天津市高考数学试卷(理科)详细解析版

合集下载

全国高考理科数学考试试卷(天津)参考答案

全国高考理科数学考试试卷(天津)参考答案

高考理科数学考试真题(天津卷)参考答案(1).A 【解析】73472525134343425i i ii i ii i.(2).B 【解析】作出可行域,如图结合图象可知,当目标函数通过点1,1时,z 取得最小值3.(3).B 【解析】1i时,3T ,3S ;2i 时,5T ,15S ; 3i时,7T,105S,4i输出105S .(4).D 【解析】240x,解得2x或2x .由复合函数的单调性知f x 的单调递增区间为,2.(5).A 【解析】依题意得22225bacc a b ,所以25a,220b ,双曲线的方程为221520x y .(6).D 【解析】由弦切角定理得FBDEAC BAE ,又BFD AFB ,所以BFD ∽AFB ,所以BFBDAF AB,即AF BD AB BF ,排除A 、C .又FBD EAC DBC ,排除B .(7).C 【解析】设f xx x ,则220,0,x xx x f x ,所以f x 是R 上的增函数,“a b ”是“a ab b ”的充要条件.(8).C 【解析】因为120BAD,所以cos1202AB AD AB AD .因为BEBC ,所以AEABAD ,AFABAD .因为1AE AF ,所以1ABAD AB AD ,即3222①同理可得23②,①+②得56. (9).60【解析】应从一年级抽取4604556300名.(10).203【解析】该几何体的体积为2120422333m . (11).12【解析】依题意得2214S S S ,所以21112146a a a ,解得112a . (12).14【解析】因为2sin 3sin B C ,所以23b c ,解得32c b ,2a c .所以2221cos 24b c a Abc. (13).3【解析】圆的方程为2224x y ,直线为y a .因为AOB 是等边三角形,所以其中一个交点坐标为,3a ,代入圆的方程可得3a.(14).01a 或9a 【解析】解法一 显然0a .(ⅰ)当1ya x 与23yx x 相切时,1a ,此时10f x a x 恰有3个互异的实数根.(ⅱ)当直线1ya x 与函数23yx x 相 切时,9a ,此时10f x a x 恰有2个互异的实数根.结合图象可知01a 或9a.t解法二:显然1a,所以231x xax .令1t x ,则45a tt.因为,,444t t , 所以45,19,tt.结合图象可得01a 或9a .(15).【解析】(Ⅰ)由已知,有2133cos sin cos 3cos 22f xxx x x2133sin cos cos 2x x x133sin 21cos24x x13sin 2cos244x x1sin 223x .所以,f x 的最小正周期22T .(Ⅱ)因为f x 在区间,412上是减函数,在区间,124上是增函数.144f,1122f ,144f . 所以,函数f x 在闭区间,44上的最大值为14,最小值为12. (16).【解析】(Ⅰ)设“选出的3名同学来自互不相同的学院”为事件A ,则120337373104960C C C C P AC . 所以,选出的3名同学来自互不相同学院的概率为4960. 所以,f x 的最小正周期22T.(Ⅱ)随机变量X 的所有可能值为0,1,2,3.346310k kC C P x kC 0,1,2,3k .所以,随机变量X 的分布列是随机变量X 的数学期望1236210305E X . (17).【解析】(方法一)依题意,以点A 为原点建立空间直角坐标系(如图),可得1,0,0B ,2,2,0C ,0,2,0D ,0,0,2P .由E 为棱PC 的中点,得1,1,1E .(Ⅰ)向量0,1,1BE ,2,0,0DC ,故0BE DC . 所以,BE DC .(Ⅱ)向量1,2,0BD ,1,0,2PB.设,,nx y z 为平面PBD 的法向量,则0,0,n BD nPB即20,20.x y xz不妨令1y,可得2,1,1n 为平面PBD的一个法向量.于是有3cos ,62n BE n BEnBE. 所以,直线BE 与平面PBD 所成角的正弦值为3. (Ⅲ)向量1,2,0BC,2,2,2CP ,2,2,0AC,1,0,0AB .由点F 在棱PC 上,设CF CP ,01.故12,22,2BF BC CF BC CP.由BFAC ,得0BF AC,因此,2122220,解得34.即113,,222BF . 设1,,n x y z 为平面FAB 的法向量,则110,0,n AB n BF即0,1130.222xx y z不妨令1z,可得10,3,1n 为平面FAB 的一个法向量. 取平面ABP 的法向量20,1,0n ,则121211310cos ,101nn n n n n . 易知,二面角F AB P 是锐角,所以其余弦值为10. (方法二)(Ⅰ)如图,取PD 中点M ,连接EM ,AM . 由于,E M 分别为,PC PD 的中点, 故//EM DC ,且12EMDC ,又由已知,可得//EM AB 且EMAB ,故四边形ABEM为平行四边形,所以//BE AM . 因为PA 底面ABCD ,故PACD ,而CDDA ,从而CD平面PAD ,因为AM平面PAD ,于是CD AM ,又//BE AM ,所以BE CD .(Ⅱ)连接BM ,由(Ⅰ)有CD 平面PAD ,得CD PD ,而//EM CD ,故PD EM .又因为AD AP ,M 为PD 的中点,故PDAM ,可得PD BE ,所以PD平面BEM ,故平面BEM平面PBD .所以直线BE 在平面PBD 内的射影为直线BM ,而BE EM ,可得EBM 为锐角,故EBM 为直线BE 与平面PBD 所成的角. 依题意,有22PD,而M 为PD 中点,可得2AM ,进而2BE .故在直角三角形BEM 中,tan 2EM AB EBMBE BE ,因此3in s EMB. 所以,直线BE 与平面PBD 所成角的正弦值为3. (Ⅲ)如图,在PAC 中,过点F 作//FH PA 交AC 于点H .因为PA底面ABCD ,故FH底面ABCD ,从而FH AC .又BF AC ,得AC平面FHB ,因此AC BH . 在底面ABCD 内,可得3CHHA ,从而3CF FP .在平面PDC 内,作//FG DC交PD 于点G ,于是3DGGP .由于//DC AB ,故//GF AB ,所以,,,A B F G 四点共面. 由ABPA ,AB AD ,得AB平面PAD ,故AB AG .所以PAG 为二面角F ABP 的平面角.在PAG 中,2PA ,1242PG PD ,45APG ,由余弦定理可得10AG,3os 10c PAG . 所以,二面角F AB P .(18).【解析】(Ⅰ)设椭圆的右焦点2F 的坐标为,0c .由1232ABF F , 可得2223abc ,又222bac ,则2212c a. 所以,椭圆的离心率22e. 3c ,所以22223a c c ,解得2a c ,22e. (Ⅱ)由(Ⅰ)知222a c ,22bc .故椭圆方程为222212x y cc .设00,P x y .由1,0F c ,0,B c ,有100,F P x c y ,1,F Bc c .由已知,有110FP FB ,即000x c cy c.又0c,故有000x y c . ①又因为点P 在椭圆上,故22002212x y c c . ②由①和②可得200340x cx .而点P 不是椭圆的顶点,故043cx ,代入①得03cy ,即点P 的坐标为4,33c c . 设圆的圆心为11,T x y ,则1402323c x c ,12323c cy c ,进而圆的半径221150rx y cc . 设直线l 的斜率为k ,依题意,直线l 的方程为y kx .由l 11y r 2223351c c kc k , 整理得2810kk ,解得415k .所以,直线l 的斜率为415或415.(19).【解析】(Ⅰ)当2q,3n 时,0,1M ,12324,,1,2,3iA x xx x x M x i .可得,0,1,2,3,4,5,6,7A.(Ⅱ)由,s t A ,112n n s a a qa q ,112n n tb b qb q ,,i ia b M ,1,2,,i n 及nn a b ,可得11222111nn nnnn a b q a b q s ta b a b q21111nn q q qq q q11111nn q q q q10.所以,s t .(20).【解析】(Ⅰ)由x f xxae ,可得1x f xae .下面分两种情况讨论: (1)0a 时,0f x 在R 上恒成立,可得f x 在R 上单调递增,不合题意. (2)0a时,由0f x,得ln xa .当x 变化时,f x ,f x 的变化情况如下表:+ x这时,f x 的单调递增区间是,ln a ;单调递减区间是ln ,a .于是,“函数y f x 有两个零点”等价于如下条件同时成立: 1°ln 0fa;2°存在1,ln a s ,满足10f s ;3°存在2ln ,a s ,满足20f s .由ln 0fa ,即ln 10a ,解得10ae ,而此时,取10s ,满足1,ln a s ,且10f s a ;取222ln s a a,满足2ln ,a s ,且22222ln 0aaf s eeaa.所以,a 的取值范围是10,e .(Ⅱ)由0xf x xae ,有x x a e. 设xxg xe ,由1xxg x e ,知g x 在,1上单调递增,在1,上单调递减. 并且,当,0x 时,0g x ;当0,x 时,0g x .由已知,12,x x 满足1ag x ,2ag x . 由10,ae,及g x 的单调性,可得10,1x ,21,x .对于任意的1120,,a a e,设12a a ,121gga ,其中1201;122g ga ,其中121.因为g x 在0,1上单调递增,故由12a a ,即11gg,可得11;类似可得22.又由11,0,得222111.所以,21x x 随着a 的减小而增大. (Ⅲ)由11x x ae ,22x x ae ,可得11ln ln x ax ,22ln ln x ax .故221211ln ln lnx x x x x x . 设21x t x ,则1t ,且2121,ln ,x tx x x t 解得1ln 1tx t ,2ln 1t tx t .所以,121ln 1t t x x t . ①令1ln 1xx h xx ,1,x,则212ln 1xxx h xx .令12ln u x x xx ,得21x u x x. 当1,x时,0u x .因此,u x 在1,上单调递增,故对于任意的1,x ,10u xu ,由此可得0h x ,故h x 在1,上单调递增.因此,由①可得12x x 随着t 的增大而增大.而由(Ⅱ),t 随着a 的减小而增大,所以12x x 随着a 的减小而增大.。

天津高考理科数学试题及答案解析.docx

天津高考理科数学试题及答案解析.docx

2019年普通高等学校招生全国统一考试(天津卷)
数学(理工类)
本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3-5页。

答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!
第Ⅰ卷
注意事项:
1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考公式:。

普通高等学校招生全国统一考试天津卷—数学理解析版

普通高等学校招生全国统一考试天津卷—数学理解析版

普通高等学校招生全国统一考试天津卷—数学理解析版Last updated on the afternoon of January 3, 20212019普通高等学校招生全国统一考试(天津卷)—数学(理)解析版注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!无论是单选、多选还是论述题,最重要的就是看清题意。

在论述题中,问题大多具有委婉性,尤其是历年真题部分,在给考生较大发挥空间的同时也大大增加了考试难度。

考生要认真阅读题目中提供的有限材料,明确考察要点,最大限度的挖掘材料中的有效信息,建议考生答题时用笔将重点勾画出来,方便反复细读。

只有经过仔细推敲,揣摩命题老师的意图,积极联想知识点,分析答题角度,才能够将考点锁定,明确题意。

数学〔理科〕该套试卷整体上来说与往年相比,比较平稳,试题中没有偏题和怪题,在考查了基础知识的基础上,还考查了同学们灵活运用所学知识的解决问题的能力。

题目没有很多汉字的试题,都是比较简约型的。

但是不乏也有几道创新试题,像选择题的第8题,填空题的13题,解答题第20题,另外别的试题保持了往年的风格,入题简单,比较好下手,但是做出来并不是很容易。

整体上试题由梯度,由易到难,而且大部分试题适合同学们来解答表达了双基,考查了同学们的四大思想的运用,是一份比较好的试卷。

本试卷分为第I 卷〔选择题〉和第二卷(非选择题)两部分,共150分,考试用时120分钟第I 卷【一】选择题:在每题给出的四个选项中,只有一项为哪一项符合题目要求的. 〔1〕i 是虚数单位,复数7=3i z i-+= 〔A 〕2i + 〔B〕2i - 〔C〕2i -+ 〔D〕2i -- 1、B 【解析】7=3i z i -+=(7)(3)(3)(3)i i i i --+-=2173110i i ---=2i - 〔2〕设R ϕ∈,那么“=0ϕ”是“()=cos(+)f x x ϕ()x R ∈为偶函数”的〔A 〕充分而不必要条件〔B〕必要而不充分条件〔C〕充分必要条件〔D〕既不充分也不必要条件 2、A【命题意图】本试题主要考查了三角函数的奇偶性的判定以及充分条件与必要条件的判定.【解析】∵=0ϕ⇒()=cos(+)f x x ϕ()x R ∈为偶函数,反之不成立,∴“=0ϕ”是“()=cos(+)f x x ϕ()x R ∈为偶函数”的充分而不必要条件. 〔3〕阅读右边的程序框图,运行相应的程序,当输入x 的值为25-时,输出x 的值为〔A 〕1-〔B〕1〔C〕3〔D〕93、C【命题意图】本试题主要考查了算法框图的读取,并能根据已给的算法程序进行运算.【解析】根据图给的算法程序可知:第一次=4x ,第二次=1x ,那么输出=21+1=3x ⨯.〔4〕函数3()=2+2x f x x -在区间(0,1)内的零点个数是〔A 〕0〔B〕1〔C〕2〔D〕3 4、B【命题意图】本试题主要考查了函数与方程思想,函数的零点的概念,零点存在定理以及作图与用图的数学能力.【解析】解法1:因为(0)=1+02=1f --,3(1)=2+22=8f -,即(0)(1)<0f f ⋅且函数()f x 在(0,1)内连续不断,故()f x 在(0,1)内的零点个数是1.解法2:设1=2x y ,32=2y x -,在同一坐标系中作出两函数的图像如下图:可知B 正确. 〔5〕在251(2)x x-的二项展开式中,x 的系数为〔A 〕10〔B〕-10〔C〕40〔D〕-40 5、D【命题意图】本试题主要考查了二项式定理中的通项公式的运用,并借助于通项公式分析项的系数.【解析】∵25-1+15=(2)()r r r r T C x x -⋅-=5-10-352(1)r r r r C x -,∴103=1r -,即=3r ,∴x 的系数为40-.〔6〕在△ABC 中,内角A ,B ,C 所对的边分别是,,a b c ,8=5b c ,=2C B ,那么cosC=〔A 〕725〔B〕725-〔C〕725±〔D〕24256、A【命题意图】本试题主要考查了正弦定理、三角函数中的二倍角公式.考查学生分析、转化与计算等能力.【解析】∵8=5b c ,由正弦定理得8sin =5sin B C ,又∵=2C B ,∴8sin =5sin 2B B ,所以8sin =10sin cos B B B ,易知sin 0B ≠,∴4cos =5B ,2cos =cos 2=2cos 1C B B -=725.〔7〕△ABC 为等边三角形,=2AB ,设点P ,Q 满足=AP AB λ,=(1)AQ AC λ-,R λ∈,假设3=2BQ CP ⋅-,那么=λ〔A 〕127、A【命题意图】本试题以等边三角形为载体,主要考查了向量加减法的几何意义,平面向量基本定理,共线向量定理及其数量积的综合运用.【解析】∵=BQ AQ AB -=(1)AC AB λ--,=CP AP AC -=AB AC λ-, 又∵3=2BQ CP ⋅-,且||=||=2AB AC ,0<,>=60AB AC ,0=||||cos 60=2AB AC AB AC ⋅⋅,∴3[(1)]()=2AC AB AB AC λλ----,2223||+(1)+(1)||=2AB AB AC AC λλλλ--⋅-,所以234+2(1)+4(1)=2λλλλ---,解得1=2λ.〔8〕设m ,n R ∈,假设直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x --相切,那么+m n 的取值范围是〔A〕[1〔B〕(,1[1+3,+)-∞∞〔C〕[2-〔D〕(,2[2+22,+)-∞-∞8、D【命题意图】本试题主要考查了直线与圆的位置关系,点到直线的距离公式,重要不等式,一元二次不等式的解法,并借助于直线与圆相切的几何性质求解的能力. 【解析】∵直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x --相切,∴圆心(1,1)到直线的距离为d ,所以21()2m n mn m n +=++≤,设=t m n +,那么21+14tt ≥,解得(,2[2+22,+)t ∈-∞-∞.【二】填空题:本大题共6小题,每题5分,共30分.〔9〕某地区有小学150所,中学75所,大学25所.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调査,应从小学中抽取所学校,中学中抽取所学校. 9、18,9【命题意图】本试题主要考查了统计中的分层抽样的概念以及样本获取的方法与计算.【解析】∵分层抽样也叫按比例抽样,由题知学校总数为250所, 所以应从小学中抽取15030=18250⨯,中学中抽取7530=9250⨯.〔10〕―个几何体的三视图如下图(单位:m ),那么该几何体的体积为3m . 10、18+9π【命题意图】本试题主要考查了简单组合体的三视图的画法与体积的计算以及空间想象能力.【解析】由三视图可该几何体为两个相切的球上方了一个长方体组成的组合体,所以其体积为:343=361+2()32V π⨯⨯⨯⨯=18+9π3m .〔11〕集合={||+2|<3}A x R x ∈,集合={|()(2)<0}B x R x m x ∈--,且=(1,)A B n -,那么=m ,=n . 11、1-,1【命题意图】本试题主要考查了集合的交集的运算及其运算性质,同时考查绝对值不等式与一元二次不等式的解法以及分类讨论思想.【解析】∵={||+2|<3}A x R x ∈={||5<<1}x x -,又∵=(1,)A B n -,画数轴可知=1m -,=1n .〔12〕己知抛物线的参数方程为2=2,=2,x pt y pt ⎧⎨⎩〔t 为参数〕,其中>0p ,焦点为F ,准线为l ,过抛物线上一点M 作的垂线,垂足为E ,假设||=||EF MF ,点M 的横坐标是3,那么=p .12、2【命题意图】本试题主要考查了参数方程及其参数的几何意义,抛物线的定义及其几何性质. 【解析】∵2=2,=2,x pt y pt ⎧⎨⎩可得抛物线的标准方程为2=2y px (>0)p ,∴焦点(,0)2p F ,∵点M 的横坐标是3,那么(3,M,所以点(,2pE -,222=()+(06)22p p EF p - 由抛物线得几何性质得=+32p MF ,∵=EF MF ,∴221+6=+3+94p p p p ,解得=2p . 〔13〕如图,AB 和AC 是圆的两条弦.过点B 作圆的切线与AC 的延长线相交于点D,过点C 作BD 的平行线与圆相交于点E,与AB 相交于点F ,=3AF ,=1FB ,3=2EF ,那么线段CD 的长为.13、43【命题意图】本试题主要考查了平面几何中直线与圆的位置关系,相交弦定理,切割线定理,相似三角形的概念、判定与性质.【解析】∵=3AF ,=1FB ,3=2EF ,由相交弦定理得=AF FB EF FC ⋅⋅,所以=2FC ,又∵BD ∥CE ,∴=AF FC AB BD ,4==23AB BD FC AF ⋅⨯=83,设=CD x ,那么=4AD x ,再由切割线定理得2=BD CD AD ⋅,即284=()3x x ⋅,解得4=3x ,故4=3CD .〔14〕函数2|1|=1x y x --的图象与函数=2y kx -的图象恰有两个交点,那么实数k 的取值范围是. 14、(0,1)(1,4)【命题意图】本试题主要考查了函数的图像及其性质,利用函数图像确定两函数的交点,从而确定参数的取值范围.【解析】∵函数=2y kx -的图像直线恒过定点B(0,2)-,且(1,2)A -,(1,0)C -,(1,2)D ,∴2+2==010AB k --,0+2==210BC k ---,2+2==410BD k -,由图像可知(0,1)(1,4)k ∈.【三】解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.〔15〕〔本小题总分值13分〕函数2()=sin (2+)+sin(2)+2cos 133f x x x x ππ--,x R ∈.(Ⅰ)求函数()f x 的最小正周期; 〔Ⅱ〕求函数()f x 在区间[,]44ππ-上的最大值和最小值.【命题意图】本试题主要考查了 【参考答案】 〔1〕2()=sin (2+)+sin(2)+2cos 133f x x x x ππ--2sin 2cos cos 2)34x x x ππ=+=+ 函数()f x 的最小正周期为22T ππ== 〔2〕32sin(2)11()4444424x x x f x ππππππ-≤≤⇒-≤+≤⇒-≤+≤⇔-≤≤当2()428x x πππ+==时,()max f x =2()444x x πππ+=-=-时,min ()1f x =- 【点评】该试题关键在于将的函数表达式化为=sin (+)y A x ωϕ的数学模型,再根据此三角模型的图像与性质进行解题即可.〔16〕〔本小题总分值13分〕现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏. 〔Ⅰ〕求这4个人中恰有2人去参加甲游戏的概率:〔Ⅱ〕求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率:〔Ⅲ〕用,X Y 分别表示这4个人中去参加甲、乙游戏的人数,记=||X Y ξ-,求随机变量ξ的分布列与数学期望E ξ.【命题意图】本试题主要考查了 【参考答案】〔1〕每个人参加甲游戏的概率为13p =,参加乙游戏的概率为213p -=这4个人中恰有2人去参加甲游戏的概率为22248(1)27C p p -=〔2〕44(4,)()(1)(0,1,2,3,4)k kk XB p P X kC p p k -⇒==-=,这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为1(3)(4)9P X P X =+==〔3〕ξ可取0,2,4 随机变量ξ的分布列为【点评】应用性问题是高考命题的一个重要考点,近年来都通过概率问题来考查,且常考常新,对于此类考题,要注意认真审题,从数学与实际生活两个角度来理解问题的实质,将问题成功转化为古典概型,独立事件、互斥事件等概率模型求解,因此对概率型应用性问题,理解是基础,转化是关键.〔17〕〔本小题总分值13分〕如图,在四棱锥P ABCD -中,PA 丄平面ABCD ,AC 丄AD ,AB 丄BC ,45BAC ︒∠=,==2PA AD ,=1AC . (Ⅰ)证明:PC 丄AD ;〔Ⅱ〕求二面角A PC D --的正弦值;〔Ⅲ〕设E 为棱PA 上的点,满足异面直线BE 与CD 所成的角为030,求AE 的长.【命题意图】本试题主要考查了 【参考答案】〔1〕以,,AD AC AP 为,,x y z 正半轴方向,建立空间直角左边系A xyz - 那么11(2,0,0),(0,1,0),(,,0),(0,0,2)22D C B P - 〔2〕(0,1,2),(2,1,0)PC CD =-=-,设平面PCD 的法向量(,,)n x y z = 那么202200n PC y z y z x y x z n CD ⎧=-==⎧⎧⎪⇔⇔⎨⎨⎨-===⎩⎩⎪⎩取1(1,2,1)z n =⇒=(2,0,0)AD =是平面PAC 的法向量得:二面角A PC D --的正弦值为6〔3〕设[0,2]AE h =∈;那么(0,0,2)AE =,11(,,),(2,1,0)22BE h CD =-=-cos ,10BE CD BE CD h BECD <>=⇔=⇔=即AE =【点评】试题从命题的角度来看,整体上题目与我们平时练习的试题相似,但底面是非特殊的四边形,一直线垂直于底面的四棱锥问题,那么创新的地方就是第三问中点E 的位置是不确定的,需要学生根据条件进行确定,如此说来就有难度,因此最好使用空间直角坐标系解决该问题为好.〔18〕(本小题总分值13分〕{n a }是等差数列,其前n 项和为n S ,{n b }是等比数列,且1a =1=2b ,44+=27a b ,44=10S b -.(Ⅰ)求数列{na }与{nb }的通项公式;(Ⅱ)记112231n n n n n T a b a b a b a b --=++++;证明:+12=2+10n n n T a b -+()n N ∈.【命题意图】本试题主要考查了【参考答案】(1) 设数列{}na 的公差为d ,数列{}nb 的公比为q ;那么34434412732322710246210a b d d q S b q a d q +==⎧++=⎧⎧⇔⇔⎨⎨⎨-==+-=⎩⎩⎩ 得:31,2n n n a n b =-= 〔2〕1211223112112222()22nn nn n n n n n n n a aT a b a b a b a b a a a a ----=++++=+++=+++ 【点评】该试题命制比较直接,没有什么隐含的条件,就是等比与等差数列的综合应用,但方法多样,第二问可以用错位相减法求解证明,也可用数学归纳法证明,给学生思维空间留有余地,符合高考命题选拔性的原那么. 〔19〕〔本小题总分值14分〕设椭圆2222+=1x y a b(>>0)a b 的左、右顶点分别为,A B ,点P 在椭圆上且异于,A B 两点,O 为坐标原点.〔Ⅰ〕假设直线AP 与BP 的斜率之积为12-,求椭圆的离心率;〔Ⅱ〕假设||=||AP OA ,证明:直线OP 的斜率k 满足|k . 【命题意图】本试题主要考查了 【参考答案】〔1〕取(0,)P b ,(,0),(,0)A a B a -;那么221()22AP BPb b k k a b a a ⨯=⨯-=-⇔= 〔2〕设(cos ,sin )(02)P a b θθθπ≤<;那么线段OP 的中点(cos ,sin )22a bQ θθ【点评】〔20〕〔本小题总分值14分〕函数()ln()f x x x a =-+的最小值为0,其中>0a . 〔Ⅰ〕求a 的值;〔Ⅱ〕假设对任意的[0,+)x ∈∞,有2()f x kx ≤成立,求实数k 的最小值; 〔Ⅲ〕证明:=12ln (2+1)<221ni n i --∑*()n N ∈. 【参考答案】〔1〕函数()f x 的定义域为(,)a -+∞得:1x a =-时,min ()(1)101f x f a a a =-⇔-=⇔=〔2〕设22()()ln(1)(0)g x kx f x kx x x x =-=-++≥那么()0g x ≥在[0,+)x ∈∞上恒成立min()0(0)g x g ⇔≥=〔*〕 ①当1210()2k k -<<时,0012()00()(0)02k g x x x g x g k-'≤⇔≤≤=⇒<=与〔*〕矛盾 ②当12k ≥时,min ()0()(0)0g x g x g '≥⇒==符合〔*〕 得:实数k 的最小值为12〔3〕由〔2〕得:21ln(1)2x x x -+<对任意的0x >值恒成立 取2(1,2,3,,)21x i n i ==-:222[ln(21)ln(21)]21(21)i i i i -+--<-- 当1n =时,2ln32-<得:=12ln (2+1)<221n i n i --∑ 当2i ≥时,2211(21)2321i i i <---- 得:121[ln(21)ln(21)]2ln 3122121ni i i i n =-++-<-+-<--∑【点评】试题分为三问,题面比较简单,给出的函数比较常规,因此入手对于同学们来说没有难度,第二问中,解含参数的不等式时,要注意题中参数的讨论所有的限制条件,从而做到不重不漏;第三问中,证明不等式,应借助于导数证不等式的方法进行.。

2024年天津高考数学真题(原卷版+解析版】

2024年天津高考数学真题(原卷版+解析版】

2024年普通高等学校招生全国统一考试(天津卷)数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.第Ⅰ卷1至3页,第Ⅱ卷4至6页.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上,并在规定位置粘贴考试用条形码.答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷(选择题)注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.2.本卷共9小题,每小题5分,共45分.参考公式:·如果事件A B ,互斥,那么()()()P A B P A P B =+U .·如果事件A B ,相互独立,那么()()()P AB P A P B =.·球的体积公式34π3V R =,其中R 表示球的半径.·圆锥的体积公式13V Sh=,其中S 表示圆锥的底面面积,h 表示圆锥的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合{}1,2,3,4A =,{}2,3,4,5B =,则A B =I ( )A. {}1,2,3,4 B. {}2,3,4 C. {}2,4 D. {}12. 设,a b ÎR ,则“33a b =”是“33a b =”( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3. 下列图中,相关性系数最大的是( )的获取更多高中资料关注公众号:网盘网课资源A. B.C. D.4. 下列函数是偶函数的是( )A. 22e 1x x y x -=+ B. 22cos 1x x y x +=+ C. e 1x xy x -=+ D. ||sin 4e x x x y +=5. 若0.30.3 4.24.2 4.2log 0.2a b c -===,,,则a b c ,,的大小关系为( )A. a b c>> B. b a c>> C. c a b>> D. b c a>>6. 若,m n 为两条不同的直线,a 为一个平面,则下列结论中正确的是( )A 若//m a ,n Ìa ,则//m nB. 若//,//m n a a ,则//m nC. 若//,a a ^m n ,则m n ^D. 若//,a a ^m n ,则m 与n 相交7. 已知函数()()πsin303f x x w w æö=+>ç÷èø的最小正周期为π.则函数在ππ,126éù-êúëû的最小值是( )A. B. 32-C. 0D.328. 双曲线22221()00a x y a bb >-=>,的左、右焦点分别为12.F F P 、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为( )A. 22182y x -= B. 22184x y -= C. 22128x y -= D. 22148x y -=9. 一个五面体ABC DEF -.已知AD BE CF ∥∥,且两两之间距离为1.并已知123AD BE CF ===,,.则该五面体的体积为().A.B.12+C.D.12-第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上.2.本卷共11小题,共105分.二、填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.10. 已知i是虚数单位,复数))i 2i +×-=______.11. 在63333x xæö+ç÷èø展开式中,常数项为______.12. 22(1)25-+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为______.13. ,,,,A B C D E 五种活动,甲、乙都要选择三个活动参加.(1)甲选到A 的概率为______;已知乙选了A 活动,他再选择B 活动的概率为______.14. 在边长为1的正方形ABCD 中,点E 为线段CD 的三等分点, 1,2CE DE BE BA BC ==+uur uur uuu r l m ,则l m +=______;若F 为线段BE 上的动点,G 为AF 中点,则AF DG ×uuu r uuur的最小值为______.15. 若函数()21f x ax =--+有唯一零点,则a 取值范围为______.三、解答题:本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤的的16. 在ABC V 中,92cos 5163a Bbc ===,,.(1)求a ;(2)求sin A ;(3)求()cos 2B A -.17. 已知四棱柱1111ABCD A B C D -中,底面ABCD 为梯形,//AB CD ,1A A ^平面ABCD ,AD AB ^,其中12,1AB AA AD DC ====.N 是11B C 的中点,M 是1DD 的中点.(1)求证1//D N 平面1CB M ;(2)求平面1CB M 与平面11BB CC 的夹角余弦值;(3)求点B 到平面1CB M 的距离.18. 已知椭圆22221(0)x y a b a b+=>>椭圆的离心率12e =.左顶点为A ,下顶点为B C ,是线段OB 的中点,其中ABC S △.(1)求椭圆方程.(2)过点30,2æö-ç÷èø的动直线与椭圆有两个交点P Q ,.在y 轴上是否存在点T 使得0TP TQ ×£uur uuu r 恒成立.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.19. 已知数列{}n a 是公比大于0的等比数列.其前n 项和为n S .若1231,1a S a ==-.(1)求数列{}n a 前n 项和n S ;(2)设11,2,kn n k k k n a b b k a n a -+=ì=í+<<î,11b =,其中k 是大于1的正整数.(ⅰ)当1k n a +=时,求证:1n k n b a b -³×;(ⅱ)求1nS i i b =å.20. 设函数()ln f x x x =.(1)求()f x 图象上点()()1,1f 处的切线方程;(2)若()(f x a x ³在()0,x ¥Î+时恒成立,求a 取值范围;(3)若()12,0,1x x Î,证明()()121212f x f x x x -£-.的2024年普通高等学校招生全国统一考试(天津卷)数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.第Ⅰ卷1至3页,第Ⅱ卷4至6页.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上,并在规定位置粘贴考试用条形码.答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷(选择题)注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.2.本卷共9小题,每小题5分,共45分.参考公式:·如果事件A B ,互斥,那么()()()P A B P A P B =+U .·如果事件A B ,相互独立,那么()()()P AB P A P B =.·球的体积公式34π3V R =,其中R 表示球的半径.·圆锥的体积公式13V Sh=,其中S 表示圆锥的底面面积,h 表示圆锥的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合{}1,2,3,4A =,{}2,3,4,5B =,则A B =I ( )A. {}1,2,3,4B. {}2,3,4 C. {}2,4 D. {}1【答案】B 【解析】【分析】根据集合交集的概念直接求解即可.【详解】因为集合{}1,2,3,4A =,{}2,3,4,5B =,所以{}2,3,4A B =I ,获取更多高中资料关注公众号:网盘网课资源2. 设,a b ÎR ,则“33a b =”是“33a b =”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件 D. 既不充分也不必要条件【答案】C 【解析】【分析】说明二者与同一个命题等价,再得到二者等价,即是充分必要条件.【详解】根据立方的性质和指数函数的性质,33a b =和33a b =都当且仅当a b =,所以二者互为充要条件.故选:C.3. 下列图中,相关性系数最大的是( )A. B.C. D.【答案】A 【解析】【分析】由点的分布特征可直接判断【详解】观察4幅图可知,A 图散点分布比较集中,且大体接近某一条直线,线性回归模型拟合效果比较好,呈现明显的正相关,r 值相比于其他3图更接近1.故选:A4. 下列函数是偶函数的是( )A. 22e 1x x y x -=+ B. 22cos 1x x y x +=+ C. e 1x xy x -=+ D. ||sin 4e x x x y +=【答案】B【分析】根据偶函数的判定方法一一判断即可.【详解】对A ,设()22e 1x x f x x -=+,函数定义域为R ,但()112e 1f ---=,()112e f -=,则()()11f f -¹,故A 错误;对B ,设()22cos 1x x g x x +=+,函数定义域为R ,且()()()()()2222cos cos 11x x x x g x g x x x -+-+-===+-+,则()g x 为偶函数,故B 正确;对C ,设()e 1x xh x x -=+,函数定义域为{}|1x x ¹-,不关于原点对称, 则()h x 不是偶函数,故C 错误;对D ,设()||sin 4e x x x x j +=,函数定义域为R ,因为()sin141e j +=,()sin141ej ---=,则()()11j j ¹-,则()x j 不是偶函数,故D 错误.故选:B.5. 若0.30.3 4.24.2 4.2log 0.2a b c -===,,,则a b c ,,的大小关系为( )A. a b c >>B. b a c>> C. c a b>> D. b c a>>【答案】B 【解析】【分析】利用指数函数和对数函数的单调性分析判断即可.【详解】因为 4.2x y =在R 上递增,且0.300.3-<<,所以0.300.30 4.2 4.2 4.2-<<<,所以0.30.30 4.21 4.2-<<<,即01a b <<<,因为 4.2log y x =在(0,)+¥上递增,且00.21<<,所以 4.2 4.2log 0.2log 10<=,即0c <,所以b a c >>,故选:B6. 若,m n 为两条不同的直线,a 为一个平面,则下列结论中正确的是( )A. 若//m a ,n Ìa ,则//m nB. 若//,//m n a a ,则//m nC. 若//,a a ^m n ,则m n ^D. 若//,a a ^m n ,则m 与n 相交【答案】C 【解析】【分析】根据线面平行的性质可判断AB 的正误,根据线面垂直的性质可判断CD 的正误.【详解】对于A ,若//m a ,n Ìa ,则,m n 平行或异面,故A 错误.对于B ,若//,//m n a a ,则,m n 平行或异面或相交,故B 错误.对于C ,//,a a ^m n ,过m 作平面b ,使得s b a =I ,因为m b Ì,故//m s ,而s a Ì,故n s ^,故m n ^,故C 正确. 对于D ,若//,a a ^m n ,则m 与n 相交或异面,故D 错误.故选:C .7. 已知函数()()πsin303f x x w w æö=+>ç÷èø的最小正周期为π.则函数在ππ,126éù-êúëû的最小值是( )A. B. 32-C. 0D.32【答案】A 【解析】【分析】先由诱导公式化简,结合周期公式求出w ,得()sin2f x x =-,再整体求出,126éùÎ-êúëûππx 时,2x 的范围,结合正弦三角函数图象特征即可求解.【详解】()()πsin3sin 3πsin 33f x x x x w w w æö=+=+=-ç÷èø,由2ππ3T w==得23w =,即()sin2f x x =-,当,126éùÎ-êúëûππx 时,ππ2,63x éùÎ-êúëû,画出()sin2f x x =-图象,如下图,由图可知,()sin2f x x =-在ππ,126éù-êúëû上递减,所以,当π6x =时,()min πsin 3f x =-=故选:A8. 双曲线22221()00a x y a bb >-=>,的左、右焦点分别为12.F F P 、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为( )A. 22182y x -= B. 22184x y -= C. 22128x y -= D. 22148x y -=【答案】C 【解析】【分析】可利用12PF F △三边斜率问题与正弦定理,转化出三边比例,设2PF m =,由面积公式求出m ,由勾股定理得出c ,结合第一定义再求出a .【详解】如下图:由题可知,点P 必落在第四象限,1290F PF Ð=°,设2PF m =,211122,PF F PF F q q Ð=Ð=,由21tan 2PF k q ==,求得1sin q =,因为1290F PF Ð=°,所以121PF PF k k ×=-,求得112PF k =-,即21tan 2q =,2sin q =,由正弦定理可得:121212::sin :sin :sin 902PF PF F F q q =°=,则由2PF m =得1122,2PF m F F c ===,由1212112822PF F S PF PF m m =×=×=V 得m =,则2122PF PF F c c =====由双曲线第一定义可得:122PF PF a -==a b ===所以双曲线的方程为22128x y -=.故选:C9. 一个五面体ABC DEF -.已知AD BE CF ∥∥,且两两之间距离为1.并已知123AD BE CF ===,,.则该五面体的体积为( )A.B.12+ C.D.12-【答案】C 【解析】【分析】采用补形法,补成一个棱柱,求出其直截面,再利用体积公式即可.【详解】用一个完全相同的五面体HIJ LMN -(顶点与五面体ABC DEF -一一对应)与该五面体相嵌,使得,D N ;,E M ;,F L 重合,因为AD BE CF ∥∥,且两两之间距离为1.1,2,3AD BE CF ===,则形成的新组合体为一个三棱柱,该三棱柱的直截面(与侧棱垂直的截面)为边长为1的等边三角形,侧棱长为1322314+=+=+=,212111142ABC DEF ABC HIJ V V --==´´´=.故选:C.第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上.2.本卷共11小题,共105分.二、填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.10. 已知i是虚数单位,复数))i 2i +×-=______.【答案】7【解析】【分析】借助复数的乘法运算法则计算即可得.【详解】))i 2i 527+×-=+-+=-.故答案为:7-.11. 在63333x xæö+ç÷èø的展开式中,常数项为______.【答案】20【解析】【分析】根据题意结合二项展开式的通项分析求解即可.【详解】因为63333x x æö+ç÷èø的展开式的通项为()63636216633C 3C ,0,1,,63rrr r r r r x T xr x ---+æöæö===×××ç÷ç÷èøèø,令()630r -=,可得3r =,所以常数项为0363C 20=.故答案为:20.12. 22(1)25-+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为______.【答案】45##0.8【解析】【分析】先求出圆心坐标,从而可求焦准距,再联立圆和抛物线方程,求A 及AF 的方程,从而可求原点到直线AF 的距离.【详解】圆22(1)25-+=x y 的圆心为()1,0F ,故12p=即2p =,由()2221254x y y xì-+=ïí=ïî可得22240x x +-=,故4x =或6x =-(舍),故()4,4A ±,故直线()4:13AF y x =±-即4340x y --=或4340x y +-=,故原点到直线AF 的距离为4455d ==,故答案为:4513. ,,,,A B C D E 五种活动,甲、乙都要选择三个活动参加.(1)甲选到A 的概率为______;已知乙选了A 活动,他再选择B 活动的概率为______.【答案】 ①.35②. 12【解析】【分析】结合列举法或组合公式和概率公式可求甲选到A 的概率;采用列举法或者条件概率公式可求乙选了A 活动,他再选择B 活动的概率.【详解】解法一:列举法从五个活动中选三个的情况有:,,,,,,,,,ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE ,共10种情况,其中甲选到A 有6种可能性:,,,,,ABC ABD ABE ACD ACE ADE ,则甲选到A 得概率为:63105P ==;乙选A 活动有6种可能性:,,,,,ABC ABD ABE ACD ACE ADE ,其中再选则B 有3种可能性:,,ABC ABD ABE ,故乙选了A 活动,他再选择B 活动的概率为31=62.解法二:设甲、乙选到A 为事件M ,乙选到B 为事件N ,则甲选到A 的概率为()2435C 3C 5P M ==;乙选了A 活动,他再选择B 活动的概率为()()()133524351C 2C C P MN C P N M P M ===故答案为:35;1214. 在边长为1的正方形ABCD 中,点E 为线段CD 的三等分点, 1,2CE DE BE BA BC ==+uur uur uuu r l m ,则l m +=______;若F 为线段BE 上的动点,G 为AF 中点,则AF DG ×uuu r uuur的最小值为______.【答案】 ①.43②. 518-【解析】【分析】解法一:以{},BA BC uuu r uuu r 为基底向量,根据向量的线性运算求BE uuu r,即可得l m +,设BF BE k =uuu r uur ,求,AF DG uuu r uuu r ,结合数量积的运算律求AF DG ×uuu r uuur 的最小值;解法二:建系标点,根据向量的坐标运算求BE uuu r,即可得l m +,设()1,3,,03F a a a éù-Î-êúëû,求,AF DG uuu r uuu r ,结合数量积的坐标运算求AF DG ×uuu r uuur 的最小值.【详解】解法一:因为12CE DE =,即23CE BA =uur uur ,则13BE BC CE BA BC =+=+uuu r uur u uu ur r uuu r ,可得1,13l m ==,所以43l m +=;由题意可知:1,0BC BA BA BC ==×=uuu r uuu r uuu r uuu r,因为F 为线段BE 上的动点,设[]1,0,13BF k BE k BA k BC k ==+Îuuu r uuu r uuu r uuu r,则113AF AB BF AB k BE k BA k BC æö=+=+=-+ç÷èøuuu r uuu r uuu r uuu r uuu r uuur uuu r ,又因为G 为AF 中点,则1111112232DG DA AG BC AF k BA k BC æöæö=+=-+=-+-ç÷ç÷èøèøuuur uuu r uuu r uuu r uuu r uuu r uuur ,可得11111113232AF DG k BA k BC k BA k BC éùéùæöæöæö×=-+×-+-ç÷ç÷ç÷êúêúèøèøèøëûëûuuu r uuur uuu r uuu ruuu r uuur22111563112329510k k k k æöæöæö=-+-=--ç÷ç÷ç÷èøèøèø,又因为[]0,1k Î,可知:当1k =时,AF DG ×uuu r uuur取到最小值518-;解法二:以B 为坐标原点建立平面直角坐标系,如图所示,则()()()()11,0,0,0,0,1,1,1,,13A B C D E æö---ç÷èø,可得()()11,0,0,1,,13BA BC BE æö=-==-ç÷èøuuu r uuu r uuu r ,因为(),BE BA BC l m l m =+=-uuu r uuu r uuu r ,则131l m ì-=-ïíï=î,所以43l m +=;因为点F 在线段1:3,,03BE y x x éù=-Î-êúëû上,设()1,3,,03F a a a éù-Î-êúëû,且G 为AF 中点,则13,22a G a -æö-ç÷èø,可得()131,3,,122a AF a a DG a +æö=+-=--ç÷èøuuu r uuur ,则()()22132331522510a AF DG a a a +æöæö×=+---=+-ç÷ç÷èøèøuuu r uuur ,且1,03a éùÎ-êúëû,所以当13a =-时,AF DG ×uuu r uuur 取到最小值为518-;故答案为:43;518-.15. 若函数()21f x ax =--+有唯一零点,则a 的取值范围为______.【答案】()(1-È【解析】【分析】结合函数零点与两函数的交点的关系,构造函数()g x =与()23,21,ax x a h x ax x a ì-³ïï=íï-<ïî,则两函数图象有唯一交点,分0a =、0a >与0a <进行讨论,当0a >时,计算函数定义域可得x a ³或0x £,计算可得(]0,2a Î时,两函数在y 轴左侧有一交点,则只需找到当(]0,2a Î时,在y 轴右侧无交点的情况即可得;当0a <时,按同一方式讨论即可得.【详解】令()0f x =,即21ax =--,由题可得20x ax -³,当0a =时,x ÎR,有211=--=,则x =±当0a >时,则23,2121,ax x a ax x a ì-³ïï--=íï-<ïî,即函数()g x =与函数()23,21,ax x a h x ax x a ì-³ïï=íï-<ïî有唯一交点,由20x ax -³,可得x a ³或0x £,当0x £时,则20ax -<,则211ax ax =--=-,即()22441x ax ax -=-,整理得()()()2242121210a xax a x a x éùéù---=++--=ëûëû,当2a =时,即410x +=,即14x =-,当()0,2a Î,12x a =-+或102x a=>-(正值舍去),当()2,a Î+¥时,102x a =-<+或102x a=<-,有两解,舍去,即当(]0,2a Î时,210ax --+=在0x £时有唯一解,则当(]0,2a Î时,210ax --+=在x a ³时需无解,当(]0,2a Î,且x a ³时,由函数()23,21,ax x ah x ax x a ì-³ïï=íï-<ïî关于2x a =对称,令()0h x =,可得1x a =或3x a =,且函数()h x 在12,a a æöç÷èø上单调递减,在23,a a æöç÷èø上单调递增,令()g x y ==,即2222142a x y a a æö-ç÷-ø=è,故x a ³时,()g x 图象为双曲线()222214y x a a -=右支的x 轴上方部分向右平移2a 所得,由()222214y x a a-=的渐近线方程为22a y x x a =±=±,即()g x 部分的渐近线方程为22a y x æö=-ç÷èø,其斜率为2,又(]0,2a Î,即()23,21,ax x ah x ax x a ì-³ïï=íï-<ïî在2x a ³时的斜率(]0,2a Î,令()0g x ==,可得x a =或0x =(舍去),且函数()g x 在(),a +¥上单调递增,故有13a aa a ì<ïïíï>ïî,解得1a <<,故1a <<符合要求;当a<0时,则23,2121,ax x a ax x a ì-£ïï--=íï->ïî,即函数()g x =与函数()23,21,ax x a h x ax x a ì-£ïï=íï->ïî有唯一交点,由20x ax -³,可得0x ³或x a £,当0x ³时,则20ax -<,则211ax ax =--=-,即()22441x ax ax -=-,整理得()()()2242121210a xax a x a x éùéù---=++--=ëûëû,当2a =-时,即410x -=,即14x =,当()2,0a Î-,102x a =-<+(负值舍去)或102x a=-,当(),2a Î-¥时,102x a =->+或102x a=>-,有两解,舍去,即当[)2,0a Î-时,210ax --+=在0x ³时有唯一解,则当[)2,0a Î-时,210ax --+=在x a £时需无解,当[)2,0a Î-,且x a £时,由函数()23,21,ax x ah x ax x a ì-£ïï=íï->ïî关于2x a =对称,令()0h x =,可得1x a =或3x a =,且函数()h x 在21,a a æöç÷èø上单调递减,在32,a a æöç÷èø上单调递增,同理可得:x a £时,()g x 图象为双曲线()222214y x a a -=左支的x 轴上方部分向左平移2a 所得,()g x 部分渐近线方程为22a y x æö=-+ç÷èø,其斜率为2-,又[)2,0a Î-,即()23,21,ax x ah x ax x a ì-³ïï=íï-<ïî在2x a <时的斜率[)2,0a Î-,令()0g x ==,可得x a =或0x =(舍去),的且函数()g x 在(),a -¥上单调递减,故有13a aa aì>ïïíï<ïî,解得1a <<-,故1a <<-符合要求;综上所述,()(1a Î-U .故答案:()(1-È.【点睛】关键点点睛:本题关键点在于将函数()f x 的零点问题转化为函数()g x =与函数()23,21,ax x ah x ax x a ì-³ïï=íï-<ïî的交点问题,从而可将其分成两个函数研究.三、解答题:本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤16. 在ABC V 中,92cos 5163a Bbc ===,,.(1)求a ;(2)求sin A ;(3)求()cos 2B A -.【答案】(1)4 (2(3)5764【解析】【分析】(1)2,3a t c t ==,利用余弦定理即可得到方程,解出即可;(2)法一:求出sin B ,再利用正弦定理即可;法二:利用余弦定理求出cos A ,则得到sin A ;(3)法一:根据大边对大角确定A 为锐角,则得到cos A ,再利用二倍角公式和两角差的余弦公式即可;法二:直接利用二倍角公式和两角差的余弦公式即可.【小问1详解】设2,3a t c t ==,0t >,则根据余弦定理得2222cos b a c ac B =+-,为即229254922316t t t t =+-´´´,解得2t =(负舍);则4,6a c ==.【小问2详解】法一:因为B为三角形内角,所以sin B ===,再根据正弦定理得sin sin a b A B =,即4sin A =sin A =法二:由余弦定理得2222225643cos22564bc a A bc +-+-===´´,因为()0,πA Î,则sin A ==小问3详解】法一:因为9cos 016B =>,且()0,πB Î,所以π0,2B æöÎç÷èø,由(2)法一知sin B =,因为a b <,则A B <,所以3cos 4A ==,则3sin 22sin cos 24A A A ===,2231cos 22cos 12148A A æö=-=´-=ç÷èø()1957cos 2cos cos 2sin sin 281664B A B A B A -=+=´+=.法二:3sin 22sin cos 24A A A ===,则2231cos 22cos 12148AA æö=-=´-=ç÷èø,因为B 为三角形内角,所以sinB ===所以()9157cos 2cos cos 2sin sin 216864B A B A B A -=+=´=【17. 已知四棱柱1111ABCD A B C D -中,底面ABCD 为梯形,//AB CD ,1A A ^平面ABCD ,AD AB ^,其中12,1AB AA AD DC ====.N 是11B C 的中点,M 是1DD 的中点.(1)求证1//D N 平面1CB M ;(2)求平面1CB M 与平面11BB CC 的夹角余弦值;(3)求点B 到平面1CB M 的距离.【答案】(1)证明见解析(2(3【解析】【分析】(1)取1CB 中点P ,连接NP ,MP ,借助中位线的性质与平行四边形性质定理可得1N//D MP ,结合线面平行判定定理即可得证;(2)建立适当空间直角坐标系,计算两平面的空间向量,再利用空间向量夹角公式计算即可得解;(3)借助空间中点到平面的距离公式计算即可得解.【小问1详解】取1CB 中点P ,连接NP ,MP ,由N 是11B C 的中点,故1//NP CC ,且112NP CC =,由M 是1DD 的中点,故1111122D M DD CC ==,且11//D M CC ,则有1//D M NP 、1D M NP =,故四边形1D MPN 是平行四边形,故1//D N MP ,又MP Ì平面1CB M ,1D N Ë平面1CB M ,故1//D N 平面1CB M ;【小问2详解】以A 为原点建立如图所示空间直角坐标系,有()0,0,0A 、()2,0,0B 、()12,0,2B 、()0,1,1M 、()1,1,0C 、()11,1,2C ,则有()11,1,2CB =-uuur 、()1,0,1CM =-uuuu r 、()10,0,2BB =uuur,设平面1CB M 与平面11BB CC 的法向量分别为()111,,m x y z =r 、()222,,n x y z =r,则有111111200m CB x y z m CM x z ì×=-+=ïí×=-+=ïîuuur r uuuu r r ,1222122020n CB x y z n BB z ì×=-+=ïí×==ïîuuur r uuur r ,分别取121x x ==,则有13y =、11z =、21y =,20z =,即()1,3,1m =r 、()1,1,0n =r,则cos ,m =r ,故平面1CB M 与平面11BB CC;【小问3详解】由()10,0,2BB =uuur ,平面1CB M 的法向量为()1,3,1m =r,=即点B 到平面1CB M.18. 已知椭圆22221(0)x y a b a b+=>>椭圆的离心率12e =.左顶点为A ,下顶点为B C ,是线段OB 的中点,其中ABC S △.(1)求椭圆方程.(2)过点30,2æö-ç÷èø的动直线与椭圆有两个交点P Q ,.在y 轴上是否存在点T 使得0TP TQ ×£uur uuu r 恒成立.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.【答案】(1)221129x y +=(2)存在()30,32T t t æö-££ç÷èø,使得0TP TQ ×£uur uuu r 恒成立.【解析】【分析】(1)根据椭圆的离心率和三角形的面积可求基本量,从而可得椭圆的标准方程.(2)设该直线方程为:32y kx =-,()()()1122,,,,0,P x y Q x y T t , 联立直线方程和椭圆方程并消元,结合韦达定理和向量数量积的坐标运算可用,k t 表示TP TQ ×uur uuu r,再根据0TP TQ ×£uur uuu r 可求t 的范围.【小问1详解】因为椭圆的离心率为12e =,故2a c =,b =,其中c 为半焦距,所以()()2,0,0,,0,A c B C æ-ççè,故122ABC S c =´=△故c =a =,3b =,故椭圆方程为:221129x y +=.【小问2详解】若过点30,2æö-ç÷èø的动直线的斜率存在,则可设该直线方程为:32y kx =-,设()()()1122,,,,0,P x y Q x y T t ,由22343632x y y kx ì+=ïí=-ïî可得()223412270k x kx +--=,故()222Δ144108343245760k kk=++=+>且1212221227,,3434k x x x x k k +==-++而()()1122,,,TP x y t TQ x y t =-=-uur uuu r,故()()121212123322TP TQ x x y t y t x x kx t kx t æöæö×=+--=+----ç÷ç÷èøèøuur uuu r ()()22121233122kx x k t x x t æöæö=+-++++ç÷ç÷èøèø()22222731231342342k k k t t k k æöæöæö=+´--+´++ç÷ç÷ç÷++èøèøèø()2222222327271812332234k k k t t t k k æö----++++ç÷èø=+()22223321245327234t t k t k æöéù+--++-ç÷ëûèø=+,因为0TP TQ ×£uur uuu r 恒成立,故()223212450332702t t t ì+--£ïíæö+-£ïç÷èøî,解得332t -££.若过点30,2æö-ç÷èø的动直线的斜率不存在,则()()0,3,0,3P Q -或()()0,3,0,3P Q -,此时需33t -££,两者结合可得332t -££.综上,存在()30,32T t t æö-££ç÷èø,使得0TP TQ ×£uur uuu r 恒成立.【点睛】思路点睛:圆锥曲线中的范围问题,往往需要用合适的参数表示目标代数式,表示过程中需要借助韦达定理,此时注意直线方程的合理假设.19. 已知数列{}n a 是公比大于0的等比数列.其前n 项和为n S .若1231,1a S a ==-.(1)求数列{}n a 前n 项和n S ;(2)设11,2,kn n k k k n a b b k a n a -+=ì=í+<<î,11b =,其中k 是大于1的正整数.(ⅰ)当1k n a +=时,求证:1n k n b a b -³×;(ⅱ)求1nS i i b =å.【答案】(1)21n n S =- (2)①证明见详解;②()131419nn S ii n b=-+=å【解析】【分析】(1)设等比数列{}n a 的公比为0q >,根据题意结合等比数列通项公式求q ,再结合等比数列求和公式分析求解;(2)①根据题意分析可知12,1k k n a b k -==+,()121n k k b -=-,利用作差法分析证明;②根据题意结合等差数列求和公式可得()()1211213143449k k k k i i b k k ---=éù=---ëûå,再结合裂项相消法分析求解.【小问1详解】设等比数列{}n a 的公比为0q >,因为1231,1a S a ==-,即1231a a a +=-,可得211q q +=-,整理得220q q --=,解得2q =或1q =-(舍去),所以122112nn n S -==--.【小问2详解】(i )由(1)可知12n n a -=,且N*,2k k γ,当124kk n a +=³=时,则111221111k k k k k a n n a a -++ì=<-=-í-=-<î,即11k k a n a +<-<可知12,1k k n a b k -==+,()()()1111222121k k k n a k k b b a a k k k k --+=+--×=+-=-,可得()()()()1112112122120kn k n k k k k k k k k b k a b ---=--+=--³--=-׳-,当且仅当2k =时,等号成立,所以1n k n b a b -³×;(ii )由(1)可知:1211nn n S a +=-=-,若1n =,则111,1S b ==;若2n ³,则112k k k a a -+-=,当1221k k i -<£-时,12i i b b k --=,可知{}i b 为等差数列,可得()()()111211112221122431434429k k k k k k k k i i b k kk k k -------=-éù=×+=×=---ëûå,所以()()()232113141115424845431434499nnS n n i i n b n n -=-+éù=+´-´+´-´+×××+---=ëûå,且1n =,符合上式,综上所述:()131419nn S ii n b=-+=å.【点睛】关键点点睛:1.分析可知当1221k k i -<£-时,12i i b b k --=,可知{}i b 为等差数列;2.根据等差数列求和分析可得()()1211213143449k k k k i i b k k ---=éù=---ëûå.20. 设函数()ln f x x x =.(1)求()f x 图象上点()()1,1f 处切线方程;(2)若()(f x a x ³在()0,x ¥Î+时恒成立,求a 的取值范围;(3)若()12,0,1x x Î,证明()()121212f x f x x x -£-.【答案】(1)1y x =- (2){}2(3)证明过程见解析【解析】【分析】(1)直接使用导数的几何意义;(2)先由题设条件得到2a =,再证明2a =时条件满足;(3)先确定()f x 的单调性,再对12,x x 分类讨论.【小问1详解】的由于()ln f x x x =,故()ln 1f x x =¢+.所以()10f =,()11f ¢=,所以所求的切线经过()1,0,且斜率为1,故其方程为1y x =-.【小问2详解】设()1ln h t t t =--,则()111t h t t t¢-=-=,从而当01t <<时()0h t ¢<,当1t >时()0h t ¢>.所以()h t 在(]0,1上递减,在[)1,+¥上递增,这就说明()()1h t h ³,即1ln t t -³,且等号成立当且仅当1t =.设()()12ln g t a t t =--,则()((ln 12ln f x a x x x a x x a x g æö--=-=-=×ç÷øè.当()0,x ¥Î+的取值范围是()0,¥+,所以命题等价于对任意()0,t ¥Î+,都有()0g t ³.一方面,若对任意()0,t ¥Î+,都有()0g t ³,则对()0,t ¥Î+有()()()()112012ln 12ln 1212g t a t t a t a t at a t t t æö£=--=-+£-+-=+--ç÷èø,取2t =,得01a £-,故10a ³>.再取t =,得2022a a a £+-=-=-,所以2a =.另一方面,若2a =,则对任意()0,t ¥Î+都有()()()212ln 20g t t t h t =--=³,满足条件.综合以上两个方面,知a 的取值范围是{}2.【小问3详解】先证明一个结论:对0a b <<,有()()ln 1ln 1f b f a a b b a-+<<+-.证明:前面已经证明不等式1ln t t -³,故lnln ln ln ln ln ln 1ln 1bb b a a a b a aa b b b b b a b a a --=+=+<+---,且1lnln ln ln ln ln ln ln 1ln 11a a b b a a b b b a b b a a a a a a b a b a bbæö---ç÷--èø=+=+>+=+----,所以ln ln ln 1ln 1b b a aa b b a -+<<+-,即()()ln 1ln 1f b f a a b b a-+<<+-.由()ln 1f x x =¢+,可知当10ex <<时()0f x ¢<,当1e x >时()0f x ¢>.所以()f x 在10,eæùçúèû上递减,在1e ,éö+¥÷êëø上递增.不妨设12x x £,下面分三种情况(其中有重合部分)证明本题结论.情况一:当1211ex x ££<时,有()()()()()()122122121ln 1f x f x f x f x x x x x x -=-<+-<-<情况二:当1210ex x <££时,有()()()()12121122ln ln f x f x f x f x x x x x -=-=-.对任意的10,e c æùÎçúèû,设()ln ln x x x c c j =--()ln 1x x j =+¢.由于()x j ¢单调递增,且有11110j =+<+=-+=¢,且当2124ln 1x c c ³-æö-ç÷èø,2cx >2ln 1c ³-可知()2ln 1ln 1ln 102c x x c j æö=+>++=-³ç÷èø¢.所以()x j ¢在()0,c 上存在零点0x ,再结合()x j ¢单调递增,即知00x x <<时()0x j ¢<,0x x c <<时()0x j ¢>.故()x j 在(]00,x 上递减,在[]0,x c 上递增.①当0x x c ££时,有()()0x c j j £=;②当00x x <<112221e e f f cæö=-£-=<ç÷èø,故我们可以取1,1q c öÎ÷ø.从而当201cx q <<->()1ln ln ln ln 0x x x c c c c c c q cj ö=-<-<--=-<÷ø.再根据()x j 在(]00,x 上递减,即知对00x x <<都有()0x j <;综合①②可知对任意0x c <£,都有()0x j £,即()ln ln 0x x x c c j =--£.根据10,ec æùÎçúèû和0x c <£的任意性,取2c x =,1x x =,就得到1122ln ln 0x x x x -£.所以()()()()12121122ln ln f x f x f x f x x x x x -=-=-£.情况三:当12101ex x <££<时,根据情况一和情况二讨论,可得()11e f x f æö-££ç÷èø,()21e f f x æö-££ç÷èø而根据()f x 的单调性,知()()()1211e f x f x f x f æö-£-ç÷èø或()()()1221e f x f xf f x æö-£-ç÷èø.故一定有()()12f x f x -£成立.综上,结论成立.【点睛】关键点点睛:本题的关键在于第3小问中,需要结合()f x 的单调性进行分类讨论.的。

高考天津卷理数试题解析(正式版)(解析版).docx

高考天津卷理数试题解析(正式版)(解析版).docx

本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第I 卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考公式:•如果事件 A ,B 互斥,那么 •如果事件 A ,B 相互独立,那么P (A ∪B )=P (A )+P (B ). P (AB )=P (A )P (B ). •棱柱的体积公式V =Sh . •锥体的体积公式13V Sh =. 其中 S 表示棱柱的底面面积, 其中 S 表示棱锥的底面面积,h 表示棱柱的高. h 表示棱锥的高.一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,2,3,4},{|32},A B y y x x A ===-∈,则A B I =(A ){1}(B ){4}(C ){1,3}(D ){1,4}【答案】D 【解析】试题分析:{1,4,7,10},A B {1,4}.B ==I 选D .考点:集合运算(2)设变量x ,y 满足约束条件20,2360,3290x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩, 则目标函数25z x y =+的最小值为(A )4- (B )6 (C )10 (D )17【答案】B考点:线性规划(3)在△ABC 中,若=13AB ,BC =3,120C ∠=o ,则AC =(A )1(B )2(C )3(D )4【答案】A 【解析】试题分析:由余弦定理得213931AC AC AC =++⇒=,选A. 考点:余弦定理(4)阅读右边的程序框图,运行相应的程序,则输出S 的值为(A )2 (B )4(C )6(D )8【答案】B 【解析】试题分析:依次循环:8,2;2,3;4,4,S n S n S n ======结束循环,输出4S =,选B. 考点:循环结构的程序框图(5)设{n a }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n −1+a 2n <0”的(A )充要条件 (B )充分而不必要条件 (C )必要而不充分条件 (D )既不充分也不必要条件 【答案】C 【解析】试题分析:由题意得,22212(1)21210()0(1)0(,1)n n n n n a a a q q q q q ----+<⇔+<⇔+<⇔∈-∞-,故是必要不充分条件,故选C.考点:充要关系(6)已知双曲线2224=1x y b-(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为(A )22443=1y x - (B )22344=1y x - (C )2244=1y x - (D )2224=11x y - 【答案】D【解析】试题分析:根据对称性,不妨设(,)A x y在第一象限,则22422x x y bb y x y ⎧=⎧+=⎪⎪⎪⇒⎨⎨=⎪⎪=⎩⎪⎩,∴221612422b b xy b b =⋅=⇒=+,故双曲线的方程为221412x y -=,故选D. 考点:双曲线的渐近线(7)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF BC →→g 的值为(A )58- (B )18(C )14(D )118【答案】B【解析】试题分析:设BA a =u u u r r ,BC b =u u u r r ,∴11()22DE AC b a ==-u u u r u u u r r r ,33()24DF DE b a ==-u u u r u u u r r r,1353()2444AF AD DF a b a a b=+=-+-=-+u u u r u u u r u u u r r r r r r ,∴25353144848AF BC a b b ⋅=-⋅+=-+=u u u r u u u r r r r .考点:向量数量积(8)已知函数f (x )=2(4,0,log (1)13,03)a x a x a x x x ⎧+<⎨++≥-+⎩(a >0,且a ≠1)在R 上单调递减,且关于x 的方程│f (x )│=2-x 恰有两个不相等的实数解,则a 的取值范围是 (A )(0,23] (B )[23,34](C )[13,23]U {34} (D )[13,23)U {34} 【答案】C【解析】考点:函数性质综合应用第II 卷注意事项:1、用黑色墨水的钢笔或签字笔将答案写在答题卡上.2、本卷共12小题,共计110分.二. 填空题:本大题共6小题,每小题5分,共30分. (9)已知,a b ∈R ,i 是虚数单位,若(1+i)(1-b i )=a ,则ab的值为_______. 【答案】2 【解析】试题分析:由(1i)(1i)1(1)i b b b a +-=++-=,可得110b a b +=⎧⎨-=⎩,所以21a b =⎧⎨=⎩,2ab =,故答案为2.考点:复数相等(10)281()x x-的展开式中x 7的系数为__________.(用数字作答)【答案】56-试题分析:展开式通项为281631881C ()()(1)C r r r r r rr T x xx--+=-=-,令1637r -=,得3r =,所以展开式中7x 的系数为338(1)56C -=-.故答案为56-. 考点:二项式定理(11)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m ),则该四棱锥的体积为_______m 3.(第11题图)【答案】2 【解析】试题分析:由三视图知四棱锥高为3,底面平行四边形的一边长为2,其对应的高为1,因此所求四棱锥的体积1(21)323V =⨯⨯⨯=.故答案为2. 考点:三视图、几何体的体积(12)如图,AB 是圆的直径,弦CD 与AB 相交于点E ,BE =2AE =2,BD =ED ,则线段CE 的长为__________.23考点:相交弦定理(13) 已知f (x )是定义在R 上的偶函数,且在区间(-∞ ,0)上单调递增.若实数a 满足f (2|a -1|)>f (2),则a 的取值范围是______. 【答案】13(,)22【解析】试题分析:由题意()f x 在(0,)+∞上单调递减,又()f x 是偶函数,则不等式1(2)(2)a f f ->可化为1(2)2)a f f ->,则122a -<112a -<,解得1322a <<.考点:利用函数性质解不等式(14) 设抛物线22,2x pt y pt⎧=⎨=⎩ (t 为参数,p >0)的焦点为F ,准线为l .过抛物线上一点A 作l 的垂线,垂足为B .设C (72p ,0),AF 与BC 相交于点E .若|CF |=2|AF |,且△ACE 的面积为32则p 的值为_________. 6 【解析】试题分析:抛物线的普通方程为22y px =,(,0)2p F ,7322pCF p p =-=, 又2CF AF =,则32AF p =,由抛物线的定义得32AB p =,所以A x p =,则||2A y =,由//CF AB 得EF CF EA AB =,即2EF CFEA AF==,所以262CEF CEA S S ==V V 92ACF AEC CFE S S S =+=V V V所以132922p ⨯=6p = 考点:抛物线定义三. 解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. (15) (本题满分13分)已知函数()f x =4tan x sin(2x π-)cos(3x π-)- . (Ⅰ)求f (x )的定义域与最小正周期; (Ⅱ)讨论f (x )在区间[,44ππ-]上的单调性.【答案】(Ⅰ){|,}2x x k k π≠+π∈Z ,π(Ⅱ)在区间,124ππ⎡⎤-⎢⎥⎣⎦上单调递增, 在区间412ππ⎡⎤--⎢⎥⎣⎦,上单调递减.【解析】试题分析:(Ⅰ)先利用诱导公式、两角差余弦公式、二倍角公式将函数化为基本三角函数:()=2sin 23f x x π-(),再根据正弦函数的性质求定义域、最小正周期;()II 根据(Ⅰ)的结论,研究函数f (x )在区间[,44ππ-]上单调性.试题解析:()I ()f x 的定义域为,2x x k k ⎧π⎫≠+π∈⎨⎬⎩⎭Z . ()4tan cos cos 4sin cos 33f x x x x x x ππ⎛⎫⎛⎫=-=-- ⎪ ⎪⎝⎭⎝⎭21=4sin cos sin 2sin cos 22x x x x x x ⎛⎫+=+ ⎪ ⎪⎝⎭)=sin 21cos 2sin 22=2sin 23x x x x x π-=-().所以, ()f x 的最小正周期2.2T π==π ()II 令2,3z x π=-函数2sin y z =的单调递增区间是2,2,.22k k k ππ⎡⎤-+π+π∈⎢⎥⎣⎦Z由222232k x k πππ-+π≤-≤+π,得5,.1212k x k k ππ-+π≤≤+π∈Z 设5,,,441212A B x k x k k ππ⎧ππ⎫⎡⎤=-=-+π≤≤+π∈⎨⎬⎢⎥⎣⎦⎩⎭Z ,易知,124A B ππ⎡⎤=-⎢⎥⎣⎦I .所以, 当,44x ππ⎡⎤∈-⎢⎥⎣⎦时,()f x 在区间,124ππ⎡⎤-⎢⎥⎣⎦上单调递增, 在区间412ππ⎡⎤--⎢⎥⎣⎦,上单调递减.考点:三角函数性质,诱导公式、两角差余弦公式、二倍角公式(16)(本小题满分13分)某小组共10人,利用假期参加义工活动.已知参加义工活动次数为1,2,3的人数分别为3,3,4,.现从这10人中随机选出2人作为该组代表参加座谈会.(I )设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率;(II )设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望. 【答案】(Ⅰ)13(Ⅱ)详见解析 【解析】试题分析:(Ⅰ)先确定从这10人中随机选出2人的基本事件种数:210C ,再确定选出的2人参加义工所以,事件A 发生的概率为13.()∏随机变量X 的所有可能取值为0,1,2.()222334210C C C 0C P X ++==415=, ()11113334210C C C C 71C 15P X +===, ()1134210C C 42C 15P X ===.所以,随机变量X 的分布列为X 0 1 2 P415 715 415随机变量X 的数学期望()0121151515E X =⨯+⨯+⨯=. 考点:概率、随机变量的分布列与数学期望(17)(本小题满分13分)如图,正方形ABCD 的中心为O ,四边形OBEF 为矩形,平面OBEF ⊥平面ABCD ,点G 为AB 的中点,AB =BE =2. (I )求证:EG ∥平面ADF ; (II )求二面角O -EF -C 的正弦值; (III )设H 为线段AF 上的点,且AH =23HF ,求直线BH 和平面CEF 所成角的正弦值.【答案】(Ⅰ)详见解析(Ⅱ)33(Ⅲ)721【解析】试题分析:(Ⅰ)利用空间向量证明线面平行,关键是求出平面的法向量,利用法向量与直线方向向量垂直进行论证;(Ⅱ)利用空间向量求二面角,关键是求出平面的法向量,再利用向量数量积求出法向量夹角,最后根据向量夹角与二面角相等或互补关系求正弦值;(Ⅲ)利用空间向量求线面角,关键是求出平面的法向量,再利用向量数量积求出向量夹角,最后根据向量夹角与线面角互余关系求正弦值.试题解析:依题意,OF ABCD ⊥平面,如图,以O 为点,分别以,,AD BA OF u u u r u u u r u u u r的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,依题意可得(0,0,0)O ,()1,1,0,(1,1,0),(1,1,0),(11,0),(1,1,2),(0,0,2),(1,0,0)A B C D E F G -------,.(I )证明:依题意,()(2,0,0),1,1,2AD AF ==-u u u r u u u r.设()1,,n x y z =u r 为平面ADF 的法向量,则110n AD n AF ⎧⋅=⎪⎨⋅=⎪⎩u r u u u r u r u u u r,即2020x x y z =⎧⎨-+=⎩ . 不妨设1z =,可得()10,2,1n =u r ,又()0,1,2EG =-u u u r ,可得10EG n ⋅=u u u r u r,又因为直线EG ADF ⊄平面,所以//EG ADF 平面.(II )解:易证,()1,1,0OA =-u u u r为平面OEF 的一个法向量. 依题意,()()1,1,0,1,1,2EF CF ==-u u u r u u u r.因此2227cos ,BH n BH n BH n ⋅<>==⋅u u u r u u ru u u r u u r u u u r u u r 所以,直线BH 和平面CEF 所成角的正弦值为721. 考点:利用空间向量解决立体几何问题(18)(本小题满分13分)已知{n a }是各项均为正数的等差数列,公差为d ,对任意的*N n ∈,n b 是n a 和1n a +的等比中项.(I )设22*1,,n n n c b b n +=-∈N 求证:数列{n c }是等差数列;(II)设22*11,(1),N ,nk n kk a d T b n ===-∈∑ 求证:2111.2nk kT d =<∑【答案】(Ⅰ)详见解析(Ⅱ)详见解析【解析】试题分析:(Ⅰ)先根据等比中项定义得:21n n n b a a +=,从而22112112n n n n n n n n c b b a a a a da +++++=-=-=,因此根据等差数列定义可证:212;n n c c d +-=(Ⅱ) 证明数列不等式一般以算代证,先利用分组求和化简n T ,再利用裂项相消法求和,易得结论.试题解析:(I )证明:由题意得21n n n b a a +=,有22112112n n n n n n n n c b b a a a a da +++++=-=-=,因此()212122n n n n c c d a a d +++-=-=,所以{}n c 是等差数列.(II )证明:()()()2222221234212n n n T b b b b b b -=-++-+++-+L()()()24222222221,n n d a a a n a a d d n n =++++=⋅=+L所以()222211111111111112121212nn n k k k kT d k k d k k d n d ===⎛⎫⎛⎫==-=⋅-< ⎪ ⎪+++⎝⎭⎝⎭∑∑∑. 考点:等差数列、等比中项、分组求和、裂项相消求和(19)(本小题满分14分)设椭圆2221(3x y a a +=> 的右焦点为F,右顶点为A.已知113,||||||eOF OA FA += 其中O 为原点,e 为椭圆的离心率.(I )求椭圆的方程;(II )设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若BF ⊥HF ,且∠MOA ≤∠MAO ,求直线l 的斜率的取值范围.【答案】(Ⅰ)22143x y +=(Ⅱ)),46[]46,(+∞--∞Y 【解析】试题分析:(Ⅰ)求椭圆标准方程,只需确a 的值,由113||||||e OF OA FA +=,得113()cc a a a c +=-,试题解析:(I )解:设(,0)F c ,由113||||||e OF OA FA +=,即113()c c a a a c +=-,可得2223a c c -=,又2223a c b -==,所以21c =,因此24a =,所以椭圆的方程为22143x y +=. (Ⅱ)解:设直线l 的斜率为k (0≠k ),则直线l 的方程为)2(-=x k y .设),(B B y x B ,由方程组⎪⎩⎪⎨⎧-==+)2(13422x k y y x ,消去y ,整理得0121616)34(2222=-+-+k x k x k . 解得2=x ,或346822+-=k k x ,由题意得346822+-=k k x B ,从而34122+-=k ky B . 由(Ⅰ)知,)0,1(F ,设),0(H y H ,有FH u u u r (1,)H y =-,)3412,3449(222++-=k kk k BF . 由HF BF ⊥,得0=⋅HF BF ,所以222124904343Hky k k k -+=++,解得k k y H 12492-=.因此直线MH 的方程为kk x k y 124912-+-=.设),(M M y x M ,由方程组⎪⎩⎪⎨⎧-=-+-=)2(124912x k y k k x k y 消去y ,解得)1(1292022++=k k x M . 在MAO ∆中,||||MO MA MAO MOA ≤⇔∠≤∠,即2222)2(M M M M y x y x +≤+-,化简得1≥M x ,即1)1(1292022≥++k k ,解得46-≤k 或46≥k . 所以,直线l 的斜率的取值范围为),46[]46,(+∞--∞Y . 考点:椭圆的标准方程和几何性质,直线方程(20)(本小题满分14分)设函数3()(1)f x x ax b =---,x ∈R ,其中a ,b ∈R. (I)求f (x )的单调区间;(II)若f (x )存在极点x 0,且f (x 1)= f (x 0),其中x 1≠x 0,求证:x 1+2x 0=3; (III)设a >0,函数g (x )= |f (x )|,求证:g (x )在区间[0,2]上的最大值不小于...14.【答案】(Ⅰ)详见解析(Ⅱ)详见解析(Ⅲ)详见解析【解析】试题分析:(Ⅰ)先求函数的导数'()f x ,再根据导函数零点是否存在,分类讨论;(Ⅱ)由题意得3)1(20a x =-,计算可得00(32)()f x f x -=。

2023年天津市高考数学试卷含答案解析

2023年天津市高考数学试卷含答案解析

绝密★启用前2023年天津市高考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I卷(选择题)一、单选题:本题共9小题,每小题5分,共45分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知集合U={1,2,3,4,5},A={1,3},B={1,2,4},则∁U B∪A=( )A. {1,3,5}B. {1,3}C. {1,2,4}D. {1,2,4,5}2.“a2=b2”是“a2+b2=2ab”的( )A. 充分不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件3.若a=1.010.5,b=1.010.6,c=0.60.5,则( )A. c>a>bB. c>b>aC. a>b>cD. b>a>c4.函数f(x)的图象如图所示,则f(x)的解析式可能为( )A. 5(e x−e−x)x2+2B. 5sinxx2+1C. 5(e x+e−x)x2+2D. 5cosxx2+15.已知函数f(x)的一条对称轴为直线x=2,一个周期为4,则f(x)的解析式可能为( )A. sin(π2x) B. cos(π2x) C. sin(π4x) D. cos(π4x)6.已知{a n}为等比数列,S n为数列{a n}的前n项和,a n+1=2S n+2,则a4的值为( )A. 3B. 18C. 54D. 1527.调查某种花萼长度和花瓣长度,所得数据如图所示,其中相关系数r=0.8245,下列说法正确的是( )A. 花瓣长度和花萼长度没有相关性B. 花瓣长度和花萼长度呈现负相关C. 花瓣长度和花萼长度呈现正相关D. 若从样本中抽取一部分,则这部分的相关系数一定是0.82458.在三棱锥P−ABC中,线段PC上的点M满足PM=13PC,线段PB上的点N满足PN=23PB,则三棱锥P−AMN和三棱锥P−ABC的体积之比为( )A. 19B. 29C. 13D. 499.双曲线x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2.过F2作其中一条渐近线的垂线,垂足为P.已知|PF2|=2,直线PF1的斜率为√ 24,则双曲线的方程为( )A. x28−y24=1 B. x24−y28=1 C. x24−y22=1 D. x22−y24=1第II卷(非选择题)二、填空题:本题共6小题,每小题5分,共30分。

2024年天津市高考数学试卷含答案解析

2024年天津市高考数学试卷含答案解析

绝密★启用前2024年天津市高考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I 卷(选择题)一、单选题:本题共9小题,每小题5分,共45分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.集合A ={1,2,3,4},B ={2,3,4,5},则A ∩B =( ) A. {1,2,3,4}B. {2,3,4}C. {2,4}D. {1}2.设a ,b ∈R ,则“a 3=b 3”是“3a =3b ”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件3.下列图中,相关性系数最大的是( )A. B.C. D.4.下列函数是偶函数的是( )A. e x −x 2x 2+1B. cosx+x 2x 2+1C. e x −x x+1D.sinx+4xe |x|5.若a =4.2−0.3,b =4.20.3,c =log 4.20.3,则a ,b ,c 的大小关系为( )A. a >b >cB. b >a >cC. c >a >bD. b >c >a6.若m ,n 为两条直线,α为一个平面,则下列结论中正确的是( ) A. 若m//α,n ⊂α,则m//n B. 若m//α,n//α,则m//n C. 若m//α,n ⊥α,则m ⊥nD. 若m//α,n ⊥α,则m 与n 相交7.已知函数f(x)=sin3(ωx +π3)(ω>0)的最小正周期为π.则函数在[−π12,π6]的最小值是( ) A. −√ 32B. −32C. 0D. 328.双曲线x 2a 2−y 2b2=1(a >0,b >0)的左、右焦点分别为F 1、F 2.P 是双曲线右支上一点,且直线PF 2的斜率为2,△PF 1F 2是面积为8的直角三角形,则双曲线的方程为( ) A.x 22−y 28=1 B.x 24−y 28=1 C.y 24−x 28=1 D.x 22−y 24=19.一个五面体ABC −DEF.已知AD//BE//CF ,且两两之间距离为1.并已知AD =1,BE =2,CF =3.则该五面体的体积为( ) A.√ 36B. 3√ 34+12 C. √ 32 D. 3√ 34−12第II 卷(非选择题)二、填空题:本题共6小题,每小题5分,共30分。

最新整理高考天津数理科试卷含详细解答全word.doc

最新整理高考天津数理科试卷含详细解答全word.doc

绝密 ★ 启用前普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至10页。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、科目涂写在答题卡上,并在规定位置粘贴考试用条形码。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

答在试卷上的无效。

3.本卷共10小题,每小题5分,共50分。

参考公式:·如果时间A ,B 互斥,那么·球的表面积公式P (A+B )=P (A )+P (B )24S R π=.·如果事件A ,B 相互独立,那么其中R 表示球的半径.P (A·B )=P (A )·P (B )一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的.(1)i 是虚数单位,()=-+113i i i (A) 1- (B) 1 (C) i - (D) i解析:()31(1)11111i i i i ii i i +-+-===----,选A . (2)设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x ,则目标函数y x z +=5的最大值为(A) 2 (B) 3 (C) 4 (D) 5解析:如图,由图象可知目标函数y x z +=5过点(1,0)A 时z 取得最大值,max 5z =,选D .(3)设函数()R x x x f ∈⎪⎭⎫⎝⎛-=,22sin π,则()x f 是 (A) 最小正周期为π的奇函数 (B) 最小正周期为π的偶函数(C) 最小正周期为2π的奇函数 (D) 最小正周期为2π的偶函数 解析:()cos 2f x x =-是周期为π的偶函数,选B .(4)设b a ,是两条直线,βα,是两个平面,则b a ⊥的一个充分条件是(A) βαβα⊥⊥,//,b a (B) βαβα//,,⊥⊥b a (C) βαβα//,,⊥⊂b a (D) βαβα⊥⊂,//,b a 解析:A 、B 、D 直线,a b 可能平行,选C .(5)设椭圆()1112222>=-+m m y m x 上一点P 到其左焦点的距离为3,到右焦点的距离为1,则P 点到右准线的距离为(A) 6 (B) 2 (C)21(D) 772解析:由椭圆第一定义知2a =,所以24m =,椭圆方程为22111432x y e d +=⇒== 所以2d =,选B .(6)设集合{}{}R T S a x a x T x x S =+<<=>-= ,8|,32|,则a 的取值范围是(A) 13-<<-a (B) 13-≤≤-a(C) 3-≤a 或1-≥a (D) 3-<a 或1->a 解析:{|15}S x x x =<->或,所以13185a a a <-⎧⇒-<<-⎨+>⎩,选A .(7)设函数()()1011<≤-=x xx f 的反函数为()x f 1-,则(A) ()x f 1-在其定义域上是增函数且最大值为1 (B) ()x f1-在其定义域上是减函数且最小值为0(C) ()x f 1-在其定义域上是减函数且最大值为1 (D) ()x f1-在其定义域上是增函数且最小值为0解析:1y =为减函数,由复合函数单调性知()f x 为增函数,所以1()f x -单调递增,排除B 、C ;又1()f x -的值域为()f x 的定义域,所以1()f x -最小值为0.(8)已知函数()⎩⎨⎧≥-<+-=0101x x x x x f ,则不等式()()111≤+++x f x x 的解集是(A) {}121|-≤≤-x x (B) {}1|≤x x(C) {}12|-≤x x (D) {}1212|-≤≤--x x解析:依题意得11010(1)()(1)1x x x x x x x x +<+⎧⎧⎨⎨++-++⎩≥≤⎩≤或所以11111111x x x x x x R x ⎧≥-≤≤⇒≤∈≤≤<-⎧⎪⇒<--⎨⎨⎪⎩⎩或或,选C . (9)已知函数()x f 是R 上的偶函数,且在区间[)+∞,0上是增函数.令⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=75tan ,75cos ,72sin πππf c f b f a ,则(A) c a b << (B) a b c << (C) a c b << (D) c b a <<解析:5(cos)(c 2os )77b f f ππ=-=,5(tan )(t 2an )77c f f ππ=-= 因为2472πππ<<,所以220cos sin 1tan7772πππ<<<<,所以b a c <<,选A . (10)有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有中间行的两张卡片上的数字之和为5,则不同的排法共有(A) 1344种 (B) 1248种 (C) 1056种 (D) 960种解析:首先确定中间行的数字只能为1,4或2,3,共有12224C A =种排法.然后确定其余4个数字的排法数.用总数46360A =去掉不合题意的情况数:中间行数字和为5,还有一行数字和为5,有4种排法,余下两个数字有2412A =种排法.所以此时余下的这4个数字共有360412312-⨯=种方法.由乘法原理可知共有31248412⨯=种不同的排法,选B .第Ⅱ卷注意事项: 1.答卷前将密封线内的项目填写清楚。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年天津市高考数学试卷(理科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)设集合A={1,2,6},B={2,4},C={x∈R|﹣1≤x≤5},则(A∪B)∩C=()A.{2} B.{1,2,4} C.{1,2,4,5} D.{x∈R|﹣1≤x≤5}2.(5分)设变量x,y满足约束条件,则目标函数z=x+y的最大值为()A.B.1 C.D.33.(5分)阅读右面的程序框图,运行相应的程序,若输入N的值为24,则输出N的值为()A.0 B.1 C.2 D.3《4.(5分)设θ∈R,则“|θ﹣|<”是“sinθ<”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件5.(5分)已知双曲线﹣=1(a>0,b>0)的左焦点为F,离心率为.若经过F和P(0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为A.=1 B.=1 C.=1 D.=16.(5分)已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(﹣),b=g (),c=g(3),则a,b,c的大小关系为()A.a<b<c B.c<b<a C.b<a<c D.b<c<a7.(5分)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<x.若f()=2,f()=0,且f(x)的最小正周期大于2π,则()A.ω=,φ=B.ω=,φ=﹣C.ω=,φ=﹣D.ω=,φ=~8.(5分)已知函数f(x)=,设a∈R,若关于x的不等式f(x)≥|+a|在R上恒成立,则a的取值范围是()A.[﹣,2] B.[﹣,] C.[﹣2,2] D.[﹣2,]二.填空题:本大题共6小题,每小题5分,共30分.9.(5分)已知a∈R,i为虚数单位,若为实数,则a的值为.10.(5分)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.11.(5分)在极坐标系中,直线4ρcos(θ﹣)+1=0与圆ρ=2sinθ的公共点的个数为.12.(5分)若a,b∈R,ab>0,则的最小值为.13.(5分)在△ABC中,∠A=60°,AB=3,AC=2.若=2,=λ﹣(λ∈R),且=﹣4,则λ的值为.14.(5分)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有个.(用数字作答),三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算15.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sinB=.(Ⅰ)求b和sinA的值;(Ⅱ)求sin(2A+)的值.16.(13分)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为,,.(Ⅰ)设X表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X的分布列和数学期望;(Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.>17.(13分)如图,在三棱锥P﹣ABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.(Ⅰ)求证:MN∥平面BDE;(Ⅱ)求二面角C﹣EM﹣N的正弦值;(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长.18.(13分)已知{a n}为等差数列,前n项和为S n(n∈N+),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a2n b2n﹣1}的前n项和(n∈N+).¥19.(14分)设椭圆+=1(a>b>0)的左焦点为F,右顶点为A,离心率为.已知A是抛物线y2=2px(p>0)的焦点,F到抛物线的准线l的距离为.(I)求椭圆的方程和抛物线的方程;(II)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于A),直线BQ与x轴相交于点D.若△APD的面积为,求直线AP的方程.20.(14分)设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个零点x0,g(x)为f(x)的导函数.<(Ⅰ)求g(x)的单调区间;(Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0;(Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且∈[1,x0)∪(x0,2],满足|﹣x0|≥.2017年天津市高考数学试卷(理科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)设集合A={1,2,6},B={2,4},C={x∈R|﹣1≤x≤5},则(A∪B)∩C=()A.{2} B.{1,2,4} C.{1,2,4,5} D.{x∈R|﹣1≤x≤5}【分析】由并集概念求得A∪B,再由交集概念得答案.【解答】解:∵A={1,2,6},B={2,4},∴A∪B={1,2,4,6},又C={x∈R|﹣1≤x≤5},∴(A∪B)∩C={1,2,4}.故选:B.【点评】本题考查交、并、补集的混合运算,是基础题.2.(5分)设变量x,y满足约束条件,则目标函数z=x+y的最大值为()A.B.1 C.D.3【分析】画出约束条件的可行域,利用目标函数的最优解求解即可.【解答】解:变量x,y满足约束条件的可行域如图:目标函数z=x+y结果可行域的A点时,目标函数取得最大值,由可得A(0,3),目标函数z=x+y的最大值为:3.故选:D.【点评】本题考查线性规划的简单应用,考查计算能力以及数形结合思想的应用.!3.(5分)阅读上面的程序框图,运行相应的程序,若输入N的值为24,则输出N的值为()A.0 B.1 C.2 D.3【分析】根据程序框图,进行模拟计算即可.【解答】解:第一次N=24,能被3整除,N=≤3不成立,第二次N=8,8不能被3整除,N=8﹣1=7,N=7≤3不成立,第三次N=7,不能被3整除,N=7﹣1=6,N==2≤3成立,输出N=2,故选C 【点评】本题主要考查程序框图的识别和应用,根据条件进行模拟计算是解决本题的关键.4.(5分)设θ∈R,则“|θ﹣|<”是“sinθ<”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件,【解答】解:|θ﹣|<⇔﹣<θ﹣<⇔0<θ<,sinθ<⇔﹣+2kπ<θ<+2kπ,k∈Z,则(0,)⊂[﹣+2kπ,+2kπ],k∈Z,可得“|θ﹣|<”是“sinθ<”的充分不必要条件.故选:A.【点评】本题考查充分必要条件的判断,同时考查正弦函数的图象和性质,运用定义法和正确解不等式是解题的关键,属于基础题.5.(5分)已知双曲线﹣=1(a>0,b>0)的左焦点为F,离心率为.若经过F和P(0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为()A.=1 B.=1 C.=1 D.=1【解答】解:设双曲线的左焦点F(﹣c,0),离心率e==,c=a,则双曲线为等轴双曲线,即a=b,双曲线的渐近线方程为y=±x=±x,则经过F和P(0,4)两点的直线的斜率k==,则=1,c=4,则a=b=2,∴双曲线的标准方程:;故选B.《【点评】本题考查双曲线的简单几何性质,等轴双曲线的应用,属于中档题.6.(5分)已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(﹣),b=g(),c=g(3),则a,b,c的大小关系为()A.a<b<c B.c<b<a C.b<a<c D.b<c<a【分析】由奇函数f(x)在R上是增函数,则g(x)=xf(x)偶函数,且在(0,+∞)单调递增,则a=g(﹣)=g(),则2<﹣<3,1<<2,即可求得b<a<c 【解答】解:奇函数f(x)在R上是增函数,当x>0,f(x)>f(0)=0,且f′(x)>0,∴g(x)=xf(x),则g′(x)=f(x)+xf′(x)>0,∴g(x)在(0,+∞)单调递增,且g(x)=xf(x)偶函数,∴a=g(﹣)=g(),则2<﹣<3,1<<2,由g(x)在(0,+∞)单调递增,则g()<g()<g(3),∴b<a<c,故选C.【点评】本题考查函数奇偶性,考查函数单调性的应用,考查转化思想,属于基础题.<7.(5分)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<x.若f()=2,f()=0,且f(x)的最小正周期大于2π,则()A.ω=,φ=B.ω=,φ=﹣C.ω=,φ=﹣D.ω=,φ=【解答】解:由f(x)的最小正周期大于2π,得,又f()=2,f()=0,得,∴T=3π,则,即.∴f(x)=2sin(ωx+φ)=2sin(x+φ),由f()=,得sin(φ+)=1.∴φ+=,k∈Z.取k=0,得φ=<π.∴,φ=.故选:A./【点评】本题考查由三角函数的部分图象求解析式,考查y=Asin(ωx+φ)型函数的性质,是中档题.8.(5分)已知函数f(x)=,设a∈R,若关于x的不等式f(x)≥|+a|在R上恒成立,则a的取值范围是()A.[﹣,2] B.[﹣,] C.[﹣2,2] D.[﹣2,]【分析】讨论当x≤1时,运用绝对值不等式的解法和分离参数,可得﹣x2+x ﹣3≤a≤x2﹣x+3,再由二次函数的最值求法,可得a的范围;讨论当x>1时,同样可得﹣(x+)≤a≤+,再由基本不等式可得最值,可得a的范围,求交集即可得到所求范围.【解答】解:当x≤1时,关于x的不等式f(x)≥|+a|在R上恒成立,即为﹣x2+x﹣3≤+a≤x2﹣x+3,即有﹣x2+x﹣3≤a≤x2﹣x+3,由y=﹣x2+x﹣3的对称轴为x=<1,可得x=处取得最大值﹣;由y=x2﹣x+3的对称轴为x=<1,可得x=处取得最小值,则﹣≤a≤①当x>1时,关于x的不等式f(x)≥|+a|在R上恒成立,《即为﹣(x+)≤+a≤x+,即有﹣(x+)≤a≤+,由y=﹣(x+)≤﹣2=﹣2(当且仅当x=>1)取得最大值﹣2;由y=x+≥2=2(当且仅当x=2>1)取得最小值2.则﹣2≤a≤2②由①②可得,﹣≤a≤2.故选:A.【点评】本题考查分段函数的运用,不等式恒成立问题的解法,注意运用分类讨论和分离参数法,以及转化思想的运用,分别求出二次函数和基本不等式求最值是解题的关键,属于中档题.二.填空题:本大题共6小题,每小题5分,共30分.9.(5分)已知a∈R,i为虚数单位,若为实数,则a的值为﹣2.】【解答】解:===﹣i由为实数,可得﹣=0,解得a=﹣2.故答案为:﹣2.【点评】本题考查复数的乘除运算,注意运用共轭复数,同时考查复数为实数的条件:虚部为0,考查运算能力,属于基础题.10.(5分)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.【分析】根据正方体和球的关系,得到正方体的体对角线等于直径,结合球的体积公式进行计算即可.【解答】解:设正方体的棱长为a,∵这个正方体的表面积为18,∴6a2=18,则a2=3,即a=,∵一个正方体的所有顶点在一个球面上,∴正方体的体对角线等于球的直径,即a=2R,即R=,则球的体积V=π•()3=;故答案为:.【点评】本题主要考查空间正方体和球的关系,利用正方体的体对角线等于直径,结合球的体积公式是解决本题的关键.)11.(5分)在极坐标系中,直线4ρcos(θ﹣)+1=0与圆ρ=2sinθ的公共点的个数为2.【分析】把极坐标方程化为直角坐标方程,求出圆心到直线的距离d,与半径比较即可得出位置关系.【解答】解:直线4ρcos(θ﹣)+1=0展开为:4ρ+1=0,化为:2x+2y+1=0.圆ρ=2sinθ即ρ2=2ρsinθ,化为直角坐标方程:x2+y2=2y,配方为:x2+(y﹣1)2=1.∴圆心C(0,1)到直线的距离d==<1=R.∴直线4ρcos(θ﹣)+1=0与圆ρ=2sinθ的公共点的个数为2.故答案为:2.【点评】本题考查了极坐标方程化为直角坐标方程、直线与圆的位置关系、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.12.(5分)若a,b∈R,ab>0,则的最小值为4.【解答】解:a,b∈R,ab>0,∴≥==4ab+≥2=4,%当且仅当,即,即a=,b=或a=﹣,b=﹣时取“=”;∴上式的最小值为4.故答案为:4.【点评】本题考查了基本不等式的应用问题,是中档题.13.(5分)在△ABC中,∠A=60°,AB=3,AC=2.若=2,=λ﹣(λ∈R),且=﹣4,则λ的值为.【分析】根据题意画出图形,结合图形,利用、表示出,再根据平面向量的数量积列出方程求出λ的值.【解答】解:如图所示,△ABC中,∠A=60°,AB=3,AC=2,=2,∴=+=+=+(﹣)=+,!又=λ﹣(λ∈R),∴=(+)•(λ﹣)=(λ﹣)•﹣+λ=(λ﹣)×3×2×cos60°﹣×32+λ×22=﹣4,∴λ=1,解得λ=.故答案为:.【点评】本题考查了平面向量的线性运算与数量积运算问题,是中档题.14.(5分)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有1080个.(用数字作答)【分析】根据题意,要求四位数中至多有一个数字是偶数,分2种情况讨论:①、四位数中没有一个偶数数字,②、四位数中只有一个偶数数字,分别求出每种情况下四位数的数目,由分类计数原理计算可得答案.【解答】解:根据题意,分2种情况讨论:四位数中没有一个偶数数字,即在1、3、5、7、9种任选4个,¥组成一共四位数即可,有A54=120种情况,即有120个没有一个偶数数字四位数;②、四位数中只有一个偶数数字,在1、3、5、7、9种选出3个,在2、4、6、8中选出1个,有C53•C41=40种取法,将取出的4个数字全排列,有A44=24种顺序,则有40×24=960个只有一个偶数数字的四位数;则至多有一个数字是偶数的四位数有120+960=1080个;故答案为:1080.:【点评】本题考查排列、组合的综合应用,注意要分类讨论.%三.解答题:本大题共6小题,共80分.15.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sinB=.(Ⅰ)求b和sinA的值;(Ⅱ)求sin(2A+)的值.【分析】(Ⅰ)由已知结合同角三角函数基本关系式求得cosB,再由余弦定理求得b,利用正弦定理求得sinA;(Ⅱ)由同角三角函数基本关系式求得cosA,再由倍角公式求得sin2A,cos2A,展开两角和的正弦得答案.【解答】!解:(Ⅰ)在△ABC中,∵a>b,故由sinB=,可得cosB=.由已知及余弦定理,有=13,∴b=.由正弦定理,得sinA=.∴b=,sinA=;(Ⅱ)由(Ⅰ)及a<c,得cosA=,—∴sin2A=2sinAcosA=,cos2A=1﹣2sin2A=﹣.故sin(2A+)==.【点评】本题考查正弦定理和余弦定理在解三角形中的应用,考查倍角公式的应用,是中档题.16.(13分)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为,,.(Ⅰ)设X表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X的分布列和数学期望;(Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.【分析】(Ⅰ)随机变量X的所有可能取值为0,1,2,3,求出对应的概率值,写出它的分布列,计算数学期望值;,(Ⅱ)利用相互独立事件同时发生的概率公式计算所求事件的概率值.【解答】解:(Ⅰ)随机变量X的所有可能取值为0,1,2,3;则P(X=0)=(1﹣)×(1﹣)(1﹣)=,P(X=1)=×(1﹣)×(1﹣)+(1﹣)××(1﹣)+(1﹣)×(1﹣)×=,P(X=2)=(1﹣)××+×(1﹣)×+××(1﹣)=,P(X=3)=××=;所以,随机变量X的分布列为3 X01)2P随机变量X的数学期望为E(X)=0×+1×+2×+3×=;(Ⅱ)设Y表示第一辆车遇到红灯的个数,Z表示第二辆车遇到红灯的个数,则所求事件的概率为P(Y+Z=1)=P(Y=0,Z=1)+P(Y=1,Z=0)=P(Y=0)•P(Z=1)+P(Y=1)•P(Z=0)=×+×=;所以,这2辆车共遇到1个红灯的概率为.【点评】本题考查了离散型随机变量的分布列与数学期望的计算问题,是中档题.17.(13分)如图,在三棱锥P﹣ABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.(Ⅰ)求证:MN∥平面BDE;(Ⅱ)求二面角C﹣EM﹣N的正弦值;…(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长.【分析】(Ⅰ)取AB中点F,连接MF、NF,由已知可证MF∥平面BDE,NF∥平面BDE.得到平面MFN∥平面BDE,则MN∥平面BDE;(Ⅱ)由PA⊥底面ABC,∠BAC=90°.可以A为原点,分别以AB、AC、AP所在直线为x、y、z轴建立空间直角坐标系.求出平面MEN与平面CME的一个法向量,由两法向量所成角的余弦值得二面角C﹣EM﹣N的余弦值,进一步求得正弦值;(Ⅲ)设AH=t,则H(0,0,t),求出的坐标,结合直线NH与直线BE 所成角的余弦值为列式求得线段AH的长.【解答】(Ⅰ)证明:取AB中点F,连接MF、NF,∵M为AD中点,∴MF∥BD,∵BD⊂平面BDE,MF⊄平面BDE,∴MF∥平面BDE.∵N为BC中点,∴NF∥AC,又D、E分别为AP、PC的中点,∴DE∥AC,则NF∥DE.{∵DE⊂平面BDE,NF⊄平面BDE,∴NF∥平面BDE.又MF∩NF=F.∴平面MFN∥平面BDE,则MN∥平面BDE;(Ⅱ)解:∵PA⊥底面ABC,∠BAC=90°.∴以A为原点,分别以AB、AC、AP所在直线为x、y、z轴建立空间直角坐标系.∵PA=AC=4,AB=2,∴A(0,0,0),B(2,0,0),C(0,4,0),M(0,0,1),N(1,2,0),E (0,2,2),则,,设平面MEN的一个法向量为,由,得,取z=2,得.由图可得平面CME的一个法向量为.《∴cos<>=.∴二面角C﹣EM﹣N的余弦值为,则正弦值为;(Ⅲ)解:设AH=t,则H(0,0,t),,.∵直线NH与直线BE所成角的余弦值为,∴|cos<>|=||=||=.解得:t=4.∴当H与P重合时直线NH与直线BE所成角的余弦值为,此时线段AH的长为4.【点评】本题考查直线与平面平行的判定,考查了利用空间向量求解空间角,考查计算能力,是中档题.[18.(13分)已知{a n}为等差数列,前n项和为S n(n∈N+),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a2n b2n﹣1}的前n项和(n∈N+).【分析】(Ⅰ)设出公差与公比,利用已知条件求出公差与公比,然后求解{a n}和{b n}的通项公式;(Ⅱ)化简数列的通项公式,利用错位相减法求解数列的和即可.【解答】解:(I)设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由已知b2+b3=12,得b1(q+q2)=12,而b1=2,所以q+q2﹣6=0.又因为q>0,解得q=2.所以,b n=2n.由b3=a4﹣2a1,可得3d﹣a1=8①.、由S11=11b4,可得a1+5d=16②,联立①②,解得a1=1,d=3,由此可得a n=3n﹣2.所以,数列{a n}的通项公式为a n=3n﹣2,数列{b n}的通项公式为b n=2n.(II)设数列{a2n b2n﹣1}的前n项和为T n,由a2n=6n﹣2,b2n﹣1=4n,有a2n b2n﹣1=(3n﹣1)4n,故T n=2×4+5×42+8×43+…+(3n﹣1)4n,4T n=2×42+5×43+8×44+…+(3n﹣1)4n+1,上述两式相减,得﹣3T n=2×4+3×42+3×43+…+3×4n﹣(3n﹣1)4n+1==﹣(3n﹣2)4n+1﹣8得T n=.]所以,数列{a2n b2n﹣1}的前n项和为.【点评】本题考查等差数列以及等比数列的应用,数列求和的方法,考查计算能力.19.(14分)设椭圆+=1(a>b>0)的左焦点为F,右顶点为A,离心率为.已知A是抛物线y2=2px(p>0)的焦点,F到抛物线的准线l的距离为.(I)求椭圆的方程和抛物线的方程;(II)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于A),直线BQ与x轴相交于点D.若△APD的面积为,求直线AP的方程.【分析】(I)根据椭圆和抛物线的定义、性质列方程组求出a,b,p即可得出方程;(II)设AP方程为x=my+1,联立方程组得出B,P,Q三点坐标,从而得出直线BQ的方程,解出D点坐标,根据三角形的面积列方程解出m即可得出【解答】(Ⅰ)解:设F的坐标为(﹣c,0).;依题意可得,解得a=1,c=,p=2,于是b2=a2﹣c2=.所以,椭圆的方程为x2+=1,抛物线的方程为y2=4x.(Ⅱ)解:直线l的方程为x=﹣1,设直线AP的方程为x=my+1(m≠0),,解得点P(﹣1,﹣),故Q(﹣1,).,消去x,整理得(3m2+4)y2+6my=0,解得y=0,或y=﹣.∴B(,).∴直线BQ的方程为(﹣)(x+1)﹣()(y﹣)=0,令y=0,解得x=,故D(,0).∴|AD|=1﹣=.又∵△APD的面积为,∴×=,整理得3m2﹣2|m|+2=0,解得|m|=,∴m=±.∴直线AP的方程为3x+y﹣3=0,或3x﹣y﹣3=0.#20.(14分)设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个零点x0,g(x)为f(x)的导函数.(Ⅰ)求g(x)的单调区间;(Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0;(Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且∈[1,x0)∪(x0,2],满足|﹣x0|≥.【分析】(Ⅰ)求出函数的导函数g(x)=f′(x)=8x3+9x2﹣6x﹣6,求出极值点,通过列表判断函数的单调性求出单调区间即可.(Ⅱ)由h(x)=g(x)(m﹣x0)﹣f(m),推出h(m)=g(m)(m﹣x0)﹣f(m),令函数H1(x)=g(x)(x﹣x0)﹣f(x),求出导函数H′1(x)利用(Ⅰ)知,推出h(m)h(x0)<0.(Ⅲ)对于任意的正整数p,q ,且,\令m=,函数h(x)=g(x)(m﹣x0)﹣f(m).由(Ⅱ)知,当m∈[1,x0)时,当m∈(x0,2]时,通过h(x)的零点.转化推出|﹣x0|=≥=.推出|2p4+3p3q﹣3p2q2﹣6pq3+aq4|≥1.然后推出结果.【解】(Ⅰ)由f(x)=2x4+3x3﹣3x2﹣6x+a,得g(x)=f′(x)=8x3+9x2﹣6x﹣6,进而可得g′(x)=24x2+18x﹣6.令g′(x)=0,解得x=﹣1,或x=.当x变化时,g′(x),g(x)的变化情况如下表:x(﹣∞,﹣1)(﹣1,)(,+∞)﹣+ g′(x)【+g(x)↗↘↗所以,g(x)的单调递增区间是(﹣∞,﹣1),(,+∞),单调递减区间是(﹣1,).(Ⅱ)证明:由h(x)=g(x)(m﹣x0)﹣f(m),得h(m)=g(m)(m﹣x0)﹣f(m),所以h(x0)=g(x0)(m﹣x0)﹣f(m).令函数H1(x)=g(x)(x﹣x0)﹣f(x),则H′1(x)=g′(x)(x﹣x0).由(Ⅰ)知,当x∈[1,2]时,g′(x)>0,故当x∈[1,x0)时,H′1(x)<0,H1(x)单调递减;当x∈(x0,2]时,H′1(x)>0,H1(x)单调递增.因此,当x∈[1,x0)∪(x0,2]时,H1(x)>H1(x0)=﹣f(x0)=0,可得H1(m)>0即h(m)>0,令函数H2(x)=g(x0)(x﹣x0)﹣f(x),则H′2(x)=g′(x0)﹣g(x).由(Ⅰ)知,g(x)在[1,2]上单调递增,故当x∈[1,x0)时,H′2(x)>0,H2(x)单调递增;当x∈(x0,2]时,H′2(x)<0,H2(x)单调递减.因此,当x∈[1,x0)∪(x0,2]时,H2(x)>H2(x0)=0,可得得H2(m)<0即h(x0)<0,.所以,h(m)h(x0)<0.(Ⅲ)对于任意的正整数p,q,且,令m=,函数h(x)=g(x)(m﹣x0)﹣f(m).由(Ⅱ)知,当m∈[1,x0)时,h(x)在区间(m,x0)内有零点;当m∈(x0,2]时,h(x)在区间(x0,m)内有零点.所以h(x)在(1,2)内至少有一个零点,不妨设为x1,则h(x1)=g(x1)(﹣x0)﹣f()=0.由(Ⅰ)知g(x)在[1,2]上单调递增,故0<g(1)<g(x1)<g(2),于是|﹣x0|=≥=.因为当x∈[1,2]时,g(x)>0,故f(x)在[1,2]上单调递增,所以f(x)在区间[1,2]上除x0外没有其他的零点,而≠x0,故f()≠0.又因为p,q,a均为整数,所以|2p4+3p3q﹣3p2q2﹣6pq3+aq4|是正整数,从而|2p4+3p3q﹣3p2q2﹣6pq3+aq4|≥1.所以|﹣x0|≥.所以,只要取A=g(2),就有|﹣x0|≥.【点评】本题考查函数的导数的综合应用,函数的单调性以及函数的最值的求法,考查分类讨论思想以及转化思想的应用,是难度比较大的题目.。

相关文档
最新文档