材料力学公式大全
材料力学公式汇总完全版

(适用于脆性材料)
(适用于塑性材料)
(适用于塑性材料)
(5.11e)
由扭转试验建立的强度条件
(5.12a)
(5.12b)
平面弯曲梁的正应力强度条件
(5.13)
平面弯曲梁的剪应力强度条件
(5.14a)
(5.14b)
平面弯曲梁的主应力强度条件
(5.15a)
(5.15a)
圆截面弯扭组合变形构件的相当弯矩
(3.3)
主平面方位角
( )
(3.4)
最大主应力的计算公式
(3.5)
最小主应力的计算公式
(3.6)
单元体中的最大剪应力
(3.7)
主单元体的八面体面上的剪应力
(3.8)
面上的线应变
(3.9)
面与 + 面之间的角应变
(3.10)
主应变方向公式
(3.11)
最大主应变
(3.12)
最小主应变
(3.13)
的替代公式
(3.14)
主应变方向公式
(3.15)
最大主应变
(3.16)
最小主应变
(3.17)
简单应力状态下的虎克定理
, ,
(3.18)
空间应和状态下的虎克定理
(3.19)
平面应力状态下的虎克定理(应变形式)
(3.20)
平面应力状态下的虎克定理(应力形式)
(3.21)
按主应力、主应变形式写出广义虎克定理
(3.22)
I取最小值
(7.2)
细长压杆在不同支承情
况下的临界力公式
—计算长度。
—长度系数;
一端固定,一端自由:
一端固定,一端铰支:
两端固定:
材料力学常用基本公式

材料力学常用基本公式材料力学是研究材料的力学性质和力学变形行为的学科,涉及到材料的强度、刚度、变形、破坏等方面。
在材料力学的研究中,常用到一些基本公式来描述材料的力学特性。
以下是一些材料力学中常用的基本公式。
1.应力和应变的关系:应力(stress)是单位面积上的力,通常用σ表示,其计算公式为:σ=F/A其中,F是作用在材料上的力,A是该力作用在材料上的面积。
应变(strain)是材料在力作用下发生的变形程度,通常用ε表示,其计算公式为:ε=ΔL/L其中,ΔL是材料受力后的长度变化,L是材料受力前的初始长度。
2.各向同性线弹性材料的胡克定律:胡克定律描述了各向同性线弹性材料在弹性阶段的应力和应变关系,即应力与应变成正比。
胡克定律的公式为:σ=E*ε其中,E是材料的弹性模量,是描述材料对力产生变形的能力大小的物理量。
3.杨氏模量和剪切模量:在胡克定律中,杨氏模量(Young's modulus)是描述材料沿着受力方向的应力和应变关系,剪切模量是描述材料在垂直于受力方向发生剪切变形时的应力和应变关系。
它们的关系公式为:E=2G*(1+μ)其中,E是杨氏模量,G是剪切模量,μ是泊松比,描述了材料的侧向收缩程度和拉伸程度之间的比例关系。
4.流变方程:在一些材料的力学特性中,材料的应力和应变关系不再满足胡克定律,而呈现出非线性特性。
这时可以使用流变方程来描述应力和应变的关系。
其中,最常用的是弹塑性流变方程:σ=K*ε^n其中,σ是应力,ε是应变,K是材料的流变模量,n是流变指数。
5.共轭滑移原理:用于描述材料在微观滑移中的位错模型和宏观弹性力学行为之间的关系。
根据共轭滑移原理,材料在滑移发生时,应变应能量密度在前后变形区是不变的,可以表示为:ε*σ=ε_s*σ_s+ε_d*σ_d其中,ε*和σ*表示综合应变和综合应力,ε_s和σ_s表示剪切滑移应变和剪切滑移应力,ε_d和σ_d表示剪切向应变和剪切向应力。
(完整版)工程材料力学公式

(完整版)工程材料力学公式工程材料力学公式引言工程材料力学是研究工程材料在力的作用下的力学性质及其相互关系的学科。
工程材料力学公式是分析和计算工程材料力学性能的基础工具。
在本文档中,将介绍一些常用的工程材料力学公式,以便在工程设计和分析中使用。
应力和应变应力(Stress)应力是物体在作用力下的内部反抗力。
通过将作用力除以受力面积可以得到单位面积上的力,即应力。
常用的应力计算公式有:1. 张应力(Tensile Stress):$ \sigma = \frac{F}{A} $应变(Strain)应变是物体在受力作用下变形程度的度量。
应变可以分为线性应变和剪切应变。
常用的应变计算公式有:1. 线性应变(Linear Strain):$ \varepsilon = \frac{\DeltaL}{L_0} $2. 剪切应变(Shear Strain):$ \gamma = \frac{\Delta x}{h} $胡克定律(Hooke's Law)胡克定律是描述材料的线弹性行为的一种理想假设。
它表明应力与应变之间成正比。
胡克定律的公式为:$ \sigma = E \cdot \varepsilon $其中,$ E $ 是杨氏模量(Young's Modulus),表示单位应变引起的应力变化。
强度和刚度强度(Strength)强度是指材料在受力作用下能承受的最大应力。
常用的强度计算公式有:1. 抗拉强度(Tensile Strength):$ \sigma_t = \frac{F}{A} $刚度(Stiffness)刚度是指材料在受力作用下的变形程度。
常用的刚度计算公式有:1. 弹性模量(Young's Modulus):$ E =\frac{\sigma}{\varepsilon} $2. 剪切模量(Shear Modulus):$ G = \frac{\tau}{\gamma} $断裂力学断裂力学研究物体在作用力下发生破坏的行为。
材料力学公式大全(机械)

材料力学常用公式1.外力偶矩计算公式(P功率,n转速)2.弯矩、剪力和荷载集度之间的关系式3.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力为正)4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x 轴正方向逆时针转至外法线的方位角为正)5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)6.纵向线应变和横向线应变7.泊松比8.胡克定律9.受多个力作用的杆件纵向变形计算公式?10.承受轴向分布力或变截面的杆件,纵向变形计算公式11.轴向拉压杆的强度计算公式12.许用应力,脆性材料,塑性材料13.延伸率14.截面收缩率15.剪切胡克定律(切变模量G,切应变g )16.拉压弹性模量E、泊松比和切变模量G之间关系式17.圆截面对圆心的极惯性矩(a)实心圆(b)空心圆18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)19.圆截面周边各点处最大切应力计算公式20.扭转截面系数,(a)实心圆(b)空心圆21.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应力计算公式22.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或24.等直圆轴强度条件25.塑性材料;脆性材料26.扭转圆轴的刚度条件? 或27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,28.平面应力状态下斜截面应力的一般公式,29.平面应力状态的三个主应力,,30.主平面方位的计算公式31.面内最大切应力32.受扭圆轴表面某点的三个主应力,,33.三向应力状态最大与最小正应力,34.三向应力状态最大切应力35.广义胡克定律36.四种强度理论的相当应力37.一种常见的应力状态的强度条件,38.组合图形的形心坐标计算公式,39.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式40.截面图形对轴z和轴y的惯性半径? ,41.平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A)42.纯弯曲梁的正应力计算公式43.横力弯曲最大正应力计算公式44.矩形、圆形、空心圆形的弯曲截面系数? ,,45.几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)46.矩形截面梁最大弯曲切应力发生在中性轴处47.工字形截面梁腹板上的弯曲切应力近似公式48.轧制工字钢梁最大弯曲切应力计算公式49.圆形截面梁最大弯曲切应力发生在中性轴处50.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处51.弯曲正应力强度条件52.几种常见截面梁的弯曲切应力强度条件53.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,54.梁的挠曲线近似微分方程55.梁的转角方程56.梁的挠曲线方程?57.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式58.偏心拉伸(压缩)59.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,60.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为61.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式62.63.弯拉扭或弯压扭组合作用时强度计算公式64.剪切实用计算的强度条件65.挤压实用计算的强度条件66.等截面细长压杆在四种杆端约束情况下的临界力计算公式67.压杆的约束条件:(a)两端铰支μ=l(b)一端固定、一端自由μ=2(c)一端固定、一端铰支μ=0.7(d)两端固定μ=0.568.压杆的长细比或柔度计算公式,69.细长压杆临界应力的欧拉公式70.欧拉公式的适用范围71.压杆稳定性计算的安全系数法22cm/kgfm/kgf、工程单位制:线应变单位长度上的变形量,无量纲,其物理意义是构件上一点沿某一方向变形量的大小。
材料力学公式超级大汇总

5. 纵向变形和横向变形(拉伸前试样标距 l,拉伸后试样标距 l1;拉伸前 试样直径 d,拉伸后试样直径 d1)
6. 纵向线应变和横向线应变
7. 泊松比
8. 胡计算公式? 10.承受轴向分布力或变截面的杆件,纵向变形计算公式
11.轴向拉压杆的强度计算公式
12.许用应力
bh 3 12 bh 2 6
d D
2、惯性矩平移轴公式
I z I zc a 2 A
y max
d 4 64 d 3 32
D 4 1 4 64 D 3 1 4 32
hb 3 12 hb 2 6
11
35.广义胡克定律
36.四种强度理论的相当应力
37.一种常见的应力状态的强度条件
,
4
38.组合图形的形心坐标计算公式
,
39.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴 的惯性矩之和的关系式
40.截面图形对轴 z 和轴 y 的惯性半径?
,
41.平行移轴公式(形心轴 zc 与平行轴 z1 的距离为 a,图形面积为 A)
xy 2
2
2
tg 2 0
xy x y
四、压杆稳定 1、临界压力与临界应力公式(若把直杆分为三类) ①细长受压杆 ②中长受压杆 ③短粗受压杆
p p s s
Pcr
2 EI min
L 2
x y 2 max x y 2 ( ) xy min 2 2
tg 2 0
2 xy
x y
3、
二向应力状态的极值剪应力
max ( x y
(word完整版)材料力学常用公式

材料力学常用公式1外力偶矩计算公式(P功率,n转速)2弯矩、剪力和荷载集度之间的关系式3轴向拉压杆横截面上正应力的计算公式 (杆件横截面轴力F N,横截面面积A,拉应力为正)4轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a从x轴正方向逆时针转至外法线的方位角为正)5纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)6纵向线应变和横向线应变7泊松比8胡克定律9受多个力作用的杆件纵向变形计算公式?10承受轴向分布力或变截面的杆件,纵向变形计算公式11轴向拉压杆的强度计算公式12许用应力, 脆性材料,塑性材料13延伸率14截面收缩率15剪切胡克定律(切变模量G,切应变g)16拉压弹性模量E、泊松比和切变模量G之间关系式17圆截面对圆心的极惯性矩(a)实心圆(b)空心圆18圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)19圆截面周边各点处最大切应力计算公式20扭转截面系数,(a)实心圆(b)空心圆21薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应力计算公式22圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式23同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或24等直圆轴强度条件25塑性材料;脆性材料26扭转圆轴的刚度条件? 或27受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,28平面应力状态下斜截面应力的一般公式,29平面应力状态的三个主应力 ,,30主平面方位的计算公式31面内最大切应力32受扭圆轴表面某点的三个主应力,,33三向应力状态最大与最小正应力,34三向应力状态最大切应力35广义胡克定律36四种强度理论的相当应力37一种常见的应力状态的强度条件,38组合图形的形心坐标计算公式,39任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式40截面图形对轴z和轴y的惯性半径?,41平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A)42纯弯曲梁的正应力计算公式43横力弯曲最大正应力计算公式44矩形、圆形、空心圆形的弯曲截面系数?,,45几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)46矩形截面梁最大弯曲切应力发生在中性轴处47工字形截面梁腹板上的弯曲切应力近似公式48轧制工字钢梁最大弯曲切应力计算公式49圆形截面梁最大弯曲切应力发生在中性轴处50圆环形薄壁截面梁最大弯曲切应力发生在中性轴处51弯曲正应力强度条件52几种常见截面梁的弯曲切应力强度条件53弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,54梁的挠曲线近似微分方程55梁的转角方程56梁的挠曲线方程?57轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式58偏心拉伸(压缩)59弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,60圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为61圆截面杆横截面上有两个弯矩和同时作用时强度计算公式6263弯拉扭或弯压扭组合作用时强度计算公式64剪切实用计算的强度条件65挤压实用计算的强度条件66等截面细长压杆在四种杆端约束情况下的临界力计算公式67压杆的约束条件:(a)两端铰支μ=l(b)一端固定、一端自由μ=2(c)一端固定、一端铰支μ=0.7(d)两端固定μ=0.568压杆的长细比或柔度计算公式,69细长压杆临界应力的欧拉公式70欧拉公式的适用范围71压杆稳定性计算的安全系数法72压杆稳定性计算的折减系数法。
材料力学基本公式

材料力学基本公式材料力学是研究材料在外力作用下的力学性能和变形规律的学科,是材料科学的重要组成部分。
在材料力学中,有一些基本公式是我们必须要掌握的,它们是我们研究材料力学问题的基础。
接下来,我们将介绍一些材料力学中的基本公式。
一、胡克定律。
胡克定律是材料力学中最基本的定律之一,它描述了弹性体在小应变下的应力和应变之间的线性关系。
胡克定律的数学表达式为:\[ \sigma = E \varepsilon \]其中,\( \sigma \) 表示应力,单位为帕斯卡(Pa);\( E \) 表示杨氏模量,单位为帕斯卡(Pa);\( \varepsilon \) 表示应变,无量纲。
二、泊松比。
泊松比是描述材料在拉伸或压缩过程中横向变形与纵向变形之间的比值。
泊松比的数学表达式为:\[ \mu = -\frac{\varepsilon_{y}}{\varepsilon_{x}} \]其中,\( \mu \) 表示泊松比,无量纲;\( \varepsilon_{y} \) 表示横向应变;\( \varepsilon_{x} \) 表示纵向应变。
三、胡克定律的广义表达式。
在实际工程中,材料的应力和应变往往不只是单向的,而是多维的。
这时,我们可以使用胡克定律的广义表达式来描述材料的应力和应变之间的关系:\[ \sigma_{ij} = C_{ijkl} \varepsilon_{kl} \]其中,\( \sigma_{ij} \) 表示应力张量;\( C_{ijkl} \) 表示弹性常数张量;\( \varepsilon_{kl} \) 表示应变张量。
四、杨氏模量和泊松比的关系。
材料的杨氏模量和泊松比之间存在着一定的关系,它们之间的关系可以用下面的公式表示:\[ E = 2G(1+\mu) \]其中,\( E \) 表示杨氏模量;\( G \) 表示剪切模量;\( \mu \) 表示泊松比。
五、拉伸应力和应变的关系。
材料力学弯矩扭矩计算公式

材料力学弯矩扭矩计算公式
1.弯矩计算公式:弯矩是指杆件在外力作用下沿截面法向产生的力矩,计算公式为M = Fd,其中M为弯矩,F为外力,d为距离。
2. 扭矩计算公式:扭矩是指杆件在外力作用下沿轴线方向产生的力矩,计算公式为T = Fr,其中T为扭矩,F为外力,r为杆件半径。
3. 弯曲应力计算公式:在杆件弯曲时,截面产生的应力为弯曲应力,计算公式为σ = Mc/I,其中σ为弯曲应力,M为弯矩,c为截面中心到最外纤维的距离,I为截面惯性矩。
4. 扭转应力计算公式:在杆件扭转时,截面产生的应力为扭转应力,计算公式为τ = Tr/J,其中τ为扭转应力,T为扭矩,r为杆件半径,J为极惯性矩。
通过以上公式的计算,可以得出材料在弯矩和扭矩作用下产生的应力及变形情况,为材料力学相关设计和研究提供了理论依据。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料力学公式大全(机械)(总19页) -本页仅作为预览文档封面,使用时请删除本页-材料力学常用公式1.外力偶矩计算公式(P功率,n转速)2.弯矩、剪力和荷载集度之间的关系式3.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力为正)4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正)5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)6.7.纵向线应变和横向线应变8.9.泊松比10.胡克定律11.受多个力作用的杆件纵向变形计算公式12.承受轴向分布力或变截面的杆件,纵向变形计算公式13.轴向拉压杆的强度计算公式14.许用应力,脆性材料,塑性材料15.延伸率16.截面收缩率17.剪切胡克定律(切变模量G,切应变g )18.拉压弹性模量E、泊松比和切变模量G之间关系式19.圆截面对圆心的极惯性矩(a)实心圆(b)空心圆20.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)21.圆截面周边各点处最大切应力计算公式22.扭转截面系数,(a)实心圆(b)空心圆23.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应力计算公式24.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式25.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或26.等直圆轴强度条件27.塑性材料;脆性材料28.扭转圆轴的刚度条件或29.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,30.平面应力状态下斜截面应力的一般公式,31.平面应力状态的三个主应力,,32.主平面方位的计算公式33.面内最大切应力34.受扭圆轴表面某点的三个主应力,,35.三向应力状态最大与最小正应力 ,36.三向应力状态最大切应力37.广义胡克定律38.四种强度理论的相当应力39.一种常见的应力状态的强度条件,40.组合图形的形心坐标计算公式,41.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式42.截面图形对轴z和轴y的惯性半径,43.平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A)44.纯弯曲梁的正应力计算公式45.横力弯曲最大正应力计算公式46.矩形、圆形、空心圆形的弯曲截面系数,,47.几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)48.矩形截面梁最大弯曲切应力发生在中性轴处49.工字形截面梁腹板上的弯曲切应力近似公式50.轧制工字钢梁最大弯曲切应力计算公式51.圆形截面梁最大弯曲切应力发生在中性轴处52.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处53.弯曲正应力强度条件54.几种常见截面梁的弯曲切应力强度条件55.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,56.梁的挠曲线近似微分方程57.梁的转角方程58.梁的挠曲线方程59.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式60.偏心拉伸(压缩)61.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,62.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为63.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式64.65.弯拉扭或弯压扭组合作用时强度计算公式66.剪切实用计算的强度条件67.挤压实用计算的强度条件68.等截面细长压杆在四种杆端约束情况下的临界力计算公式69.压杆的约束条件:(a)两端铰支μ=l(b)一端固定、一端自由μ=2(c)一端固定、一端铰支μ=(d)两端固定μ=70.压杆的长细比或柔度计算公式,71.细长压杆临界应力的欧拉公式72.欧拉公式的适用范围73.压杆稳定性计算的安全系数法传动轴所受的外力偶矩通常不是直接给出,而是根据轴的转速n 与传递的功率P 来计算。
当功率P 单位为千瓦(kW ),转速为n (r/min )时,外力偶矩为m).(N 9549e nPM =当功率P 单位为马力(PS ),转速为n (r/min )时,外力偶矩为m).(N 7024e nPM =拉(压)杆横截面上的正应力拉压杆件横截面上只有正应力σ,且为平均分布,其计算公式为 N FAσ=(3-1)式中N F 为该横截面的轴力,A 为横截面面积。
正负号规定 拉应力为正,压应力为负。
公式(3-1)的适用条件:(1)杆端外力的合力作用线与杆轴线重合,即只适于轴向拉(压)杆件; (2)适用于离杆件受力区域稍远处的横截面;(3)杆件上有孔洞或凹槽时,该处将产生局部应力集中现象,横截面上应力分布很不均匀;(4)截面连续变化的直杆,杆件两侧棱边的夹角020α≤时拉压杆件任意斜截面(a 图)上的应力为平均分布,其计算公式为全应力cos p ασα= (3-2)正应力 2cos ασσα=(3-3)切应力1sin 22ατα= (3-4)式中σ为横截面上的应力。
正负号规定:α 由横截面外法线转至斜截面的外法线,逆时针转向为正,反之为负。
ασ 拉应力为正,压应力为负。
ατ 对脱离体内一点产生顺时针力矩的ατ为正,反之为负。
两点结论:(1)当00α=时,即横截面上,ασ达到最大值,即()max ασσ=。
当α=090时,即纵截面上,ασ=090=0。
(2)当045α=时,即与杆轴成045的斜截面上,ατ达到最大值,即max ()2αατ=1.2 拉(压)杆的应变和胡克定律 (1)变形及应变杆件受到轴向拉力时,轴向伸长,横向缩短;受到轴向压力时,轴向缩短,横向伸长。
如图3-2。
图3-2轴向变形 1l l l ∆=- 轴向线应变 llε∆= 横向变形 1b b b ∆=- 横向线应变 bbε∆'=正负号规定 伸长为正,缩短为负。
(2)胡克定律当应力不超过材料的比例极限时,应力与应变成正比。
即 E σε= (3-5)或用轴力及杆件的变形量表示为 N F ll EA∆=(3-6) 式中EA 称为杆件的抗拉(压)刚度,是表征杆件抵抗拉压弹性变形能力的量。
公式(3-6)的适用条件:(a)材料在线弹性范围内工作,即p σσ〈;(b)在计算l ∆时,l 长度内其N 、E 、A 均应为常量。
如杆件上各段不同,则应分段计算,求其代数和得总变形。
即1ni ii i iN l l E A =∆=∑(3-7) (3)泊松比 当应力不超过材料的比例极限时,横向应变与轴向应变之比的绝对值。
即 ενε'= (3-8)许用应力 材料正常工作容许采用的最高应力,由极限应力除以安全系数求得。
塑性材料 [σ]=s s n σ ; 脆性材料 [σ]=b bn σ 其中,s b n n 称为安全系数,且大于1。
强度条件:构件工作时的最大工作应力不得超过材料的许用应力。
对轴向拉伸(压缩)杆件[]NAσσ=≤ (3-9)按式(1-4)可进行强度校核、截面设计、确定许克载荷等三类强度计算。
切应力互等定理受力构件内任意一点两个相互垂直面上,切应力总是成对产生,它们的大小相等,方向同时垂直指向或者背离两截面交线,且与截面上存在正应力与否无关。
纯剪切单元体各侧面上只有切应力而无正应力的受力状态,称为纯剪切应力状态。
切应变切应力作用下,单元体两相互垂直边的直角改变量称为切应变或切应变,用τ表示。
剪切胡克定律在材料的比例极限范围内,切应力与切应变成正比,即 G τγ= (3-10)式中G 为材料的切变模量,为材料的又一弹性常数(另两个弹性常数为弹性模量E 及泊松比ν),其数值由实验决定。
对各向同性材料,E 、 ν、G 有下列关系 2(1)EG ν=+ (3-11)切应力计算公式横截面上某一点切应力大小为 p pT I ρτ=(3-12) 式中p I 为该截面对圆心的极惯性矩,ρ为欲求的点至圆心的距离。
圆截面周边上的切应力为 max tTW τ=(3-13) 式中p t I W R=称为扭转截面系数,R 为圆截面半径。
切应力公式讨论(1) 切应力公式(3-12)和式(3-13)适用于材料在线弹性范围内、小变形时的等圆截面直杆;对小锥度圆截面直杆以及阶梯形圆轴亦可近似应用,其误差在工程允许范围内。
(2) 极惯性矩p I 和扭转截面系数t W 是截面几何特征量,计算公式见表3-3。
在面积不变情况下,材料离散程度高,其值愈大;反映出轴抵抗扭转破坏和变形的能力愈强。
因此,设计空心轴比实心轴更为合理。
表3-3强度条件圆轴扭转时,全轴中最大切应力不得超过材料允许极限值,否则将发生破坏。
因此,强度条件为[]max maxt T W ττ⎛⎫=≤ ⎪⎝⎭ (3-14) 对等圆截面直杆[]maxmax tT W ττ=≤ (3-15)式中[]τ为材料的许用切应力。
中性层的曲率与弯矩的关系1zMEI ρ=(3-16) 式中,ρ是变形后梁轴线的曲率半径;E 是材料的弹性模量;E I 是横截面对中性轴Z 轴的惯性矩。
横截面上各点弯曲正应力计算公式 ZMy I σ=(3-17) 式中,M 是横截面上的弯矩;Z I 的意义同上;y 是欲求正应力的点到中性轴的距离最大正应力出现在距中性轴最远点处 max max max max z zM My I W σ=•= (3-18) 式中,maxzz I W y =称为抗弯截面系数。
对于h b ⨯的矩形截面,216z W bh =;对于直径为D 的圆形截面,332z W D π=;对于内外径之比为da D=的环形截面,34(1)32z W D a π=-。
若中性轴是横截面的对称轴,则最大拉应力与最大压应力数值相等,若不是对称轴,则最大拉应力与最大压应力数值不相等。
梁的正应力强度条件梁的最大工作应力不得超过材料的容许应力,其表达式为[]maxmax zM W σσ=≤ (3-19) 对于由拉、压强度不等的材料制成的上下不对称截面梁(如T 字形截面、上下不等边的工字形截面等),其强度条件应表达为[]maxmax 1l t z M y I σσ=≤ (3-20a ) []maxmax 2y c zM y I σσ=≤ (3-20b ) 式中,[][],t c σσ分别是材料的容许拉应力和容许压应力;12,y y 分别是最大拉应力点和最大压应力点距中性轴的距离。
梁的切应力 z z QS I bτ*= (3-21)式中,Q 是横截面上的剪力;z S *是距中性轴为y 的横线与外边界所围面积对中性轴的静矩;z I 是整个横截面对中性轴的惯性矩;b 是距中性轴为y 处的横截面宽度。
矩形截面梁切应力方向与剪力平行,大小沿截面宽度不变,沿高度呈抛物线分布。