一元一次方程及解法PPT课件
合集下载
3.2 一元一次方程及其解法(第1课时一元一次方程)(课件)六年级数学上册(沪教版2024)

天平仍保持平衡.观察图 3-2-2(3)和图3-2-2(4)
可以发现,平衡的天平两边物体的质量分别
变为了原来的一半,天平也保持平衡.
新知探究
等式性质2 等式两边乘同一个数,或除以同一个不为0的数,等式仍成立.
如果 = ,那么 = ; 如果 = , 那么 = ≠ 0 .
求方程的解的过程叫作解方程
只含有一个未知数,且含有未知数的项是一次项的方程叫作一元一次方程
一元一次方程的形式为 + = 0 ≠ 0 .
课本例题
例1 判断下列方程是不是一元一次方程,如果不是,请说明理由:
1 4 − 36 = 0;
2 − 2 = 56;
3 4 2 − 9 = 2 − 7;
等式性质2 等式两边乘同一个数,或除以同一个不为0的数,等式仍成立.
如果 = ,那么 = ; 如果 = , 那么 = ≠ 0 .
求方程的解的过程叫作解方程
只含有一个未知数,且含有未知数的项是一次项的方程叫作一元一次方程
一元一次方程的形式为 + = 0 ≠ 0 .
9 − − 9 = 5 − 9.
合并同类项,得 − = −4.
根据等式性质2,在等式两边同除以 − 1, 得
− ÷ −1 = −4 ÷ −1
解得
= 4.
所以,原方程的解是 = 4.
分层练习-基础
1.下列方程的变形正确的是( A )
A.3x-6=0,变形为 3x=6
B.x+5=3-3x,变形为 4x=2
(1)8+x=-7;
解:两边减8得x=-15;
1
(2)- x=16;
2
解:两边乘以-2得x=-32;
可以发现,平衡的天平两边物体的质量分别
变为了原来的一半,天平也保持平衡.
新知探究
等式性质2 等式两边乘同一个数,或除以同一个不为0的数,等式仍成立.
如果 = ,那么 = ; 如果 = , 那么 = ≠ 0 .
求方程的解的过程叫作解方程
只含有一个未知数,且含有未知数的项是一次项的方程叫作一元一次方程
一元一次方程的形式为 + = 0 ≠ 0 .
课本例题
例1 判断下列方程是不是一元一次方程,如果不是,请说明理由:
1 4 − 36 = 0;
2 − 2 = 56;
3 4 2 − 9 = 2 − 7;
等式性质2 等式两边乘同一个数,或除以同一个不为0的数,等式仍成立.
如果 = ,那么 = ; 如果 = , 那么 = ≠ 0 .
求方程的解的过程叫作解方程
只含有一个未知数,且含有未知数的项是一次项的方程叫作一元一次方程
一元一次方程的形式为 + = 0 ≠ 0 .
9 − − 9 = 5 − 9.
合并同类项,得 − = −4.
根据等式性质2,在等式两边同除以 − 1, 得
− ÷ −1 = −4 ÷ −1
解得
= 4.
所以,原方程的解是 = 4.
分层练习-基础
1.下列方程的变形正确的是( A )
A.3x-6=0,变形为 3x=6
B.x+5=3-3x,变形为 4x=2
(1)8+x=-7;
解:两边减8得x=-15;
1
(2)- x=16;
2
解:两边乘以-2得x=-32;
《一元一次方程》PPT优秀课件

列方程:方程是根据题中的等量关系列出的等式. 既可用已知数,又可用未知数,解决问题从比算较式方到便方.程是数
学的进步!
探究新知
观察下列方程,它们有什么共同点?
x x 1 60 70
70 y=60(y+1) 70(z-1)=60z
问题1:每个方程中,各含有几个未知数? 1个 问题2:说一说每个方程中未知数的次数. 1次 问题3:等号两边的式子有什么共同点? 都是整式
x
2
⑤x 2 y 1
其中是方程的是 ①②③④⑤ ,是一元一次方程的
是 ②③ .(填序号)
课堂检测
能力提升题
根据下列问题,找出等量关系,设未知数列出方程,并指出其 是不是一元一次方程.
(1)环形跑道一周长400m,沿跑道跑多少周,可以 跑3000m?
一周长×周数=总路程 解:设沿跑道跑x周.
400x=3000, 是一元一次方程.
含有未知数的等式
方程
探究新知
一辆快车和一辆慢车同时从A地出发沿同一公路同方 向行驶,快车的行驶速度是70 km/h,慢车的行驶速度是 60 km/h,快车比慢车早1 h经过B地,A,B两地间的路程 是多少?
60 km/h
1h
70 km/h
探究新知 (1) 上述问题中涉及到了哪些量? 路程:AB之间的路程. 速度:快车70 km/h,慢车60 km/h. 时间:快车比慢车早1h经过B地.
程,则 m= 1 .
加了限制条件,需进行取舍.
方法总结:一元一次方程中求字母的值,需谨记两个条件: ①未知数的次数为1;②未知数的系数不为0.
巩固练习
方程3x5-2k -8=0是关于x的一元一次方程,则 k=___2__. 方程x|m| +4=0是关于x的一元一次方程,则 m=_1_或__-1_. 方程(m-1)x -2=0是关于x的一元一次方程,则 m__≠_1__.
学的进步!
探究新知
观察下列方程,它们有什么共同点?
x x 1 60 70
70 y=60(y+1) 70(z-1)=60z
问题1:每个方程中,各含有几个未知数? 1个 问题2:说一说每个方程中未知数的次数. 1次 问题3:等号两边的式子有什么共同点? 都是整式
x
2
⑤x 2 y 1
其中是方程的是 ①②③④⑤ ,是一元一次方程的
是 ②③ .(填序号)
课堂检测
能力提升题
根据下列问题,找出等量关系,设未知数列出方程,并指出其 是不是一元一次方程.
(1)环形跑道一周长400m,沿跑道跑多少周,可以 跑3000m?
一周长×周数=总路程 解:设沿跑道跑x周.
400x=3000, 是一元一次方程.
含有未知数的等式
方程
探究新知
一辆快车和一辆慢车同时从A地出发沿同一公路同方 向行驶,快车的行驶速度是70 km/h,慢车的行驶速度是 60 km/h,快车比慢车早1 h经过B地,A,B两地间的路程 是多少?
60 km/h
1h
70 km/h
探究新知 (1) 上述问题中涉及到了哪些量? 路程:AB之间的路程. 速度:快车70 km/h,慢车60 km/h. 时间:快车比慢车早1h经过B地.
程,则 m= 1 .
加了限制条件,需进行取舍.
方法总结:一元一次方程中求字母的值,需谨记两个条件: ①未知数的次数为1;②未知数的系数不为0.
巩固练习
方程3x5-2k -8=0是关于x的一元一次方程,则 k=___2__. 方程x|m| +4=0是关于x的一元一次方程,则 m=_1_或__-1_. 方程(m-1)x -2=0是关于x的一元一次方程,则 m__≠_1__.
(完整版)一元一次方程的解法PPT课件

2345 + 12x = 5129.
①
利用等式的性质,在方程①两边都减去2345,
得
2345+12x-2345= 5129-2345,
即
12x=2784.
②
方程②两边都除以12,得x=232 .
因此,热气球在后12h飞行的平均速度为232 km/h.
我们把求方程的解的过程叫做解方程. 在上面的问题中,我们根据等式性质1,在方程① 两边都减去2345,相当于作了如下变形:
-22334455 + 12x = 5129
从变形前后的两个方程可以看出,这种变形, 就是把方程中的某一项改变符号后,从方程的一边 移到另一边,我们把这种变形叫做移项.
必须牢记:移项要变号.
在解方程时,我们通过移项,把方程中含未知 数的项移到等号的一边,把不含未知数的项移到等 号的另一边.
例1 解下列方程:
解方程
应改为 4 x +6 =2+x 2(2x+3)=2+x
解 去括号,得 4x+3=2+x 应改为 4 x – x = 2-6
移项,得 4x +x = 2-3
化简,得
5x = -1
应改为 3x =-4
方程两边都除以5 ,得
方程两边都除以3,得
x
=
-
1 5
应改为
x
=
-4 3
2. 解下列方程.
(1) (4y+8)+2(3y-7)= 0 ; (2) 2(2x -1)-2(4x+3)= 7; (3) 3(x -4)= 4x-1.
y
;
(2)
5
+3x 2
一元一次方程的解法去分母ppt课件

议一议
解方程:0 0..1 0x30.90.50.2x1
解:
x92x1 35
5 1x 0 3 (9 2 x ) 15
5 x 0 2 6 7 x 15 5 x 0 6 x 1 2 57 5x642
x 3 4
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
练一练 烧伤病人的治疗通常是取烧伤病人的健康皮肤进行自体移植,但对于大面积烧伤病人来讲,健康皮肤很有限,请同学们想一想如何来治疗该病人
解下列方程:
(1)y1 y2
24
(2)2 -5
x
-
x
+3 2
=
2
(3)1-3x-7 = x+17
45
(4)yy212y52
(5)3x123x12x3
2
10 5
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
(3)分数线有括号作用,去掉分母 后,若分子是多项式,要加括号, 视多项式为一整体。
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
解一元一次方程的步骤: (1) 去分母
(2)去括号 (3)移项 (4)合并同类项 (5)系数化为1
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
解方程:0 0..1 0x30.90.50.2x1
解:
x92x1 35
5 1x 0 3 (9 2 x ) 15
5 x 0 2 6 7 x 15 5 x 0 6 x 1 2 57 5x642
x 3 4
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
练一练 烧伤病人的治疗通常是取烧伤病人的健康皮肤进行自体移植,但对于大面积烧伤病人来讲,健康皮肤很有限,请同学们想一想如何来治疗该病人
解下列方程:
(1)y1 y2
24
(2)2 -5
x
-
x
+3 2
=
2
(3)1-3x-7 = x+17
45
(4)yy212y52
(5)3x123x12x3
2
10 5
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
(3)分数线有括号作用,去掉分母 后,若分子是多项式,要加括号, 视多项式为一整体。
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
解一元一次方程的步骤: (1) 去分母
(2)去括号 (3)移项 (4)合并同类项 (5)系数化为1
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
3.2 一元一次方程及其解法(课件)沪科版(2024)数学七年级上册

(2) 合并同类项: 把方程变形为 ax=b(a, b 为常数,且a
≠ 0)的形式;
(3)系数化为 1: 得到方程的解 x= ba(a ≠ 0).
知2-讲
解法提醒 移项一般习惯上将含未知数的项放在等号
的左边,常数项放在等号的右边 .若移项时为计 算简便不是这样放置的,在合并时可直接交换 过来,这不需要变号,因为等式有对称性 .
知1-练
(1) 12x+y=1-2y; (2) 7x+5=7( x-2);
(3)
5x2-
1 3
x-2=0;
(4)
2 x-1
=5;(5)
3 4
x=
1 2
;
(6) 2x2+5=2(x2-x) .
解题秘方:利用一元一次方程的定义进行判断 .
知1-练
解: (1) 含有两个未知数,不是一元一次方程; (2) 化简后 x 的系数为 0,不是一元一次方程; (3) 未知数 x 的最高次数为 2,不是一元一次方程; (4) 等号左边不是整式,不是一元一次方程; (5)(6) 是一元一次方程 . 判断一元一次方程不仅要看
例3 解方程:8-3x=x+6.
知2-练
解题秘方:利用移项解一元一次方程的步骤(移项 →合并同类项→系数化为 1)解方程.
解: 移项,得 -3x-x=6 - 8. 合并同类项,得 -4x=-2.
两边都除以 - 4,得 x= 12.
3-1.解方程:
知2-练
(1)5x-2=7x+8;
(2) -2x-23 =x+ 13.
是乘法分配律 . 2. 解方程中的去括号法则与整式运算中的去括
号法则相同 .
例4 解方程: 2(x-3) -3(3x-1) =6(1-x) .
解一元一次方程课件(共20张PPT)人教版初中数学七年级上册

x=20
(四)例题规范,巩固新知
1.解方程:2x- 5 x=6-8 2
解:合并同类项,得- 1 x=-2 2
系数化为1,得 x=4
(三)例题规范,巩固新知
2.解方程:7x-2.5x+3x-1.5x=-154-6 3. 解:合并同类项,得 6x= 78.
系数化为1,得 x= 13.
(四)基础训练,学以致用
还有不同的设法吗? 还可以列怎样的方程?
方法二:
方法三:
设去年购买计算机x台. 设今年购买计算机x台.
x +x+2x=140 2
x + x +x=140 42
(三)合作探究,归纳方法
如何将此方程转化为x=a(a为常数)的形式?
x+2x+4x=140
合并同类项
7 x=140
系数化为1
等式性质2 理论依据?
1. 什么是同类项?
2.计算:(1)3x-x (2)10x+0.5x (3)7xy-3xy+8ab-2xy-5ab
3.等式的基本性质有哪些?
二.新授
(一)介绍数学史,创设情境
约公元820年,中亚细亚数学家阿尔-花 拉子米写了一本代数书,重点论述怎样 解方程.这本书的拉丁文译本取名为 《对消与还原》.“对消”与“还原”是 什么意思呢?
1.解下列方程:
(1)5 x-2 x=9 (2)x + 3x =7
22 (3)-3 x+0.5 x=10
(4)7x-4.5x=2.5 3-5
例2 有一列数,按一定规律排列成1,-3,9,-27
81,-243,…。其中某三个相邻数的和-1701,这
三个数各是多少?
解:设所求三个数分别是x,-3x,9x. 由三个数的和是-1701,得
解一元一次方程课件PPT

概念和解题方法。
难度适中原则
根据学生实际水平,设置不同难 度的例题,以满足不同层次学生
的需求。
循序渐进原则
按照知识点难易程度,逐步增加 例题的复杂性和难度,帮助学生
逐步提升解题能力。
学生自主解答环节设计
独立思考
鼓励学生独立思考,自主分析问题,寻找解题思 路。
小组讨论
组织学生进行小组讨论,互相交流解题思路和方 法,拓展思维。
确定未知数的系数、将系数化为1、 求解化简后的方程。
03 实际应用问题建模
实际问题背景引入
商品打折销售
商店进行打折活动,原价与折扣 后价格的关系。
路程时间速度
物体运动中路程、时间和速度之间 的关系。
配套问题
不同物品之间的数量关系,如螺钉 和螺母等。
建立数学模型过程展示
定义变量
根据实际问题,选择合适 的未知数表示相关量。
下节课预告
提前预告下节课的教学内容,使学生 对学习有持续性和预见性。
作业布置
针对本节课的知识点,布置适当的练 习题,帮助学生巩固所学知识。
1.谢谢聆 听
方程解的应用
总结方程解在实际问题中的应用,如速度、时间、距离等问 题,强化方程解的实际意义。
学生自我评价报告收集
学生对本节课的掌握情况
收集学生对本节课知识点掌握情况的自我评价报告,便于教师了解学生的学习状况。
学生遇到的困难与问题
征集学生在学习过程中遇到的困难和问题,为下节课的教学提供参考。
下节课预告及作业布置
步骤
选定要移动的项、改变移 动项的符号、求解移动后 的方程。
示例
对于方程5x - 3 = 7,将3移至等号右侧得5x = 7 + 3,解得x = 2。
难度适中原则
根据学生实际水平,设置不同难 度的例题,以满足不同层次学生
的需求。
循序渐进原则
按照知识点难易程度,逐步增加 例题的复杂性和难度,帮助学生
逐步提升解题能力。
学生自主解答环节设计
独立思考
鼓励学生独立思考,自主分析问题,寻找解题思 路。
小组讨论
组织学生进行小组讨论,互相交流解题思路和方 法,拓展思维。
确定未知数的系数、将系数化为1、 求解化简后的方程。
03 实际应用问题建模
实际问题背景引入
商品打折销售
商店进行打折活动,原价与折扣 后价格的关系。
路程时间速度
物体运动中路程、时间和速度之间 的关系。
配套问题
不同物品之间的数量关系,如螺钉 和螺母等。
建立数学模型过程展示
定义变量
根据实际问题,选择合适 的未知数表示相关量。
下节课预告
提前预告下节课的教学内容,使学生 对学习有持续性和预见性。
作业布置
针对本节课的知识点,布置适当的练 习题,帮助学生巩固所学知识。
1.谢谢聆 听
方程解的应用
总结方程解在实际问题中的应用,如速度、时间、距离等问 题,强化方程解的实际意义。
学生自我评价报告收集
学生对本节课的掌握情况
收集学生对本节课知识点掌握情况的自我评价报告,便于教师了解学生的学习状况。
学生遇到的困难与问题
征集学生在学习过程中遇到的困难和问题,为下节课的教学提供参考。
下节课预告及作业布置
步骤
选定要移动的项、改变移 动项的符号、求解移动后 的方程。
示例
对于方程5x - 3 = 7,将3移至等号右侧得5x = 7 + 3,解得x = 2。
4.2 一元一次方程及其解法(课件)苏科版(2024)数学七年级上册

②③
解析:
序号
是否为等式
等号两边是否均为整式
是否只含有一个未知数
未知数的次数是否都为1
结论
①
√
×
否
②
√
√
√
√
是
③
√
√
√
√
是
④
√
√
√
×
否
⑤
×
否
⑥
√
√
×
否
示例
解一元一次方程
_
概念
方程中的某些项改变符号后,可以从方程的一边移到另一边,这样的变形叫作移项.
依据
等式的基本性质1.
目的
把含有未知数的项移到方程的一边,把常数项移到另一边.
典例4 方程 去分母得( )
B
A. B. C. D.
解析:方程两边各项同乘各分母的最小公倍数6,分子是多项式,去分母后,加上小括号,得 .
1.解一元一次方程的基本思路:解一元一次方程就是通过变形最终将方程转化为为常数 的形式.2.解一元一次方程的一般步骤
变形名称
依据
具体做法
注意事项
移项
等式的基本性质1.
把含有未知数的项移到方程的一边,把常数项移到另一边.
(1)移项要变号;(2)不要漏掉任何一项.
变形名称
依据
具体做法
注意事项
合并同类项
合并同类项法则.
系数相加,字母及字母的指数不变,把方程化成, 为常数,且 的形式.
(1)未知数及其指数不变;(2)未知数的系数不要漏掉符号.
变形名称
第4章 一元一次方程
4.2 一元一次方程及其解法
七上数学 SK
1.理解一元一次方程的概念,能判断一个方程是不是一元一次方程,发展抽象能力.2.能根据等式的基本性质解一元一次方程,掌握解一元一次方程的方法.3.了解解一元一次方程的一般步骤,能熟练地解数字系数的一元一次方程.4.能根据一元一次方程的特点,灵活选择合适的步骤解一元一次方程,提高运算能力.
解析:
序号
是否为等式
等号两边是否均为整式
是否只含有一个未知数
未知数的次数是否都为1
结论
①
√
×
否
②
√
√
√
√
是
③
√
√
√
√
是
④
√
√
√
×
否
⑤
×
否
⑥
√
√
×
否
示例
解一元一次方程
_
概念
方程中的某些项改变符号后,可以从方程的一边移到另一边,这样的变形叫作移项.
依据
等式的基本性质1.
目的
把含有未知数的项移到方程的一边,把常数项移到另一边.
典例4 方程 去分母得( )
B
A. B. C. D.
解析:方程两边各项同乘各分母的最小公倍数6,分子是多项式,去分母后,加上小括号,得 .
1.解一元一次方程的基本思路:解一元一次方程就是通过变形最终将方程转化为为常数 的形式.2.解一元一次方程的一般步骤
变形名称
依据
具体做法
注意事项
移项
等式的基本性质1.
把含有未知数的项移到方程的一边,把常数项移到另一边.
(1)移项要变号;(2)不要漏掉任何一项.
变形名称
依据
具体做法
注意事项
合并同类项
合并同类项法则.
系数相加,字母及字母的指数不变,把方程化成, 为常数,且 的形式.
(1)未知数及其指数不变;(2)未知数的系数不要漏掉符号.
变形名称
第4章 一元一次方程
4.2 一元一次方程及其解法
七上数学 SK
1.理解一元一次方程的概念,能判断一个方程是不是一元一次方程,发展抽象能力.2.能根据等式的基本性质解一元一次方程,掌握解一元一次方程的方法.3.了解解一元一次方程的一般步骤,能熟练地解数字系数的一元一次方程.4.能根据一元一次方程的特点,灵活选择合适的步骤解一元一次方程,提高运算能力.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解方程:7x=6x–4
解:方程两边都减 去6x,得 7x–6x=6x–4–6x
合并同类项,得 x =–4
检验:方程的两边都 代入x=–4 左边=7x(–4)=-28, 右边=6x(–4)–4=–28 左边=右边 所以x=–4是原方程的 解。
解: x–7= 5 方程两边都加上7,得
x –7+7=5+7 x=5+7 x=12
检验:方程的两边都代入 x=12,得 左边=12–7=5, 右边=5 左边=右边 所以x=12是原方程的解。
解: x –7 = 5
从左移右 改变符号
x = 5 +7 x = 12
检验:方程的两边都代入 x=12,得 左边=12–7=5, 右边=5, 左边=右边 所以x=12是原方程的解。
解:7x = 6x–4 解 7x = 6x – 4 从右移左 方程两边都减去6x,得 改变符号 7x– 6x = 6x–4–6x 7x – 6x = – 4 即 7x – 6x = – 4 合并同类项,得 合并同类项,得 x=–4 x=–4
. 移项,得 -0.4x+0.2x=-3-2 -0.2x=-5 x=25
×
合并同类项,得 两边同除以-0.2,得
(1)小明这样写对不对?
(2)应该怎样写?
解下列方程: 1.2-3(x-5)=2x 2.4(4-y)=3(y-3)
3.2(2x-1)=1-(3-x)
4.2(x-1)-(x-3)=2(1.5x-2.5)
2、什么叫做方程的解?什么叫做 解方程? 使方程左、右两边值相等的未知 数的值,叫做方程的解。 求得方程的解的过程,叫做解方 程。
解方程: x–7=5 解:方程两边都 检验:方程的两边 加上7,得 都代入x=12,得 x–7+7=5+7 左边=12–7=5, 即:
x=5+7
x=12
右边=5 左边=右边 所以x=12是原方程 的解。
解方程 8-x=3x+2
解:移项,得
-x-3x=2-8 -4x=-6
3 x= 2
合并同类项,得
两边同时除以-4,得
练习:下面的移项对不对?如果不对, 错在哪里?应当怎样改正? (1)从7+x=13,得到x=13+7 改从7+x=13,得到x=13–7 (2)从6+5x=-3x+8,得到 5x–3x=8-6 改从6+5x=-3x+8 得到5x+3x=8-6
x
练习:通过移项解下列方程,并写出检 验: (1) 2.4x-2=2x (2) (4) 3x+1=-2 8-5x=x+2
(3) 10-3=7x+3
解下列方程:
1.3-(4x-3)=7 2. X 2=
2(x+1)
练习:小明在解方程3-2(0.2x+1)=0.2x时 ,是这样写解的过程的: 解:去括号,得 3-0.4x+2=0.2x
检验:方程的两边都代入 检验:方程的两边都代入 x=–4, 左边=7x(–4)=-28, x=–4,左边=7x(–4)=-28 右边=6x(–4)–4=–28 右边=6x(–4)–4=–28 左边=右边 左边=右边 所以x= –4是原方程的解 所以x= –4是原方程的解
注意:移项要变号
解方程:5+2x=1 检验:把 x=-2 代入 解; 移项, 得 方程的两边 , 得 2x=1-5 左边=5+2×(-2)=1 合并同类项,得 右边=1 2x=-4 左边 = 右边 两边同除以2,得 所以x=-2是原方程的 x=-2 解
课堂小结:
作业:
移项要变号
ቤተ መጻሕፍቲ ባይዱ