化工原理课程设计水吸收氨

合集下载

水吸收氨气的工艺设计

水吸收氨气的工艺设计

题目水吸收氨气过程填料吸收塔的设计课程设计任务书1、设计题目:年处理量为17554.32吨氨气的工艺设计;试设计一座填料吸收塔,用于脱除混于空气中的氨气。

混合气体的处理量为2100(m3/h),其中含空气为0.95%,氨气为5%(体积分数),要求塔顶排放气体中含氨低于0.02%(体积分数),采用清水进行吸收,吸收剂的用量为最小用量的1.5倍。

(20C°氨在水中的溶解度系数为H=0.725kmol/m3.kPa)2、工艺操作条件:(1)操作平均压力常压(2)操作温度t=20℃(3)每年生产时间:7200h。

(4)选用填料类型及规格自选。

3、设计任务:完成氨吸收塔的工艺设计与计算,有关附属设备的设计和选型,绘制吸收系统的工艺流程图和吸收塔的工艺条件图,编写设计说明书。

摘要吸收操作在化学工业中是一种重要的分离方法,本次设计采用水吸收空气中的少量氨气,以脱除空气中的氨气,属于物理吸收。

影响吸收的因素主要为溶质在吸收剂中的溶解度,其吸收速率主要决定于气相或液相与界面上溶质的浓度差,以及溶质从气相向液相传递的扩散速率。

本设计本设计采用填料塔,塔高11m,塔径D塑料鲍尔环填料,具有通量大、阻力小、传质效率高等优点,可以0.9m,采用36n达到较好的通过能力和分离效果。

关键词:吸收水填料塔氨气目录设计任务书 (Ⅰ)摘要 (Ⅱ)第一章绪论 (1)1.1吸收技术概况 (1)1.2吸收设备的发展 (1)1.3吸收在工业发展中的应用 (2)第二章设计方案 (4)2.1吸收设计的选择 (4)2.2吸收流程的选择 (5)2.3吸收塔的设备及的选择 (5)2.3.1吸收塔的设备 (5)2.3.2填料的类型 (7)2.3.3填料的性能评价 (9)2.4吸收剂再生方法的选择 (10)2.5操作参数的选择 (11)2.5.1操作压力的选择 (11)2.5.2吸收因子的选择 (11)第三章吸收塔的工艺计算 (13)3.1基础物性数据 (13)3.1.1液相物性数据 (13)3.1.2气相物性数据 (13)3.1.3气液相平衡数据 (13)3.2物料衡算 (14)3.3填料塔的工艺尺寸的计算 (15)3.3.1塔径的计算 (15)3.4填料塔填料高度计算 (15)3.4.1传质单元高度计算 (15)3.4.2传质单元数的计算 (16)3.4.3填料层高度计算 (16)3.4.4填料层压降 (16)3.5填料塔附属高度计算 (17)3.6液体分布器简要设计 (17)3.6.1液体分布器的选型 (17)3.6.2分布点密度计算 (18)3.7其他附属塔内件的选择 (18)3.7.1液体分布器 (19)3.7.2液体收集及再分布装置 (19)3.7.3填料支承装置 (20)3.8吸收塔的流体力学参数的计算 (20)3.8.1吸收塔的压力降 (20)3.8.2吸收塔的泛点率 (21)3.8.3气体动能因子 (21)3.9附属设备的计算与选择 (21)3.9.1离心泵的选择与计算 (21)3.9.2尺寸的计算举例 (22)工艺流程图 (25)设备条件图 (26)工艺设计计算结果汇总与主要符号说明 (27)主要参考文献 (31)结束语 (32)教师评分表 (33)第一章绪论1.1吸收技术的概况在化学工业中,经常需将气体混合物中的各个组分加以分离。

重理工水吸收氨气填料吸收塔的课程设计(附图)

重理工水吸收氨气填料吸收塔的课程设计(附图)

重庆理工大学化工原理课程设计说明书题目:水吸收氨过程填料吸收塔设计学生班级:学生姓名:学生学号:指导教师:化学化工学院2014 年06月 21 日目录第一章前言 (1)1.1 设计任务 (1)1.2 操作条件 (1)1.3 工作日 (1)1.4 厂址 (1)第二章设计方案概述 (1)2.1 流程说明 (1)2.2 填料方式的选择 (2)2.3 吸收剂的选择 (2)第三章吸收塔的工艺计算 (2)3.1 基础物性数据 (2)3.1.1 液相物性数据 (2)3.1.2 气相物性数据 (2)3.2 物料衡算,确定塔顶、塔底的气液流量和组成 (3)3.3 塔径的计算 (3)3.3.1塔径的计算 (3)3.3.2泛点率校核 (4)3.3.3填料规格校核 (4)3.3.4液体喷淋密度校核 (5)3.4 填料层高度计算 (5)3.4.1传质单元高度计算 (5)3.4.2填料层高度的计算 (7)3.5 填料层压降的计算 (7)第四章填料塔附属高度及其附件 (8)4.1塔附属高度的计算 (8)4.2液体分布器的选择与计算 (8)4.2.1 液体分布器的选择 (8)4.2.2 液体分布器布液能力的计算 (8)4.3其他附属塔内件 (9)计算结果汇总 (9)结束语 (10)参考文献 (10)第一章设计任务1.1、设计任务试设计一座填料吸收塔,用于脱除混于空气中的氨气。

混合气体的处理量为(2.2×107+8.0×106)Nm3/a(约4167 m3/h)。

混合气体中含氨5%(体积分数),要求回收率为99%,采用清水进行吸收,吸收剂用量自定。

设计基础数据:20℃下氨在水中的溶解度系数为 H = 0.725 kmol/ (m3.kPa);其它物性数据可查有关手册1.2、操作条件操作压力:常压;操作温度:20 ℃填料类型:选用聚丙烯阶梯环填料,填料规格自选。

1.3、工作日每年300天,每天24小时连续运行。

水吸收氨气-泡沫

水吸收氨气-泡沫
2 2
5×( 427680 / 940896 ) 0.75× [9929.59 / ( 114.2× 3.2 ) ] ( 997.052× 1.27× 108 ) ]
0.2 -0.05
0.1
× [9929.59×114.2 /
× [9929.592 / ( 997.05× 940896× 114.2 ) ]
L=1.7676×84.13=148.71Kmol /h
V(Y1—Y2)=L( X1— X2), 得 X1=84.13×(0.0695—0.0002) /120.16=0.0485 2.2 填料塔的工艺尺寸的计算
4
化工原理课程设计(清水吸收氨气)
2.2.1 塔径的计算
混合气体的平均摩尔质量为: 混合气体的密度:
1
化工原理课程设计(清水吸收氨气)
质。因此,填料的选择是填料塔设计的重要环节。 塔填料的选择包括确定填料的种类、 规格及材料。 填料的种类主要从传质效 率、通量、填料层的压降来考虑,填料规格的选择常要符合填料的塔径与填料公 称直径比值 D/d。 散装填料是一个个具有一定几何形状和尺寸的颗粒体, 一般以随机的方式堆 积在塔内,又称为乱堆填料或颗粒填料。散装填料根据结构特点不同,可分为环 形填料、鞍形填料、环鞍形填料及球形填料等。
0.065×17+(1-0.065)×29=28.22
PM 101.3 103 28.22 103 V 1.154kg / m3 RT 8.314 298
塔径气相质量流量为: V =2200×1.154=2538.8kg/h 液相质量流量可近似按纯水的流量计算,即: L =108.14× 18.02=1949 ㎏/h 塑料阶梯环特性数据据如下
4VS = [(4× 2200/3600)/(3.14× 2.148)] 0.5=0.602m u

水吸收氨过程填料吸收塔设计

水吸收氨过程填料吸收塔设计

设计题目 3000Nm3/h含氨5%填料吸收塔的设计试设计一座填料吸收塔,用于脱出混于空气中的氨气。

混合气体的处理量为3000Nm3/h,其中含氨为5%(体积分数),采用清水进行吸收。

要求塔顶排放气体中含氨低于0.02%(体积分数)。

操作条件(1)操作压力101.33 kPa(常压);(2)操作温度20℃;(3)吸收剂用量为最小用量的1.9倍填料类型:选用聚丙烯阶梯环填料。

工作日:每年300天,每天24小时连续运行厂址:合肥设计内容(1)设计方案的说明及流程说明;(2)吸收塔的物料衡算;吸收塔的工艺尺寸计算;(3)填料层压降的计算;(4)液体分布器简要设计;(5)吸收塔接管尺寸计算;(6)绘制生产工艺流程图;(7)绘制吸收塔设计条件图;(8)绘制液体分布器施工图;(9)对设计过程的评述和有关问题的讨论。

目录第1章设计方案的简介 (1)1.1选定塔型 (1)1.2确定填料吸收塔的具体方案 (2)1.2.1装置流程的确定 (2)1.2选择吸收剂 (2)1.3操作温度与压力的确定 (3)1.3.1操作温度的确定 (3)1.3.2操作压力的确定 (3)第2章填料的类型与选择 (4)2.1填料的类型 (4)2.1.1散装填料 (4)2.1.2规整填料 (4)2.2填料的选择 (5)2.2.1填料种类的选择 (5)2.2.2填料规格的选择 (6)2.2.3填料材质的选择 (7)第3章填料塔工艺尺寸 (8)3.1设计基础数据 (8)3.1.1液相物性数据 (8)3.1.2气相物性数据 (8)3.2.3气液相平衡数据 (8)3.2.4物料衡算 (9)第4章填料塔的工艺尺寸的计算 (10)4.1塔径的计算 (10)4.2填料层高度计算 (11)4.3填料塔压降的计算 (13)第5章液体分布器简要设计 (15)5.1液体分布器 (15)5.2液体再分布器 (16)5.3 塔底液体保持管高度 (17)第6章吸收塔接管尺寸计算 (18)6.1气体进料管 (18)6.2液体进料管 (18)6.3 离心泵的选型 (18)6.4风机的选型 (19)第7章塔体附件设计 (21)7.1塔的支座 (21)7.2其他附件 (21)附图1 填料塔工艺图 (22)附图2 工艺流程图 (23)附录1 吸收塔设计条件图 (24)附录2 符号说明 (25)附录3 设计一览表 (26)附录4 Eckert通用关联图 (27)参考文献 (28)第1章设计方案的简介1.1选定塔型塔器是关键设备,例如在气体吸收、液体精馏(蒸馏)、萃取、吸附、增湿中、离子交换等过程中都有体现。

氨水吸收实验课程设计

氨水吸收实验课程设计

氨水吸收实验课程设计一、教学目标本节课的教学目标是使学生掌握氨水的制备和吸收过程,理解相关化学原理,提高实验操作技能,培养学生的观察能力和问题解决能力。

1.掌握氨水的制备方法。

2.了解氨水的吸收原理。

3.熟悉氨水吸收实验的操作步骤。

4.能够独立完成氨水吸收实验。

5.能够正确使用实验仪器和设备。

6.能够分析实验结果,解决实验中出现的问题。

情感态度价值观目标:1.培养学生的实验兴趣,提高学生对化学实验的积极性。

2.培养学生团队合作精神,学会与他人共同解决问题。

3.培养学生对科学实验的严谨态度,注重实验结果的准确性。

二、教学内容本节课的教学内容主要包括氨水的制备、氨水的吸收原理以及氨水吸收实验的操作步骤。

1.氨水的制备:讲解实验室制取氨气的方法,包括原料选择、反应原理和实验操作。

2.氨水的吸收原理:介绍氨气在水中的溶解度以及吸收过程中气液接触的重要性。

3.氨水吸收实验:详细讲解实验步骤、实验仪器和设备的使用方法,以及实验结果的分析和处理。

三、教学方法本节课采用多种教学方法,以激发学生的学习兴趣和主动性。

1.讲授法:讲解氨水的制备方法和吸收原理,使学生掌握相关理论知识。

2.实验法:进行氨水吸收实验,让学生亲身体验实验过程,提高实验操作技能。

3.讨论法:引导学生分组讨论实验结果,培养学生的观察能力和问题解决能力。

4.案例分析法:分析实际案例,使学生了解氨水吸收在工业中的应用和重要性。

四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将准备以下教学资源:1.教材:选用符合教学大纲的化学教材,为学生提供理论知识的学习。

2.参考书:提供相关领域的参考书籍,拓展学生的知识视野。

3.多媒体资料:制作PPT、实验视频等多媒体资料,生动展示实验过程和原理。

4.实验设备:准备实验所需的仪器和设备,确保实验的顺利进行。

五、教学评估为了全面、客观地评估学生的学习成果,本节课采用以下评估方式:1.平时表现:评估学生在课堂上的参与程度、提问回答情况以及小组讨论的表现等,以了解学生的学习态度和理解程度。

化工原理课程设计(氨气填料吸收塔设计)

化工原理课程设计(氨气填料吸收塔设计)

化工原理课程设计任务书设计题目填料吸收塔设计—15主要内容1、设计方案简介:对给定或选定的工艺流程、主要设备进行简要论述;2、主要设备的工艺设计计算:物料衡算、能量衡算、工艺参数的选定、填料塔结构设计和工艺尺寸的设计计算;3、辅助设备的选型4、绘流程图:以单线图的形式描绘,标出主体设备和辅助设备的物料方向、物流量、能流量。

5、吸收塔的设备工艺条件图6、编写设计计算说明书设计参数用清水吸收空气中的NH3气体,混合气体处理量5000m3/h,其中NH3含量为0.14kg/m3干空气(标态),干空气温度为25℃,相对湿度为70%,要求净化气中NH3含量不超过0.07%(体积分数),气体入口温度40℃,入塔吸收剂中不含NH3,水入口温度30℃。

设计计划进度布置任务,学习课程设计指导书,其它准备……………0.5天主要工艺设计计算…………………………………………2.5天辅助设备选型计算/绘制工艺流程图……………………1.0天绘制主要设备工艺条件图…………………………………1.0天编写设计计算说明书(考核)……………………………1.0天合计:(1周)………………………………………………6.0天主要参考文献1. 《化工原理课程设计》,贾绍义等编,天津大学出版社,2002.082.《化工原理》(上、下册),夏清,陈常贵主编,天津大学出版社,2005.013. 《化工原理课程设计》,大连理工大学编,大连理工大学出版社,1994.074.《化工工艺设计手册》(第三版)(上、下册),化学工业出版社,2003.085.《化学工程手册》(第二版)(上、下卷),时钧等主编,化学工业出版社,1998.116.《化工设备机械基础》,董大勤编,化学工业出版社,2003.017.《化工数据导引》,王福安主编,化工出版社,1995.108.《化工工程制图》,魏崇光等主编,化学工业出版社1994.059.《现代填料塔技术指南》,王树楹主编,中国石化出版社,1998.08设计文件要求1.设计说明书不得少于7000字,A4幅面;2.工艺流程图为A2幅面;3.设备工艺条件图为A3幅面;备注目录一前言 (3)二设计任务 (4)三设计条件 (4)四设计方案 (5)1.吸收剂的选择 (5)2.流程图及流程说明 (5)3.塔填料的选择 (7)五工艺计算 (11)1.物料衡算,确定塔顶、塔底的气液流量和组成 (11)2.塔径的计算 (12)3. 填料层高度计算 (14)4. 填料层压降计算 (16)5. 液体分布装置 (17)6. 液体再分布装置 (19)7. 填料支撑装置 (20)8. 流体进出口装置 (21)9. 水泵及风机的选型 (22)六设计一览表 (23)七对本设计的评述 (23)八参考文献 (24)九主要符号说明 (24)十致谢 (25)一前言在石油化工、食品医药及环境保护等领域,塔设备属于使用量大应用面广的重要单元设备。

水吸收氨气过程填料吸收塔的设计

水吸收氨气过程填料吸收塔的设计

课程设计任务书一、设计题目:水吸收氨气过程填料吸收塔的设计;试设计一座填料吸收塔,采用清水吸收混于空气中的氨气。

混合气体的处理量为2600m3/h,其中含氨为7%(体积分数),混合气体的进料温度为25℃。

要求:氨气的回收率达到98%。

(20℃氨在水中的溶解度系数为H=0.725kmol/(m3.kPa)二、工艺操作条件:(1)操作平均压力常压(2)操作温度: t=20℃(3)吸收剂用量为最小用量的倍数自己确定(4)选用填料类型及规格自选。

三、设计内容(1)设计方案的确定和说明(2)吸收塔的物料衡算;(3)吸收塔的工艺尺寸计算;(4)填料层压降的计算;(5)液体分布器简要设计;(6)绘制液体分布器施工图(7)吸收塔接管尺寸计算;(8)设计参数一览表;(9)绘制生产工艺流程图(A4号图纸);(10)绘制吸收塔设计条件图(A4号图纸);(11)对设计过程的评述和有关问题的讨论。

目录1. 设计方案简介 (1)1.1设计方案的确定 (1)1.2填料的选择 (1)2. 工艺计算 (1)2.1 基础物性数据 (1)2.1.1液相物性的数据 (1)2.1.2气相物性的数据 (1)2.1.3气液相平衡数据 (1)2.1.4 物料衡算 (1)2.2 填料塔的工艺尺寸的计算 (2)2.2.1 塔径的计算 (2)2.2.2 填料层高度计算 (3)2.2.3 填料层压降计算 (6)2.2.4 液体分布器简要设计 (7)3. 辅助设备的计算及选型 (8)3.1 填料支承设备 (8)3.2填料压紧装置 (8)3.3液体再分布装置 (8)4. 设计一览表 (9)5. 后记 (9)6. 参考文献 (9)7. 主要符号说明 (10)8. 附图(工艺流程简图、主体设备设计条件图)1. 设计方案简介 1.1设计方案的确定该填料塔中,氨气和空气混合后,经由填料塔的下侧进入填料塔中,与从填料塔顶流下的清水逆流接触,在填料的作用下进行吸收。

化工原理课程设计--填料吸收塔的设计

化工原理课程设计--填料吸收塔的设计

化工原理课程设计--填料吸收塔的设计《化工原理》课程设计填料吸收塔的设计学院南华大学船山学院专业制药工程班级 10级姓名龙浩学号 20109570111指导教师王延飞2012年11月25日1.水吸收氨气填料塔工艺设计方案简介任务及操作条件①混合气(空气、NH3 )处理量:10003/m h;②进塔混合气含NH3 7% (体积分数);温度:20℃;③进塔吸收剂(清水)的温度:20℃;④NH3回收率:96%;⑤操作压力为常压101.3k Pa。

1设计方案的确定用水吸收氨气属于等溶解度的吸收过程,为提高传质效率,选用逆流吸收过程。

因用水做座位吸收剂,且氨气不作为产品,股采用纯溶剂。

该填料塔中,氨气和空气混合后,经由填料塔的下侧进入填料塔中,与从填料塔顶流下的清水逆流接触,在填料的作用下进行吸收。

经吸收后的混合气体由塔顶排除,吸收了氨气的水由填料塔的下端流出。

2填料的选择对于水吸收氨气的过程,操作温度计操作压力较低。

工业上通常是选用塑料散装填料。

在塑料散装中,塑料阶梯环填料的综合性能较好,见下图:根据所要处理的混合气体,可采用水为吸收剂,其廉价易得,物理化学性能稳定,选择性好,符合吸收过程对吸收剂的基本要求。

设计选用填料塔,填料为散装聚丙烯DN50阶梯环填料。

国内阶梯环特性数据52. 工艺计算2.1基础物性数据 2.1.1液相物性数据对低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。

由手册查的,20℃水的有关物性数据如下: 密度为 ρ1 =998.2Kg /m 3粘度为 μL =1.005mPa ·S =0.001Pa ·S=3.6Kg /(m ·h ) 表面张力为 σL =72.6dyn /cm=940 896Kg /h 2氨气在水中的扩散系数:D L =1.80×10-9 m 2/s=1.80×10-9×3600 m 2/h=6.480 ×10-6m 2/h2.1.2气相物性的数据 混合气体平均摩尔质量为M VM =Σy i M i =0.101×17+0.899×28=26.889混合气体的平均密度为ρvm =RTPM VN=101.3×26.889/(8.314×293)=1.116Kg /m 3 混合气体的粘度可近似取为空气的粘度,查手册的20℃空气的粘度为μV =1.81×10—5Pa ·s=0.065Kg /(m ·h )查手册得氨气在20℃空气中扩散系数为D v = 0.189 cm 2/s=0.068 m 2/s2.1.3气液相平衡数据20C 下氨在水中的溶解度系数:)/(725.03kpa m kmol H ⋅=,常压下20℃时亨利系数:SLHM E ρ==998.2/(0.725×18.02)=76.40Kpa相平衡常数为755.01.10140.76===P E m溶解度系数为717.02.184.762.98=⨯==SLEM H ρ998.20.7540.72518101.3s S E m P HM P ρ====⨯⨯ 2.1.4 物料衡算 进塔气相摩尔比为Y 1=11y 1y —=0.101/(1—0.101)=0.11235 出塔气相摩尔比为Y 2=Y 1(1—φ)=0.11235×(1—0.9996)=0.000045进塔惰性气相流量为V=1000/22.4×273/(273+20)×(1—0.101)=34.29Kmol /h该吸收过程属低浓度吸收,平衡关系为直线,最小液气比可按下式计算,即;(V L )min =2121m X Y Y Y —/— 对纯溶剂吸收过程,进塔液相组成为 X 2=0(VL)min =(0.11235—0.000045)/[0.11235/(0.754—0)]=0.753 取操作液气比为最小液气比1.8VL=1.8×0.753=1.355 L=1.355×34.29=46.516Kmol /hV (Y 1—Y 2)=L (X 1—X 2)X 1=34.29×(0.11235—0.000045) /46.516=0.08278 5填料塔的工艺尺寸的计算 1) 塔径的计算采用Eckert 通用关联图计算泛点气速 塔径气相质量流量为V ω=1000×1.103=1103Kg /h液相质量流量可近似按纯水的流量计算,即:L ω=46.516×18.02=838.218㎏/hEckert 通过关联图的横坐标为025.0)2.998116.1(1103218.838)(5.05.0=⨯=L V V L w w ρρ 21.02.02=ψΦL LV F F g u μρρ1170-=Φm F95.01116.111702.99881.921.021.02.02.0=⨯⨯⨯⨯⨯=ψΦ=L V F L F g u μρρ729.0665.014.33600/100044=⨯⨯==uV D Sπ圆整塔经,取D=0.8ms m u u F /665.095.07.07.0=⨯==泛点率校核:)%(69%1008.0785.03600/10002在允许范围内=⨯⨯=u填料规格校核:805.2138800>==d D112480.23lg f t v v L L L v L u a W A K g W ρρμρρε⎡⎤⎛⎫⎛⎫=-⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦即()20.231184223 1.166lg () 1.0049.81998.20.90 1.1660.204 1.750.666998.20.476f u ⎡⎤⎢⎥⎢⎥⎣⎦⎛⎫=-⨯⨯ ⎪⎝⎭=-3.017/f u m s = ()0.50.85f u u =-取泛点率为0.8 取u =0.8u F =0.8×3.017m/s =2.41m/sD =u4πSV = [(4×1000/3600)/(3.14×2.41)] 0.5=0.38m 圆整后取 ()()0.4400D m mm ==2.泛点率校核:210003600 2.212/0.7850.4u m s ==⨯ 2.2120.7333.017F u u ==(在0.5到0.85范围之间) 3.填料规格校核:40016825D d ==> 4.液体喷淋密度校核:取最小润湿速率为:U min =(L W )min · a t =0.101×114.2=11.534m 3/m 2·h 查常用散装填料的特性参数表,得at=114.2m 2/m 3 U=46.516×18.02/998.2/(0.785×0.42)=6.717>U min经以上校核可知,填料塔直径选用D= 400mm 是合理的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。

吉林化工学院化工原理课程设计题目处理量为7600m3/h氨气吸收塔的工艺设计教学院专业班级学生姓名学生学号指导教师课程设计任务书1、设计题目:处理量为m3/h氨气吸收塔的工艺设计;试设计一座填料吸收塔,用于脱除混于空气中的氨气。

混合气体的处理量为7600(m3/h),其中含空气为96%,氨气为4%(体积分数),要求塔顶排放气体中含氨低于0.01%(体积分数),采用清水进行吸收,吸收剂的用量为最小用量的1.5倍。

(20C°氨在水中的溶解度系数为H=0.725kmol/m3.kPa)2、工艺操作条件:(1)操作平均压力常压(2)操作温度t=20℃(3)每年生产时间:7200h。

(4)选用填料类型及规格自选。

3、设计任务:完成吸收的工艺设计与计算,有关附属设备的设计和选型,用2号图纸手绘吸收系统的工艺流程图和工艺条件图,编写设计说明书(用电子版)。

目录摘要································································错误!未定义书签。

第1章绪论············································错误!未定义书签。

1.1 吸收技术的概况··············································错误!未定义书签。

(1)根据给定的分离任务,确定吸收方案;·····························错误!未定义书签。

1.2 吸收设备的发················································错误!未定义书签。

1.3 吸收在工业生产中的应用······································错误!未定义书签。

第2章设计方案···········································错误!未定义书签。

2.1 吸收剂的选择················································错误!未定义书签。

2.2 吸收流程的选择··············································错误!未定义书签。

2.2.1 吸收工艺流程的选择·····································错误!未定义书签。

2.2.2 工艺流程简图···········································错误!未定义书签。

2.3 吸收塔设备及填料的选择·······································错误!未定义书签。

2.3.1 吸收塔设备的选择·······································错误!未定义书签。

2.3.2填料的选择··············································错误!未定义书签。

2.4操作参数的选择···············································错误!未定义书签。

相关文档
最新文档