初中数学阅读理解题专题
中考数学专题复习(有答案)阅读理解

专题三 阅读理解类型一 新定义1.对非负实数x ”四舍五入”到个位的值记为(x ),即当n 为非负整数时,若n -0.5≤x <n +0.5,则(x )=n .如(1.34)=1,(4.86)=5.若(0.5x -1)=6,则实数x 的取值范围是 13≤x <15 .2.阅读材料:定义:如果一个数的平方等于-1,记为i 2=-1,这个数i 叫做虚数单位,把形如a +bi (a ,b 为实数)的数叫做复数,其中a 叫这个复数的实部,b 叫这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似.例如计算:(4+i )+(6-2i )=(4+6)+(1-2)i =10-i ;(2-i )(3+i )=6-3i +2i -i 2=6-i -(-1)=7-i ;(4+i )(4-i )=16-i 2=16-(-1)=17;(2+i )2=4+4i +i 2=4+4i -1=3+4i .根据以上信息,完成下面计算:(1+2i )(2-i )+(2-i )2= 7-i .3.(2020宁波节选)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E 是△ABC 中∠A 的遥望角,若∠A =α,请用含α的代数式表示∠E .(2)如图2,四边形ABCD 内接于⊙O ,AD ︵=BD ︵,四边形ABCD 的外角平分线DF 交⊙O于点F ,连接BF 并延长交CD 的延长线于点E .求证:∠BEC 是△ABC 中∠BAC 的遥望角.解:(1)∵BE 平分∠ABC ,CE 平分∠ACD ,∴∠EBO =12∠ABC ,∠ECD =12∠ACD . ∴∠E =∠ECD -∠EBD =12(∠ACD -∠ABC )=12∠A =12α. (2)如图2,延长BC 至点T .∵四边形FBCD 内接于⊙O ,∴∠FDC +∠FBC =180°.又∵∠FDE +∠FDC =180°,∴∠FDE =∠FBC .∵DF平分∠ADE,∴∠ADF=∠FDE.∵∠ADF=∠ABF,∴∠ABF=∠FBC.∴BE是∠ABC的平分线.∵AD︵=BD︵,∴∠ACD=∠BFD.∵∠BFD+∠BCD=180°,∠DCT+∠BCD=180°,∴∠DCT=∠BFD,∴∠ACD=∠DCT,∴CE是△ABC的外角平分线.∴∠BEC是△ABC中∠BAC的遥望角.类型二 新运算1.(2020十堰)对于实数m ,n ,定义运算m *n =(m +2)2-2n .若2*a =4*(-3),则a = -13 . 2.定义一种新运算ʃa b n ·x n -1dx =a n -b n ,例如ʃk n 2xdx =k 2-n 2,若ʃm 5m x -2dx =-2,则m =( B )A .-2B .-25C .2D .25 3.(2020青海)对于任意两个不相等的数a ,b ,定义一种新运算”⊕”如下:a ⊕b =a +b a -b ,如:3⊕2=3+23-2=5,那么12⊕4= 2 . 4.对于两个不相等的实数a ,b ,我们规定符号max {a ,b }表示a ,b 中的较大值,如max {-3,4}=4,按照这个规定,方程max {x ,-x }=3x +2x 的解为 x =3+172或x =-1或x =-2 .5.(2020潍坊)若定义一种新运算:a ⊗b =⎩⎪⎨⎪⎧a -b (a ≥2b ),a +b -6(a <2b ),例如:3⊗1=3-1=2;5⊗4=5+4-6=3.则函数y =(x +2)⊗(x -1)的图象大致是( A ),A) ,B),C) ,D) 6.给出一种运算:对于函数y =x n ,规定y ′=nx n -1.例如:若函数y =x 4,则有y ′=4x 3.已知函数y =x 3,求方程y ′=12的解.解:由函数y =x 3,得n =3,∴y ′=3x 2.∵y ′=12,∴3x 2=12,解得x 1=2,x 2=-2.类型三 新方法(2020扬州节选)阅读感悟:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x ,y 满足3x -y =5①,2x +3y =7②,求x -4y 和7x +5y 的值.本题常规思路是将①②两式联立组成方程组,解得x ,y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①-②可得x -4y =-2,由①+②×2可得7x +5y =19.这样的解题思想就是通常所说的”整体思想”.解决问题:(1)已知二元一次方程组⎩⎪⎨⎪⎧2x +y =7,x +2y =8,则x -y = -1 ,x +y = 5 ; (2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?解:(2)设铅笔的单价为m 元,橡皮的单价为n 元,日记本的单价为p 元.依题意,得⎩⎪⎨⎪⎧20m +3n +2p =32,①39m +5n +3p =58,② 由①×2-②可得m +n +p =6,∴5m +5n +5p =5×6=30(元).答:购买5支铅笔、5块橡皮、5本日记本共需30元.。
八年级数学阅读理解题集

八年级数学阅读理解题集题目1:小明和小红共有20块糖果,小明的糖果数是小红的两倍。
问小明有多少块糖果?解析:设小红有x块糖果,则小明有2x块糖果。
根据题意得到方程2x + x = 20,解方程可得x = 5,所以小明有10块糖果。
题目2:某商店折扣价售卖一款原价为200元的电脑,打折后降价为原价的80%。
小明购买了这款电脑,他需要支付多少钱?解析:原价为200元,打折后为200 * 80% = 160元。
所以小明需要支付160元。
题目3:一个边长为3cm的正方形,内部有一条延长线,将该正方形分成一大角和三小角。
大角的度数是小角度数的两倍,求小角的度数。
解析:设小角的度数为x度,则大角的度数为2x度。
根据正方形内角和为360度,得到方程2x + 3x = 360,解方程可得x = 60,所以小角的度数为60度。
题目4:甲、乙两个人同时从两个不同的地点出发,相向而行,两人相距100km。
甲的速度是乙的两倍,乙每小时行驶的距离是多少?解析:设乙每小时行驶的距离为x km,则甲每小时行驶的距离为2x km。
根据题意得到方程x + 2x = 100,解方程可得x = 25,所以乙每小时行驶25km。
题目5:一个数乘以4再减去5等于17,这个数是多少?解析:设这个数为x,则根据题意得到方程4x - 5 = 17,解方程可得x = 6,所以这个数是6。
题目6:某书店有300本书,其中3/5是数学书,其余是故事书。
故事书的数量是数学书的几分之一?解析:数学书的数量为3/5 * 300 = 180本。
故事书的数量为300 - 180 = 120本。
所以故事书的数量是数学书的1/180。
通过以上题目的解析,我们可以发现在数学中,应用数学知识解决问题是非常重要的。
希望大家能够掌握数学的基础知识,提高自己的数学能力。
初中数学题阅读理解类练习

初中数学题阅读理解类1.【实践探索】某校数学综合实践活动课上利用三角形纸片进行拼图探究活动.(1)某小组用一幅三角板按如图①摆放,则图中∠1=;(2)某小组利用两块大小不同等腰直角三角板△ABC和△EBD按图②摆放,点A、C、E在一直线上,连接CD交BE于点F,经小组同学探索发现CD⊥AE,请你证明此结论;【拓展研究】(3)课后,某小组自制了两块三角形纸片△ABC和△DEF(如图③),其中∠A=∠D,AB=DE,∠C+∠F=180°,他们把两块三角形纸片的AB与DE重叠在一起(A与D重合,B与E重合),C、F在AB两侧,过点B作BM⊥AC,垂足为M(如图④),经实践小组探索发现,线段AC、CM、AF之间存在某种数量关系,请你探究此关系并加以证明.2.新定义:对非负数“四舍五入”到个位的值记为[x]即当n为非负整数时,若n-21≤x<n+21,则[x]=n;如:[0]= [0.48]=0,[0.64]=[1.493]=1,[2]=2,[3.5]=[4.12]=4试解决下列问题:(1)填空①[π]=________;②若[x]=3,则实x的取值范围为________;(2)在关于x、y的方程组⎩⎨⎧=++=+22312yxmyx中,若未知数x、y满足2725<+≤yx,求[m]的值(3)当[2x-1]=4时,若y=4x-9,求y的最小值;(4)求满足[x]= x23的所有非负实数x的值,请直接写出答案.13.(2019•天水)如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;(2)性质探究:如图1,四边形ABCD的对角线AC、BD交于点O,AC ⊥BD.试证明:AB2+CD2=AD2+BC2;(3)解决问题:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连结CE、BG、GE.已知AC=4,AB=5,求GE的长.4.(2015•黔西南州)求不等式0)3)(12(>+-xx的解集.解:根据“同号两数相乘,积为正”可得:①⎩⎨⎧>+>-312xx或②⎩⎨⎧<+<-312xx.解①得21>x ;解②得3-<x.∴不等式的解集为21>x或3-<x.请你仿照上述方法解决下列问题:(1)求不等式0)1)(32(<+-xx的解集.(2)求不等式02131≥+-xx的解集.25.请阅读下列材料问题:如图1,在等边三角形ABC内有一点P,且PA=2, PB=,PC=1.求∠BPC 度数的大小和等边三角形ABC 的边长.李明同学的思路是:将△BPC绕点B顺时针旋转60°,画出旋转后的图形(如图2).连接PP′,可得△P′P B是等边三角形,而△PP′A 又是直角三角形(由勾股定理的逆定理可证).所以∠AP′B=1500,而∠BPC=∠AP′B=150°.进而求出等边△ABC的边长为.问题得到解决.请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA=,BP=,PC=1.求∠BPC度数的大小和正方形ABCD的边长.6.(10分)(2020•天水)性质探究如图(1),在等腰三角形ABC中,∠ACB=120°,则底边AB与腰AC 的长度之比为.理解运用(1)若顶角为120°的等腰三角形的周长为4+2,则它的面积为;(2)如图(2),在四边形EFGH中,EF=EG=EH,在边FG,GH上分别取中点M,N,连接MN.若∠FGH=120°,EF=20,求线段MN的长.类比拓展顶角为2α的等腰三角形的底边与一腰的长度之比为.(用含α的式子表示)375237.(2020•湘潭)阅读材料:三角形的三条中线必交于一点,这个交点称为三角形的重心.(1)特例感知:如图(一),已知边长为2的等边△ABC的重心为点O,求△OBC与△ABC的面积.(2)性质探究:如图(二),已知△ABC的重心为点O,请判断、是否都为定值?如果是,分别求出这两个定值;如果不是,请说明理由.(3)性质应用:如图(三),在正方形ABCD中,点E是CD的中点,连接BE交对角线AC于点M.①若正方形ABCD的边长为4,求EM的长度;②若S△CME =1,求正方形ABCD的面积.8.(2020•北京)小云在学习过程中遇到一个函数y=|x|(x2﹣x+1)(x≥﹣2).下面是小云对其探究的过程,请补充完整:(1)当﹣2≤x<0时,对于函数y1=|x|,即y1=﹣x,当﹣2≤x<0时,y1随x的增大而,且y1>0;对于函数y2=x2﹣x+1,当﹣2≤x<0时,y2随x的增大而,且y2>0;结合上述分析,进一步探究发现,对于函数y,当﹣2≤x<0时,y随x的增大而.(2)当x≥0时,对于函数y,当x≥0时,y与x的几组对应值如下表:x 0 1 2 3 …y 0 1 …结合上表,进一步探究发现,当x≥0时,y随x的增大而增大.在平面直角坐标系xOy中,画出当x≥0时的函数y的图象.(3)过点(0,m)(m>0)作平行于x轴的直线l,结合(1)(2)的分析,解决问题:若直线l与函数y=|x|(x2﹣x+1)(x≥﹣2)的图象有两个交点,则m的最大值是.49.(2020•深圳)背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A 按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且,AE =4,AB=8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.5610.【教材呈现】下面是某数学教材中的部分内容例4:如图,在△ABC 中,D 是BC 的中点,过点C 画直线CE , 使CE ∥AB,交AD 的延长线于点E,求证:AD=ED. 证明:∵CE ∥AB (已知)∴∠ABD=∠ECD, ∠BAD=∠CED(两直线平行,内错角相等)在△ABD 和△ECD 中,⎪⎩⎪⎨⎧=∠=∠∠=∠BD BD CED BAD ECD ABD∴△ABD ≌△ECD(AAS)∴AD=ED(全等三角形的对应边相等)【方法运用】在△ABC 中,AB=4,AC=2,点D 在边BC 上. (1)(2分)如图①,当点D 是BC 的中点时,AD 的取值范围是 ;(2) (6分)如图②,若BD:DC=1:2,求AD 的取值范围.【拓展提升】(4分)如图③,在△ABC 中,点D ,F 分别在边BC ,AB 上,线段AD ,CF 相交于点E ,且BD:DC=1:2,AE:ED=3:5,若△ACF 的面积为2,则△ABC 的面积为11.(2020•怀化)定义:对角线互相垂直且相等的四边形叫做垂等四边形.(1)下面四边形是垂等四边形的是 ;(填序号) ①平行四边形; ②矩形; ③菱形; ④正方形(2)图形判定:如图1,在四边形ABCD 中,AD ∥BC ,AC ⊥BD ,过点D 作BD 垂线交BC 的延长线于点E ,且∠DBC =45°,证明:四边形ABCD 是垂等四边形.(3)由菱形面积公式易知性质:垂等四边形的面积等于两条对角线乘积的一半.应用:在图2中,面积为24的垂等四边形ABCD 内接于⊙O 中,∠BCD =60°.求⊙O 的半径.12.(2020•齐齐哈尔)综合与实践在线上教学中,教师和学生都学习到了新知识,掌握了许多新技能.例如教材八年级下册的数学活动﹣﹣折纸,就引起了许多同学的兴趣.在经历图形变换的过程中,进一步发展了同学们的空间观念,积累了数学活动经验.实践发现:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;再一次折叠纸片,使点A落在EF上的点N处,并使折痕经过点B,得到折痕BM,把纸片展平,连接AN,如图①.(1)折痕BM (填“是”或“不是”)线段AN的垂直平分线;请判断图中△ABN是什么特殊三角形?答:;进一步计算出∠MNE=°;(2)继续折叠纸片,使点A落在BC边上的点H处,并使折痕经过点B,得到折痕BG,把纸片展平,如图②,则∠GBN=°;拓展延伸:(3)如图③,折叠矩形纸片ABCD,使点A落在BC边上的点A'处,并且折痕交BC边于点T,交AD边于点S,把纸片展平,连接AA'交ST 于点O,连接AT.求证:四边形SATA'是菱形.解决问题:(4)如图④,矩形纸片ABCD中,AB=10,AD=26,折叠纸片,使点A落在BC边上的点A'处,并且折痕交AB边于点T,交AD边于点S,把纸片展平.同学们小组讨论后,得出线段AT的长度有4,5,7,9.请写出以上4个数值中你认为正确的数值.713.如图1,在等腰三角形ABC中,∠A=120°,AB=AC,点D、E分别在边AB、AC上,AD=AE,连接BE,点M、N、P分别为DE、BE、BC的中点.(1)观察猜想.图1中,线段NM、NP的数量关系是,∠MNP的大小为.(2)探究证明把△ADE绕点A顺时针方向旋转到如图2所示的位置,连接MP、BD、CE,判断△MNP的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请求出△MNP 面积的最大值.14.已知,在△ABC中,∠BAC=900,∠ABC=900,D为直线BC上一动点(不与点B、C重合),以AD为边作正方形ADEF,连接CF.(1)如图①,当点D在线段BC上时, BC,CD,CF三条线段之间的数量关系为;(2)如图②,当点D在线段BC的延长线上时,其他条件不变,请写出CF,BC,CD三条线段之间的关系,并证明;(3)如图③,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;求CF,BC,CD三条线段之间的关系.8参考答案1.2.93. 【解答】解:(1)四边形ABCD是垂美四边形.证明:∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂美四边形;(2)猜想结论:垂美四边形的两组对边的平方和相等.如图2,已知四边形ABCD中,AC⊥BD,垂足为E,求证:AD2+BC2=AB2+CD2证明:∵AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+CE2+DE2,∴AD2+BC2=AB2+CD2;故答案为:AD2+BC2=AB2+CD2.(3)连接CG、BE,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,又∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,即CE⊥BG,∴四边形CGEB是垂美四边形,由(2)得,CG2+BE2=CB2+GE2,∵AC=4,AB=5,∴BC=3,CG=4,BE=5,∴GE2=CG2+BE2﹣CB2=73,∴GE=.10114.(1)根据“异号两数相乘,积为负”可得 ①⎩⎨⎧<+>-01032x x 或 ② ⎩⎨⎧>+<-01032x x ……………………………(3分)解不等式组①得无解,解不等式组②得231<<-x ………………………………(4分) ∴原不等式的解集为231<<-x ……………………………………………(6分) (2)依题意可得①⎪⎩⎪⎨⎧>+≥-020131x x 或 ②⎪⎩⎪⎨⎧<+≤-020131x x ……………………………(3分)解①得x ≥3,解②得x<-2……………………………………………………(4分)∴原不等式的解集为x ≥3或x<-2…………………………………………(6分)5. 如图,将△BPC 绕点B 逆时针旋转90°, 得△BP ′A ,则△BPC ≌△BP ′A . ∴AP ′=PC =1,BP =BP ′=. 连结PP ′,在Rt △BP ′P 中, ∵ BP =BP ′=,∠PBP ′=90°, ∴ PP ′=2,∠BP ′P =45°. 在△AP ′P 中, AP ′=PC =1,PP ′=2,AP =,∵ 12 +22 =(5) 2 ,即AP ′2 +PP ′2 =AP 2 .∴ △AP ′P 是直角三角形,即∠AP ′P =90°. ∴∠AP ′B =∠AP ′P +∠BP ′P =135°. ∴ ∠BPC =∠AP ′B =135°.过点B 作BE ⊥AP ′交AP ′的延长线于点E . 则∠EP ′B =45°,∴ EP ′=BE =BP ′=1,∴AE =2.6.【分析】性质探究:如图1中,过点C 作CD ⊥AB 于D .解直角三角形求出AB (用AC 表示)即可解决问题.理解运用:①利用性质探究中的结论,设CA =CB =m ,则AB =m ,构建方程求出m 即可解决问题.②如图2中,连接FH .求出FH ,利用三角形中位线定理解决问题即可. 类比拓展:利用等腰三角形的性质求出AB 与AC 的关系即可. 【解答】解:性质探究:如图1中,过点C 作CD ⊥AB 于D . ∵CA =CB ,∠ACB =120°,CD ⊥AB , ∴∠A =∠B =30°,AD =BD , ∴AB =2AD =2AC •cos30°=AC ,∴AB :AC =:1. 故答案为:1.理解运用:(1)设CA =CB =m ,则AB =m ,由题意2m +m =4+2,∴m =2,∴AC =CB =2,AB =2,∴AD =DB =,CD =AC •sin30°=1,∴S △ABC =•AB •CD =.故答案为.(2)如图2中,连接FH . ∵∠FGH =120°,EF =EG =EH , ∴∠EFG =∠EGF ,∠EHG =∠EGH ,∴∠EFG+∠EHG=∠EGF+∠EGH=∠FGH=120°,∵∠FEH+∠EFG+∠EHG+∠FGH=360°,∴∠FEH=360°﹣120°﹣120°=120°,∵EF=EH,∴△EFH是顶角为120°的等腰三角形,∴FH=EF=20,∵FM=MG.GN=GH,∴MN=FH=10.类比拓展:如图1中,过点C作CD⊥AB于D.∵CA=CB,∠ACB=2α,CD⊥AB,∴∠A=∠B=30°,AD=BD,∠ACD=∠BCD=α∴AB=2AD=2AC•sinα∴AB:AC=2sinα:1.故答案为2sinα:1.【点评】本题属于三角形综合题,考查了等腰三角形的性质,解直角三角形,三角形的中位线定理等知识,解题的关键是学会利用等腰三角形的三线合一的性质解决问题,学会构造三角形的中位线解决问题,属于中考常考题型.7.【分析】(1)连接DE,利用相似三角形证明,运用勾股定理求出AD 的长,运用三角形面积公式求解即可;(2)根据(1)的证明可求解;(3)①证明△CME∽△ABM,得,再运用勾股定理求出BE的长即可解决问题;②分别求出S△BMC和S△ABM即可求得正方形ABCD的面积.【解答】解:(1)连接DE,如图,∵点O是△ABC的重心,∴AD,BE是BC,AC边上的中线,∴D,E为BC,AC边上的中点,∴DE为△ABC的中位线,∴DE∥AB,DE=AB,∴△ODE∽△OAB,∴=,∵AB=2,BD=1,∠ADB=90°,∴AD=,OD=,∴,=;(2)由(1)可知,,是定值;点O到BC的距离和点A到BC的距离之比为1:3,则△OBC和△ABC的面积之比等于点O到BC的距离和点A到BC的距离之比,故=,是定值;(3)①∵四边形ABCD是正方形,∴CD∥AB,AB=BC=CD=4,∴△CME~△AMB,∴,12∵E为CD的中点,∴,∴,∴,∴,即;②∴S△CME=1,且,∴S△BMC=2,∵,∴,∴S△AMB=4,∴S△ABC=S△BMC+S△ABM=2+4=6,又S△ADC=S△ABC,∴S△ADC=6,∴正方形ABCD的面积为:6+6=12.【点评】本题是一道相似形综合题目,主要考查的是三角形重心的性质、全等三角形的判定与性质、勾股定理及相似三角形的判定与性质,解答此题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.8.【分析】(1)利用一次函数或二次函数的性质解决问题即可.(2)利用描点法画出函数图象即可.(3)观察图象可知,x=﹣2时,m的值最大.【解答】解:(1)当﹣2≤x<0时,对于函数y1=|x|,即y1=﹣x,当﹣2≤x<0时,y1随x的增大而减小,且y1>0;对于函数y2=x2﹣x+1,当﹣2≤x<0时,y2随x的增大而减小,且y2>0;结合上述分析,进一步探究发现,对于函数y,当﹣2≤x<0时,y随x的增大而减小.故答案为:减小,减小,减小.(2)函数图象如图所示:(3)∵直线l与函数y=|x|(x2﹣x+1)(x≥﹣2)的图象有两个交点,观察图象可知,x=﹣2时,m的值最大,最大值m=×2×(4+2+1)=,故答案为【点评】本题考查二次函数与不等式,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.9【分析】(1)由正方形的性质得出AE=AF,∠EAG=90°,AB=AD,∠BAD =90°,得出∠EAB=∠GAD,证明△AEB≌△AGD(SAS),则可得出结论;(2)由菱形的性质得出AE=AG,AB=AD,证明△AEB≌△AGD(SAS),由全等三角形的性质可得出结论;(3)方法一:过点E作EM⊥DA,交DA的延长线于点M,过点G作GN⊥AB 交AB于点N,求出AG=6,AD=12,证明△AME∽△ANG,设EM=2a,AM =2b,则GN=3a,AN=3b,则BN=8﹣3b,可得出答案;方法二:证明△EAB∽△GAD,得出∠BEA=∠AGD,则A,E,G,Q四点共圆,得出∠GQP=∠P AE=90°,连接EG,BD,由勾股定理可求出答案.【解答】(1)证明:∵四边形AEFG为正方形,∴AE=AF,∠EAG=90°,又∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠EAB=∠GAD,∴△AEB≌△AGD(SAS),∴BE=DG;(2)当∠EAG=∠BAD时,BE=DG,13理由如下:∵∠EAG=∠BAD,∴∠EAB=∠GAD,又∵四边形AEFG和四边形ABCD为菱形,∴AE=AG,AB=AD,∴△AEB≌△AGD(SAS),∴BE=DG;(3)解:方法一:过点E作EM⊥DA,交DA的延长线于点M,过点G作GN⊥AB交AB于点N,由题意知,AE=4,AB=8,∵=,∴AG=6,AD=12,∵∠EMA=∠ANG,∠MAE=∠GAN,∴△AME∽△ANG,设EM=2a,AM=2b,则GN=3a,AN=3b,则BN=8﹣3b,∴ED2=(2a)2+(12+2b)2=4a2+144+48b+4b2,GB2=(3a)2+(8﹣3b)2=9a2+64﹣48b+9b2,∴ED2+GB2=13(a2+b2)+208=13×4+208=260.方法二:如图2,设BE与DG交于Q,∵,AE=4,AB=8∴AG=6,AD=12.∵四边形AEFG和四边形ABCD为矩形,∴∠EAG=∠BAD,∴∠EAB=∠GAD,∵,∴△EAB∽△GAD,∴∠BEA=∠AGD,∴A,E,G,Q四点共圆,∴∠GQP=∠P AE=90°,∴GD⊥EB,连接EG,BD,∴ED2+GB2=EQ2+QD2+GQ2+QB2=EG2+BD2,∴EG2+BD2=42+62+82+122=260.【点评】本题是相似形综合题,考查了正方形的性质,菱形的性质,矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理等知识,熟练掌握特殊平行四边形的性质是解题的关键.10. (1)1<AD<3;(2) 2<AD<310;(3)711.【解答】解:(1)①平行四边形的对角线互相平分但不垂直和相等,故不是垂等四边形;②矩形对角线相等但不垂直,故不是垂等四边形;③菱形的对角线互相垂直但不相等,故不是垂等四边形;④正方形的对角线互相垂直且相等,故正方形是垂等四边形;故选:④;(2)∵AC⊥BD,ED⊥BD,∴AC∥DE,又∵AD∥BC,∴四边形ADEC是平行四边形,∴AC=DE,又∵∠DBC=45°,∴△BDE是等腰直角三角形,∴BD=DE,∴BD=AC,又∵BD⊥AC,∴四边形ABCD是垂等四边形;14(3)如图,过点O作OE⊥BD,∵四边形ABCD是垂等四边形,∴AC=BD,又∵垂等四边形的面积是24,∴AC•BD=24,解得,AC=BD=4,又∵∠BCD=60°,∴∠DOE=60°,设半径为r,根据垂径定理可得:在△ODE中,OD=r,DE=,∴r===4,∴⊙O的半径为4.【点评】本题是一道圆的综合题,主要考查了平行四边形的性质、菱形的性质、矩形的性质、正方形的性质、新定义、圆周角定理、垂径定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用新定义解答问题.12.【分析】(1)由折叠的性质可得AN=BN,AE=BE,∠NEA=90°,BM 垂直平分AN,∠BAM=∠BNM=90°,可证△ABN是等边三角形,由等边三角形的性质和直角三角形的性质可求解;(2)由折叠的性质可得∠ABG=∠HBG=45°,可求解;(3)由折叠的性质可得AO=A'O,AA'⊥ST,由“AAS”可证△ASO≌△A'TO,可得SO=TO,由菱形的判定可证四边形SATA'是菱形;(4)先求出AT的范围,即可求解.【解答】解:(1)如图①∵对折矩形纸片ABCD,使AD与BC重合,∴EF垂直平分AB,∴AN=BN,AE=BE,∠NEA=90°,∵再一次折叠纸片,使点A落在EF上的点N处,∴BM垂直平分AN,∠BAM=∠BNM=90°,∴AB=BN,∴AB=AN=BN,∴△ABN是等边三角形,∴∠EBN=60°,∴∠ENB=30°,∴∠MNE=60°,故答案为:是,等边三角形,60;(2)∵折叠纸片,使点A落在BC边上的点H处,∴∠ABG=∠HBG=45°,∴∠GBN=∠ABN﹣∠ABG=15°,故答案为:15°;(3)∵折叠矩形纸片ABCD,使点A落在BC边上的点A'处,∴ST垂直平分AA',∴AO=A'O,AA'⊥ST,∵AD∥BC,∴∠SAO=∠TA'O,∠ASO=∠A'TO,∴△ASO≌△A'TO(AAS)∴SO=TO,∴四边形ASA'T是平行四边形,又∵AA'⊥ST,∴边形SATA'是菱形;(4)∵折叠纸片,使点A落在BC边上的点A'处,∴AT=A'T,在Rt△A'TB中,A'T>BT,∴AT>10﹣AT,∴AT>5,∵点T在AB上,∴当点T与点B重合时,AT有最大值为10,∴5<AT≤10,∴正确的数值为7,9,故答案为:7,9.【点评】本题是四边形综合题,考查了矩形的性质,菱形的判定,全等三角形的判定和性质,旋转的性质,等边三角形的判定和性质等知识,灵活运用这些性质进行推理是本题的关键.1513.【分析】(1)先证明由AB=AC,AD=AE,得BD=CE,再由三角形的中位线定理得NM与NP的数量关系,由平行线性质得∠MNP的大小;(2)先证明△ABD≌△ACE得BD=CE,再由三角形的中位线定理得NM=NP,由平行线性质得∠MNP=60°,再根据等边三角形的判定定理得结论;(3)由BD≤AB+AD,得MN≤2,再由等边三角形的面积公式得△MNP的面积关于MN的函数关系式,再由函数性质求得最大值便可.【解答】解:(1)∵AB=AC,AD=AE,∴BD=CE,∵点M、N、P分别为DE、BE、BC的中点,∴MN=BD,PN=CE,MN∥AB,PN∥AC,∴MN=PN,∠ENM=∠EBA,∠ENP=∠AEB,∴∠MNE+∠ENP=∠ABE+∠AEB,∵∠ABE+∠AEB=180°﹣∠BAE=60°,∴∠MNP=60°,故答案为:NM=NP;60°;(2)△MNP是等边三角形.理由如下:由旋转可得,∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴BD=CE,∠ABD=∠ACE,∵点M、N、P分别为DE、BE、BC的中点.∴MN=BD,PN=CE,MN∥BD,PN∥CE,∴MN=PN,∠ENM=∠EBD,∠BPN=∠BCE,∴∠ENP=∠NBP+∠NPB=∠NBP+∠ECB,∵∠EBD=∠ABD+∠ABE=∠ACE+∠ABE,∴∠MNP=∠MNE+∠ENP=∠ACE+∠ABE+∠EBC+∠EBC+∠ECB=180°﹣∠BAC=60°,∴△MNP是等边三角形;(3)根据题意得,BD≤AB+AD,即BD≤4,∴MN≤2,∴△MNP的面积==,∴△MNP的面积的最大值为.14.(1)证明:如图1,∵在△ABC中,∠BAC=90°,∠ABC=45°,∴∠ACB=45°,∴∠ACB=∠ABC,∴AB=AC.∵四边形ADEF为正方形,∴AD=DE=EF=AF,∠FAD=90°,∴∠BAC=∠FAD,∴∠BAC-∠DAC=∠FAD-∠DAC,∴∠BAD=∠CAF....(1)由等腰直角三角形和正方形的性质可以得出△ABD ≌△ACF ,就可以得出BD=CF,就可以得出结论;(2)如图2,通过证明△ABD≌△ACF,就可以得出BD=CF,就可以得出CF=BC+CD;(3)如图3,通过证明△ABD≌△ACF,就可以得出BD=CF,就可以得出CD=BC+CF.16。
八年级数学阅读理解题专项练习

八年级阅读理解题专项练习1.阅读下面材料:小明遇到这样一个问题:如图1,△ABO 和△CDO 均为等腰直角三角形, ∠AOB =∠COD=90︒.若△BOC 的面积为1, 试求以AD 、BC 、OC+OD 的长度为三边长的三角形的面积.1图2小明是这样思考的:要解决这首先应想办法移动构造一个三角形,再计算其面积即可.他利用图形变换解决了这个问题,其解题思路是延长CO 到E , 使得OE =CO , 连接BE , 可证△OBE ≌△OAD , 从而得到的△BCE 即是以AD 、BC 、OC+OD 的长度为三边长的三角形(如图2).请你回答:图2中△BCE 的面积等于 .请你尝试用平移、旋转、翻折的方法,解决下列问题: 如图3,已知△ABC , 分别以AB 、AC 、BC 为边向外作正方形 ABDE 、AGFC 、BCHI , 连接EG 、FH 、ID .(1)在图3中利用图形变换画出并指明以EG 、FH 、ID 的长 度为三边长的一个三角形(保留画图痕迹); (2)若△ABC 的面积为1,则以EG 、FH 、ID 的长度为 三边长的三角形的面积等于 .图3解:△BCE 的面积等于 2 ………1分 (1)如图(答案不唯一)…2分 以EG 、FH 、ID 的长度为三边长的 一个三角形是△EGM . …………3分 (2) 以EG 、FH 、ID 的长度为三边长的三角 形的面积等于 3 . …………5分2.定义:到凸四边形一组对边距离相等,到另一组对边距离也相等的点叫凸四边形的准内..点..如图1,PH PJ =,PI PG =,则点P 就是四边形ABCD 的准内点.(1)如图2,AFD ∠与DEC ∠的角平分线,FP EP 相交于点P . 求证:点P 是四边形ABCD 的准内点.(2)分别画出图3平行四边形和图4梯形的准内点(作图工具不限,不写作法,但要有必要的说明).3.如图所示,圆圈内分别标有1,2,…,12,这12个数字,电子跳蚤每跳BOCDAIHG FABCDEEDCBAG 11121098754321一步,可以从一个圆圈逆时针跳到相邻的圆圈,若电子跳蚤所在圆圈的数字为n ,则电子跳蚤连续跳(2-3n )步作为一次跳跃,例如:电子跳蚤从标有数字1的圆圈需跳12-13=⨯步到标有数字2的圆圈内,完成一次跳跃,第二次则要连续跳42-23=⨯步到达标有数字6的圆圈,…依此规律,若电子跳蚤从①开始,那么第3次能跳到的圆圈内所标的数字为 ;第2012次电子跳蚤能跳到的圆圈内所标的数字为 .4.△A B C 是等边三角形,P 为平面内的一个动点,B P =B A , 若0︒<∠PBC <180°,且∠PBC 平分线上的一点D 满足DB=DA ,(1)当BP 与BA 重合时(如图1),∠BPD= °; (2)当BP 在∠ABC 的内部时(如图2),求∠BPD 的度数;(3)当BP 在∠ABC 的外部时,请你直接写出∠BPD 的度数,并画出相应的图形.5.请阅读下列材料: 已知:如图(1)在Rt △ABC中,∠BAC =90°,AB = AC ,点D 、E 分别为线段BC 上两动点,若∠DAE =45°.探究线段BD 、DE 、EC 三条线段之间的数量关系.小明的思路是:把△AEC 绕点A 顺时针旋转90°,得到△ABE′,连结E′D , 使问题得到解决.请你参考小明的思路探究并解决下列问题:(1)猜想BD 、DE 、EC 三条线段之间存在的数量关系式,并对你的猜想给予证明;图(1)(2)当动点E 在线段BC 上,动点D 运动在线段CB 延长线上时,如图(2),其它条件 不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明. 图(2)6.(石景山二)25.(1)如图1,四边形ABCD 中,CB AB =,︒=∠60ABC ,︒=∠120ADC ,请你 猜想线段DA 、DC 之和与线段BD 的数量关系,并证明你的结论;(2)如图2,四边形ABCD 中,BC AB =,︒=∠60ABC ,若点P 为四边形ABCD 内一点,且︒=∠120APD ,请你猜想线段PA 、PD 、PC 之和与线段BD 的 数量关系,并证明你的结论.7.问题:如图1,P 为正方形ABCD 内一点,且PA ∶PB ∶PC =1∶2∶3,求∠APB 的度数.小娜同学的想法是:不妨设PA=1, PB=2,PC=3,设法把PA 、PB 、PC 相对集中,于是他将△BCP 绕点B 顺时针旋转90°得到△BAE (如图2),然后连结PE ,问题得以解决.请你回答:图2中∠APB 的度数为 .请你参考小娜同学的思路,解决下列问题:图2图1图2图1A'B如图3,P 是等边三角形ABC 内一点,已知∠APB=115°,∠BPC=125°.(1)在图3中画出并指明以PA 、PB 、PC 的长度为三边长的一个三角形(保留画图痕迹);(2)求出以PA 、PB 、PC 的长度为三边长的三角形的各内角的度数分别等于 .EDDPPPCCCBBBAAA图1 图2 图38.阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC (其中∠BAC 是一个可以变化的角)中,AB=2,AC=4,以BC 为边在BC 的下方作等边△PBC ,求AP 的最大值。
九年级初中数学阅读理解专题训练及答案

九年级初中数学阅读理解专题训练及答案阅读理解一
题目:
某乡有320个士兵,每个士兵配备一辆自行车,已经配出来220辆,请问还需要多少辆自行车?
解答:
已经配出来的自行车辆数为220辆,总共需要的自行车辆数为320辆,所以还需要320-220=100辆自行车。
阅读理解二
题目:
小刚、小明和小红是同一栋楼的邻居,他们住在一楼、二楼和三楼,每人住在不同的楼层,已知以下信息:
- 小刚住的楼层比小明低一层。
- 小红住的楼层比小明住的楼层高一层。
请问小红住在几楼?
解答:
已知小刚住的楼层比小明低一层,而小红住的楼层比小明住的楼层高一层。
因此,小刚和小红住在相邻的楼层,小明住在中间的楼层。
假设小明住在二楼,则小刚住在一楼,小红住在三楼。
假设小明住在一楼,则小刚无法住在比小明低一层的楼层,因此排除此情况。
所以小红住在三楼。
阅读理解三
题目:
某游戏共有4个人参加,每人可以选择石头、剪刀或布中的一个,要求每个人的选择不能相同。
已知以下信息:
- A和B两个人的选择不同。
- B和C两个人的选择不同。
- A和D两个人的选择不同。
请问D选了什么?
解答:
根据已知条件,A和B两个人的选择不同,B和C两个人的选择不同,A和D两个人的选择不同。
由此可推断以下情况:- A选了石头,B选了剪刀,C选了石头,D选了布。
- A选了石头,B选了剪刀,C选了布,D选了石头。
- A选了石头,B选了剪刀,C选了布,D选了剪刀。
综上所述,D有可能选择了布、石头或剪刀中的任一种。
七年级初中数学阅读理解专题训练

七年级初中数学阅读理解专题训练本文档旨在提供一系列七年级初中数学阅读理解专题训练题,以帮助学生提高对数学问题的理解和解决能力。
题目一阅读下面的问题,并完成相关计算。
问题:小明有10支铅笔,小红有3支铅笔。
如果他们把铅笔都放在一起,那么总共有多少支铅笔?解答:小明有10支铅笔,小红有3支铅笔。
所以他们总共有10+3=13支铅笔。
题目二根据下面的信息,回答问题。
问题:一家商店正在举行打折活动,所有衣服的价格降低了30%。
如果一件衣服原价是120元,那么现在的价格是多少?解答:如果一件衣服原价是120元,那么降价后的价格为120 * (1-30%) = 120 * 0.7 = 84元。
题目三根据下面的图表,回答问题。
问题:以下图表表示了某班级学生的身高分布情况,共有32名学生。
请问身高在150-160cm之间的学生有多少人?解答:根据图表,身高在150-160cm之间的学生有12人。
题目四根据下面的信息,回答问题。
问题:一个长方形花坛的长是6米,宽是4米。
如果要在该花坛周围修建一圈围墙,请计算需要多少米的围墙木材。
解答:该长方形花坛的周长为2 * (6 + 4) = 20米。
因此,需要20米的围墙木材。
题目五根据下面的问题,回答问题。
问题:有一辆汽车从A市开往B市,全程480公里。
在一次加油站,它加满油后继续行驶。
如果这辆车每升汽油可以行驶12公里,那么加满一箱油需要多少升?解答:根据题目,这辆车每升汽油可以行驶12公里,全程为480公里。
所以加满一箱油需要480 / 12 = 40升。
以上是七年级初中数学阅读理解专题训练的一些例题,希望能帮助同学们提高数学解题能力。
祝大家学业进步!。
七年级数学任务型阅读30篇练习含答案

七年级数学任务型阅读30篇练习含答案一、题目1. 有一条车道,如果小明每分钟骑自行车的速度为10米,那么10分钟后他会骑行多远?答案:小明会骑行100米。
2. 如果一个正方形的一个边长为3厘米,那么它的面积是多少?答案:正方形的面积为9平方厘米。
3. 某校的初中部有800名学生,其中女生占整个学生人数的60%。
请计算该校初中部女生的人数。
答案:该校初中部女生有480人。
4. 一辆车开了24公里,速度为每小时60公里,那么这辆车一共开了多长时间?答案:这辆车一共开了0.4小时。
5. 如果25颗樱桃的重量是125克,那么每颗樱桃的重量是多少?答案:每颗樱桃的重量是5克。
...二、解析1. 速度=距离/时间,小明每分钟骑行10米,所以10分钟后骑行的距离等于10乘以10=100米。
2. 正方形的面积=边长的平方,所以3厘米边长的正方形的面积等于3平方=9平方厘米。
3. 60%表示百分之六十,所以800乘以60%等于800乘以60除以100=480。
所以该校初中部女生有480人。
4. 时间=距离/速度,这辆车开了24公里,速度为每小时60公里,所以时间等于24除以60=0.4小时。
5. 樱桃的总重量是125克,共有25颗樱桃,所以每颗樱桃的平均重量等于125除以25=5克。
...三、总结这份文档包含了30个数学任务型阅读题目及其答案,涵盖了七年级数学学科内容。
通过阅读和解答这些题目,学生可以加深对数学概念的理解,并提高解题能力。
同时,文档也提供了解答的详细解析,帮助学生掌握解决问题的方法和思路。
题型十 阅读理解及定义型问题 (专题训练)(原卷版)

题型十 阅读理解及定义型问题 (专题训练)1.(2021·甘肃武威市·中考真题)对于任意的有理数,a b ,如果满足2323a b a b ++=+,那么我们称这一对数,a b 为“相随数对”,记为(),a b .若(),m n 是“相随数对”,则()323[]21m m n ++-=( )A .2-B .1-C .2D .32.(山东省菏泽市2021年中考数学真题)定义:[],,a b c 为二次函数2y ax bx c =++(0a ≠)的特征数,下面给出特征数为[],1,2m m m --的二次函数的一些结论:①当1m =时,函数图象的对称轴是y 轴;②当2m =时,函数图象过原点;③当0m >时,函数有最小值;④如果0m <,当12x >时,y 随x 的增大而减小,其中所有正确结论的序号是______.3.(四川省雅安市2021年中考数学真题)定义:{}()min ,()a a b a b b a b £ì=í>î,若函数()2min 123y x x x =+-++,,则该函数的最大值为( )A .0B .2C .3D .44.(内蒙古通辽市2021年中考数学真题)定义:一次函数y ax b =+的特征数为[],a b ,若一次函数2y x m =-+的图象向上平移3个单位长度后与反比例函数3y x=-的图象交于A ,B 两点,且点A ,B 关于原点对称,则一次函数2y x m =-+的特征数是( )A .[]2,3B .[]2,3-C .[]2,3-D .[]2,3--5.(2021·广西来宾市·中考真题)定义一种运算:,,a a ba b b a b ³ì*=í<î,则不等式(21)(2)3x x +*->的解集是( )A .1x >或13x <B .113x -<<C .1x >或1x <-D .13x >或1x <-6.(2021·湖北中考真题)定义新运算“※”:对于实数m ,n ,p ,q ,有[][],,m p q n mn pq =+※,其中等式右边是通常的加法和乘法运算,如:[][]2,34,5253422=´+´=※.若关于x 的方程[]21,52,0x x k k éùëû+-=※有两个实数根,则k 的取值范围是( )A .54k <且0k ≠B .54k £C .54k £且0k ≠D .54k ³7.(广西贵港市2021年中考数学真题)我们规定:若()()1122,,,a x y b x y ®®==,则1212a b x x y y ®®×=+.例如(1,3),(2,4)a b ®®==,则123421214a b ®®×=´+´=+=.已知(1,1),(3,4)a x x b x ®®=+-=-,且23x -……,则a b ®®×的最大值是________.8.(2021·湖北中考真题)对于任意实数a 、b ,定义一种运算:22a b a b ab Ä=+-,若()13x x Ä-=,则x 的值为________.9.(2019·常德)规定:如果一个四边形有一组对边平行,一组邻边相等,那么四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M 、N 的坐标分别为(0,1),(0,-1),P 是二次函数y =x 2的图象上在第一象限内的任意一点,PQ 垂直直线y =-1于点Q ,则四边形PMNQ 是广义菱形.其中正确的是 .(填序号) 10.(2019·陇南)定义:等腰三角形的顶角与其一个底角的度数的比值k 称为这个等腰三角形的“特征值”.若等腰△ABC 中,∠A =80°,则它的特征值k = . 11.(2019•济宁)阅读下面的材料:如果函数y=f (x )满足:对于自变量x 的取值范围内的任意x 1,x 2,(1)若x 1<x 2,都有f (x 1)<f (x 2),则称f (x )是增函数;(2)若x 1<x 2,都有f (x 1)>f (x 2),则称f (x )是减函数.例题:证明函数f (x )=6x(x >0)是减函数.证明:设0<x 1<x 2,f (x 1)–f (x 2)=()212112121266666x x x x x x x x x x ---==.∵0<x 1<x 2,∴x 2–x 1>0,x 1x 2>0.∴()21126x x x x ->0.即f (x 1)–f (x 2)>0.∴f (x 1)>f (x 2),∴函数f (x )═6x(x >0)是减函数.根据以上材料,解答下面的问题:14已知函数f (x )=21x +x (x<0),f (–1)=21(1)-+(–1)=0,f (–2)=21(2)-+(–2)=–74.(1)计算:f (–3)=__________,f (–4)=__________;(2)猜想:函数f (x )=21x +x (x<0)是__________函数(填“增”或“减”);(3)请仿照例题证明你的猜想.12.(2022·四川凉山)阅读材料:材料1:若关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两个根为x 1,x 2,则x 1+x 2=b a -,x 1x 2=c a材料2:已知一元二次方程x 2-x -1=0的两个实数根分别为m ,n ,求m 2n +mn 2的值.解:∵一元二次方程x 2-x -1=0的两个实数根分别为m ,n ,∴m +n =1,mn =-1,则m 2n +mn 2=mn (m +n )=-1×1=-1根据上述材料,结合你所学的知识,完成下列问题:(1)材料理解:一元二次方程2x 2-3x -1=0的两个根为x 1,x 2,则x 1+x 2= ;x 1x 2= .(2)类比应用:已知一元二次方程2x 2-3x -1=0的两根分别为m 、n ,求n mm n+的值.(3)思维拓展:已知实数s 、t 满足2s 2-3s -1=0,2t 2-3t -1=0,且s ≠t ,求11s t-的值.13.(2019•随州)若一个两位数十位、个位上的数字分别为m,n,我们可将这个两位数记为mn,易知mn=10m+n;同理,一个三位数、四位数等均可以用此记法,如abc=100a+10b+c.【基础训练】(1)解方程填空:①若2x+3x=45,则x=__________;②若7y–8y=26,则y=__________;③若93t+58t=131t,则t=__________;【能力提升】(2)交换任意一个两位数mn的个位数字与十位数字,可得到一个新数nm,则mn+nm 一定能被__________整除,mn–nm一定能被__________整除,mn•nm–mn一定能被__________整除;(请从大于5的整数中选择合适的数填空)【探索发现】(3)北京时间2019年4月10日21时,人类拍摄的首张黑洞照片问世,黑洞是一种引力极大的天体,连光都逃脱不了它的束缚.数学中也存在有趣的黑洞现象:任选一个三位数,要求个、十、百位的数字各不相同,把这个三位数的三个数字按大小重新排列,得出一个最大的数和一个最小的数,用得出的最大的数减去最小的数得到一个新数(例如若选的数为325,则用532–235=297),再将这个新数按上述方式重新排列,再相减,像这样运算若干次后一定会得到同一个重复出现的数,这个数称为“卡普雷卡尔黑洞数”.①该“卡普雷卡尔黑洞数”为__________;②设任选的三位数为abc(不妨设a>b>c),试说明其均可产生该黑洞数.14.(2021·北京中考真题)在平面直角坐标系xOy 中,O e 的半径为1,对于点A 和线段BC ,给出如下定义:若将线段BC 绕点A 旋转可以得到O e 的弦B C ¢¢(,B C ¢¢分别是,B C 的对应点),则称线段BC 是O e 的以点A 为中心的“关联线段”.(1)如图,点112233,,,,,,A B C B C B C 的横、纵坐标都是整数.在线段112233,,B C B C B C 中,O e 的以点A 为中心的“关联线段”是______________;(2)ABC V 是边长为1的等边三角形,点()0,A t ,其中0t ≠.若BC 是O e 的以点A 为中心的“关联线段”,求t 的值;(3)在ABC V 中,1,2AB AC ==.若BC 是O e 的以点A 为中心的“关联线段”,直接写出OA 的最小值和最大值,以及相应的BC 长.15.(江苏省南通市2021年中考数学试题)定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”.例如,点(1,1)是函数1122y x =+的图象的“等值点”.(1)分别判断函数22,y x y x x =+=-的图象上是否存在“等值点”?如果存在,求出“等值点”的坐标;如果不存在,说明理由;(2)设函数3(0),y x y x b x=>=-+的图象的“等值点”分别为点A ,B ,过点B 作BC x ^轴,垂足为C .当ABC V 的面积为3时,求b 的值;(3)若函数22()y x x m =-³的图象记为1W ,将其沿直线x m =翻折后的图象记为2W .当12,W W 两部分组成的图象上恰有2个“等值点”时,直接写出m 的取值范围.16.(2019·衢州)定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满是x=3a c +,y=3b d+,那么称点T 是点A ,B 的融合点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直角三角形通过剪切可以拼成一个与该直角三角形面积相等的矩形,方法如下:
请你用上面图示的方法,解答下列问题:
(1)对任意三角形,设计一种方案,将它分成若干块,再拼成一个与原三角形面积相等的矩形;
(2)对任意四边形,设计一种方案,将它分成若干块,再拼成一个与原四边形面积相等的矩形.
(1)
【思路分析】材料的方法中,如果延长中位线,并且由底边顶点做中位线的垂线。那么如下图,箭头所指的两个三角形就是全等的,另外一边也是一样,所以这种裁减方法就是利用全等来走。第一问纯属送分,按材料中所给的三角形拆法就可以了。第二问说裁剪梯形,实质上梯形就是由两个三角形组成的,所以随便找一条对角线将梯形拆开,然后按照第一问的思路去做就可以了。
请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA= ,BP= ,PC=1.求∠BPC度数的大小和正方形ABCD的边长.
【思路分析】首先仔细阅读材料,问题中小明的做法总结起来就是通过旋转固定的角度将已知条件放在同一个(组)图形中进行研究。旋转60度以后BP就成了BP`,PC成了P`A,借助等量关系BP`=PP`,于是△APP`就可以计算了.至于说为什么是60°,则完全是因为大图形是等边三角形,需要用60度去构造另一个等边三角形。看完这个,再看所求的问题,几乎是一个一模一样的问题,只不过大图形由三角形变成了正方形。那么根据题中所给的思路,很自然就会想到将△BPC旋转90度看看行不行。旋转90度之后,成功将PC挪了出来,于是很自然做AP`延长线,构造出一个直角三角形来,于是问题得解。说实话如果完全不看材料,在正方形内做辅助线,当成一道普通的线段角计算问题也是可以算的。但是借助材料中已经给出的旋转方法做这道题会非常简单快捷。大家可以从本题中体会一下领会材料分析方法的重要性所在。
∴△AP′P是直角三角形,即∠A P′P=90°.
∴∠AP′B=135°.
∴∠BPC=∠AP′B=135°.…
(2)过点B作BE⊥AP′交AP′的延长线于点E.
∴∠EP′B=45°.∴EP′=BE=1.∴AE=2.
∴在Rt△ABE中,由勾股定理,得AB= .
∴∠BPC=135°,正方形边长为 .
【例2】若 是关于 的一元二次方程 的两个根,则方程的两个根 和系数 有如下关系: .我们把它们称为根与系数关系定理.
【总结】这种阅读理解题是近年来中考题的新趋势,如果没有材料直接去做的话,往往得不到思路。但是如果仔细理解材料中所给的内容,那么就会变得非常简单。这种题的重点不在于考察解题能力,而在于考察分析,理解和应用能力。专门去找大量的类似题目去做倒也不必,而培养审题,分析的能力才是最重要的。考生拿到这种题,第一就是要静下心来慢慢看,切记不可图方便而草草看完材料就去做题,如果这样往往冥思苦想半天还要回来看,浪费了大量时间。裁剪问题和拼接问题也是经常出现在此类问题当中的,面对这种题要把握好构成那些等量关系的要素,如中点,N等分点等特殊的元素。综合来说只要仔细理解材料中的意图,那么这一部分的分数十分好拿,考生不用太过担心。
小明的做法是:
先取 ,如图2,将 绕点 顺时针旋转 至 ,再将 绕点 逆时针旋转 至 ,得到 个小正方形,所以四边形 与正方形 的面积比是 ;
然后取 ,如图3,将 绕点 顺时针旋转 至 ,再将 绕点 逆时针旋转 至 ,得到 个小正方形,所以四边形 与正方形 的面积比是 ,即 ;
……
请你参考小明的做法,解决下列问题:
【解析】
四边形 与正方形 的拼接后的正方形是正方形 .
面积比是 .
【例4】
阅读:如图1,在 和 中, , , 、 、 、 四点都在直线 上,点 与点 重合.
连接 、 ,我们可以借助于 和 的大小关系证明不等式: ( ).
证明过程如下:
∵
∴
∵ ,
∴ .
即 .
∴ .
∴ .
解决下列问题:
(1)现将△ 沿直线 向右平移,设 ,且 .如图2,当 时, .利用此图,仿照上述方法,证明不等式: ( ).
第一部分 真题精讲
【例1】请阅读下列材料
问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB= ,PC=1.求∠BPC度数的大小和等边三角形ABC的边长.
李明同学的思路是:将△BPC绕点B顺时针旋转60°,画出旋转后的图形(如图2).连接PP′,可得△P′PB是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证).所以∠AP′C=150°,而∠BPC=∠AP′C=150°.进而求出等边△ABC的边长为 .问题得到解决.
(2)如图2, 的半径为 ,点 在 上, , , 是 上一动点,则 的最小值是___________;
(3)如图3, , 是 内一点, , 分别是 上
的动点,则 周长的最小值是___________.
【思路分析】利用对称性解题的例题。前两个图形比较简单,利用正方形和圆的对称性就可以了。第三个虽然是求周长,但是只要将这个题看成是从P点到Q,然后到R再折回来的距离最小,当成是那种“将军饮马”题目去做就可以了。
【解析】(1)
证明:连接 、 .
可得 .
∴ ,
.
∵ ,
∴ ,
即 .
∴ .
∴ .
(2)
延长BA、FE交于点I.
∵ ,
∴ ,
即 .
∴ .
∴ .
四个直角三角形的面积和 ,
大正方形的面积 .
∵ ,
∴ .
∴ .
【例5】阅读下列材料:
将图1的平行四边形用一定方法可分割成面积相等的八个四边形,如图2,再将图2中的八个四边形适当组合拼成两个面积相等且不全等的平行四边形.(要求:无缝隙且不重叠)
初中数学阅读理解题专题
【前言】
新课标以来中考题型越来越活,阅读理解题出现在数学当中就是最大的一个亮点。不同以往的单纯“给条件”to“求结果”式的题目,阅读理解往往是先给一个材料,或介绍一个超纲的知识,或给出针对某一种题目的解法,然后再给条件出题。对于这种题来说,如果考生为求快速而完全无视阅读材料而直接去做题的话,往往浪费大量时间也没有思路,得不偿失。所以如何读懂题以及如何利用题就成为了关键,让我们先看以下的例题。
当abc为等腰直角三角形时过c作cdab?垂足为d则2abcd?抛物线与x轴有两个交点0?不要忘记这一步的论证2244bacbac???24bacaba??又244baccda??0a?22442bacbac?????222444bacbac???看成一个整体??222444bacbac???244bac??
【思考3】
将图①,将一张直角三角形纸片ABC折叠,使点A与点C重合,这时DE为折痕,
△CBE为等腰三角形;再继续将纸片沿△CBE的对称轴EF折叠,这时得到了两个完全重合的矩形(其中一个是原直角三角形的内接矩形,另一个是拼合成的无缝隙、无重叠的矩形),我们称这样两个矩形为“叠加矩形”.
【解析】.⑴解:当 为等个交点,∴ ,(不要忘记这一步的论证)
∴
∵
又∵ ,
∵ ,
∴
∴ (看成一个整体)
∴
∴ …
⑵当 为等边三角形时,
⑶∵ ,
∴ .
即 ,
∴
因为向左或向右平移时, 的度数不变,
所有只需要将抛物线 向上或向下平移使 ,然后向左或向右平移任意个单位即可.
【思路分析】本题也是较为常见的类型,即先给出一个定理或结论,然后利用它们去解决一些问题。题干中给出抛物线与X轴的两交点之间的距离和表达式系数的关系,那么第一问要求 取何值时△ABC为等腰直角三角形.于是我们可以想到直角三角形的性质就是斜边中线等于斜边长的一半.斜边中线就是顶点的纵坐标,而斜边恰好就是两交点的距离.于是将 作为一个整体,列出方程求解.第二问也是一样,把握等边三角形底边与中线的比例关系即可.第三问则可以直接利用第一问求得的 值求出K,然后设出平移后的解析式,使其满足第二问的结果即可.注意左右平移是不会改变度数的,只需上下即可。
请你参考以上做法解决以下问题:
(1)将图4的平行四边形分割成面积相等的八个三角形;
(2)将图5的平行四边形用不同于(1)的分割方案,分割成面积相等的八个三角形,再将这八个三角形适当组合拼成两个面积相等且不全等的平行四边形,类比图2,图3,用数字1至8标明.
【思路分析】这种拼接裁剪题目往往都是结合在阅读理解题中考察,结合网格,对考生的发散思维要求较强。本题材料中将平行四边形裁减成8份然后重新组成两个平行四边形。要保证平行就需要这些小四边形的边长都是平行且相等的。第一问是面积相等,那么直接利用中点这一个重要条件去做。第二问是分割为能重新组成平行四边形的三角形,那么就要想如何利用三角形去构建平行和相等的关系呢?于是可以想到平行四边形的对角线所分的三角形恰好也就满足这种条件。于是从平行四边形的对角线出发,去拆分出8个小三角形来。具体答案有很多种,在此也不再累述。
设向上或向下平移后的抛物线解析式为: ,
∵平移后 ,∴ ,
∴ .
∴抛物线 向下平移 个单位后,向左或向右平移任意个单位都能使 的度数由 变为
【例3】阅读下列材料:
小明遇到一个问题:如图1,正方形 中, 、 、 、 分别是 、 、 和 边上靠近 、 、 、 的 等分点,连结 、 、 、 ,形成四边形 .求四边形 与正方形 的面积比(用含 的代数式表示).
第二部分发散思考
【思考1】几何模型:
条件:如下左图, 、 是直线 同旁的两个定点.问题:在直线 上确定一点 ,使 的值最小.
方法:作点 关于直线 的对称点 ,连结 交 于点 ,则 的值最小(不必证明).
模型应用:
(1)如图1,正方形 的边长为2, 为 的中点, 是 上一动点.连结 ,由正方形对称性可知, 与 关于直线 对称.连结 交 于 ,则 的最小值是___________;
如果设二次函数 的图象与x轴的两个交点为 .利用根与系数关系定理我们又可以得到A、B两个交点间的距离为: