材料力学中的组合变形
材料力学10组合变形

材料力学10组合变形组合变形是指当结构受到外力作用时,由于各个零件的不同材料及尺寸性质的差异,导致各个零件产生不同的变形现象,从而使整个结构发生整体的变形。
组合变形是结构力学的重要内容,对于工程结构的设计、安全性评估和结构稳定性分析都至关重要。
本文将介绍组合变形的概念、分析方法和影响因素。
组合变形的概念:组合变形是指由于结构中不同零件的尺寸和材料性质的不一致,而导致结构在受力时产生的整体变形。
组合变形分为两类:一是刚体体变形,即结构在受力作用下整体平移、旋转或缩放;二是构件本身变形,即结构中各零件由于尺寸和材料的不一致而产生的内部变形。
组合变形的分析方法:组合变形的分析方法主要有两种:力法和位移法。
力法是指根据梁的变形方程和杨氏模量的定义,通过计算各零件在各个截面上的张力或弯矩,从而得到整体的变形情况。
位移法是指根据构件的位移和应变关系,通过求解位移方程组,从而得到整体的变形情况。
力法和位移法都是基于弹性理论,适用于较小变形和线性弹性材料的情况。
组合变形的影响因素:组合变形的大小与结构的几何形状、零件尺寸和材料性质有关。
影响组合变形的因素主要有以下几个方面:1.结构的几何形状:结构的几何形状对组合变形有重要影响。
例如,在长梁的弯曲变形中,梁的长度和曲率半径都会影响变形的大小。
2.零件的尺寸:零件的尺寸对组合变形有重要影响。
例如,在梁的弯曲变形中,梁的截面积和转动惯量会影响变形的大小。
3.零件的材料性质:零件的材料性质对组合变形有重要影响。
例如,在梁的弯曲变形中,梁的弹性模量和截面剪切模量会影响变形的大小。
4.外力的作用方式:外力的作用方式对组合变形有重要影响。
例如,在梁的弯曲变形中,集中力和均布力对变形的影响是不同的。
除了以上几个因素外,结构的边界条件和连接方式也会影响组合变形的大小。
此外,在实际工程中,结构中可能存在的缝隙、温度变化、材料老化等因素也会对组合变形产生影响。
对于设计工程结构来说,合理控制组合变形是非常重要的。
材料力学第八章组合变形

例题: 图示吊车大梁,由32a热轧普通工字钢制成,许 用应力 [σ]=160MPa ,L=4m 。起吊的重物重量F =80kN,且作用在梁的中点,作用线与y轴之间的夹角α =5°,试校核吊车大梁的强度是否安全。
F
Fy F cos 50
L2
L2
解:1. 外力分解
Fy F cos 80 cos 50 79.7kN Fz F sin 80 sin 50 6.96kN
材料力学
Mechanics of Materials
例:图示梁,已知F1=800N,F2=1650N,截面宽度 b=90mm,高度h=180mm。求:
1、梁上的max及所在位置; 2、若改为a=130mm的正方形截面,梁上的max; 3、若改为d=130mm圆形截面,梁上的max。
F2
F1 z
32
32 6
d3
72.6mm
取 d 73mm
构件在荷载的作用 下如发生两种或两种以 上基本形式的变形,且 几种变形所对应的应力 (和变形)属于同一数 量级,则构件的变形称 为组合变形。
❖组合变形的分析方法 线弹性小变形范围内,采用叠加原理
材料力学
Mechanics of Materials
二.组合变形分析方法 条件:线弹性小变形
组合 变形
0.642q 106 31.5 103
0.266q 106 237 103
160MPa
q 7.44kN / m
材料力学
Mechanics of Materials
M zD 0.456q
M zA 0.266q
z
M yD 0.444q
M yA 0.642q
A截面
y
max
材料力学——8组合变形

F m
B
T 15kN m
M max 20kN m
W
15kN· m
D 3
32
(1 )
4
+
r3
20kN· m
-
M2 T2 157.26MPa [ ] W
例题8 传动轴如图所示。在A处作用一个外力偶矩
m=1kN· m,皮带轮直径 D=300mm,皮带轮紧边拉力为 F1,松边拉力为F2。且F1=2F2,L=200mm,轴的许用 应力[]=160MPa。试用第三强度理论设计轴的直径
例3 直径为d=0.1m的圆杆受力如图,T=7kNm,P=50kN, []=100MPa,试按第三强度理论校核此杆的强度。 解:拉扭组合,危险点应力状态如图 T P A T P
P 450 10 3 6.37 MPa A 0.12
T 167000 35 .7MPa 3 Wn 0.1
P
P
1
1
a a
a a
未开槽前 立柱为轴向压缩
N P P P 1 2 A A (2a) 4a2
开槽后 立柱危险截面为偏心压缩;
P
1
P
1
a a
a a
P
1
Pa/2
1
N M P Pa 2 2P 2 2 A W 2 a a 1 2a 2 a a 6 2 P a2 开槽后立柱的最大压应力 8 2 P 4a 未开槽前立柱的最大压应力
2、相当应力计算 第三强度理论,计算相当力
2 0
r 3 1 3 2 4 2
第四强度理论,计算相当应力
r 4 2 3 2
3、强度校核
《材料力学》第八章组合变形

(2)内力分析,确定危险截面—整个轴;
M=600(kN·cm) FN=15(kN)
(3)应力计算,确定危险点—a、b点;
P产生拉伸正应力: t
FN AFNd 2源自4FNd 24
M拉产弯生组弯合曲:的正应力:wmax
M Wy
M
d3
32
32M
d3
P M= a Pe
补例8.1 已知: P=2kN,L求=:1mσm,Iazx=628×104mm4,Iy=64×1040mm2740 2844
解:1.分解P力。 Py Pcos φ Pz Psin φ 2.画弯矩图,确定危险截面--固定端截面。 3.画应力分布图,确定危险点—A、 B点
σ” σ’
A
x
y
Pyl
M
z
践中,在计算中,往往忽略轴力的影响。
4.大家考虑扭转、斜弯曲与拉(压)的组合怎么处理?
例8.5 图8.14a是某滚齿机传动轴AB的示意图。轴的直径为35 mm,材料为45钢, [σ]=85 MPa。轴是由P=2.2kW的电动机通过
带轮C带动的,转速为n=966r/min。带轮的直径为D=132 mm,
Mz Py l - x Pcosφ l - x Mcosφ My Pz l - x Psinφ l - x Msinφ
式中的总弯矩为:M Pl- x
3.计算两个平面弯曲的正应力。在x截面上任取一点A(z 、y),
与弯矩Mz、My对应的正应力分别为σ’和σ”,故
- Mz y , - M yz
第八章 组合变形
基本要求: 掌握弯曲与拉伸(或压缩)的组合、扭转与弯曲的组合 的强度计算。
重点: 弯曲与拉伸(或压缩)的组合,扭转与弯曲的组合。
材料力学第8章组合变形

MB
M
2 yB
M
2 zB
(364 N m)2 (1000N m)2 1064N m
•由Mz图和My图可知, B截面上的总弯矩最大, 并且由扭矩图可见B截 面上的扭矩与CD段其 它横截面上相同,TB =-1000 N·m,于是判 定横截面B为危险截面。
3. 根据MB和TB按第四强度理论建立的强度条件为
Wp
r4
M 2 0.75T 2
W
300N.m 1400N
300N.m
1500N 200
150
300N.m
128.6N.m
120N.m
(2)作内力图
危险截面E 左处
T 300N.m
M
M
2 y
M
2 z
176N.m
(3)由强度条件设计d
r3
M2 T2 W
W d 3
32
32 M 2 T 2
第8章 组合变形
8.1 组合变形和叠加原理 8.2 拉伸或压缩与弯曲的组合 8.3 偏心压缩和截面核心 8.4 扭转与弯曲的组合 8.5 组合变形的普遍情况
8.1 组合变形和叠加原理
组合变形——实际构件由外力所引起的变形包含两种或两 种以上的基本变形。如压力框架、烟囱、传动轴、有吊车 的立柱。 叠加原理——如果内力、应力、变形等与外力成线性关系, 则在小变形条件下,复杂受力情况下组合变形构件的内力, 应力,变形等力学响应可以分成几个基本变形单独受力情 况下相应力学响应的叠加,且与各单独受力的加载次序无 关。 前提条件:
即 亦即 于是得
r4
M 2 0.75T 2 [ ]
W
•请同学们按
照第三强度理 (1064 N m)2 0.75(1000 N m)2 100106 Pa W
材料力学第八章组合变形及连接部分的计算

Mz 0 FN Iy A
F
350
M
FN
425 10 3 F 0.075 F 5.3110 5 15 10 3 667 F Pa F Mz c. max 1 N Iy A
t .max
c.max
425 10 3 F 0.125 F 5 5.31 10 15 10 3 934 F Pa
50 150
425F 103 N.m
A 15000 mm2 z0 75mm z1 125mm I y 5.31107 mm4
y1
z0
y
z1
150 50 150
(2)立柱横截面的内力 FN F 50 M 425103 F N.m (3)立柱横截面的最大应力
az
中性轴
z0 0 y0 0
i z2 a y yo ey 2 iy a z zo ez
截面核心
y
中性轴
F (e y , e z )
z
求直径为D的圆截面的截面核心.
d a y1 2
i z2 ay ey
a z1
az
2 iy
2 4 d d 64 2 iy i z2 2 A d 4 16
F
1, 首先将斜弯曲分解 为两个平面弯曲的叠加
Fy F cos
L2
L2
Z y
My Wy
Fz F sin
2, 确定两个平面弯曲的最大弯矩
Z y
Wz 70.758cm 3
Mz
Fy L 4
Fz L My 4
查表: W y 692.2cm 3
材料力学:第11章:组合变形
2
≤[σ]
2
M + 0.75T W
3
≤[σ]
πd
32
例:图示悬臂梁的横截面为等边三角形, 图示悬臂梁的横截面为等边三角形, C为形心,梁上作用有均布载荷q,其作用方 为形心,梁上作用有均布载荷q,其作用方 为形心 q, 向及位置如图所示,该梁变形有四种答案: 向及位置如图所示,该梁变形有四种答案: A)平面弯曲; (√ )平面弯曲; (C)纯弯曲; )纯弯曲; (B)斜弯曲; )斜弯曲; (D)弯扭结合。 )弯扭结合。
Mz y My σ′=− =− sin ϕ Iz Iz
σ ′′ = −
ቤተ መጻሕፍቲ ባይዱ
My z Iy
Mz =− cos ϕ Iy
Py
Mz
Pz
My
y z σ = σ ′ + σ ′′ = − M sin ϕ + cos ϕ I Iy z
下面确定中性轴的位置: 下面确定中性轴的位置: 设中性轴上某一点的坐标为 y0 、 z0,则
α
ϕ
中性轴
ϕ
中性轴
二、位移计算 斜弯曲概念 为了计算梁在斜弯曲时的挠度, 为了计算梁在斜弯曲时的挠度,仍应用叠加法
fy = Py l
3
3EI Z
Pl3 = sin ϕ 3EI Z
Pl3 Pz l 3 fz = = cosϕ 3EI y 3EI y
ϕ
f =
2 fy
+f
2 z
tg β =
fy fz
=
Iy Iz
tg ϕ
tg β = tgα
α
β =α
ϕ
中性轴 总挠度f与中 总挠度 与中 性轴垂直
材料力学组合变形
材料力学组合变形材料力学是研究材料在外力作用下的力学性能和变形行为的学科。
组合变形是指将不同的材料组合在一起,并在外力作用下共同发生变形。
本文将探讨材料力学中的组合变形及其应用。
材料的组合变形主要有两种形式,即均匀变形和非均匀变形。
均匀变形是指组合材料中各个组分材料的变形均匀一致,不发生相对滑动或相对滑动微小。
在均匀变形中,组合材料的整体变形主要由各个组分材料的线弹性或体弹性共同引起。
例如,当钢筋混凝土受到拉力作用时,钢筋和混凝土发生均匀的拉伸变形。
非均匀变形是指组合材料中各个组分材料的变形不一致,发生相对滑动或相对滑动巨大。
在非均匀变形中,组合材料的整体变形主要由各个组分材料的弹性、塑性和断裂等共同引起。
例如,当金属板与橡胶层组合时,金属板可以发生弯曲变形,而橡胶层则可以发生弹性变形和形变。
组合变形在实际应用中有着广泛的应用。
首先,组合变形可以通过调节组分材料的比例和形状来实现特定的力学性能。
例如,通过调节纤维增强复合材料中纤维的方向和分布,可以显著改变其强度和刚度。
此外,通过组合不同的材料,还可以实现热膨胀系数匹配、界面应力分散等功能,从而降低材料的应力集中和断裂风险。
其次,组合变形还可以实现材料的远程感应和控制。
例如,利用形状记忆合金和橡胶组合的智能材料,在外力作用下可以实现形状变化和应变分布的调控。
这种材料可以应用于自适应结构、智能传感器等领域。
此外,通过组合不同的材料,还可以实现流变性能的调控,进而应用于动态振动控制等领域。
最后,组合变形还可以实现材料的多功能性和复合性能。
通过组合不同材料的优势,可以实现多功能材料的设计和制备。
例如,通过合理选择纳米材料和纤维增强复合材料等,可以实现具备高强度、低密度、耐热和导电等多种特性的复合材料。
此外,通过组合不同材料的力学性能,还可以实现弹性材料、减振材料和防护材料的设计与制备。
综上所述,材料力学中的组合变形是一种重要的力学现象,具有广泛的应用前景。
材料力学第8章 组合变形
b.未通过轴线或形心主惯性轴,向其分解
注意:荷载分解、简化的前提是不改变研究段的内力。
(2)内力分析方法
用截面法计算任意截面的内力,通过内力确定变形的组成
z
Fsz My
Ty
Fsy
M z FN
FN
T
x M z , Fsy M y , Fsz
轴向拉、压 扭转 x,y面内的平面弯曲 x,z面内的平面弯曲
§8-2 两相互垂直平面内的弯曲
F sin
F cos F
(2)求B点的应力
MB FN
WA
12.32103 25103
0.1 0.22
0.1 0.2
6
B
17.23 MPa
(3)求B点30º斜截面上的正应力
300 cos2 30 17.23 cos2 30 12.99 MPa
(4)求B点的主应力
1 0 2 0 3 17.23 MPa
z
面梁,其横截面都有两个相互垂直的对称 轴,且截面的周边具有棱角,故横截面上
Mz
的最大正应力发生在截面的棱角处。于是
,可根据梁的变形情况,直接确定截面上
My
最大拉、压应力点的位置,而无需定出其
y
中性轴。
因危险点为单向应力状态(忽略弯曲切应力的影响), 故,强度条件为:
max
M y max Wy
F sin
12.32kN m
F cos F
例: 如图示一矩形截面折杆,已知F=50kN,尺寸如图所示, α=30°。(1)求B点横截面上的应力;(2)求B点α=30°截
面上的正应力;(3)求B点的主应力σ1、 σ2、 σ3。
FN
B
MB 100mm
29-31材料力学-组合变形
P 200 图. (2)
dP
P M
1maxAP1
M Wz1
350000350506
0.20.3 0.20.32
11.7M Pa
2max
P A
3 5 0 0 0 08.7 5MP a 0.20.2
15
[例5] 图示钢板受力P=100kN,试求最大正应力;若将缺口
移至板宽的中央,且使最大正应力保持不变,则挖空宽度为多
结果表明,最大压应力与许用应力接近相等,故无需重新 选取截面的型号。
11
二、偏心拉伸(压缩)
如果外力的作用线平行于杆件的轴线,但不通过杆件横截
面的形心,则将引起偏心拉伸(压缩)。
1、分解: P
x P y
z My
x z Mz
Py My
12
2、应力分析:
x z Mz P y
P
MZ
z
My y
My
xP
P A
发生最大拉应力,且
tmax
tmax
在截面的外侧边缘上发生最大压应力,且 cmaxcmax
最后,由抗拉强度条件 得
F P ≤ 45.1kN。
由抗压强度条件得
F P ≤ 171.3kN
为使立柱同时满足抗拉和抗压强度条件,压力FP不应超过
45.1kN 。
20
[例7] 方形截面杆的横截面面积在 mn 处减少一半,试求由轴
30
弯扭组合问题的求解步骤:
① 外力分析:外力向形心简化并分解。 ② 内力分析:每个外力分量对应的内力方程和内力图,确定
危险面。 ③应力分析:建立强度条件。
r3
My2 Mz2 Mn2 W
r4
My2Mz20.7 5Mn2 W
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料力学中的组合变形
过程转备与控制工程梁艳辉201005050219
摘要:材料力学是研究材料在各种外力作用下产生的应变、应力、强度、刚度、稳定和导致各种材料破坏的极限。
材料力学是所有工科学生必修的学科,是设计工业设施必须掌握的知识。
而组合变形在生活中普遍存在,基本上一些简单的单一变形在我们身边很少见,都是以组合变形的的形式出现,所以讨论组合变形具有重要意义。
关键字:组合变形,线弹性,载荷,应力,内力,静力等效原则,强度理论,失效形式通过一个学期的学习,对材料力学有了一个基本的理解。
整个材料力学主要讨论了各种变形以及如何对各种变形进行强度校核,刚度校核以及稳定性校核。
那么材料力学中主要有哪些变形呢?主要分为单一变形和组合变形,单一变形包括:杆的拉伸和压缩变形,杆的扭转变形,杆的弯曲变形和剪切变形。
而组合变形包括:弯扭组合变形,拉扭组合变心,以及拉弯扭组合变形等。
下面主要来简单的谈一谈我对组合变形的理解。
一.生活中的实例
在工程实际中,杆件的受力变形的情况种类很多,又不少构件同时发生两种或两种以上的基本变形,生活中常见的机械设备的传动轴:传动轮上作用力的既有扭转变形又有弯曲变形。
常见的钻杆:钻杆受扭距的作用,同时钻杆的自重沿钻杆的轴向作用,所以钻杆的变形既有轴向的拉伸变形又有扭转变形。
这样的例子在生活中还有很多。
二.如何解决组合变形
在线弹性,小形变的条件下,构件的内力,应力和变形均与外力成线性关系。
可以认为载荷的作用是独立的,每一个载荷所引起内力,应力,变形都不受其他载荷的影响。
几个载荷的同时作用在杆件上所产生的应力,变形,等于各个载荷单独作用时产生的应力,变形之
和,此即为叠加原理。
当杆件在复杂载荷作用下同时发生几中基本变形的时候,根据静力等效原则,现将外力进行分解,简化,分组,使简化后的每一组载荷只对应一种基本变形,再分别计算每一中基本变形下产生的应力,内力和变形,然后将所得的结果相加,便可得到组合变形时尚内力,应力和变形,其结果与个力的加载次序无关。
当构件的危险点处于单向应力状态的时候,可以将应力代数相加:如果构件的危险点处于复杂应力状态下,则需要按照强度静力等效原则理论进行计算。
三.组合变形的失效形式
常见的失效形式有变形失效断裂失效表面损伤失效及材料老化失效等。
弹性变形失效:一些细长的轴、杆件或薄壁筒零部件,在外力作用下将发生弹性变形,如果弹性变形过量,会使零部件失去有效工作能力。
例如镗床的镗杆,如果工作中产生过量弹性变形,不仅会使镗床产生振动,造成零部件加工精度下降,而且还会使轴与轴承的配合不良,甚至会引起弯曲塑性变形或断裂。
引起弹性变形失效的原因,主要是零部件的刚度不足。
因此,要预防弹性变形失效,应选用弹性摸量大的材料。
塑性变形失效:零部件承受的静载荷超过材料的屈服强度时,将产生塑性变形。
塑性变形会造成零部件间相对位置变化,致使整个机械运转不良而失效。
例如压力容器上的紧固螺栓,如果拧得过紧,或因过载引起螺栓塑性伸长,便会降低预紧力,致使配合面松动,导致螺栓失效。
断裂失效是零部件失效的主要形式,按断裂原因可分为以下几种:韧性断裂失效:材料在断裂之前所发生的宏观塑性变形或所吸收的能量较大的断裂称为韧性断裂。
工程上使用的金属材料的韧性断口多呈韧窝状。
脆性断裂失效:材料在断裂之前没有塑性变形或塑性变形很小(<2~5%)的断裂称为脆性断裂。
疲劳断裂、应力腐蚀断裂、腐蚀疲劳断裂和蠕变断裂等均属于脆性断裂。
疲劳断裂失效:零部件在交变应力作用下,在比屈服应力低很多的应力下发生的突然脆断,称为疲劳断裂。
由于疲劳断裂是在低应力、无先兆情况下发生的,因而具有很大的危险性和破坏性。
据统计,80%以上的断裂失效属于疲劳断裂。
疲劳断裂最明显的特征是断口上的疲劳裂纹扩展区比较平滑,并通常存在疲劳休止线或疲劳纹疲劳断裂的断裂源多发生在零部件表面的缺陷或应力集中部位。
提高零部件表面加工质量,减少应力集中,对材料表面进行表面强化处理,都可以有效地提高疲劳断裂抗力。
以上所述就是我对组合变形的基本理解。