解一元一次方程 移项课件.ppt

合集下载

5.2 解一元一次方程 第2课时移项解一元一次方程课件人教版(2024)数学七年级上册

5.2 解一元一次方程  第2课时移项解一元一次方程课件人教版(2024)数学七年级上册
移项
ax-cx=d-b
合并同类项
(a-c)x=d-b
系数化为1
练习:解下列方程:
(1) 5x-7=2x-10;
解:移项,得
(2) -0.3x+3=9+1.2x.
解:移项,得
5x-2x=10+7,
合并同类项,得
-0.3x-1.2x=9-3,
3x=-3,
-1.5x=6,
系数化为1, 得
系数化为1,得
x=-1.
5.2
解一元一次方程
.
学习目标
1.理解移项的意义,掌握移项的方法.
2.学会运用移项解形如“ax+b=cx+d”的一元一次方
程.
3.通过分析实际问题中的数量关系,建立方程解决问
题,进一步认识方程模型的重要性.
目录
01 情 境 导 入
02 新 知 初 探
03 当 堂 达 标
04 课 堂 小 结
PART 01
情境导入
情境导入
把一些图书分给某班学生阅读,若每人分3本,则余20本;若每人分4本,则
还缺25本.这个班有多少学生?
解:设这个班有x名学生,
那么每人分3本时,图书总数是
每人分4本时,图书总数是
则可列方程
3x+20
=
3x+20
4;
你能解这个方程吗?显
然解这个方程的第一步
不是合并同类项,因为
1. 通过移项将下列方程变形,正确的是(
)
C
A. 由5x-7=2,得5x=2-7
B. 由6x-3=x+4,得3-6x=4+x
C. 由8-x=x-5,得-x-x=-5+8
D. 由x+9=3x-1,得3x-x=-1+9

解一元一次方程(移项)ppt课件

解一元一次方程(移项)ppt课件

200分 300分
全球通
130 17元0元
神州行 120元 180元
问题:什么情况 下用“全球通” 优惠一些?什
么情况下用 “神州行”优
惠一些?
(2)设累计通话t分钟,则用“全球通”要收费(50+0.4t)元,用 “神州行”要收费0.6t。如果两种收费一样,则 0.6t=50+0.4t解此方程得: 0.2t=50 ∴ t=250
把某项从等式一边移到另一边时有什么变化?
一般地,把方程中的项改变符号后,从方程的一边移到另一边,这种变形叫做移项
上面方程的变形,相当于把原方程左边的20变为-20移到右 边,把右边的4x变为-4x移到左边.
问题4
移项的依据是什么? 等式的性质1.
注:一般的我们把含未知数的项移到等号的 左边,把常数项移到等号的右边。
3x +20 =x 4 -25 1、使方程右边不含x 的项
等式两边减4x,得:
3x+20-4x=4x-25-4x 3x+20-4x=-25
2、使方程左边不含常数项 等式两边减2Байду номын сангаас,得:
3x+20-4x-20=-25- 3x-4x=20-25-20
3x+20 = 4x- 25
3x-4x=-25-20
(2)设累计通话 t 分,则按方式一要收费 (30+0.3t) 元, 按方式二要收费 0.4t 元,如果两种计费方式的收费一样,
0 . 4 t 3 则 0 0 . 3 t .
移项,得 0 .4 t 0 .3 t 3.0
合并同类项,得 0.1t30 .
系数化为1,得 t 30.0
由上可知,如果一个月内通话300分,那 么两种计费方式的收费相同.

解一元一次方程——移项 优秀课件

解一元一次方程——移项 优秀课件

一般地,把方程中的某些项改变符号 后,从方程的一边移到另一边,这种变 形叫做移项。
注:移项要变号
4x –15 = 9
2x = 5x – 21
4x = 9 +15
2x –5x = – 21
移项目的
把所有含有未知数的项移到方程的一边,把所有 常数项移到方程的一边。一般地,把含有未知数的项 移到方程的左边,常数项移到方程的右边。
例2 解方程 4x-15=9
解: 移项,得
4x =9+15
合并同类项,得
4x =24
系数化为1,得
X =6
练习3 解方程
(1)5x 3 7
解:两边都加上15,得
4x =9+15
合并同类项,得
4x =24
系数化为1,得
X =6
移项实际上是利用等式的性 质1,但是解题步骤更为简捷!
(2)7x 3x 8
1 复习回顾
运用等式的性质解下列方程
(1) x + 2 = 1
解:两边都减去2,得
等式的性质1
x + 2 -2 = 1-2 即:等式两边都加
合并同类项,得
x =-1
上或减去同一个数 或同一个整式,所
得结果仍是等式。
(2) 3x = -6
解:两边都除以3,得
3x 6 33
即:x =-2
等式的性质2
系数化为1,得
x=6
合并同类项 ,得
-3x =-21
系数化为1,得
x=7
4x-15 = 9
4x
= 9+15
2x = 5x -21
2x-5x=
-21
你能发现什么吗?

5.3 解一元一次方程 - 第1课时 移项课件(共19张PPT)

5.3 解一元一次方程 - 第1课时 移项课件(共19张PPT)
移项
合并同类项
系数化为1
随堂练习
1.解方程:7x-2=5x+8.
解:移项,得7x-5x=8+2.合并同类项,得2x=10.系数化为1,得 x=5.
2.若 x-5与2x-1的值相等,则 x 的值是 .
解析:根据题意,得 x-5=2x-1.移项,得 x-2x= -1+5.合并同类项,得 -x=4. 系数化为1,得 x= -4.
2.移项的依据
注意
1. 移项必须是由等号的一边移到另一边,而不是在等号的同一边交换位置. 2. 方程中的各项均包括它们前面的符号,如x-2=1中,方程左边的项有x,-2,移项时所移动的项一定要变号.3. 移项时,一般都习惯把含未知数的项移到等号左边,把常数项移到等号右边.
例题详解
例1
解下列方程:
两边同减3x
合并同类项
化为
知识点
解一元一次方程——移项
在解方程的过程中,等号的两边加上或减去方程中某一项的变形过程,相当于将这一项改变符号后,从等号的一边移到另一边.这种变形过程叫作移项.
1.移项的定义
移项的依据是等式的性质1,移项的目的是将含有未知数的项移到方程的一边,将常数项移到方程的另一边,使方程更接近 x=a 的形式.
-4
3.利用方程解答下列问题:(1) x的3倍与2的和等于x的2倍与1的差,求x的值;(2) 已知整式-3x+2 与2x-1的值互为相反数,求x的值.
解:(1) 列方程,得3x+2=2x-1.移项,得3x- 2x=-1-2.合并同类项,得x=-3.
(2)根据题意,得 -3x+2+2x-1=0.移项,得 -3x+2x= -2+1.合并同类项,得 -x=-1.系数化为1,得 x=1.

5.2 第2课时 移项 课件(共20张PPT) 人教版七年级数学上册

5.2   第2课时 移项  课件(共20张PPT)  人教版七年级数学上册
这批图书的总数是一个定值,表示它的两个式子是相等的
依据是等式的性质1;可以化简方程,使得方程更接近x=a的形式
4x和20这两项需要移项;将需要移动的项改变符号后移到方程的另一边
2.请同学们完成课本124页练习1题.3.思考:移项时需要注意什么?
①将含有未知数的项移到方程左边,不含有未知数的常数项移到方程右边;②从方程一边移到另一边才叫作移项;③移项时要注意符号的改变
本节课我们学习了哪些知识?
移项法则,根据“表示同一个量的两个不同的式子相等”列方程
同学们,今天我们学习了解形如ax+b=cx+d的方程,在课后练习时,一定要注意哪些项需要移项,移项时要改变符号.
教材习题:完成课本130页习题1(3)(4),4,6题.
同学们再见!
授课老师:
时间:2024年9月15日
5.2 解一元一次方程
第2课时 移项
1. 通过具体的实例感知,归纳出移项法则,进一步探索方程的解法,会解形如ax+b=cx+d的方程,培养学生观察、归纳的能力.2.经历运用方程解决实际问题的过程,发展学生抽象、概括、分析问题和解决问题的能力,让学生认识到用方程解决实际问题的关键是建立相等关系.
C
例2:解下列方程:(1)8-3x=x+6; (2)x- +2x.
例3:某校秋季运动会比赛中,七(1)班、七(2)班的竞技实力相当.关于比赛结果,甲同学说:“七(1)班与七(2)班的得分比为6∶5”;乙同学说:“七(1)班得分比七(2)班得分的2倍少40分”.求七(1)班、七(2)班各得多少分?
相等关系:表示同一个量的两个相等列出方程.
知识点2:列方程解决实际问题(难点)
【题型一】利用移项解一元一次方程
例1:下列变形属于移项的是( )A.由2x=4,得x=2 B.由7x+3=x+5,得7x+3=5+xC.由8-x=x-5,得-x-x=-5-8 D.由x+9=3x-1,得3x-1=x+9

解一元一次方程(一)移项-PPT

解一元一次方程(一)移项-PPT
表示同一量的两个不同式子相等。
七嘴八舌说一说
3x+20-4x-20=-25-20
(合并同类项)
3x-4x=-25-20
3x +20 = 4x -25
3x-4x=-25 -20
把等式一边的某一项改变符号后移到另一边,
叫做移项.
下面的框图表示了解这个方程的具体过程:
3x+20=4x-25 移项
3x-4x=-25-20 合并同类项
-x=-45 系数化为1
X=45
提问5:以上解方程“移项”的依据是什么?
移项的依据是等式的性质1
提问6: “移项”起了什么作用?
通过移项,使等号左边仅含未知数的 项,等号右边仅含常数的项,使方程 更接近x=a的形式.
例1:解下列方程
(1)5 2x 1
解:移项,得 2x 1 5 即 2x 4
系数化为1,得 x = - 2
《对消与还原》
现在你能回答前面提到的古老的代数书中 的“对消”与“还原”是什么意思吗?
“对消”与“还原”就是“合并” 与“移项”
1、今天你又学会了解方程的哪些方注法意?变有号哪哦些!步聚? 每一步的依据是什么? 移项(等式的性质1) 合并(分配律) 系数化为1(等式的性质2)
3、今天讨论的问题中的相等关系又有何共同特点?
2.解一元一次方程需 要移项时我们把含未 知数的项移到方程的 一边(通常移到左 边),常数项移到方 程的另一边(通常移
到右边).
3.移项要改变符号 .
练一练:解下列一元一次方程:
(1)7 2x 3 4x
解:移项,得
4x 2x 3 7 合并,得
2x 4 系数化为1,得
x 2
(3) 1 x 1 3 x 2

解一元一次方程(一)合并同类项与移项-PPT

合并, 得17x 25500
系数化1, 得x 1500
答: Ⅰ型1500台,Ⅱ型3000台,Ⅲ型21000台。
考考你
一个数,它的三分之二,它的一半,它的 七分之一,它的全部,加起来总共是33。 求这个数。
解:设这个数是x,则:
x 2 x 1 x 1 x 33 327
例3 有一列数,按一定规律排列成 1,-3,9,-27,81,-243,···, 其中某三个相邻数的和是-1701, 这三个数各是多少?
议一议:怎样选择计费方式更省 钱?
•如果一个月内累计通话时间不 足300分,那么选择“方式二” 收费少;如果一个月内累计通 话时间超过300分,那么选择 “方式一”收费少。
选一选:根据以上解题过程,
你能为小平的爸爸作选择了吗?
•如果小平的爸爸业务活动较多,与外界 的联系一定不少,使用时间肯定多于 300分,那么他应该选择“方式一”。
第三个数就是______3__(__3_x_) __9_x_。
根据这三个数的和是-1701,得 x 3x 9x 1701
合并同类项,得 7x 1701
系数化为1,得 x 243
所以
3x 729
9x 2187
答:这三个数是-243,729,-2187.
请欣赏一首诗: 太阳下山晚霞红,我把鸭子赶回笼; 一半在外闹哄哄,一半的一半进笼中; 剩下十五围着我,共有多少请算清。
算一算:一个月内在本地通话200分
和350分,按两种计费方式各需交 费多少元?
方式一
200
350
方式二
想一想:对于某个本地通通话时间,
会出现两种计费方式的收费一样的情 况吗?
• 设累计通话t分,则用方式一要收费(30+0.3t)元,用方式二要收费0.4t元,如果两种计 费方式的收费一样,则

第五章 5.2 解一元一次方程 第二课时 移项 课件(共23张PPT)

x 1 2
解: 移项,得 x 3 x 1 3 2
合并同类项,得 1 x 4 2
系数化为1,得 x 8
例题讲解
知识点1:利用移项解方程
例4:某制药厂制造一批药品,如用旧工艺,则废水排量要比环
保限制的最大量还多200 t;如用新工艺,则废水排量比环保限制的
最大量少100 t. 新旧工艺的废水排量之比为2:5,采用两种工艺的废
水排量各是多少吨? 分析: 因为采用新、旧工艺的废水排量之比为2:5,
所以可设它们分别为2x t和5x t,再根据它们与 环保限制的最大量之间的关系列方程.
例题讲解
知识点1:利用移项解方程
解:设采用新、旧工艺的废水排量分别为2x t和5x t. 根据废水排量与环保限制最大量之间的关系,得
A.由x 4 3x,得x 3x 4 B.由x 3 10 7x,得x 7x 10 3 C.由3x 2 6x,得3x 6x 2 D.由x 5 6,得x 6 5
巩固提升
4.若关于x的方程 246x 3m与7x 14 8 4x的解相同, 则m的值为( D )
A. 2
系数化为1,得x 16
巩固提升
6.已知长颈鹿的身高比梅花鹿的身高多4米,同时长颈鹿的 身高比梅花鹿身高的3倍还多1米,求梅花鹿的身高. 解:设梅花鹿的身高为x.
x 4 3x 1
移项,得x 3x 1 4 合并同类项,得 2x 3 系数化为1,得x 1.5
答:梅花鹿的身高为1.5米.
课堂总结 把等式一边的某项变号后移到另一边,叫作移项.
思考:方程3x+20=4x-25的两边都有含x的项(3x与4x)和不含 字母的常数项(20与-25),怎样才能把它转化为ax+bx=c+d( 常数)的形式呢?

解一元一次方程——移项完整版课件

这批书共有(3x+20)本.
(2)每人分4本,需要__4_x_本,减去缺的25本
, (4x−25
这批书共有 )
本.
相等关系是:_这__批__书__的__总__数__是__一__个__定__值__. 列得方程:____3_x_+_2_0_=__4_x_−_2_5______.
表示同一个量的两个 不同的式子相等
学习目标
1. 理解移项的意义,掌握移项的方法.(重点) 2. 学会运用移项解形如“a x+b=cx+d ”的一元一
次方程.(重点) 3. 能够抓住实际问题中的数量关系列一元一次方
程解决实际问题.(难点)
导入新课
情境引入
约公元825年,中亚细亚数学家阿 尔—花拉子米写了一本代数书, 重点论述怎样解方程.这本书的拉 丁译本取名为《对消与还原》.
2.下列移项正确的是 A. 由2+x=8,得到x=8+2 B. 由5x=−8+x,得到5x+x=−8 C. 由4x=2x+1,得到4x−2x=1 D. 由5x−3=0,得到5x=−3
( C)
移项一定 要变号
典例精析
例1 解下列方程:
(1) 3x 7 32 2x ;
移项时需要移哪
解:(1)移项,得
合并同类项,得
-3x = -21. 系数化为1,得
x = 7.
你能说说由方程③到方 程④的变形过程中有什 么变化吗?
知识要点
移项的定义 一般地,把方程中的某些项改变符号后,从方程的 一边移到另一边,这种变形叫做移项.
移项的依据及注意事项 移项实际上是利用等式的性质1. 注意:移项一定要变号
小试牛刀
1.下列方程的变形,属于移项的是( D )

解一元一次方程移项ppt课件

3x + 20 = 44xx – 25 ① 3x – 4x = – 25 – 20 ②
移项的定义: 移项的依据: 移项的作用:
下列移项,对不对?若不对,请改正。 火灾袭来时要迅速疏散逃生,不可蜂拥而出或留恋财物,要当机立断,披上浸湿的衣服或裹上湿毛毯、湿被褥勇敢地冲出去 1、从5+x=10,得x=10+5( ) 2、从3x=8-2x,得3x+2x=8( ) 3、从3x=2x-5,得3x+2x=-5( ) 4、从2=-5x+1,得5x=1+2( ) 5、从1-2x=-3x,得3x-2x=-1( )
1 解下列方程: (1)1.5x -2.8=0.7-x
(2)y-4=4y+2
• 幼儿园为孩子们分玩具,每人分2个还剩 • 15个,每人分3个还少15个,则幼儿园里 • 有多少个孩子?
从移项看小学加减互逆运算
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
3x+20
=
4x
-25ቤተ መጻሕፍቲ ባይዱ
解: 移项,得 20+25=4x-3x
合并同类项,得 45=x
即:x=45
ax+b = cx +d (a≠c)
解: 移项,得 ax-cx=d-b
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
解方程 (1)x - 7 = 5 (2)7x = 6x - 4 (3)6x - 7 = 4x - 5 (4)9 - 3y = 5y + 5
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
每人分4本这,批需书要的总数4有本x几,种 减去缺少
的25本,这批表书示法什共?么(它关4x们系之?本间25有.)
表示这批书的总数的两个代数式相等.
3x 20 4x 25
该方程与上化怎节为样课“才的x能方=将a程”它的x转形 2x 4x 140
从结构上看有何不同式?呢?
3x 20 4x 25
移项
3x 4x 25 20
合并同类项
x 45
系数化为1
x 45
移项变 号
像这样,把等 式一边的某项 变号后移到另 一边,叫做移 项.
移项的依据是什么?
等式的性质1.
以上解方程中“移项”起到了什么作用? 结论:通过移项,含未知数的项与常数项 分别位于方程左右两边,使方程更接近于 x=a的形式.
1.教科书第91页习题3.2第3题中(3) (4)、9、10题.
2.补充作业:解下列方程:
(1)3x 7 4x 6x 8;(2)2 5x. 3x 14;
(3) 1 x 5 17 7 x; (4)
4
4
3 x 5 19 11 x. 2 362
约公元820年,中亚细亚数学 家阿尔-花拉子米写了一本代 数书,重点论述怎样解方程. 这本书的拉丁译本为《对消与 还原》.“对消”与“还原”是 什么意思呢?
“对消”和“还原”就是我们 所学的“移项”和“合并同类 项”.
(1)解方程 3x 7 32 2x.解:移项,得3x 2x 327.
合并同类项,得
5x 25.
系数化为1,得
x 5.
(2)解方程 x 3 3 x 1.
解:移项,得
2
x 3 x 1 3.
2
合并同类项,得
1 x 4. 2
系数化为1,得
x 8.
你今天学习了哪些知识?
驶向胜利 的彼岸
1.教科书第90页练习第1题.
2.补充练习:天平的左边放2枚硬币和13克砝码, 右边放6枚硬币和5克砝码,此时天平恰好平衡. 每枚硬币的质量是多少克?
3.3 解一元一次方程(二)---移项

火神庙初中 王建卫
解方程: (1)x+3x-2x=4; (2)8y-7y-12y=-5; (3)2.5z-7.5z+6z=32.
把一些图书分给某班学生阅读,如果 每人分3本,则剩余20本;如果每人分4 本,则还缺25本.这个班有多少学生?
设这个班有x名学生. 每人分3本,共分出 3本x ,加上剩余 的20本,这批书共(3x 本20.)
相关文档
最新文档