (3)三种受压杆件如图。
设杆1、杆2和杆3中的最大压应力(绝对值)分别用 max1σ、max 2σ和max3σ表示,现有下列四种答案:(A )max1σ=max 2σ=max3σ; (B )max1σ>max 2σ=max3σ;(C )max 2σ>max1σ=max3σ; (D )max 2σ<max1σ=max3σ。
正确答案是______。
答案(C )1BL103ADD (1)在图示杆件中,最大压应力发生在截面上的哪一点,现有四种答案:(A )A点; (B )B点; (C )C点; (D )D点。
正确答案是______。
答案(C )1AL104ADC (2)一空心立柱,横截面外边界为正方形, 内边界为等边三角形(二图形形心重 合)。
当立柱受沿图示a-a线的压力时,此立柱变形形态有四种答案:(A )斜弯曲与中心压缩组合; (B )平面弯曲与中心压缩组合;(C )斜弯曲; (D )平面弯曲。
正确答案是______。
答案(B )1BL105ADC (2)铸铁构件受力如图所示,其危险点的位置有四种答案:(A )①点; (B )②点; (C )③点; (D )④点。
正确答案是______。
答案(D )1BL106ADC (2)图示矩形截面拉杆中间开一深度为h/2的缺口,与不开口的拉杆相比,开口处的最大应力的增大倍数有四种答案:(A )2倍; (B )4倍; (C )8倍; (D )16倍。
正确答案是______。
答案(C )1BL107ADB (3)三种受压杆件如图,设杆1、杆2和杆3中的最大压应力(绝对值)分别用 max1σ、max 2σ和max3σ表示,它们之间的关系有四种答案:(A )max1σ<max 2σ<max3σ; (B )max1σ<max 2σ=max3σ;(C )max1σ<max3σ<max 2σ; (D )max1σ=max3σ<max 2σ。
材料力学习题组合变形#(精选.)

组合变形基 本 概 念 题一、选择题1. 偏心压缩时,截面的中性轴与外力作用点位于截面形心的两侧,则外力作用点到 形心的距离e 和中性轴到形心距离d 之间的关系是( )。
A .e = dB .e >dC .e 越小,d 越大D .e 越大,d 越小2.三种受压杆件如图所示,设杆1、杆2和杆3中的最大压应力(绝对值)分别用1max σ、2max σ、3max σ表示,则( )。
A .1max σ=2max σ=3max σB .1max σ>2max σ=3max σC .2max σ>1max σ=3max σD .2max σ<1max σ=3max σ 题2图3.在图示杆件中,最大压应力发生在截面上的( )。
A .A 点B .B 点C .C 点D .D 点题3图 题4图4. 铸铁杆件受力如图4所示,危险点的位置是( )。
A .①点B .②点C .⑧点D .④点5. 图示正方形截面直柱,受纵向力P 的压缩作用。
则当P 力作用点由A 点移至B 点时柱内最大压应力的比值()max A σ﹕()max B σ为( )。
A .1﹕2B .2﹕5C .4﹕7D .5﹕26. 图示矩形截面偏心受压杆件发生的变形为( )。
A .轴向压缩和平面弯曲组合B .轴向压缩,平面弯曲和扭转组合C .轴向压缩,斜弯曲和扭转组合D .轴向压缩和斜弯曲组合-41-题5图 题6图 7. 图所示悬臂梁的横截面为等边角钢,外力P 垂直于梁轴,其作用线与形心轴y 垂直,那么该梁所发生的变形是( )。
A .平面弯曲B .扭转和斜弯曲C .斜弯曲D .两个相互垂直平面(xoy 平面和xoz 平面)内的平面弯曲题7图 8. 图示正方形截面杆受弯扭组合变形,在进行强度计算时,其任一截面的危险点位置有四种答案,正确的是( )。
A .截面形心B .竖边中点A 点C .横边中点B 点D .横截面的角点D 点题8图 题9图9. 图示正方形截面钢杆,受弯扭组合作用,若已知危险截面上弯矩为M ,扭矩为T ,截面上A 点具有最大弯曲正应力σ和最大剪应力τ,其抗弯截面模量为W 。
材料力学第八章组合变形

例题: 图示吊车大梁,由32a热轧普通工字钢制成,许 用应力 [σ]=160MPa ,L=4m 。起吊的重物重量F =80kN,且作用在梁的中点,作用线与y轴之间的夹角α =5°,试校核吊车大梁的强度是否安全。
F
Fy F cos 50
L2
L2
解:1. 外力分解
Fy F cos 80 cos 50 79.7kN Fz F sin 80 sin 50 6.96kN
材料力学
Mechanics of Materials
例:图示梁,已知F1=800N,F2=1650N,截面宽度 b=90mm,高度h=180mm。求:
1、梁上的max及所在位置; 2、若改为a=130mm的正方形截面,梁上的max; 3、若改为d=130mm圆形截面,梁上的max。
F2
F1 z
32
32 6
d3
72.6mm
取 d 73mm
构件在荷载的作用 下如发生两种或两种以 上基本形式的变形,且 几种变形所对应的应力 (和变形)属于同一数 量级,则构件的变形称 为组合变形。
❖组合变形的分析方法 线弹性小变形范围内,采用叠加原理
材料力学
Mechanics of Materials
二.组合变形分析方法 条件:线弹性小变形
组合 变形
0.642q 106 31.5 103
0.266q 106 237 103
160MPa
q 7.44kN / m
材料力学
Mechanics of Materials
M zD 0.456q
M zA 0.266q
z
M yD 0.444q
M yA 0.642q
A截面
y
max
《材料力学》期末考试试卷A、B卷及答案

***学院期末考试试卷一、填空题(总分20分,每题2分)1、杆件在外力作用下,其内部各部分间产生的 ,称为内力。
2、杆件在轴向拉压时强度条件的表达式是 。
3、低碳钢拉伸时,其应力与应变曲线的四个特征阶段为 阶段, 阶段, 阶段, 阶段。
4、线应变指的是 的改变,而切应变指的是 的改变。
5.梁截面上弯矩正负号规定,当截面上的弯矩使其所在的微段梁凹向下时为 。
6.梁必须满足强度和刚度条件。
在建筑中,起控制做用的一般是 条件。
7、第一和第二强度理论适用于 材料,第三和第四强度理论适用于 材料。
8、求解组合变形的基本方法是 。
9、力作用于杆端方式的不同,只会使与杆端距离在较小的范围内受到影响,该原理被称为 。
10、欧拉公式是用来计算拉(压)杆的 ,它只适用于 杆。
二、 单项选择(总分20分,每题2分)1、用截面法可求出图示轴向拉压杆a-a 截面的内力12N P P =-,下面说法正确的是( ) A. N 其实是应力B. N 是拉力C. N 是压力D. N 的作用线与杆件轴线重合2、构件的强度是指( )A. 在外力作用下构件抵抗变形的能力B. 在外力作用下构件保持原有平衡态的能力C. 在外力作用下构件抵抗破坏的能力D. 在外力作用下构件保持原有平稳态的能力 3、现有钢、铸铁两种杆材,其直径相同。
从承载能力与经济效益两个方面考虑,图示结构中两种合理选择方案是( )A. 1杆为钢,2杆为铸铁B. 1杆为铸铁,2杆为钢C. 2杆均为钢D. 2杆均为铸铁4、从拉压杆轴向伸长(缩短)量的计算公式EANll =∆可以看出,E 和A 值越大,l ∆越小,故( )。
A. E 为杆的抗拉(压)刚度。
B. 乘积EA 表示材料抵抗拉伸(压缩)变形的能力。
C. 乘积EA 为杆的抗拉(压)刚度D. 以上说法都不正确。
5、空心圆轴的外径为D ,内径为d ,α=d /D 。
其抗扭截面系数为( )。
A )1(163απ-=D W PB )1(1623απ-=D W PC )1(1633απ-=D W P D )1(1643απ-=D W P6、在没有荷载作用的一段梁上,( )A. 剪力图为一水平直线B.剪力图为一斜直线 C .没有内力 D.内力不确定7、在平行移轴公式21Z Z I I a A =+中,其中Z 轴和轴1Z 轴互相平行,则( )。
材料力学习题组合变形

组合变形基 本 概 念 题一、选择题1. 偏心压缩时,截面的中性轴与外力作用点位于截面形心的两侧,则外力作用点到形心的距离e 和中性轴到形心距离d 之间的关系是( )。
A .e = dB .e >dC .e 越小,d 越大D .e 越大,d 越小2.三种受压杆件如图所示,设杆1、杆2和杆3中的最大压应力(绝对值)分别用1max σ、2max σ、3max σ表示,则( )。
A .1max σ=2max σ=3max σB .1max σ>2max σ=3max σC .2max σ>1max σ=3max σD .2max σ<1max σ=3max σ 题2图3.在图示杆件中,最大压应力发生在截面上的( )。
A .A 点B .B 点C .C 点D .D 点题3图 题4图4. 铸铁杆件受力如图4所示,危险点的位置是( )。
A .①点B .②点C .⑧点D .④点5. 图示正方形截面直柱,受纵向力P 的压缩作用。
则当P 力作用点由A 点移至B 点时柱内最大压应力的比值()max A σ﹕()max B σ为( )。
A .1﹕2B .2﹕5C .4﹕7D .5﹕26. 图示矩形截面偏心受压杆件发生的变形为( )。
A .轴向压缩和平面弯曲组合B .轴向压缩,平面弯曲和扭转组合C.轴向压缩,斜弯曲和扭转组合D.轴向压缩和斜弯曲组合-41-题5图题6图7.图所示悬臂梁的横截面为等边角钢,外力P垂直于梁轴,其作用线与形心轴y垂直,那么该梁所发生的变形是()。
A.平面弯曲B.扭转和斜弯曲C.斜弯曲D.两个相互垂直平面(xoy平面和xoz平面)内的平面弯曲题7图8.图示正方形截面杆受弯扭组合变形,在进行强度计算时,其任一截面的危险点位置有四种答案,正确的是( )。
A.截面形心B.竖边中点A点C.横边中点B点D.横截面的角点D 点题8图题9图9.图示正方形截面钢杆,受弯扭组合作用,若已知危险截面上弯矩为M,扭矩为T,截面上A点具有最大弯曲正应力σ和最大剪应力τ,其抗弯截面模量为W。
材料力学- 8组合变形

D
A P
C
d
B
Q
l/2
D
l/2
解:
B
A P
mA
C
Q Q 1 mC QD 2 A M C
Ql/4
B
(1)受力分析与计算简 图:将载荷Q向轮心平移 (2)内力分析,画出弯 矩图和扭矩图;找出危险 面和危险点:危险面在中 点C处 (3)代公式:求最大安 全载荷Q
d
T
QD/2
r3
设计中常采用的简便方法:
因为偏心距较大,弯曲应力 是主要的,故先考虑按弯曲强 度条件 设计截面尺寸
M Wz 6000 6 35 10 d 3 32
解得立柱的近似直径 取d=12.5cm,再代 入偏心拉伸的强 度条件校核
d 0.12 m
15000 6000 3.14 0.1252 3.14 0.1253 4 32 32.4 106 32.4MPa 35MPa
M 2 T2 [ ] Wz
l/2
D
l/2
Ql Q M 0.8 0.2Q 4 4
B
A P
mA
C
d
T
Q Q 1 mC QD 2 A M C
Ql/4
QD Q 0.36 0.18Q 2 2
r3
B
M 2 T2 [ ] Wz
Wz
ቤተ መጻሕፍቲ ባይዱ 3
32
T
QD/2
(1)计算内力
将立柱假想地截开,取上段为 研究对象,由平衡条件,求出 立柱的轴力和弯矩分别为
F
N
FN P 15000 N M Pe 15000 0.4 6000N m
材料力学——8组合变形

F m
B
T 15kN m
M max 20kN m
W
15kN· m
D 3
32
(1 )
4
+
r3
20kN· m
-
M2 T2 157.26MPa [ ] W
例题8 传动轴如图所示。在A处作用一个外力偶矩
m=1kN· m,皮带轮直径 D=300mm,皮带轮紧边拉力为 F1,松边拉力为F2。且F1=2F2,L=200mm,轴的许用 应力[]=160MPa。试用第三强度理论设计轴的直径
例3 直径为d=0.1m的圆杆受力如图,T=7kNm,P=50kN, []=100MPa,试按第三强度理论校核此杆的强度。 解:拉扭组合,危险点应力状态如图 T P A T P
P 450 10 3 6.37 MPa A 0.12
T 167000 35 .7MPa 3 Wn 0.1
P
P
1
1
a a
a a
未开槽前 立柱为轴向压缩
N P P P 1 2 A A (2a) 4a2
开槽后 立柱危险截面为偏心压缩;
P
1
P
1
a a
a a
P
1
Pa/2
1
N M P Pa 2 2P 2 2 A W 2 a a 1 2a 2 a a 6 2 P a2 开槽后立柱的最大压应力 8 2 P 4a 未开槽前立柱的最大压应力
2、相当应力计算 第三强度理论,计算相当力
2 0
r 3 1 3 2 4 2
第四强度理论,计算相当应力
r 4 2 3 2
3、强度校核
材料力学组合变形答案

材料力学组合变形答案【篇一:材料力学组合变形及连接部分计算答案】,试求危险截面上的最大正应力。
解:危险截面在固定端m,,==返回8-2 受集度为的均布荷载作用的矩形截面简支梁,其荷载作用面与梁的纵向对称面间的夹角为梁的尺寸为m,,如图所示。
已知该梁材料的弹性模量mm,mm;许用应力;;许可挠度。
试校核梁的强度和刚度。
解:=,强度安全,==返回刚度安全。
8-3(8-5) 图示一悬臂滑车架,杆ab为18号工字钢,其长度为m。
试求当荷载作用在ab的中点d处时,杆内的最大正应力。
设工字钢的自重可略去不计。
解:18号工字钢,,ab杆系弯压组合变形。
,,====返回8-4(8-6) 砖砌烟囱高重kn,受m,底截面m-m的外径的风力作用。
试求:m,内径m,自(1)烟囱底截面上的最大压应力;(2)若烟囱的基础埋深许用压应力m,基础及填土自重按,圆形基础的直径d应为多大?计算,土壤的注:计算风力时,可略去烟囱直径的变化,把它看作是等截面的。
解:烟囱底截面上的最大压应力:=土壤上的最大压应力=:即即解得:返回m8-5(8-8) 试求图示杆内的最大正应力。
力f与杆的轴线平行。
解:固定端为危险截面,其中:轴力,弯矩,,z为形心主轴。
=a点拉应力最大==b点压应力最大==因此返回8-6(8-9) 有一座高为1.2m、厚为0.3m的混凝土墙,浇筑于牢固的基础上,用作挡水用的小坝。
试求:(1)当水位达到墙顶时墙底处的最大拉应力和最大压应力(设混凝土的密度为);(2)如果要求混凝土中没有拉应力,试问最大许可水深h为多大?解:以单位宽度的水坝计算:水压:混凝土对墙底的压力为:墙坝的弯曲截面系数:墙坝的截面面积:墙底处的最大拉应力为:【篇二:材料力学b试题8组合变形】心压缩杆,截面的中性轴与外力作用点位于截面形心的两侧,则外力作用点到形心的距离e和中性轴到形心的距离d之间的关系有四种答案: (a)e?d;(b) e?d;(c) e越小,d越大; (d) e越大,d越大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
组合变形1. 偏心压缩杆,截面的中性轴与外力作用点位于截面形心的两侧,则外力作用点到形心的距离e 和中性轴到形心的距离d 之间的关系有四种答案: (A)d e =;(B) d e >; (C) e 越小,d 越大; (D) e越大,d 越大。
答:C2. 三种受压杆件如图所示,杆1力(绝对值)分别为1m ax σ、2m ax σ和(A)3max 2max 1max σσσ==; (B)3max 2max 1max σσσ=>; (C)3max 1max 2max σσσ=>;(D)3max 1max σσσ=<max2。
答:C3. 图示空心立柱,横截面外边界为正方形,内边界为圆形(二图形形心重合)。
立柱受沿图示a-a 线的压力作用,该柱变形有四种答案:(A) 斜弯曲与轴向压缩的组合; (B)平面弯曲与轴向压缩的组合; (C)斜弯曲;(D)平面弯曲。
答:B4. 的位置有四种答案:(A) A 点; (B) B (C) C 点; (D) D 点。
答:C5. 图示矩形截面拉杆,中间开有深度为2h 的缺口,与不开口(A) 2倍; (B) 4倍; (C) 8倍; (D) 16倍。
答:C6. 三种受压杆件如图所示,杆1、杆2与杆3中的最大压应力(绝对值)分别为1max σ、σ3 (A)max32max 1max σσσ<<; (B)3max 2max max1σσσ=<; (C)2max max3max1σσσ<<; (D)2max 3max 1max σσσ<=。
答:C7. 正方形等截面立柱,受纵向压力F 作用。
当力F 作用点由A 移至B 时,柱内最大压应力的比值maxmax B A σσ有四种答案:(A) 1:2; (B) 2:5; (C) 4:7; (D) 5:2。
答:C8. 图示矩形截面偏心受压杆,其变形有下列四种答案:(A) 轴向压缩和平面弯曲的组合; (B)轴向压缩、平面弯曲和扭转的组合; (C)缩和斜弯曲的组合;(D)轴向压缩、斜弯曲和扭转的组合。
答:C9. 矩形截面梁的高度mm 100=h ,跨度m 1=l 。
梁中点承受集中力F ,两端受力kN 301=F ,三力均作用在纵向对称面内,mm 40=a35。
试求F 值。
解:偏心距mm 102=-=a h e跨中截面轴力1N F F =跨中截面弯矩e F Fl M 1max 4-=(正弯矩),或41max Fle F M -=(负弯矩)则356464211211minmax=---+=bheF Fl bh F bh eF Flbh F σσ,得kN 7.1=F或356464211211minmax =---+=bh Fl e F bhF bh Fl e F bhF σσ,得kN 7.0=F10. 偏心拉伸杆受力如图所示,弹性模量为(1) (2) 线AB 长度的改变量。
解:(1)最大拉应力在AB 线上bhFbh F b h Fh hb Fb 76/2/6/2/22max t =++=σ最大压应力在CD 线上bhFbh F bh F bh F 533max c -=+---=σ (2)长度改变量bhEFl E l l ΔAB 7===σε11. 矩形截面杆尺寸如图所示,载荷集度为q ,材料的弹性模量为E 。
试求最大拉应力及左侧表面ab 长度的改变量。
12. 图示混凝土坝,坝高m 2=l ,在混凝土坝的右侧整个面积上作用着静水压力,水的质量密度331kg/m 10=ρ,混凝土的质量密度332kg/m 102.2⨯=ρ。
试求坝中不出现拉应力时的宽度b (设坝厚1解631max glM ρ=由max c max t =+σσ13. 梁AB 解maxmax t =WM σmax max c =W M σ14. (B)、(C)、(D) 答:B15.截面核心如图所示。
19. 等截面圆轴上安装二齿轮C 与D ,其直径m m 2001=D ,m m 3002=D 。
轮C 上的切向力kN 201=F ,轮D 上的切向力为2F ,轴的许用应力MPa 60][=σ并画出危险点应力的单元体图。
解:根据平衡关系1212F D D F =危险截面在C 与D 之间,由][222r3σσ≤++=WT M M z y得 mm 86 ≥d 。
危险点处于二向应力状态,如图所示MPa 52 22=+=WM M zy σ,MPa 6.1p==W Tτ。
20. 图示水平直角折杆受铅直力F 作用。
圆轴AB 的直径mm 100=d ,mm 400=a ,GPa 200=E ,25.0=ν。
在截面D 顶点K处,测得轴向线应变401075.2-⨯=ε。
试求该折杆危险点的相当应力3r σ。
解:点K ,MPa 55 0==εσE又32/π3d Fa W MD ==σ,则 kN 5.13=F 危险截面在固定端处MPa 123π)()2(32322223r =+=+=d Fa Fa W T M σ 21. 手摇绞车的车轴ABkN 1=F ,MPa 80][=σ。
解:危险截面在C 处101 22r3σ=+=WT M 轴不满足强度条件。
22. 切向力kN 101=z F ,齿轮力kN 82.12=z F ,轴的 许用应力MPa 100][=σ。
试用第四强度理论确定轴的径。
解:危险截面在B 22z y M M M +=212.01.0y z F F T ==由][75.0224r σσ≤+=WT M 23. 图示传动轴上,径cm 60=D ,MPa 80][=σ轴的直径。
解:危险截面在轮B 处由3r σ=24. 力F C 解由 w 得F 25. 201=F ][=σ解M T 由4r σ=26. 5.22=l (1)(2)(3)解:σp==W T τ21+=σσt 11rσσ=27. 悬臂梁AB 的横截面为等边三角形,形心在C 点,承受均布载荷q 种答案: (A)平面弯曲; (B)(C)纯弯曲; (D)答:A28. 开口薄壁管一端固定一端自由,自由端受集中力F 作用,梁的横截面和力F 的作用线如图所示,C 为横截面形心,该梁的变形有四种答案:(A)平面弯曲;(B)斜弯曲; (C)平面弯曲+扭转; (D)斜弯曲+扭转。
答:D29. 悬臂梁的自由端受垂直于梁轴线的力F 作用,力作用方向与梁横截面形状分别如图所示,则图(a)的变形为图(b)的变形为图(c)的变形为答:斜弯曲;平面弯曲;斜弯曲30. 按照第三强度理论,图示杆的强度条件表达式有四种答案:(c)(b)正方形(a)(C)答31. l= a= y] [σ解由由则32. 解33. 试作图示空间折杆的内力图(除去剪力图)。
34. 图示圆杆的直径mm200=d ,kN π200=F ,MPa 102003⨯=E ,3.0=νK 处,测得线应变445103-⨯=ε。
度。
解:杆表面点K 处MPa 20π42==d Fx σ νεσντ+--=12/)1(45E x x则][MPa 4.913224r στσσ<=+=,满足强度条件。
35. 图示圆截面钢杆的直径mm 20=d ,承受轴向力F ,力偶m N 801e ⋅=M ,m N 1002e ⋅=M ,MPa 170][=σ。
试用第四强度理论确定许用力[F ]。
解:横截面外圆周上的点31e 2π32π4d M d F +=σ,32e π16d M =τ由][3224r στσσ≤+=,得kN 6.8=F 。
36. 图示圆杆的直径mm 100=d 力1F 与铅直力2F 、3F ,kN 1201=F MPa 160][=σ解:危险截面在固定端处22321]2)([)2(l F F d F M -+=,23dF T =MPa 1341=+=zW M A F σ,MPa 3.15p ==W Tτ 则][MPa 4.1374223r στσσ<=+=,满足强度条件。
37. 梁的斜弯曲是两个互相垂直平面内______________________的组合,该变形最主要的特点是______________________________。
答:平面弯曲;挠曲面与弯矩作用面不重合38. 矩形截面梁产生斜弯曲,某横截面尺寸与弯矩矢量方向如图所示,则中性轴与z 轴所成的角度为________________。
答:︒=87.828arctan39. 边长为a 的正方形截面梁产生拉弯组合变形,内力关系为12N aF M M z y==,则中性轴与z 轴所成的角度为_______,截面形心到中性轴的距离为_______。
答:45°;2a40. 画出图示空心截面的截面核心的大致形状。
41. 画出图示正六边形截面的截面核心的大致形状。
42. 画出图示T形截面的截面核心的大致形状。
43. 边长为a 的正方形截面,其截面核心的边界为______________形,顶点到正方形形心的距离为________________。
答:正方;6a44. 图示截面外边界为矩形,内边界为边长a 的正方形,其截面核心的边界为_______形,在z 轴上的截距为_______。
答:菱;a 602345. 等边三角形截面的截面核心的边界为_______________形,核心边界的某个顶点和三角形截面形心的连线与该顶点对应的中性轴所成的角度为__________。
答:等边三角;90°46. 圆截面杆受弯矩M 与扭矩T 作用产生弯扭组合变形,T M =。
横截面上全应力值相等的点位于______________线上。
答:椭圆47. 圆截面杆受弯矩M 与扭矩T 作用产生弯扭组合变形,T M =。
按最大切应力强度理论,横截面上相当应力值相等的点位于______________线上。
答:椭圆48. 矩形截面直杆发生扭转与弯曲组合变形,按照最大切应力强度理论,横截面上角点的相当应力有四种答案: (A)σσ=3r ; (B)τσ23r =; (C)223r τσσ+=;(D)223r 3τσσ+=。
(σ、τ分别表示该点处非零的正应力与切应力大小)答:A49. 圆截面直杆,轴向拉伸时轴线的伸长量为1ΔL ,偏心拉伸时轴线的伸长量为2ΔL ,设两种情况的作用力相同,两个伸长量的关系有四种答案:(A)21ΔΔL L >; (B)21ΔΔL L <; (C)21ΔΔL L =; (D)不确定。
答:C50. 偏心拉伸直杆中的最大拉应力必大于最大压应力。
该论断正确与否?( ) 答:非。