石油测井解释原理及应用
测井方法原理-测井解释基础

充分得了解。循环后效、氯根变化等。
测井资料一次解释- 资料质量检查
1. 刻度检查。 2. 仪器刻度如秤的准星、尺的零点一样,是非常
关键的。 3. 深度控制。 4. 测井响应与邻井及录井图是否一致。 5. 标志层。 6. 曲线有无平头及突变。 7. 重复曲线与主曲线之间进行对比,测后校验是
SW =
1
/
(1Vsh Vsh
/
2)
Rt Rsh
m
a • RW
式中:a —— 岩性系数 m —— 胶结指数 Sw —— 含水饱和度,%; Vsh —— 泥质含量,%; Rsh —— 泥岩深探测电阻率,•m; Rt —— 目的层深探测电阻率,•m。 Rw —— 地层水电阻率,•m
Rw的求取
计算解释;
层界划分 以自然GR半幅点为主,参考Rt、CN、DEN等曲线的变化划分界面;
薄层划分以微电阻率曲线划分界面。
读值 依据岩性、含油性取其代表值或平均值; 各条曲线必须对应取值; 取值时应避开干扰。
自然GR法
泥质含量Vsh的确定
GR = GR GR min GR max GR min
Vsh = 2C*GR 1 2C 1
Rt
40% < Sw < 60% 油(气) +水
测井资料一次解释-渗透层的识别及特征
通常钻遇的渗透层是砂岩,其特征:
1. 自然电位曲线在钻井滤液矿化度低于地层水矿化度条 件下,砂岩层出现负异常;反之则为正异常。两者矿 化度接近,自然电位显示不明显或无异常显示。
2. 自然伽玛曲线对砂岩反映为低值,泥岩反映为高值。 砂岩的自然伽玛值越高,则泥质含量越大。
井温测井的名词解释

井温测井的名词解释井温测井是一种在石油勘探和开发中广泛应用的地球物理勘探技术。
它利用地层储集物性参数与地温之间的关系,通过测量井内温度来推断地层储层的性质和分布。
井温测井可以提供重要的地质信息,帮助工程师和地质学家更好地了解油田的水文地质特征、油气储层的储集能力以及地层的渗透性。
井温测井主要通过使用温度传感器,将传感器安装在测井工具的测井钻头或测井电缆上,通过下井测井设备将其下放到井中。
当传感器通过电缆传输数据到地面时,测量到的温度数据将被记录并分析。
根据温度的变化,可以推断出不同深度处的地层温度分布情况。
地层温度受到多种因素的影响,如地表温度、地壳热流以及地下水循环等。
测井数据中蕴含的地层温度信息可以揭示地层的热流条件、温度梯度以及热储能等方面的信息。
这些信息对于石油勘探和开发具有重要的指导意义。
通过分析地层温度数据,工程师和地质学家可以确定油气储集层的位置、厚度和含油气性质,以及地层的物性参数,如渗透率、孔隙度和饱和度等。
井温测井的数据处理和解释需要考虑多种因素,并结合地质背景和其他地球物理数据进行综合分析。
例如,地温数据的垂向分布不仅受到地层的物性参数影响,还与地层中的热流以及上覆地层的热传导能力等有关。
此外,地层温度的时空变化也需要考虑到地球内部热流以及地下水运动等因素的影响。
因此,井温测井的数据解释需要综合利用地球物理原理和地质知识,进行多学科交叉研究。
井温测井的应用领域广泛。
首先,它在油气勘探和开发中起到了重要的作用。
通过分析井温测井数据,可以确定油气藏的大小、分布和埋藏深度,从而为油田开发提供重要的依据。
其次,井温测井也可以应用于火山区的地热勘探和开发。
地热资源是一种清洁、可再生的能源,井温测井技术可以帮助确定地下地热资源的储层性质和温度分布,为地热开发提供技术支持。
此外,井温测井还可以应用于环境地质研究和地下水资源评价等领域。
总之,井温测井作为一种地球物理勘探技术,通过测量井内温度来推断地层储层的性质和分布。
测井原理及方法

离子扩散;-扩散电动势 • 岩石颗粒表面对离子有吸附作用;-吸附电动势 • 泥浆滤液向地层中渗透作用。-过滤电动势
自然电位测井
自然电位的测量
自然电位SP的理论计算
自然电流: 测量的自然电位异常幅度值Usp:自然电流流过井内泥浆 柱电阻上的电位降:
1、 常规测井资料原理及应用
1. )电阻率测井电阻率测井 2. )自然电位测井 3. )声波测井 4. )伽马和密度测井 5. )补偿中子测井
电阻率测井
电法测井是地球物理测井中三大测井方法之一,它根据岩层电学性 质的差别,测量地层的电阻率、电导率或介电常数等电学参数,用来研 究地质剖面,判断岩性,划分油气水层,和其它方法一起研究储集层的 含油性、渗透性和孔隙性等性质。
a.主要类型
(2)微侧向(MLL): 微电极测井中泥饼分流作用太大,测RXO不准确,采用聚焦原理,形 成微侧向测井。
(3)微球形聚焦(MSFL): 微侧向MLL探测浅,受泥饼影响大。MSFL方法探测浅,又基本不受泥饼影 响,是目前最好的RXO测量方法。
(4)八侧向(LL8): 以上均为贴井壁测量,LL8是不贴井壁测量Rxo的方法。它是在七侧 向电极系下方附近设屏流回路电极B1,在上方较远处设回路电极B2。
• 厚层可以用“半幅点” 确定地层界面。
地层电阻率的影响
• 含油气饱和度比较高的储集层,其电阻率比它完全含水时rsd明显升 高,SP略有下降。一般油气层的SP幅度略小于相邻的水层。Rt/Rm 增大,曲线幅度减小。
• 围岩电阻率Rs增大,则rsh增大,使自然电位异常幅度减小。
泥浆侵入带、井径的影响
b.电极系分类: 通常供电和测量共4个电极,一个在地面,井下三个组成电极系。 梯度:单电极到相邻成对电极的距离大于成对电极间的距离。 电位:单电极到相邻成对电极的距离小于成对电极间的距离。 梯度电极系进一步分为:底部(正装)梯度、顶部(倒装)梯度。
测井资料及其应用

地面仪器
测井仪器车
下井仪器
2、测井资料解释与评价
测井信息是地层评价的主 要手段。主要应用于: 储层评价 油气资源评价 油田勘探及开収 油藏开収及管理 地层评价 地质、钻井和采油工 程 最核心的应用是储层 评价,油气水层评价。 测井评价 技术发展历史
储层定性解释
1960年~1979年
1980年~1995年
25
测井资料的应用
测井具有成本低、垂直分辨率高、连续 性好等特点,被广泛应用于地层评价,地 质、钻井和采油工程,以及矿产资源(如 金属、煤、钾盐、水文工程)勘探开发等 方面。
1、自然电位测井
自然电位测井的应用
①划分渗透性地层。 ②判断岩性,进行地层 对比。 ③计算泥质含量。 ④确定地层水电阻率。 ⑤判断水淹层。 ⑥沉积相研究。
储层定量评价 单井精细解释 多井资料综合解释 油藏描述 地质研究 工程应用
1995年~至今
3、测井方法和理论
• 电磁测井—岩石电学性质 • 声波测井—岩石声学性质 • 核测井—放射性、核衰变、原子物理
常规测井与现代测井
常规测井技术
单一探头
现代测井新技术
阵列或扫描探头
分辨率低
测量平均物理量 非定向测量
含水饱和度 解 (%) 0 残余 可动 释 100 层 束缚水饱和度 号 100 (%) 0 50 (%) 井径 (cm) -25
85
0 25
100
(%)
0
砂泥岩地层测井数字处理成果图
固井质量评价图格式 Q/SL 1273-2001
236
胜利石油管理局测井公司
井 声波变密度测井 固井质量评价图
深度比例 1:200
原状地层
MDT测井技术在大庆油田复杂油气藏中的应用

MDT 测井技术在大庆油田复杂油气藏中的应用摘要:MDT 测井技术是井下流体的测压取样技术,是勘探过程中验证储层流体性质、求取地层产能最为直接、有效的方法。
常规测井方法可以间接地确定储层流体性质,但由于常规测井资料受众多因素的影响,存在大量的多解性和不确定性,这使得复杂油气藏的测井评价工作难度极大。
MDT 测井可以直接识别储层的流体性质,从而比较准确地识别油气水层,提高复杂油气层解释符合率。
本文首先介绍了MDT 测井技术的基本原理以及该仪器适用的地质条件,之后总结了MDT 测井的测前设计原则。
最后,通过具体实例验证了该测井方法在大庆油田复杂油气藏中的应用效果。
关键字:MDT;测压;流体取样;大庆油田武越,任纪明,蔺建华(中国石油测井有限公司大庆分公司)0引言目前,我国陆上油气勘探的难度越来越大,测井油气储层评价面临着诸多地质难题,如复杂岩性油气藏、低阻砂岩油气藏、碳酸盐岩裂缝-孔洞型油气藏等,而传统测井技术存在分辨率低、直观性差、测井解释符合率较低等问题,使得复杂油气藏的勘探效率较低,严重制约着我国油气勘探工业的进一步发展[1]。
因而需要一项能够快速识别油气层、全面提高测井解释符合率的技术。
MDT,即模块化动态地层测试器,作为一项重要的油气层评价技术在油气勘探中发挥着重要的作用。
MDT 测井技术是20世纪90年代初国外推出的新一代电缆地层测试技术之一,现已在在大庆油田广泛应用。
MDT 的出现为复杂油气藏的勘探起到了极其重要的作用,对于油田降低成本、提高勘探效益具有重要的意义。
1MDT 测井技术简介电缆式地层测试器是在原有地层流体取样的基础上,吸收钻杆地层测试和钢丝地层测试功能发展起来的一种测井方法。
它使用电缆将压力计和取样桶下到井内,测量地层压力传输数据,采集地层流体样品,从而对储集层做出评价。
自1995年斯伦贝谢公司推出第一代电缆地层测试器(FT )以来,电缆地层测试技术得到了很大的发展。
MDT 是斯伦贝谢公司即重复式地层测试器(RFT )之后推出的新一代电缆地层测试器(见图1)。
测井技术在石油勘探中的应用

测井技术在石油勘探中的应用测井技术在石油勘探中的应用石油勘探是一个复杂而多元化的过程,需要使用多种技术手段来判断油藏性质和储量。
其中一个重要的技术是测井技术,它是通过在井眼中测量沉积岩石性质和油气分布情况,帮助石油工业界了解井眼周围的地层情况和潜在的石油储量。
测井技术已经成为石油勘探和生产行业的重要组成部分,下面我们将详细介绍测井技术在石油勘探中的应用。
1.测量含油气井眼周围地质情况测井技术是一种利用特殊测量工具在井下测量储层岩石物理性质和油气含量的技术。
通过这些测量数据,工程师可以评估井眼周围的地质情况和潜在的含油气层。
根据这些数据,工程师可以制定采油工艺和采油计划,以达到最佳的产油效果。
2.识别含油气层和非含油气层利用测井技术,工程师可以深入了解每个沉积岩的特性,例如密度、声波速度、电阻率、自然伽马辐射等。
这些特性可以帮助工程师分析岩石组成和发育环境,进而帮助他们确定哪些地层可能包含石油和天然气,哪些层不包含石油和天然气。
这使工程师可以准确评估一个油井的钻井成本和产量。
3.评估油藏的储量测井技术还可以帮助工程师确定油藏的储量。
这是通过分析各种地质特征、岩性数据和测井数据来进行的。
例如,通过分析岩石密度数据和声波速度数据,工程师可以确定岩石中的孔隙度和渗透率。
这些数据有助于确定油藏的储量,即包含有多少含油气物质。
4.协助生产过程中的控制测井技术也可以协助油气勘探的生产工作,特别是在生产过程中的控制中。
例如,通过分析岩石形态和斜度数据,检测井下阀门或管道管道的状况,可以协助生产工作。
这使工程师可以及时发现并解决生产过程中的控制问题,确保生产正常运行,保证生产效益。
5.协助井下工程开发通过分析岩石间隙和岩石孔隙的数据,工程师可以确定传统的石油储层或不同类型的石油储层的形成条件和裂缝分布情况,以帮助工程师了解埋藏物的形态。
也可以通过分析岩石的热力学特性来进行地质储层精细解释,并协助油井完井时进行压力评估。
MDT测井解释及处理
MDT测井技术的地质应用
董彦喜
2003.8
内
一、前言
容
二、仪器结构及功能 三、解释原理 四、应用条件
OFA流体光学分析示意图
气、水、油入射角与反射光强度关系图
解释原理
流体分析资料解释
右图为MDT-LFA流体光谱分 析图。左起第一道记录的曲线 为:泵出体积(点线、桔黄色)、 流体电阻率(实线、暗绿色)、 原始气油比(实线、红色)、流 体温度(长虚线、桔红色);第 二道记录的曲线为:时间推移 (数字);第三道记录的曲线为: 气体直观显示道,分别为:大 量气(红色)、中等气(粉红 色)、少量气(淡红色);第 四道记录的曲线为:流体直观 显示道,分别为:油(绿色)、 水(蓝色)、高吸收流体(褐 色,一般指泥浆);第五道记 录的曲线为:流体颜色;第六 道记录的曲线为:光谱分析, 其中S0-S5为流体颜色道,S6S9为水光谱指示道,S7-S8为油 光谱指示道。
解释原理
利用压力资料计算储层流体密度
在压力与深度剖面上,对同一压力系统、不同深度进 行测量所得到地层压力数据,理论上呈线性关系,直线 的斜率即为该压力系统的压力梯度。压力梯度通过简单 的换算即可得到储层流体密度,可以表达为:
f
1.422
式中:ρ f——测压层流体密度,g/cm3; Δ P——同一压力系统任意两个有效测压点间的压 差,psi; Δ H——同一压力系统任意两个有效测压点间的深 度差,m; 1.422压力梯度转换系数。
MDT测井于1992年在准噶尔盆地油气勘探中投入使用。
裸眼井测井解释
3
直接解释法需要丰富的经验和对测井曲线的深入 理解,同时也需要与其他地质资料进行对比验证。
间接解释法
01
间接解释法是通过建立测井曲线与地层参数之间的数学模型, 利用已知的地层参数反演出其他未知参数的方法。
02
它通常需要建立测井响应方程或反演模型,利用已知的地层参
数进行反演计算,得出其他未知参数。
间接解释法需要建立准确的数学模型,并确保模型的适用性和
裸眼井测井解释
• 引言 • 裸眼井测井技术 • 裸眼井测井解释方法 • 裸眼井测井解释实例 • 裸眼井测井解释的挑战与展望
01
引言
主题简介
裸眼井测井解释是石油和天然气勘探中常用的技术手段,通过测量裸眼井中的物 理参数,如电阻率、声波速度、自然电位等,对地下岩层和流体性质进行推断和 解释。
该技术广泛应用于石油和天然气勘探、开发、生产等各个环节,对于评估地下资 源、制定开发方案、优化生产具有重要意义。
主题重要性
裸眼井测井解释是石油和天然气勘探 的关键环节,能够提供地下岩层和流 体的详细信息,为地质学家和工程师 提供决策依据。
随着勘探和开发难度的增加,裸眼井 测井解释技术的准确性和可靠性对于 提高勘探成功率、降低开发成本、增 加油气产量具有越来越重要的意义。
内容概述
本章节将介绍裸眼井测井解释的基本 原理、方法和技术,包括各种测井方 法的优缺点、解释步骤和实际应用案 例。
裸眼井测井解释面临的地层条件复杂多变,如裂 缝、溶洞等,增加了地层识别的难度。
井眼不规则
裸眼井中井眼可能存在不规则、非圆形的情况, 对测井数据的采集和解释造成影响。
测井数据质量
裸眼井测井过程中,受到环境因素和仪器设备的 影响,可能导致测井数据质量不稳定。
磁定位测井的原理及应用
磁定位测井的原理及应用磁定位测井的原理是基于地球的磁场、地层中的磁物性和地层内部的构造差异。
地球拥有一个磁场,它向地表垂直,并且具有地磁北极和南极。
磁性物质会对地磁场产生反应,引起磁异常。
地层中的磁性物质主要包括铁矿、磁铁矿、赤铁矿等。
地层内部的构造差异会导致地磁场的变化,从而形成磁异常。
磁定位测井的过程中,通过在井口悬挂磁场传感器,测量地磁场的大小和方向。
磁感应强度和方向的变化反映了地层中磁性物质的分布和性质。
这些数据经过处理和解释后,可以确定地层中的岩性、含矿物质的类型和含量,以及地层的层序和结构等信息。
磁定位测井技术有很多应用。
首先,它可用于地质勘探,用来确定地层中的岩性、厚度和层序等信息,帮助寻找有价值的矿床。
其次,在石油勘探中,磁定位测井可以用于确定油气藏的位置和边界,评估储量和产能等。
另外,它还可用于采油过程中的导向钻井、水平井和均质性评价等。
此外,磁定位测井还可用于地层工程和地质灾害的预测和评估。
磁定位测井技术相比其他测井方法具有一些优点。
首先,它可以提供更广泛的地层信息,不仅可以提供油气层的信息,还可以获得上下盖层的特征。
其次,磁定位测井具有压力和温度的测量能力,可以提供更全面的地质和工程参数。
另外,该技术通常无需接触地层,可以避免传统测井方法中的一些问题,如井眼尺寸限制等。
然而,磁定位测井技术也存在一些挑战和限制。
首先,地层中磁性物质的含量和分布通常较低,需要高精度的仪器和方法来检测和解释。
其次,在复杂地质情况下,磁异常可能会被干扰和掩盖,导致解释结果不准确。
此外,磁定位测井技术通常需要与其他测井数据和地质信息相结合,才能得出更准确和可靠的结果。
总体而言,磁定位测井是一项重要的测井技术,可用于地质和工程勘探中的数据获取和分析。
随着仪器和方法的不断改进,磁定位测井技术的应用领域将会得到进一步扩展,并为资源勘探和开发提供更多有价值的信息和支持。
测井考试小结(测井原理与综合解释)
一、名词解释1、测井:油气田地球物理测井,简称测井well logging ,是应用物理方法研究油气田钻井地质剖面和井的技术状况,寻找油气层并监测油气层开发的一门应用技术。
2、电法测井:是指以研究岩石及其孔隙流体的导电性、电化学性质及介电性为基础的一大类测井方法,包括以测量岩层电化学特性、导电特性和介电特性为基础的三小类测井方法。
3、声波测井:是通过研究声波在井下岩层和介质中的传播特性,来了解岩层的地质特性和井的技术状况的一类测井方法。
4、核测井:是根据岩石及其孔隙流体的核物理性质,研究钻井地质剖面,勘探石油、天然气、煤以及铀等有用矿藏的地球物理方法,是地球物理测井的重要组成部分。
5、储集层:在石油工业中,储集层是指具有一定孔隙性和渗透性的岩层。
例如油气水层。
6、高侵:当地层孔隙中原来含有的流体电阻率较低时,电阻率较高的钻井液滤液侵入后,侵入带岩石电阻率升高,这种钻井液滤液侵入称为钻井液高侵,R XO<Rt多出现在水层。
7、低侵:当地层孔隙中原来含有的流体电阻率比渗入地层的钻井液滤液电阻率高时,钻井液滤液侵入后,侵入带岩石电阻率降低,这种钻井液滤液侵入称为钻井液低侵,一般多出现在地层水矿化度不很高的油气层8、水淹层:在油气田的勘探开发后期因注水或地下水动力条件的变化,油层发生水淹,称为水淹层,此时其含水饱和度上升、与原始状态不一致,在SP、TDT和电阻率等曲线上有明显反映。
9、周波跳跃(Travel time cycle Skip):因破碎带、地层发育裂缝、地层含气等引起声波时差测井曲线上反映为时差值周期性跳波增大现象。
10、中子寿命测井:是一种特别适用于高矿化度地层水油田并且不受套管、油管限制的测井方法,它通过获得地层中热中子的寿命和宏观俘获截面来研究地层及孔隙流体性质,常用于套管井中划分油水层、计算地层剩余油饱和度、评价注水效率及油层水淹状况、研究水淹层封堵效果,为调整生产措施和二、三次采油提供重要依据,是油田开发中后期的主要测井方法之一。