中考数学专题复习2:阅读理解题
2019届人教版中考复习数学练习专题二:阅读理解专题(有答案)

专题二阅读理解专题【课堂精讲】例1阅读例题,模拟例题解方程.解方程x2+|x-1|-1=0.解:(1)当x-1≥0即x≥1时,原方程可化为:x2+x-1-1=0即x2+x-2=0,解得x1=1,x2=-2(不合题意,舍去)(2)当x-1<0即x<1时,原方程可化为:x2-(x-1)-1=0即x2-x=0,解得x3=0,x4=1(不合题意,舍去)综合(1)、(2)可知原方程的根是x1=1,x2=0.请你模拟以上例题解方程:x2+|x+3|-9=0.解析:(1)当x+3≥0时,即x≥-3时.原方程可化为:x2+x-6=0.解得x1=2,x2=-3.(2)当x+3<0时,即x<-3时.原方程可化为:x2-x-12=0.解得x3=-3,x4=4.经检验,x3=-3,x4=4都不符合题意,舍去.综合(1)、(2)可知原方程的根为x1=2,x2=-3.点评:解决这类题的策略是先理解例题的思想方法,再把这种思想方法迁移到问题中从而得到解决.例2条件:如下图,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+PB的值最小.方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小模型应用:(1)如图1,正方形ABCD边长为2,E为AB的中点,P是AC上一动点.则PB+PE的最小值是______;(2)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC最小值是______;(3)如图3,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值是______.解析:关键在于把握题中的两点:第一是动点在哪条线上运动?这条线就确定为对称轴;第二是画出一个点的对称点,并确定符合条件的动点的位置,再进行解答.(1)在图1中,点B关于AC的对称点是D,连接DE交AC于点P,此时点P就符合条件,再进行计算.(2)在图2中,点A关于OB的对称点是点D,连接DC交OB于点P,点P就是符合条件的点.PA+PC的最小值是CD,求出CD的长即可.(3)在图3中,作出P关于OB、OA的对称点P′和P″.连接P′P″交OB、OA于R、Q.再连接PR、PQ.则△PRQ的周长最小,此时△PRQ的周长=P′P″的长.在等腰直角形P′OP″中.求出P′P″的长即可.答案:523102【课堂提升】1.阅读材料,解答问题.用图象法解一元二次不等式,x2-2x-3>0.解:设y=x2-2x-3,则y是x的二次函数.∵a=1>0,∴抛物线开口向上.又∵当y=0时,x2-2x-3=0.解得x1=-1,x2=3.∴由此得抛物线y=x2-2x-3的大致图象如图所示:观察函数图象可知:当x<-1或x>3时,y>0.∴x2-2x-3>0的解集是:x<-1或x>3.(1)观察图象,直接写出一元二次不等式:x2-2x-3<0的解集是________;(2)仿照上例,用图象法解一元二次不等式:x2-5x+6<0的解集.2. 阅读下列材料:解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:解∵x﹣y=2,∴x=y+2又∵x>1,∵y+2>1.∴y>﹣1.又∵y<0,∴﹣1<y<0.…①同理得:1<x<2.…②由①+②得﹣1+1<y +x <0+2∴x +y 的取值范围是0<x +y <2请按照上述方法,完成下列问题:(1)已知x ﹣y =3,且x >2,y <1,则x +y 的取值范围是 .(2)已知y >1,x <﹣1,若x ﹣y =a 成立,求x +y 的取值范围(结果用含a 的式子表示).3.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( )A . 1,2,3B . 1,1,C . 1,1,D . 1,2,y 1),Q (x 2,y 2)的对称中心的坐标为( 122x x + ,122y y + ).(1)如图,在平面直角坐标系中,若点P 1(0,-1),P 2(2,3)的对称中心是点A ,则点A 的坐标为________;(2)另取两点B (-1.6,2.1),C (-1,0).有一电子青蛙从点P 1处开始依次关于点A ,B ,C 作循环对称跳动,即第一次跳到点P 1关于点A 的对称点P 2处,接着跳到点P 2关于点B 的对称点P 3处,第三次再跳到点P 3关于点C 的对称点P 4处,第四次再跳到点P 4关于点A 的对称点P 5处,…,则点P 3,P 8的坐标分别为____、____;(3)求出点P 2012的坐标,并直接写出在x 轴上与点P 2012、点C 构成等腰三角形的点的坐标.【高效作业本】专题二 阅读理解专题1.如图,已知正方形ABCD ,顶点A (1,3)、B (1,1)、C (3,1).规定“把正方形ABCD 先沿x 轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2014次变换后,正方形ABCD 的对角线交点M 的坐标变为( )A.(—2012,2) B.(一2012,一2)C. (—2013,—2) D. (—2013,2)2.定义新运算:对于任意实数a,b都有a△b=ab﹣a﹣b+1,等式右边是通常的加法、减法及乘法运算,例如:2△4=2×4﹣2﹣4+1=8﹣6+1=3,请根据上述知识解决问题:若3△x的值大于5而小于9,求x的取值范围.一元二次方程两个根二次三项式因式分解x2-2x+1=0 x1=1,x2=1 x2-2x+1=(x-1)(x-1)x2-3x+2=0 x1=1,x2=2 x2-3x+2=(x-1)(x-2)3x2+x-2=0 x1=,x2=-1 3x2+x-2=3(x- )(x+1)2x2+5x+2=0 x1=____,x2=____ 2x2+5x+2=2(x+ )(x+2)4x2+13x+3=0 x1=____,x2=____ 4x2+13x+3=4(x+____)(x+____)4.阅读下面的例题:解方程x2-|x|-2=0解:(1)当x≥0时,原方程化为x2-x-2=0解得x1=2,x2=-1(不合题意,舍去)(2)当x<0时,原方程化为x2+x-2=0,解得x1=1(不合题意,舍去),x2=-2所以原方程的解是x1=2,x2=-2请参照例题,解方程:x2-|x-3|-3=0.【答案】专题二阅读理解专题答案1.分析:(1)观察图象即可写出一元二次不等式:x2-2x-3<0的解集;(2)先设函数解析式,根据a的值确定抛物线的开口向上,再找出抛物线与x轴相交的两点,就可以画出抛物线,根据y<0确定一元二次不等式x2-2x-3<0的解集.解:(1)观察图象,可得一元二次不等式x2-2x-3<0的解集是:-1<x<3(2)设y=x2-5x+6,则y是x的二次函数.∵a=1>0,∴抛物线开口向上.又∵当y=0时,x2-5x+6=0,解得x1=2,x2=3.∴由此得抛物线y=x2-5x+6的大致图象如图所示.观察函数图象可知:当2<x<3时,y<0.∴x2-5x+6<0的解集是:2<x<3点评:本题主要考查在直角坐标系中利用二次函数图象解不等式,可作图利用交点直观求解集.2.解:(1)∵x﹣y=3,∴x=y+3,又∵x>2,∴y+3>2,∴y>﹣1.又∵y<1,∴﹣1<y<1,…①同理得:2<x<4,…②由①+②得﹣1+2<y+x<1+4∴x+y的取值范围是1<x+y<5;(2)∵x﹣y=a,∴x=y+a,又∵x<﹣1,∴y+a<﹣1,∴y<﹣a﹣1,又∵y>1,∴1<y<﹣a﹣1,…①同理得:a+1<x<﹣1,…②由①+②得1+a+1<y+x<﹣a﹣1+(﹣1),∴x+y的取值范围是a+2<x+y<﹣a﹣2.本题考查了一元一次不等式组的应用,解答本题的关键是仔细阅读材料,理解解题过程,难度一般.3.分析A、根据三角形三边关系可知,不能构成三角形,依此即可作出判定;B、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;C、解直角三角形可知是顶角120°,底角30°的等腰三角形,依此即可作出判定;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定.解:A、∵1+2=3,不能构成三角形,故选项错误;B、∵12+12=()2,是等腰直角三角形,故选项错误;C、底边上的高是=,可知是顶角120°,底角30°的等腰三角形,故选项错误;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.故选:D.点评:考查了解直角三角形,涉及三角形三边关系,勾股定理的逆定理,等腰直角三角形的判定,“智慧三角形”的概念.(2)(-5.2,1.2);(2,3)(提示:P1(0,-1),P2(2,3),P3(-5.2,1.2),P4(3.2,-1.2),P5(-1.2,3.2),P6(-2,1),P7(0,-1),P8(2,3))(3)∵P1(0,-1)→P2(2,3)→P3(-5.2,1.2)→P4(3.2,-1.2)→P5(-1.2,3.2)→P6(-2,1)→P7(0,-1)→P8(2,3)→…,∴P7的坐标和P1的坐标相同,P8的坐标和P2的坐标相同,即坐标以6为周期循环.∵2012÷6=335…2.∴P2012的坐标与P2的坐标相同,即P2012(2,3);在x轴上与点P2012,点C构成等腰三角形的点的坐标为(-3 -1,0),(2,0),(3 -1,0),(5,0).【高效作业本】1.分析:首先求出正方形对角线交点坐标分别是(2,2),然后根据题意求得第1次、2次、3次变换后的点M的对应点的坐标,即可得规律.解答:∵正方形ABCD,点A(1,3)、B(1,1)、C(3,1).∴M的坐标变为(2,2)∴根据题意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),第2014次变换后的点M的对应点的为坐标为(2-2014, 2),即(-2012, 2)故答案为A.点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n 次变换后的点M 的对应点的坐标为:当n 为奇数时为(2-n ,-2),当n 为偶数时为(2-n ,2)是解此题的关键.2.分析:首先根据运算的定义化简3△x ,则可以得到关于x 的不等式组,即可求解.解答:3△x=3x ﹣3﹣x+1=2x ﹣2,根据题意得:,解得:<x <.点评:本题考查了一元一次不等式组的解法,正确理解运算的定义是关键.3.(1)-12 -2 -14 -3 143 (2)ax2+bx +c =a(x -x1)(x -x2)4.解析:(1)当x -3≥3,原方程为 x 2-(x -3)-3=0∵x ≥3∴不符合题意,都舍去(2)当x -3<0时,即x <3,原方程化为x 2+(x -3)-3=0解得x 2+(x -3)=0解得x 1=-3或x 2=2(都符合题意)所以原方程的解是x 1=3或x 2=2.答案:x =-3或x =2。
重庆市中考数学阅读理解题(专题二)含答案

学习必备欢迎下载重庆市2016中考数学阅读理解题(专题二)1、若x 1,x 2是关于x 的方程x 2+bx+c=0的两个实数根,且的两个实数根,且|x |x 1|+|x 2|=2|k||=2|k|((k 是整数),则称方程x 2+bx+c=0为“偶系二次方程”.如方程x 2﹣6x 6x﹣﹣27=027=0,,x 2﹣2x 2x﹣﹣8=08=0,,,x 2+6x +6x﹣﹣27=027=0,,x 2+4x+4=0+4x+4=0,,都是“偶系二次方程”.(1)判断方程x 2+x +x﹣﹣12=0是否是“偶系二次方程”,并说明理由;(2)对于任意一个整数b ,是否存在实数c ,使得关于x 的方程x 2+bx+c=0是“偶系二次方程”,并说明理由.2、阅读材料:若a ,b 都是非负实数,则a+b≥.当且仅当a=b 时,“=”成立.证明:∵()2≥0,∴a﹣+b≥0.∴a+b≥.当且仅当a=b 时,“=”成立.举例应用:已知x >0,求函数y=2x+的最小值.解:解:y=2x+y=2x+≥=4=4.当且仅当.当且仅当2x=,即x=1时,“=”成立.当x=1时,函数取得最小值,时,函数取得最小值,y y 最小=4=4..问题解决:汽车的经济时速是指汽车最省油的行驶速度.某种汽车在每小时7070~~110公里之间行驶时(含70公里和110公里),每公里耗油(+)升.若该汽车以每小时x 公里的速度匀速行驶,1小时的耗油量为y 升.(1)求y 关于x 的函数关系式(写出自变量x 的取值范围);(2)求该汽车的经济时速及经济时速的百公里耗油量(结果保留小数点后一位).3、在平面直角坐标系中,我们不妨把横坐标和纵坐标相等的点叫我们不妨把横坐标和纵坐标相等的点叫“梦之点”“梦之点”,例如点(1,11,1)),(-2-2,,-2-2)),22(,),…都是“梦之点”,显然“梦之点”有无数个。
,…都是“梦之点”,显然“梦之点”有无数个。
北京市中考数学复习专题:新定义阅读理解问题

新定义阅读理解问题新定义学习型阅读理解题,是指题目中首先给出一个新定义(新概念或新公式),通过阅读题目提供的材料,理解新定义,再通过对新定义的理解来解决题目提出的问题。
其主要目的是通过对新定义的理解与运用来考查学生的自学能力,便于学生养成良好的学习习惯。
解决此类题的关键是(1)深刻理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论;(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”; 归纳“举例”提供的做题方法;归纳“举例”提供的分类情况;(3)依据新定义,运用类比、归纳、联想、分类讨论以及数形结合的数学思想方法解决题目中需要解决的问题。
一、基础练习部分★例1:【——海淀期末】对于正整数n ,定义210()=()10,,≥n n F n f n n ⎧<⎨⎩,其中f(n )表示n 的首位数字、末位数字的平方和.例如:F(6)=62=36,F(123)=f(123)=12+32=10.规定F 1(n )=F(n ),F k +1(n )=F(F K (n ))(K 为正整数).例如:F 1(123)=F(123)=10,F 2(123)=F(F 1(123))=F(10)=1.(1)求:F 2(4)= ,F(4)= ;(2)若F 3m (4)=89,则正整数m 的最小值是 . 答案:(1)37,26;(2)6. 练习①: 【通州一模】定义一种对正整数n 的“F 运算”:①当n 为奇数时,结果为31n +;②当n 为偶数时,结果为k n 2(其中k 是使得k n 2为奇数的正整数),并且运算重复进行.例如,取6n =,则:12363105F F F −−−→−−−→−−−→① ②②第次第次第次……,若1n =,则第2次“F 运算”的结果是 ;若13n =,则第次“F 运算”的结果是 . 答案:1,4练习②:【门头沟二模】我们知道,一元二次方程x 2=-1没有实数根,即不存在一个实数的平方等于-1,若我们规定一个新数“i ”,使其满足i 2=-1 (即方程x 2=-1有一个根为i ),并且进一步规定: 一切实数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有i 1=i ,i 2=-1,i 3= i 2·i =(-1)(-1)·i =-i , i 4=( i 2)2=(-1) 2=1,从而对任意正整数n ,则i 6=______________;由于i 4n+1=i 4n ﹒i=(i 4)n ﹒i=i,同理可得i 4n+2=﹣1, i 4n+3=﹣i , i 4n =1那么i + i 2+ i 3+ i 4+…+ i+ i 的值为_____ 答案:-1,i★例2:【宣武一模】任何一个正整数n 都可以进行这样的分解:n =p ×q (p 、q 是正整数,且p ≤q ), 如果p ×q 在n 的所有这种分解中两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解,并规定:()p F n q =.例如18可以分解成1×18、2×9或3×6,这时就有31(18)62F ==.给出下列关于F(n )的说法:(1)1(2)2F =;(2)3(24)8F =;(3)(27)3F =;(4)若n 是一个完全平方数,则F(n )=1.其中正确说法的个数是 ( )A.1 B.2 C.3D.4 答案:B 练习①:【北京中考】在右表中,我们把第i 行第j 列的数记为a i ,j (其中i ,j 都是不大于5的正整数),对于表中的每个数a i ,j ,规定如下:当i ≥j 时,a i ,j =1;当i <j 时,a i ,j =0.例如:当i =2,j=1时,a i ,j =a 2,1=1.按此规定,a 1,3= ;表中的25个数中,共有 个1;计算a 1,1•a i ,1+a 1,2•a i ,2+a 1,3•a i ,3+a 1,4•a i ,4+a 1,5•a i ,5的值为 .答案:0;15;1. 练习②:【海淀二模】某种数字化的信息传输中,先将信息转化为数学0和1组成的数字串,并对数字串进行了加密后再传输.现采用一种简单的加密方法:将原有的每个1都变成10,原有的每个0变成01.我们用A 0表示没有经过加密的数字串.这样对A 0进行一次加密就得到一个新的数字串A 1,对A 1再进行一次加密又得到一个新的数学串A 2,依此类推,…,例如:A 0:10,则A 1:1001.若已知A 2:100101101001,则A 0: ,若数字串A 0共有4个数字,则数字串A 2中相邻两个数字相等的数对至少..有 对. 答案:101 ,4练习③:【燕山一模】若将代数式中的任意两个字母互相替换,代数式不变,则称这个代数式为完全对称式.如在代数式a +b +c 中,把a 和b 互相替换,得b +a +c ;把a 和c 互相替换,得c +b +a ;把b 和c ……;a +b +c 就是完全对称式.下列三个代数式:① (a -b )2;② ab +bc +ca ;③ a 2b +b 2c +c 2a .其中为完全对称式的是A .① ②B .② ③C .① ③D .①②③ 答案:A练习④:【西城一模】在平面直角坐标系中,对于平面内任一点P (a ,b )若规定以下两种变换: ①f (a ,b )= (-a ,-b ).如f (1,2)= (-1,-2);②g (a ,b )= (b ,a ).如g (1,3)= (3,1)按照以上变换,那么f (g (a ,b ))等于A .(-b ,-a )B .(a ,b )C .(b ,a )D .(-a ,-b ) 答案:A★例3:【昌平二模】请阅读下列材料:我们规定一种运算:,例如:. 按照这种运算的规定,请解答下列问题:(1)直接写出 的计算结果;(2)若,直接写出和的值.(3)当取何值时, ; 答案:(1)3.5; (2)x=8,y=2. (3) ;a b ad bc c d=-2325341012245=⨯-⨯=-=-1220.5--0.517830.51x y xy --==--x y x 0.5012x xx -=15x -±=a 1,1 a 1,2 a 1,3 a 1,4 a 1,5 a 2,1 a 2,2 a 2,3 a 2,4 a 2,5 a 3,1 a 3,2a 3,3 a 3,4 a 3,5 a 4,1 a 4,2a 4,3 a 4,4 a 4,5 a 5,1 a 5,2 a 5,3 a 5,4 a 5,5变式练习:【宣武一模】对于实数d c b a ,,,规定一种运算:c a bc ad d b -=,如21=-20()21-⨯ 220-=⨯-,那么)3(2x -2554=-时,=x ( ).(A )413- (B )427 (C )423- (D )43- 答案:(D)练习:①【北京中考(课标卷)】用“☆”定义新运算: 对于任意实数a 、b , 都有a ☆b =b 2+1。
2021年中考数学专题复习:新定义和阅读理解题

2021年中考数学专题复习:新定义和阅读理解题“新定义”题指给出一个从未接触过的新规定,要求现学现用,“给什么,用什么”是应用新“定义”解题的基本思路.这类试题的特点:源于中学数学内容但又是学生没有遇到过的新信息,它可以是新的概念、新的运算、新的符号、新的图形、新的定理或新的操作规则与程序等等.在解决它们过程中又可产生了许多新方法、新观念,增强了学生创新意识.阅读理解题源于课本,高于课本,既考查阅读能力,又综合考查学生的数学意识和数学综合应用能力,尤其侧重于考查学生的数学思维能力和创新意识. 这类题目的结构一般为:给出一段阅读材料,学生通过阅读,将材料所给的信息加以搜集整理,在此基础上,按照题目的要求进行推理解答.一、新定义1.对于任意两个不相等的数a,b定义一种新运算“⊕”如下:a⊕b=a+ba-b,如:3⊕2=3+23-2=5,那么12⊕4=________.2.定义新运算“a*b”:对于任意实数a,b,都有a*b=(a+b)(a-b)-1,其中等式右边是通常的加法、减法、乘法运算,例4*3=(4+3)(4-3)-1=7-1=6.若x*k=x(k为实数)是关于x的方程,则它的根的情况为()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根3.已知:[x]表示不超过x的最大整数.例:[4.8]=4,[-0.8]=-1.现定义:{x}=x-[x],例:{1.5}=1.5-[1.5]=0.5,则{3.9}+{-1.8}-{1}=________.4.用⊕定义一种新运算:对于任意实数m和n,规定m⊕n=m2n-mn-3n,如:1⊕2=12×2-1×2-3×2=-6.(1)求(-2)⊕3;(2)若3⊕m≥-6,求m的取值范围,并在所给的数轴上表示出解集.5.定义:分数nm(m,n为正整数且互为质数)的连分数1a1+1a2+1a3+…(其中a1,a2,a3,…为整数,且等式右边的每一个分数的分子都为1),记作n m =⊕ 1a 1+1a 2+1a 3+…,例如719=⊕1197=12+57=12+175=12+11+25=12+11+152=12+11+12+12,719的连分数为12+11+12+12,记作719=⊕12+11+12+12,则________=⊕11+12+13.6.定义一种新运算⎠⎛b a n·x n -1dx =a n -b n ,例如⎠⎛n k 2xdx =k 2-n 2,若⎠⎛5mm -x -2dx =-2,则m=( )A .-2 B. -25 C .2 D.257.在平面直角坐标系xOy 中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在“好点”的是( )A .y =-xB .y =x +2C .y =2xD .y =x 2-2x8.对于一个函数,自变量x 取c 时,函数值y 等于0,则称c 为这个函数的零点.若关于x 的二次函数y =-x 2-10x +m(m≠0)有两个不相等的零点x 1,x 2(x 1<x 2),关于x 的方程x 2+10x -m -2=0有两个不相等的非零实数根x 3,x 4(x 3<x 4),则下列关系式一定正确的是( A )A .0<x 1x 3<1 B.x 1x 3>1 C .0<x 2x 4<1 D.x 2x 4>1二、阅读理解题1.阅读理解:已知两点M(x 1,y 1),N(x 2,y 2),则线段MN 的中点K(x ,y)的坐标公式为:x =x 1+x 22,y =y 1+y 22.如图,已知点O 为坐标原点,点A(-3,0),⊕O 经过点A ,点B 为弦PA 的中点.若点P(a ,b),则有a ,b 满足等式:a 2+b 2=9.设B(m ,n),则m ,n 满足的等式是( )A .m 2+n 2=9 B.922322=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-n mC .(2m +3)2+(2n)2=3D .(2m +3)2+4n 2=9 2.已知点P(x 0,y 0)到直线y =kx +b 的距离可表示为d =||kx 0+b -y 01+k 2,例如:点(0,1)到直线y =2x +6的距离d =||2×0+6-11+22= 5.据此进一步可得两条平行线y =x 和y =x -4之间的距离为________.3.阅读材料:设a→=(x 1,y 1),b→=(x 2,y 2),如果a→⊕b→,则x 1·y 2=x 2·y 1.根据该材料填空,已知a→=(4,3),b→=(8,m),且a→⊕b→,则m =________. 4.阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Nplcr ,1550-1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr ,1707-1783年)才发现指数与对数之间的联系.对数的定义:一般地,若a x =N(a >0且a≠1),那么x 叫做以a 为底N 的对数,记作x =log a N ,比如指数式24=16可以转化为对数式4=log 216,对数式2=log 525可以转化为指数式52=25.我们根据对数的定义可得到对数的一个性质:log a (M·N)=log a M +log a N(a >0,a≠1,M >0,N >0),理由如下: 设log a M =m ,log a N =n ,则M =a m ,N =a n , ⊕M·N =a m ·a n =a m+n,由对数的定义得m +n =log a (M·N) 又⊕m +n =log a M +log a N , ⊕log a (M·N)=log a M +log a N. 根据阅读材料,解决以下问题:(1)将指数式34=81转化为对数式___________________________________;(2)log a MN =__________.(a >0,a≠1,M >0,N >0) (3)拓展运用:计算log 69+log 68-log 62=________. 5.阅读下面的材料:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为第一项,记为a 1,排在第二位的数称为第二项,记为a 2,依次类推,排在第n 位的数称为第n 项,记为a n .所以,数列的一般形式可以写成:a 1,a 2,a 3,…,a n ,….一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差通常用d 表示.如:数列1,3,5,7,…为等差数列,其中a 1=1,a 2=3,公差为d =2.根据以上材料,解答下列问题:(1)等差数列5,10,15,…的公差d 为________,第5项是________.(2)如果一个数列a 1,a 2,a 3,…,a n …,是等差数列,且公差为d ,那么根据定义可得到:a 2-a 1=d ,a 3-a 2=d ,a 4-a 3=d ,…,a n -a n -1=d ,….所以 a 2=a 1+da 3=a 2+d =(a 1+d)+d =a 1+2d , a 4=a 3+d =(a 1+2d)+d =a 1+3d , ……由此,请你填空完成等差数列的通项公式: a n =a 1+(________)d.(3)-4041是等差数列-5,-7,-9…的第________项. 6.阅读下面的材料:如果函数y =f(x)满足:对于自变量x 的取值范围内的任意x 1,x 2, (1)若x 1<x 2,都有f(x 1)<f(x 2),则称f(x)是增函数; (2)若x 1<x 2,都有f(x 1)>f(x 2),则称f(x)是减函数. 例题:证明函数f(x)=6x (x >0)是减函数. 证明:设0<x 1<x 2,f(x 1)-f(x 2)=6x 1-6x 2=6x 2-6x 1x 1x 2=6(x 2-x 1)x 1x 2. ⊕0<x 1<x 2,⊕x 2-x 1>0,x 1x 2>0.⊕6(x 2-x 1)x 1x 2>0.即f(x 1)-f(x 2)>0. ⊕f(x 1)>f(x 2).⊕函数f(x)=6x (x >0)是减函数. 根据以上材料,解答下面的问题: 已知函数f(x)=1x2+x(x <0),f(-1)=1(-1)2+(-1)=0,f(-2)=1(-2)2+(-2)=-74. (1)计算:f(-3)=________,f(-4)=________;(2)猜想:函数f(x)=1x 2+x(x <0)是________函数(填“增”或“减”).参考答案一 1.2 2.C 3.1.14.解:(1)(-2)※3=(-2)2×3-(-2)×3-33=43+23-33=3 3.(2)∵3※m ≥-6,∴32·m -3m -3m ≥-6. 解得:m ≥-2.将解集表示在数轴上如下:5.710 6.B 7.B 8.A二 1.D 2.22 3.6 4.(1)4=log 381(或log 381=4) (2)log a M -log a N (3)2 5.(1)5 25 (2)n -1 (3)2019 6.(1)-269 -6316 (2)增。
中考数学总复习训练 阅读理解问题(含解析)

阅读理解问题1.一个平面封闭图形内(含边界)任意两点距离的最大值称为该图形的“直径”,封闭图形的周长与直径之比称为图形的“周率”,下面四个平面图形(依次为正三角形、正方形、正六边形、圆)的周率从左到右依次记为a1,a2,a3,a4,则下列关系中正确的是()A.a4>a2>a1B.a4>a3>a2C.a1>a2>a3D.a2>a3>a42.阅读下列文字与例题将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:(1)am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n)(2)x2﹣y2﹣2y﹣1=x2﹣(y2+2y+1)=x2﹣(y+1)2=(x+y+1)(x﹣y﹣1)试用上述方法分解因式a2+2ab+ac+bc+b2= .3.定义新运算“⊗”,,则12⊗(﹣1)= .4.如图,正方形ABCD和正方形EFGH的边长分别为2和,对角线BD、FH都在直线L上,O1、O2分别是正方形的中心,线段O1O2的长叫做两个正方形的中心距.当中心O2在直线L上平移时,正方形EFGH也随平移,在平移时正方形EFGH的形状、大小没有改变.(1)计算:O1D= ,O2F= .(2)当中心O2在直线L上平移到两个正方形只有一个公共点时,中心距O1O2= .(3)随着中心O2在直线L上的平移,两个正方形的公共点的个数还有哪些变化?并求出相对应的中心距的值或取值范围(不必写出计算过程).5.数学的美无处不在.数学家们研究发现,弹拨琴弦发出声音的音调高低,取决于弦的长度,绷得一样紧的几根弦,如果长度的比能够表示成整数的比,发出的声音就比较和谐.例如,三根弦长度之比是15:12:10,把它们绷得一样紧,用同样的力弹拨,它们将分别发出很调和的乐声do、mi、so,研究15、12、10这三个数的倒数发现:.我们称15、12、10这三个数为一组调和数.现有一组调和数:x,5,3(x>5),则x的值是.6.若自然数n使得作竖式加法n+(n+1)+(n+2)均不产生进位现象,则称n为“可连数”,例如32是“可连数”,因为32+33+34不产生进位现象;23不是“可连数”,因为23+24+25产生了进位现象,那么小于200的“可连数”的个数为.7.我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2,若x,y均为整数,且满足1<<3,则x+y的值是.8.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+ =(+ )2;(3)若a+4=,且a、m、n均为正整数,求a的值?9.先阅读下列材料,然后解答问题:材料1:从三张不同的卡片中选出两张排成一列,有6种不同的排法,抽象成数学问题就是从3个不同的元素中选取2个元素的排列,排列数记为A32=3×2=6.一般地,从n个不同的元素中选取m个元素的排列数记作A n m.A n m=n(n﹣1)(n﹣2)(n﹣3)…(n ﹣m+1)(m≤n)例:从5个不同的元素中选取3个元素排成一列的排列数为:A53=5×4×3=60.材料2:从三张不同的卡片中选取两张,有3种不同的选法,抽象成数学问题就是从3个元素中选取2个元素的组合,组合数为.一般地,从n个不同的元素中取出m个元素的排列数记作A n m,A n m=n(n﹣1)(n﹣2)(n﹣3)…(n﹣m+1)(m≤n)例:从6个不同的元素选3个元素的组合数为:.问:(1)从某个学习小组8人中选取3人参加活动,有种不同的选法;(2)从7个人中选取4人,排成一列,有种不同的排法.10.我们把对称中心重合,四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等.一条直线l与方形环的边线有四个交点M、M′、N′、N.小明在探究线段MM′与N′N 的数量关系时,从点M′、N′向对边作垂线段M′E、N′F,利用三角形全等、相似及锐角三角函数等相关知识解决了问题.请你参考小明的思路解答下列问题:(1)当直线l与方形环的对边相交时,如图1,直线l分别交AD、A′D′、B′C′、BC于M、M′、N′、N,小明发现MM′与N′N相等,请你帮他说明理由;(2)当直线l与方形环的邻边相交时,如图2,l分别交AD、A′D′、D′C′、DC于M、M′、N′、N,l与DC的夹角为α,你认为MM′与N′N还相等吗?若相等,说明理由;若不相等,求出的值(用含α的三角函数表示).阅读理解问题参考答案与试题解析1.一个平面封闭图形内(含边界)任意两点距离的最大值称为该图形的“直径”,封闭图形的周长与直径之比称为图形的“周率”,下面四个平面图形(依次为正三角形、正方形、正六边形、圆)的周率从左到右依次记为a1,a2,a3,a4,则下列关系中正确的是()A.a4>a2>a1B.a4>a3>a2C.a1>a2>a3D.a2>a3>a4【考点】正多边形和圆;等边三角形的判定与性质;多边形内角与外角;平行四边形的判定与性质.【专题】计算题;压轴题.【分析】设等边三角形的边长是a,求出等边三角形的周长,即可求出等边三角形的周率a1;设正方形的边长是x,根据勾股定理求出对角线的长,即可求出周率;设正六边形的边长是b,过F作FQ∥AB交BE于Q,根据等边三角形的性质和平行四边形的性质求出直径,即可求出正六边形的周率a3;求出圆的周长和直径即可求出圆的周率,比较即可得到答案.【解答】解:设等边三角形的边长是a,则等边三角形的周率a1==3设正方形的边长是x,由勾股定理得:对角线是x,则正方形的周率是a2==2≈2.828,设正六边形的边长是b,过F作FQ∥AB交BE于Q,得到平行四边形ABQF和等边三角形EFQ,直径是b+b=2b,∴正六边形的周率是a3==3,圆的周率是a4==π,∴a4>a3>a2.故选:B.【点评】本题主要考查对正多边形与圆,多边形的内角和定理,平行四边形的性质和判定,等边三角形的性质和判定等知识点的理解和掌握,理解题意并能根据性质进行计算是解此题的关键.2.阅读下列文字与例题将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:(1)am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n)(2)x2﹣y2﹣2y﹣1=x2﹣(y2+2y+1)=x2﹣(y+1)2=(x+y+1)(x﹣y﹣1)试用上述方法分解因式a2+2ab+ac+bc+b2= (a+b)(a+b+c).【考点】因式分解﹣分组分解法.【专题】压轴题;阅读型.【分析】首先进行合理分组,然后运用提公因式法和公式法进行因式分解.【解答】解:原式=(a2+2ab+b2)+(ac+bc)=(a+b)2+c(a+b)=(a+b)(a+b+c).故答案为(a+b)(a+b+c).【点评】此题考查了因式分解法,要能够熟练运用分组分解法、提公因式法和完全平方公式.3.定义新运算“⊗”,,则12⊗(﹣1)= 8 .【考点】代数式求值.【专题】压轴题;新定义.【分析】根据已知可将12⊗(﹣1)转换成a﹣4b的形式,然后将a、b的值代入计算即可.【解答】解:12⊗(﹣1)=×12﹣4×(﹣1)=8故答案为:8.【点评】本题主要考查代数式求值的方法:直接将已知代入代数式求值.4.如图,正方形ABCD和正方形EFGH的边长分别为2和,对角线BD、FH都在直线L上,O1、O2分别是正方形的中心,线段O1O2的长叫做两个正方形的中心距.当中心O2在直线L上平移时,正方形EFGH也随平移,在平移时正方形EFGH的形状、大小没有改变.(1)计算:O1D= 2 ,O2F= 1 .(2)当中心O2在直线L上平移到两个正方形只有一个公共点时,中心距O1O2= 3 .(3)随着中心O2在直线L上的平移,两个正方形的公共点的个数还有哪些变化?并求出相对应的中心距的值或取值范围(不必写出计算过程).【考点】四边形综合题.【分析】(1)根据正方形对角线是正方形边长的倍可得正方形的对角线长,除以2即为所求的线段的长;(2)此时中心距为(1)中所求的两条线段的和,若只有一个公共点,则点D与点F重合,由此可得出答案.(3)动手操作可得两个正方形的边长可能没有公共点,有1个公共点,2个公共点,或有无数个公共点,据此找到相应取值范围即可.【解答】解:(1)O1D=2×÷2=2;O2F=×÷2=1.故答案为:2,1;(2)点D、F重合时有一个公共点,O1O2=2+1=3.故答案为:3;(3)两个正方形的边长有两个公共点时,1<O1O2<3;无数个公共点时,O1O2=1;1个公共点时,O1O2=3;无公共点时,O1O2>3或0≤O1O2<1.【点评】考查正方形的动点问题;需掌握正方形的对角线与边长的数量关系;动手操作得到两正方形边长可能的情况是解决本题的主要方法.5.数学的美无处不在.数学家们研究发现,弹拨琴弦发出声音的音调高低,取决于弦的长度,绷得一样紧的几根弦,如果长度的比能够表示成整数的比,发出的声音就比较和谐.例如,三根弦长度之比是15:12:10,把它们绷得一样紧,用同样的力弹拨,它们将分别发出很调和的乐声do、mi、so,研究15、12、10这三个数的倒数发现:.我们称15、12、10这三个数为一组调和数.现有一组调和数:x,5,3(x>5),则x的值是15 .【考点】分式方程的应用.【专题】阅读型.【分析】题中给出了调和数的规律,可将x所在的那组调和数代入题中给出的规律里,然后列出方程求解.【解答】解:根据题意,得:.解得:x=15经检验:x=15为原方程的解.故答案为:15.【点评】此题主要考查了分式方程的应用,重点在于弄懂题意,准确地找出题目中所给的调和数的相等关系,这是列方程的依据.6.若自然数n使得作竖式加法n+(n+1)+(n+2)均不产生进位现象,则称n为“可连数”,例如32是“可连数”,因为32+33+34不产生进位现象;23不是“可连数”,因为23+24+25产生了进位现象,那么小于200的“可连数”的个数为24 .【考点】一元一次不等式的应用.【专题】压轴题.【分析】首先理解“可连数”的概念,再分别考虑个位、十位、百位满足的数,用排列组合的思想求解.【解答】解:个位需要满足:x+(x+1)+(x+2)<10,即x<,x可取0,1,2三个数.十位需要满足:y+y+y<10,即y<,y可取0,1,2,3四个数(假设0n就是n)因为是小于200的“可连数”,故百位需要满足:小于2,则z可取1一个数.则小于200的三位“可连数”共有的个数=4×3×1=12;小于200的二位“可连数”共有的个数=3×3=9;小于200的一位“可连数”共有的个数=3.故小于200的“可连数”共有的个数=12+9+3=24.【点评】解决问题的关键是读懂题意,依题意列出不等式进行求解,还要掌握排列组合的解法.7.我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2,若x,y均为整数,且满足1<<3,则x+y的值是±3 .【考点】一元一次不等式组的整数解.【专题】压轴题;新定义.【分析】先根据题意列出不等式,根据x的取值范围及x为整数求出x的值,再把x的值代入求出y的值即可.【解答】解:由题意得,1<1×4﹣xy<3,即1<4﹣xy<3,∴,∵x、y均为整数,∴xy为整数,∴xy=2,∴x=±1时,y=±2;x=±2时,y=±1;∴x+y=2+1=3或x+y=﹣2﹣1=﹣3.【点评】此题比较简单,解答此题的关键是根据题意列出不等式,根据x,y均为整数求出x、y的值即可.8.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a= m2+3n2,b= 2mn ;(2)利用所探索的结论,找一组正整数a、b、m、n填空: 4 + 2 =( 1 + 1 )2;(3)若a+4=,且a、m、n均为正整数,求a的值?【考点】二次根式的混合运算.【分析】(1)根据完全平方公式运算法则,即可得出a、b的表达式;(2)首先确定好m、n的正整数值,然后根据(1)的结论即可求出a、b的值;(3)根据题意,4=2mn,首先确定m、n的值,通过分析m=2,n=1或者m=1,n=2,然后即可确定好a的值.【解答】解:(1)∵a+b=,∴a+b=m2+3n2+2mn,∴a=m2+3n2,b=2mn.故答案为:m2+3n2,2mn.(2)设m=1,n=1,∴a=m2+3n2=4,b=2mn=2.故答案为4、2、1、1.(3)由题意,得:a=m2+3n2,b=2mn∵4=2mn,且m、n为正整数,∴m=2,n=1或者m=1,n=2,∴a=22+3×12=7,或a=12+3×22=13.【点评】本题主要考查二次根式的混合运算,完全平方公式,解题的关键在于熟练运算完全平方公式和二次根式的运算法则.9.先阅读下列材料,然后解答问题:材料1:从三张不同的卡片中选出两张排成一列,有6种不同的排法,抽象成数学问题就是从3个不同的元素中选取2个元素的排列,排列数记为A32=3×2=6.一般地,从n个不同的元素中选取m个元素的排列数记作A n m.A n m=n(n﹣1)(n﹣2)(n﹣3)…(n ﹣m+1)(m≤n)例:从5个不同的元素中选取3个元素排成一列的排列数为:A53=5×4×3=60.材料2:从三张不同的卡片中选取两张,有3种不同的选法,抽象成数学问题就是从3个元素中选取2个元素的组合,组合数为.一般地,从n个不同的元素中取出m个元素的排列数记作A n m,A n m=n(n﹣1)(n﹣2)(n﹣3)…(n﹣m+1)(m≤n)例:从6个不同的元素选3个元素的组合数为:.问:(1)从某个学习小组8人中选取3人参加活动,有56 种不同的选法;(2)从7个人中选取4人,排成一列,有840 种不同的排法.【考点】有理数的混合运算.【专题】压轴题;阅读型.【分析】(1)利用组合公式来计算;(2)都要利用排列公式来计算.【解答】解:(1)C83==56(种);(2)A74=7×6×5×4=840(种).【点评】本题为信息题,根据题中所给的排列组合公式求解.10.我们把对称中心重合,四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等.一条直线l与方形环的边线有四个交点M、M′、N′、N.小明在探究线段MM′与N′N 的数量关系时,从点M′、N′向对边作垂线段M′E、N′F,利用三角形全等、相似及锐角三角函数等相关知识解决了问题.请你参考小明的思路解答下列问题:(1)当直线l与方形环的对边相交时,如图1,直线l分别交AD、A′D′、B′C′、BC于M、M′、N′、N,小明发现MM′与N′N相等,请你帮他说明理由;(2)当直线l与方形环的邻边相交时,如图2,l分别交AD、A′D′、D′C′、DC于M、M′、N′、N,l与DC的夹角为α,你认为MM′与N′N还相等吗?若相等,说明理由;若不相等,求出的值(用含α的三角函数表示).【考点】四边形综合题.【分析】(1)证线段相等,可证线段所在的三角形全等.结合本题,证△MM′E≌△NN′F即可;(2)由于M′E∥CD,则∠EM′M=∠FNN′=α,易证得△FNN′∽△EM′M,那么MM′:NN′=EM′:FN;而EM′=FN′,则比例式可化为: ==tanα,由此可知:当α=45°时,MM′=NN′;当α≠45°时,MM′≠NN′.【解答】解(1)在方形环中,∵M′E⊥AD,N′F⊥BC,AD∥BC,在△MM′E与△NN′F中,,∴△MM′E≌△NN′F(AAS).∴MM′=N′N;(2)法一∵∠NFN′=∠MEM′=90°,∠FNN′=∠EM′M=α,∴△NFN′∽△M′EM,∴=.∵M′E=N′F,∴==tanα(或).①当α=45°时,tan α=1,则MM′=NN′;②当α≠45°时,MM′≠NN′,则=tanα(或).法二在方形环中,∠D=90°.∵M′E⊥AD,N′F⊥CD,∴M′E∥DC,N′F=M′E.∴∠MM′E=∠N′NF=α.在Rt△NN′F与Rt△MM′E中,sinα=,cosα=,即=tanα(或).①当α=45°时,MM′=NN′;②当α≠45°时,MM′≠NN′,则=tanα(或).【点评】此题主要考查了相似三角形、全等三角形的判定和性质以及解直角三角形的应用等知识.。
2021年九年级数学重庆中考23题阅读理解材料题专题(2)(无答案)

2021重庆年中考23阅读理解题材料题专题(2)1(巴蜀2021级初三上第一次月考)对于各位数字都不为0 的两位数m 和三位数n ,将m 中的任意一个数字作为一个新的两位数的十位数字,将n 的任意一个数字作为新的两位数的个位数字,按照这个方式产生的所有新的两位数的和几位F (m,n ),例如:F (12,345)=13+14+15+23+24+25=114.(1)填空:F (13,579)=(2)求证:当n 能被3整除,F (m ,n )一定能被6整除;2(重庆两江育才2021级九上第一次月考)对任意一个四位数n ,将这个四位数n 千位数字与十位数字对调,百位上数字与个位上数字对调后可以得到新的四位数m ,记F (n )=99n m -,例如n=1423,对调千位数字与十位数字及百位上数字与个位数字得到2314,所以F (n )=14232314=-999-,如果四位数n 满足千位数字与百位数字的和等于十位数字与个位数字的和,则称这个数为“平衡数”,例如:1423,因为1+4=2+3,多以1423是一个平衡数.(1)请计算F (8062),并证明:对于任意一个四位数n ,都有F (n )为整数;(2)若一个“平衡数”N 的十位数比百位数字的2倍少1,且这个“平衡数”能被同时被3和11整除,求F (N )的最小值。
3(重庆育才2021级九上第二次定时训练)中国古贤常说万物皆自然,而古希腊学者说万物皆数,小学我们就接触了自然数,在数得学习过程中,我们会对其中一些具有某些特性的自然数进行研究,比如奇数、偶数、质数、合数等,今天我们来研究另外一种特殊的自然数——“欢喜数”定义:对于一个各位不为0的自然数,如果它正好等于各个数为数字的和的整数倍,我们就说这个自然数是一个“欢喜数”,例如:24是一个欢喜数,因为24=4×(2+4);125不是一个“欢喜数”因为1+2+5=8,125不是8的整数倍.(1)判断28和135是否是“欢喜数”?请说明理由;(2)有一类“欢喜数”,它等于各位数数字之和的4倍,求所有这种“欢喜数”。
中考数学专题复习2:阅读理解题

中考数学专题复习2:阅读理解题Ⅰ、综合问题精讲 :阅读理解型问题以内容丰富、构思新颖别致、题样多变为特点.知识的覆盖面较大,它可以是阅读课本原文,也可以是设计一个新的数学情境,让学生在阅读的基础上,理解其中的内容、方法和思想,然后在把握本质,理解实质的基础上作出回答.这类问题 的主要题型有:阅读特殊范例,推出一般结论;阅读解题过程,总结解题思路和方法;阅读新知识,研究新问题等.这类试题要求考生能透彻理解课本中的所学内容,善于总结解题规律,并能准确阐述自己的思想和观点,考查学生对数学知识的理解水平、数学方法的运用水平及分析推理能力、数据处理能力、文字概括能力、书面表达能力、随机应变能力和知识的迁移能力等.因此,在平时的学习和复习中应透彻理解所学内容.搞清楚知识的来龙去脉,不仅要学会数学知识,更要掌握在研究知识的过程中体现出的数学思想和方法. Ⅱ、典型例题剖析【例1】(2005,模拟,9分)如图 2-7-1所示,正方形ABCD 和正方形EFGH 的边长分别为2 2 和2 ,对角线BD 、FH 都在直线l 上,O 1、O 2分别是正方形的中心,线段O 1O 2的长叫做两个正方形的中心距.当中心O 在直线 l 上平移时,正方形 EFH 也随之平移,在平移时正方形EFGH 的形状、大小没有改变.(1)计算:O 1D=_______,O 2 F=______;(2)当中心O 2在直线 l 上平移到两个正方形只有一个公共点时,中心距O 1 O 2 =_________.(3)随着中心 O 2在直线 l 上的平移,两个正方形的公共点的个数还有哪些变化?并求出相对应的中心距的值或取值范围.(不必写出计算过程)解:(1)O 1D=2,O 2 F=1;(2)O 1 O 2 =3;(2)当O 1 O 2>3或0≤O 1 O 2<1时,两个正方形无公共点;当O 1 O 2=1时,两个正方形有无数个公共点;当1<O 1 O 2<3时,两个正方形有2个公共点.点拨:本题实际上考查的知识点是“两圆的位置关系”,但形式有所变化.因此,可以再次经历探索两个圆之间的位置关系,认真分析并总结两圆五种位置关系所对应的圆心距d 与半径R 和r 的数量关系,五种位置关系主要由两个因素确定:①公共点的个 数;②一个圆上的点在另一个圆的外部还是内部,按这两个因素为线索来探究位置关系.然后,把这种利用平移实验直观探索方法迁移到研究“两个正方形的位置关系”上来.【例2】(2005,内江,9分)阅读材料,大数学家高斯在上学读书时曾经研究过这样一个问题:1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+()121+=n n n ,其中n是正整数。
中考数学复习攻略 专题2 阅读理解与类比推理(含答案)

专题二 阅读理解与类比推理两类事物具有相同的结构、特征,当我们了解其中一类事物的某些属性后,往往可去认识、猜测另一类事物是否也有类似的属性,这种思考问题的方法,称作类比.类比和归纳一样,也是科学研究中常用的方法.阅读理解型问题一般篇幅比较长,由“阅读”和“问题”两部分构成,其阅读部分往往为考生提供一段自学材料,其内容多以“定义一个新概念(法则),或展示一个解题过程,或给出一种新颖的解题方法”为主.阅读理解型问题按解题方法不同在百色中考考查的题型可能有:(1)新定义概念或法则;(2)新知模仿;(3)迁移探究与应用.解答阅读理解型问题的基本模式:阅读→理解→应用,即重点是阅读,难点是理解,关键是应用.一般有以下几个步骤:(1)阅读给定材料,提取有用信息;(2)分析、归纳信息,建立数学模型;(3)解决数学模型,回顾检查.在解题过程中要避免以下几个问题:(1)缺乏仔细审题意识,审题片面;(2)受思维定式影响,用“想当然”代替现实的片面意识;(3)忽略题中关键词语、条件,理解题意有偏差;(4)缺乏回顾反思意识.中考重难点突破新定义概念或法则新定义概念或法则类以纯文字、符号或图形的形式定义一种全新的概念、公式或法则等,解答时要在阅读理解的基础上解答问题.解答这类问题时,要善于挖掘定义的内涵和本质,要能够用已学的知识对新定义进行合理解释,进而将陌生的定义转化为熟悉的已学知识去理解和解答.【例1】对于两个非零实数x ,y ,定义一种新的运算:x *y =a x +by.若1*(-1)=2,则(-2)*2的值是__-1__.【解析】所给新定义的运算中,有a ,b 两个字母,而题中只给了1*(-1)=2一个条件,就不能把a ,b 两个值都求出来,但能求得a 与b 的数量关系,将a 与b 的数量等式代入到(-2)*2中即可得出结果.【例2】对于实数a ,b ,我们定义符号max{a ,b }的意义为:当a ≥b 时,max{a ,b }=a ;当a <b 时,max{a ,b }=b .例如,max{4,-2}=4,max{3,3}=3.若关于x 的函数为y =max{x +3,-x +1},则该函数的最小值是( B )A .0B .2C .3D .4【解析】可分x ≥-1和x <-1两种情况进行讨论.①当x +3≥-x +1,即x ≥-1时,y =x +3,此时y 最小值=2;②当x +3<-x +1,即x <-1时,y =-x +1,此时y >2.∴y 最小值=2.也可以通过图象很直观地求出最小值(如图,该函数图象为实线部分),即为直线y =x +3与直线y =-x +1的交点的纵坐标.1.(2021·包头中考)定义新运算“⊗”,规定:a ⊗b =a -2b .若关于x 的不等式x ⊗m >3的解集为x >-1,则m 的值是( B )A .-1B .-2C .1D .2 2.(2018·百色中考)对任意实数a ,b 定义运算“∅”:a ∅b =⎩⎪⎨⎪⎧a (a >b ),b (a ≤b ), 则函数y =x 2∅(2-x )的最小值是( C )A .-1B .0C .1D .4新知模仿新知模仿类以范例的形式给出,并在求解的过程中暗示解决问题的思路和技巧,再以此为载体设置类似的问题.解决这类问题的常用方法是类比、模仿和转化,主要是通过对数学公式、法则、方法和数学思想的准确掌握,运用其进行解答问题.【例3】(2017·百色中考)阅读理解:用“十字相乘法”分解因式2x 2-x -3的方法. (1)二次项系数2=1×2;(2)常数项-3=-1×3=1×(-3),验算:“交叉相乘之和”;(3)发现第③个“交叉相乘之和”的结果1×(-3)+2×1=-1,等于一次项系数-1. 即(x +1)(2x -3)=2x 2-3x +2x -3=2x 2-x -3,则2x 2-x -3=(x +1)(2x -3).像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法.仿照以上方法,分解因式:3x 2+5x -12=__(x +3)(3x -4)__.【解析】如图,验算:1×(-4)+3×3=5,根据“十字相乘法”分解因式得出3x 2+5x -12=(x +3)(3x -4)即可.3.(2019·百色中考)阅读理解:已知两点M (x 1,y 1),N (x 2,y 2),则线段MN 的中点K (x ,y )的坐标公式为:x =x 1+x 22 ,y =y 1+y 22.如图,已知点O 为坐标原点,点A (-3,0),⊙O 经过点A ,点B 为弦P A 的中点.若点P (a ,b ),则有a ,b 满足等式:a 2+b 2=9.设B (m ,n ),则m ,n 满足的等式是( D )A .m 2+n 2=9B .⎝⎛⎭⎫m -32 2+⎝⎛⎭⎫n 2 2=9 C .(2m +3)2+(2n )2=3 D .(2m +3)2+4n 2=9 迁移探究与应用迁移探究与应用类,即阅读新问题并运用新知识探究问题或解决问题.解答这类题的关键是认真阅读其内容,理解其实质,把握其方法、规律,然后加以解决.【例4】(2018·百色一模)材料:对于式子2+31+x 2,利用换元法,令t =1+x2,y =3t .则由于t =1+x 2≥1,所以反比例函数y =3t 有最大值,且为3.因此分式2+31+x 2的最大值为5.根据上述材料,解决下列问题:当x 的值变化时,分式x 2-2x +6x 2-2x +3的最大(或最小)值为__2.5__.【解析】根据题意将分式变形,即可确定出最大值或最小值.4.在Rt △ABC 中,以下是小亮探究a sin A 与bsin B之间关系的方法(如图①):∵sin A =a c ,sin B =b c ,∴c =a sin A ,c =bsin B .∴a sin A =b sin B. 根据你掌握的三角函数知识,在图②的锐角△ABC 中,探究 a sin A ,b sin B ,c sin C 之间的大小关系是__a sin A=b sin B =csin C __(用“>”“<”或“=”连起来). 5.(2021·广东中考)我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a ,b ,c ,记p =a +b +c2,则其面积S =p (p -a )(p -b )(p -c ) .这个公式也被称为海伦-秦九韶公式.若p =5,c =4,则此三角形面积的最大值为( C )A .5B .4C .25D .5中考专题过关1.(2021·张家界中考)对于实数a ,b 定义运算“☆”如下:a ☆b =ab 2-ab ,例如3☆2=3×22-3×2=6,则方程1☆x =2的根的情况为(D)A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根2.我们根据指数运算,得出了一种新的运算,如下表是两种运算对应关系的一组实例.指数运算 21=2 22=4 23=8 … 新运算 log 22=1 log 24=2 log 28=3 … 指数运算 31=3 32=9 33=27 … 新运算 log 33=1 log 39=2 log 327=3 …①log 216=4;②log 525=5;③log 212=-1.其中正确的是( B )A .①②B .①③C .②③D .①②③3.(2021·甘肃中考)对于任意的有理数a ,b ,如果满足a 2 +b 3 =a +b2+3,那么我们称这一对数a ,b 为“相随数对”,记为(a ,b ).若(m ,n )是“相随数对”,则3m +2[3m +(2n -1)]等于( A )A .-2B .-1C .2D .3 4.(2020·百色二模)阅读材料:在平面直角坐标系xOy 中,点P (x 0,y 0)到直线Ax +By +C =0的距离公式为:d =|Ax 0+By 0+C |A 2+B 2.例如,求点P (1,3)到直线4x +3y -3=0的距离.解:由直线4x +3y -3=0知,A =4,B =3,C =-3,∴点P (1,3)到直线4x +3y -3=0的距离为d =|4×1+3×3-3|42+32=2.根据以上材料,求点P 1(0,2)到直线y =512 x -16的距离为____2__. 5.先阅读理解下面的例题,再按要求解答下列问题:解一元二次不等式:x 2-4>0.解:不等式x 2-4>0可化为 (x +2)(x -2)>0.由有理数的乘法法则“两数相乘,同号得正”,得 ①⎩⎪⎨⎪⎧x +2>0,x -2>0 或②⎩⎪⎨⎪⎧x +2<0,x -2<0.解不等式组①,得x >2;解不等式组②,得x <-2.∴(x +2)(x -2)>0的解集为x >2或x <-2,即x 2-4>0的解集为x >2或x <-2. (1)一元二次不等式x 2-16>0的解集为__x >4或x <-4__;(2)分式不等式x -1x -3>0的解集为__x >3或x <1__.6.阅读下列运算过程: 13 =33×3 =33 , 25 =255×5 =255 ,12+1 =1×(2-1)(2+1)(2-1)=2-12-1 =2 -1,13-2 =1×(3+2)(3-2)(3+2)=3+23-2 =3 +2 .数学上将这种把分母的根号去掉的过程称作“分母有理化”.通过分母有理化,可以把不是最简的二次根式化成最简二次根式.请参考上述方法,解决下列问题:(1)化简:26 =__63 __,25-3 =,1n +1+n=;(2)计算:11+3 +13+5 +15+7 +…+12 021+ 2 023=___ 2 023-12 ___.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学专题复习2:阅读理解题Ⅰ、综合问题精讲:阅读理解型问题以内容丰富、构思新颖别致、题样多变为特点.知识的覆盖面较大,它可以是阅读课本原文,也可以是设计一个新的数学情境,让学生在阅读的基础上,理解其中的内容、方法和思想,然后在把握本质,理解实质的基础上作出回答.这类问题的主要题型有:阅读特殊范例,推出一般结论;阅读解题过程,总结解题思路和方法;阅读新知识,研究新问题等.这类试题要求考生能透彻理解课本中的所学内容,善于总结解题规律,并能准确阐述自己的思想和观点,考查学生对数学知识的理解水平、数学方法的运用水平及分析推理能力、数据处理能力、文字概括能力、书面表达能力、随机应变能力和知识的迁移能力等.因此,在平时的学习和复习中应透彻理解所学内容.搞清楚知识的来龙去脉,不仅要学会数学知识,更要掌握在研究知识的过程中体现出的数学思想和方法.Ⅱ、典型例题剖析【例1】(,模拟,9分)如图 2-7-1所示,正方形ABCD和正方形EFGH的边长分别为2 2 和2 ,对角线BD、FH都在直线l上,O1、O2分别是正方形的中心,线段O1O2的长叫做两个正方形的中心距.当中心O在直线l上平移时,正方形 EFH也随之平移,在平移时正方形EFGH的形状、大小没有改变.(1)计算:O1D=_______,O2 F=______;(2)当中心O2在直线 l上平移到两个正方形只有一个公共点时,中心距O1 O2 =_________.(3)随着中心 O2在直线 l上的平移,两个正方形的公共点的个数还有哪些变化?并求出相对应的中心距的值或取值范围.(不必写出计算过程)解:(1)O1D=2,O2 F=1;(2)O1 O2 =3;(2)当O1 O2>3或0≤O1 O2<1时,两个正方形无公共点;当O1 O2=1时,两个正方形有无数个公共点;当1<O1 O2<3时,两个正方形有2个公共点.点拨:本题实际上考查的知识点是“两圆的位置关系”,但形式有所变化.因此,可以再次经历探索两个圆之间的位置关系,认真分析并总结两圆五种位置关系所对应的圆心距d与半径R和r的数量关系,五种位置关系主要由两个因素确定:①公共点的个数;②一个圆上的点在另一个圆的外部还是内部,按这两个因素为线索来探究位置关系.然后,把这种利用平移实验直观探索方法迁移到研究“两个正方形的位置关系”上来.【例2】(,内江,9分)阅读材料,大数学家高斯在上学读书时曾经研究过这样一个问题:1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+()121+=n n n ,其中n是正整数。
现在我们来研究一个类似的问题:1×2+2×3+…()1+n n =?观察下面三个特殊的等式:()2103213121⨯⨯-⨯⨯=⨯ ()3214323132⨯⨯-⨯⨯=⨯()4325433143⨯⨯-⨯⨯=⨯将这三个等式的两边相加,可以得到1×2+2×3+3×4=2054331=⨯⨯⨯读完这段材料,请你思考后回答:⑴ =⨯++⨯+⨯1011003221 ;⑵ ()()=++++⨯⨯+⨯⨯21432321n n n ;⑶ ()()=++++⨯⨯+⨯⨯21432321n n n ;(只需写出结果,不必写中间的过程)解:⑴343400(或10210110031⨯⨯⨯) ⑵()()2131++n n n ⑶()()()32141+++n n n n每相邻两个自然数相乘再求和时可以发现结果总是()()2131++n n n ,但当每相邻三个自然数相乘再求和时就成为()()()32141+++n n n n 了。
【例3】(,安徽课改,8分)下面是数学课堂的一个学习片断.阅读后,请回答下面的问题:学习等腰三角形有关内容后,张老师请同学们交流讨论这样一个问题:“已知等腰三角形ABC 的角A 等于30°,请你求出其余两角”.同学们经片刻的思考与交流后,李明同学举手讲:“其余两角是30°和120°”;王华同学说:“其余两角是75°和75°”.还有一些同学也提出了不同的看法….(1)假如你也在课堂中,你的意见如何?为什么?(2)通过上面数学问题的讨论,你有什么感受?(用一句话表示)(1)答:上述两同学回答的均不全面,应该是:其余两角的大小是75°和75°或30°和120°.理由如下:(i )当A ∠是顶角时,设底角是α.30+α+α=180∴, α=75.∴其余两角是75°和75°.(ii )当∠A 是底角时,设顶角是β,3030180++β=∴, 120β=.∴其余两角分别是0°和120°.(2)(感受中答有:“分类讨论”,“考虑问题要全面”等能体现分类讨论思想的给2分,回答出“积极发言”、“参与讨论”等与数学问题联系不紧密的语句给1分.)点拨:此题应树立分类讨论思想,考虑问题要全面.【例4】(,贵阳模拟),8分)阅读材料,解答问题:图2-7-2表示我国农村居民的小康生活水平实现程度.地处西部的某贫困县,农村人口约50万,年农村小康生活的综合实现程度才达到68%,即没有达到小康程度的人口约为(1-68 %)×50万= 16万.(1)假设该县计划在年的基础上,到年底,使没有达到小康程度的16万农村人口降至 10.24万,那么平均每年降低的百分率是多少?(2)如果该计划实现,年底该县农村小康进程接近图2-7-2中哪一年的水平?(假设该县人口2年内不变)解:(1)设平均每年降低的百分率为。
据题意,得 16(1-x )2 =10.24,(1-x )2 =0.64,(1-x )= ±0.8,x 1=1.8(不合题意,舍去),x 2=0.2.即平均每年降低的百分率是20%.(2)50-10.2450×100%=7 9.52%. 所以根据图2-7-2所示,如果该计划实现,年底该县农村小康进程接近1996年全国农村小康进程的水平.点拨:此题属于利用方程解决实际问题,但和原来的实际应用问题的情境不同,需在理解材料的基础上进行.【例5】(,山西)已知p 2-p -1=0,1-q -q 2=0,且pq ≠1,求1pq q+的值. 解:由p 2-p -1=0及1-q -q 2=0,可知p ≠0,q ≠0又∵pq ≠1,∴1p q ≠∴1-q-q 2=0可变形为21110q q ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭的特征 所以p 与1q 是方程x 2- x -1=0的两个不相等的实数根则111,1pq p q q++=∴=根据阅读材料所提供的方法,完成下面的解答.已知:2m 2-5m -1=0,21520n n +-=,且m ≠n 求:11m n +的值.解:由2m 2-5m -1=0知m ≠0,∵m ≠n ,∴11m n≠ 得21520m m+-= 根据2215152020m m n n +-=+-=与的特征 ∴11m n 与是方程x 2+5 x -2=0的两个不相等的实数根 ∴115m n+=-Ⅲ、综合巩固练习(80分 80分钟)1.(l0分)阅读以下材料并填空:平面上有n 个点(n ≥2)且任意三个点不在同一直线上,过这些点作直线,一共能作出多少条不同的直线下①分析:当仅有两个点时,可连成1条直线;当有3个点时,可连成动条直线;当有4个点时,可连成6条直线;当有5个点时,可连成10条直线……②归纳:考察点的个数n 和可连成直线的条数SJ 发现如下表所示:③推理:平面上有n 个点,两点确定一条直线,取第一个点A 有n 种取法,取第二个点B有(n -1)种取法,所以一共可连成n (n -1)条直线.但AB 与BA 是同一条直线,故应除以2,即S n =(1)2n n - ④结论:S n =(1)2n n - 试探究以下问题:平面上有n 个点(n ≥3)个点,任意三个点不在同一直线上,过任意三点作三角形,一共能作出多少不同的三角形?⑴ 分析:当仅有3个点时,可作_______个三角形;当有4个点时,可作_______个三角形;当有5个点时,可作_______个三角形……⑵ 归纳:考察点的个数n 和可作出的三角形的个数Sn 发现:⑶ 推理:⑷ 结论:2.(10分)如图2-7-3所示,这些等腰三角形与正三角形的形状有差异,我们把它与正三角形的接近程度称为“正度”,在研究“正度”时,应保证相似三角形的“正度”相等.设等腰三角形的底和腰分别为儿为,底角和顶角分别为以尽要求“正度”的值是非负数.同学甲认为:可用式子a b -来表示“正度”,a b -的值越小,表示等腰三角形越接近正三角形;同学乙认为:可用式子αβ-来表示“正度”,αβ-的值越小,表示等腰三角形越接近正三角形.探究:⑴ 他们的方案哪个较为合理,为什么?⑵ 对你认为不够合理的方案,请加以改进(给出式子即可)⑶ 请再给出一种衡量“正度”的表达式.3.(10分)如图2-7-4所示,甲、乙两辆大型货车于下午2:00同时从A 地出发驶往P 市,甲车沿一条公路向北偏东60o 方向行驶,直达P 市,其速度为30千米/时;乙车先沿一条公路向正东方向行驶半小时后到达B 地,卸下部分货物,再沿一条通向东北方向的公路驶往P 市,其速度始终为40千米/时.⑴ 设出发后经过t 小时,甲车与P 市的距离为s 千米,求s 与t 之间的函数表达式,并写出自变量t 的取值范围.⑵ 已知在P 市新建的移动通讯接收发射塔,其信号覆盖面积只可达P 市周围方圆30千米的区域(包括边缘地带人除此之外,该地区无其他发射塔.故甲、乙两车司机只能靠P 市发射塔进行手机通话联系,问甲、乙两车司机从什么时刻开始可取得联系(精确到分钟)4、(10分)阅读下面材料:在计算3+5+ 7+ 9 + 11+13 +15+17+19+21时,我们发现,从第一个数开始,以后 的每个数与它的前一个数的差都是一个相同的定值,具有这种规律的一列数,除了直接相加外,我们还可以用公式(1)2n n S na d -=+⨯来计算它们的和(公式中的n 表示数的个数,a 表示第一个数的值,d 表示这个差的定值),那么3+5+ 7+ 9 + 11+13 +15+17+19+21=10(101)103.2-⨯+×2=120. 用上面的知识解决下列问题:为了保护长江,减少水土流失,我市某县决定对原有的坡荒地进行退耕还林,从1995年起在坡荒地上植树造林,以后每年又比上一年多植相同面积的树木改造坡荒地,由于每年因自然灾害,树木成活率,人为因素等的影响,都有相当数量的新坡荒地产生,下表为1995、1996、1997三年的坡荒地面积和植树的面积的统计数据,假设坡荒地全部种上树后,不再水土流失形成新的坡荒地.问到哪一年,可以将全县的所有坡荒地全部种上树木?8.(10分)如果两个三角形不仅是相似三角形,而且每组对应点所在的直线都经过同一个点,那么这两个三角形叫作位似三角形.它们的相似比又称为位似比,这个点叫做位似中心.利用三角形的位似可以将一个三角形缩小或放大.⑴ 选择;如图2-7-5⑴所示,点O 是等边三角形PQR 的中心,P ′、Q ′、R ′分别是OP 、OQ 、OR 的中点.则△P ′Q ′R ′与△PQR 是位似三角形.此时,△P ′Q ′R ′与△PQR 的位似比、位似中心分别为( )A .2,点PB .12 ,点PC .2,点OD .12,点O ⑵ 如图2-7-5⑵所示,用下面的方法可以画面AOB 的内接等边三角形.阅读后证明相应问题:画法:①在△AOB 内画等边三角形CDE ,使点C 在OA 上,点D 在OB 上; ②连接OE 并延长,交AB 于点E ′,过点E ′作E ′C ′∥EC ,交OA 于点C ′,作E ′D ′∥ED ,交OB 于点D ′;③连接C ′D ′,则ΔC ′D ′E ′是△AOB 的内接三角形, 求证:△C ′D ′E ′是等边三角形.。