2017年安徽省合肥市滨湖区寿春中学中考数学一模试卷
安徽省合肥市滨湖区寿春中学2022-2023学年九年级数学第一学期期末质量检测模拟试题含解析

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)1.电影《流浪地球》一上映就获得追捧,第一天票房收入约8亿元,第三天票房收入达到了11.52亿元,设第一天到第三天票房收入平均每天增长的百分率为x ,则可列方程( )A .8(1+x )=11.52B .8(1+2x )=11.52C .8(1+x )2=11.52D .8(1﹣x )2=11.522.O 的半径为10cm ,弦//AB CD ,16AB =,12CD =,则AB 、CD 间的距离是:( )A .14B .2C .14或2D .以上都不对3.如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是( )A .B .C .D .4.二次函数2y ax b =+(b >0)与反比例函数a y x =在同一坐标系中的图象可能是( )A .B .C .D .5.把抛物线21y x =+向右平移3个单位,再向上平移2个单位,得到抛物线( ).A .()231y x =+-B .()233y x =++C .()231y x =--D .()233y x =-+6.若两个相似三角形的相似比是1:2,则它们的面积比等于( )A .12B .1:2C .1:3D .1:47.如图,E 为矩形ABCD 的CD 边延长线上一点,BE 交AD 于G , AF ⊥BE 于F , 图中相似三角形的对数是( )A .5B .7C .8D .108.一人乘雪橇沿如图所示的斜坡(倾斜角为30°)笔直滑下,滑下的距离为24米,则此人下滑的高度为( )A .24B .123C .12D .6 9.由二次函数()2342y x =--可知( )A .其图象的开口向下B .其图象的对称轴为直线4x =C .其顶点坐标为()4,2D .当4x <时,y 随x 的增大而增大10.如图,在Rt ABC 中,90C ∠=︒,3sin 4A ∠=,8AB cm =,则ABC 的面积是( )A .26cmB .224cmC .267cmD .2247cm 11.已知二次函数2() 0y ax bx c a =++≠的图象如图所示,有下列结论:①0a b c -+>;②0abc >;③420a b c -+>;④0.a c ->⑤3+a c 0>;其中正确结论的个数是( )A .2B .3C .4D .512.若整数a 使关于x 的分式方程122ax x -+=2有整数解,且使关于x 的不等式组125262x x x a++⎧≤⎪⎨⎪->⎩至少有4个整数解,则满足条件的所有整数a 的和是( )A .﹣14B .﹣17C .﹣20D .﹣23二、填空题(每题4分,共24分)13.反比例函数k y x=的图象上有一点P(2,n),将点P 向右平移1个单位,再向下平移1个单位得到点Q ,若点Q 也在该函数的图象上,则k =____________.14.如图1表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A ,当钟面显示3点30分时,分针垂直与桌面,A 点距离桌面的高度为10公分,若此钟面显示3点45分时,A 点距桌面的高度为16公分,如图2,钟面显示3点50分时,A 点距桌面的高度_________________.15.在△ABC 中,若∠A =30°,∠B =45°,AC =22,则BC =_______. 16.如图,抛物线21322y x x =--的图象与坐标轴交于点A 、B 、D ,顶点为E ,以AB 为直径画半圆交y 轴的正半轴于点C ,圆心为M ,P 是半圆AB 上的一动点,连接EP ,N 是PE 的中点,当P 沿半圆从点A 运动至点B 时,点N 运动的路径长是__________.17.如图,圆O 是一个油罐的截面图,已知圆O 的直径为5m ,油的最大深度4CD =m (CD AB ⊥),则油面宽度AB 为__________m .18.将边长为1的正方形ABCD绕点C按顺时针方向旋转到FECG的位置(如图),使得点D落在对角线CF上,EF 与AD相交于点H,则HD=_________.(结果保留根号)三、解答题(共78分)⨯的方格纸中,ABC的三个顶点都在格点上.19.(8分)在531()在图1中画出线段BD,使BD//AC,其中D是格点;⊥,其中E是格点.2()在图2中画出线段BE,使BE AC20.(8分)为了解九年级学生的体能状况,从我县某校九年级学生中随机抽取部分学生进行八百米跑体能测试,测试结果分为A、B、C、D四个等级,请根据两幅统计图中的信息回答下列问题;(1)求本次测试共调查了多少名学生?并在答题卡上补全条形统计图;(2)经测试,全年级有4名学生体能特别好,其中有1名女生,学校准备从这4名学生中任选两名参加运动会,请用列表或画树状图的方法求出女生被选中的概率.21.(8分)如图①,在平行四边形ABCD中,对角线AC、BD交于点O,AB=AC,AB⊥AC,过点A作AE⊥BD于点E.(1)若BC=62,求AE的长度;(2)如图②,点F是BD上一点,连接AF,过点A作AG⊥AF,且AG=AF,连接GC交AE于点H,证明:GH=CH.22.(10分)如图,点C在以AB为直径的圆上,D在线段AB的延长线上,且CA=CD,BC=BD.(1)求证:CD与⊙O相切;(2)若AB=8,求图中阴影部分的面积.23.(10分)已知关于x的一元二次方程(a+c)x2+2bx+a-c=0,其中a、b、c分别为△ABC三边的长.(1)若方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(2)若△ABC是正三角形,试求这个一元二次方程的根.24.(10分)如图,点D在⊙O的直径AB的延长线上,CD切⊙O于点C,AE⊥CD于点E(1)求证:AC平分∠DAE;(2)若AB=6,BD=2,求CE的长.25.(12分)已知二次函数y=2x2+4x+3,当﹣2≤x≤﹣1时,求函数y的最小值和最大值,如图是小明同学的解答过程.你认为他做得正确吗?如果正确,请说明解答依据,如果不正确,请写出你得解答过程.26.(1016内蒙古包头市)一幅长10cm、宽11cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:1.设竖彩条的宽度为xcm,图案中三条彩条所占面积为ycm1.(1)求y与x之间的函数关系式;(1)若图案中三条彩条所占面积是图案面积的25,求横、竖彩条的宽度.参考答案一、选择题(每题4分,共48分)1、C【分析】设平均每天票房的增长率为x ,根据第一天票房收入约8亿元,第三天票房收入达到了11.52亿元,即可得出关于x 的一元二次方程.【详解】解:设平均每天票房的增长率为x ,根据题意得:28(1)11.52x +=.故选:C .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.2、C【分析】先根据勾股定理求出OE=6,OF=8,再分AB 、CD 在点O 的同侧时,AB 、CD 在点O 的两侧时两种情况分别计算求出EF 即可.【详解】如图,过点O 作OF ⊥CD 于F ,交AB 于点E ,∵//AB CD ,∴OE ⊥AB , 在Rt △AOE 中,OA=10,AE=12AB=8,∴OE=6, 在Rt △COF 中,OC=10,CF=12CD=6,∴OF=8, 当AB 、CD 在点O 的同侧时,AB 、CD 间的距离EF=OF-OE=8-6=2;当AB 、CD 在点O 的两侧时,AB 、CD 间的距离EF=OE+OF=6+8=14,故选:C.【点睛】此题考查了圆的垂径定理,勾股定理,在圆中通常利用垂径定理和勾股定理求半径、弦的一半、弦心距三者中的一个量.3、D【解析】试题分析:观察几何体,可知该几何体是由3个大小完全一样的正方体组成的,它的左视图是,故答案选D.考点:简单几何体的三视图.4、B【解析】试题分析:先根据各选项中反比例函数图象的位置确定a的范围,再根据a的范围对抛物线的大致位置进行判断,从而对各选项作出判断:∵当反比例函数ayx=经过第二、四象限时,a<0,∴抛物线2y ax b=+(b>0)中a<0,b>0,∴抛物线开口向下. 所以A选项错误.∵当反比例函数ayx=经过第一、三象限时,a>0,∴抛物线2y ax b=+(b>0)中a>0,b>0,∴抛物线开口向上,抛物线与y轴的交点在x轴上方. 所以B选项正确,C,D选项错误.故选B.考点:1.二次函数和反比例函数的图象与系数的关系;2.数形结合思想的应用.5、D【分析】直接根据平移规律(左加右减,上加下减)作答即可.【详解】将抛物线y=x2+1向右平移1个单位,再向上平移2个单位后所得抛物线解析式为y=(x-1)2+1.故选:D.【点睛】此题考查函数图象的平移,解题关键在于熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.6、D【分析】根据相似三角形面积的比等于相似比的平方解答即可.【详解】解:∵两个相似三角形的相似比是1:2,∴这两个三角形们的面积比为1:4,故选:D.【点睛】此题考查相似三角形的性质,掌握相似三角形面积的比等于相似比的平方是解决此题的关键.7、D【解析】试题解析:∵矩形ABCD∴AD∥BC,AB∥CD,∠DAB=∠ADE=90︒∴△EDG∽△ECB∽△BAG∵AF⊥BE∴∠AFG=∠BFA=∠DAB=∠ADE=90︒∵∠AGF=∠BGA,∠ABF=∠GBA∴△GAF∽△GBA∽△ABF∴△EDG∽△ECB∽△BAG∽△AFG∽△BFA∴共有10对故选D.8、C【分析】由题意运用解直角三角形的方法根据特殊三角函数进行分析求解即可.【详解】解:因为斜坡(倾斜角为30°),滑下的距离即斜坡长度为24米,所以下滑的高度为0124sin3024122⨯=⨯=米.故选:C.【点睛】本题考查解直角三角形相关,结合特殊三角函数进行求解是解题的关键,也可利用含30°的直角三角形,其斜边是30°角所对直角边的2倍进行分析求解.9、B【分析】根据二次函数的图像与性质即可得出答案.【详解】A:a=3,所以开口向上,故A错误;B:对称轴=4,故B正确;C:顶点坐标为(4,-2),故C错误;D :当x<4时,y 随x 的增大而减小,故D 错误;故答案选择D.【点睛】本题考查的是二次函数,比较简单,需要熟练掌握二次函数的图像与性质.10、C【分析】在Rt △ABC 中,求出BC ,AC 即可解决问题.【详解】解:在Rt △ACB 中,∵∠C=90°,AB=8cm ,∴sinA=BC AB =34, ∴BC=6(cm ),∴==cm ),∴S △ABC =12•BC •AC=12×6×(cm 2). 故选:C .【点睛】本题考查解直角三角形的应用,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 11、B【分析】利用特殊值法求①和③,根据图像判断出a 、b 和c 的值判断②和④,再根据对称轴求出a 和b 的关系,再用特殊值法判断⑤,即可得出答案.【详解】令x=-1,则y=a-b+c ,根据图像可得,当x=-1时,y <0,所以a-b+c <0,故①错误;由图可得,a >0,b <0,c <0,所以abc >0,a-c >0,故②④正确;令x=-2,则y=4a-2b+c ,根据图像可得,当x=-2时,y >0,所以4a-2b+c >0,故③正确;12b x a=-=,所以-b=2a ,∴a-b+c=a+2a+c=3a+c <0,故⑤错误; 故答案选择B.【点睛】本题考查的是二次函数,难度偏高,需要熟练掌握二次函数的图像与性质.12、A【解析】根据不等式组求出a 的范围,然后再根据分式方程求出a 的范围,从而确定a 满足条件的所有整数值,求和即可.【详解】不等式组整理得:22x x a ≤⎧⎨>+⎩ ,由不等式组至少有4个整数解,得到a+2<﹣1,解得:a<﹣3,分式方程去分母得:12﹣ax=2x+4,解得:x=82a+,∵分式方程有整数解且a是整数∴a+2=±1、±2、±4、±8,即a=﹣1、﹣3、0、﹣4、2、﹣6、6、﹣10,又∵x=82a+≠﹣2,∴a≠﹣6,由a<﹣3得:a=﹣10或﹣4,∴所有满足条件的a的和是﹣14,故选:A.【点睛】本题主要考查含参数的分式方程和一元一次不等式组的综合,熟练掌握分式方程和一元一次不等式组的解法,是解题的关键,特别注意,要检验分式方程的增根.二、填空题(每题4分,共24分)13、1【分析】根据平移的特性写出点Q的坐标,由点P、Q均在反比例函数kyx=的图象上,即可得出k=2n=3(n﹣1),解出即可.【详解】∵点P的坐标为(2,n),则点Q的坐标为(3,n﹣1),依题意得:k=2n=3(n﹣1),解得:n=3,∴k=2×3=1,故答案为1.【点睛】本题考查了反比例函数图象上点的坐标特征、反比例函数系数k的几何意义,解题的关键:由P点坐标表示出Q点坐标.14、19公分【分析】根据当钟面显示3点30分时,分针垂直于桌面,A点距桌面的高度为10公分得出AB=10,进而得出A1C=16,求出OA 2=OA=6,过A 2作A 2D ⊥OA 1从而得出A 2D=3即可.【详解】如图:可得116AC OB ==(公分) ∵AB=10(公分),∴1216106OA OA OA ===-=(公分)过A 2作A 2D ⊥OA 1,∵230DOA ∠=︒22116322A D OA ∴=⨯=⨯=(公分) ∴钟面显示3点50分时,A 点距桌面的高度为:16319+=(公分).故答案为:19公分.【点睛】此题主要考查了解直角三角形以及钟面角,得出∠A 2OA 1=30°,进而得出A 2D=3,是解决问题的关键.15、12【分析】作CD ⊥AB 于点D ,先在Rt △ACD 中求得CD 的长,再解Rt △BCD 即得结果.【详解】如图,作CD ⊥AB 于点D :sin CD A AC=,∠A =30°, 122∴=2CD =,sin CD B BC =,∠B =45°, 2242BC=, 解得12BC = 考点:本题考查的是解直角三角形点评:解答本题的关键是作高,构造直角三角形,正确把握公共边CD 的作用.16、π【分析】先求出A 、B 、E 的坐标,然后求出半圆的直径为4,由于E 为定点,P 是半圆AB 上的动点,N 为EP 的中点,所以N 的运动路经为直径为2的半圆,计算即可.【详解】解:22131(1)2222y x x x ,∴点E 的坐标为(1,-2),令y=0,则213022x x =--, 解得,11x =-,23x =,∴A (-1,0),B (3,0),∴AB=4,由于E 为定点,P 是半圆AB 上的动点,N 为EP 的中点,所以N 的运动路经为直径为2的半圆,如图, ∴点N 运动的路径长是12=2ππ⨯⨯.【点睛】本题属于二次函数和圆的综合问题,考查了运动路径的问题,熟练掌握二次函数和圆的基础是解题的关键. 17、1【分析】连接OA,先求出OA和OD,再根据勾股定理和垂径定理即可求出AD和AB.【详解】解:连接OA∵圆O的直径为5m,油的最大深度4CD=m∴OA=OC=5 2 m∴OD=CD-OC=3 2 m∵CD AB⊥根据勾股定理可得:222OA OD m∴AB=2AD=1m故答案为:1.【点睛】此题考查的是垂径定理和勾股定理,掌握垂径定理和勾股定理的结合是解决此题的关键.1821【分析】先根据正方形的性质得到CD=1,∠CDA=90°,再利用旋转的性质得2,根据正方形的性质得∠CFE=45°,则可判断△DFH为等腰直角三角形,从而计算CF-CD即可.【详解】∵四边形ABCD为正方形,∴CD=1,∠CDA=90°,∵边长为1的正方形ABCD绕点C按顺时针方向旋转到FECG的位置,使得点D落在对角线CF上,∴2,∠CFDE=45°,∴△DFH为等腰直角三角形,∴2-1.2-1.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.三、解答题(共78分)19、(1)画图见解析;(2)画图见解析.【解析】()1将线段AC沿着AB方向平移2个单位,即可得到线段BD;()2利用23⨯的长方形的对角线,即可得到线段BE AC⊥.【详解】()1如图所示,线段BD即为所求;()2如图所示,线段BE即为所求.【点睛】本题考查了作图以及平行四边形的性质,理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图是关键.20、(1)共调查了50名学生,补图见解析;(2)1 2 .【分析】(1)设本次测试共调查了x名学生,根据总体、个体、百分比之间的关系列出方程即可解决.用总数减去A、C、D中的人数,即可解决,画出条形图即可.(2)画树状图展示所有12种等可能的结果数,再找出恰好抽到有1名女生的结果数,然后根据概率公式计算.【详解】解:(1)设本次测试共调查了x名学生.由题意20%10x=,解得:50x=∴本次测试共调查了50名学生.则测试结果为B等级的学生数=501016618---=人.条形统计图如图所示,(2)画树状图:共有12种等可能的结果数,其中恰好抽到有1名女生的结果数6,所以恰好抽到有1名女生的概率=612=12.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.解题的关键是灵活运用这些知识解决问题.21、(1)AE=655;(2)证明见解析.【分析】(1)根据题意可得:AB=AC=6,可得AO=3,根据勾股定理可求BO的值,根据S△ABO=12AB×BO=12BO×AE,可求AE的长度.(2)延长AE到P,使AP=BF,可证△ABF≌△APC,可得AF=PC.则GA=PC,由AG⊥AF,AE⊥BE可得∠GAH =∠BFA=∠APC,可证△AGH≌△PHC,结论可得.【详解】解:(1)∵AB=AC,AB⊥AC,BC=2∴AB2+AC2=BC2,∴2AC2=72∴AC=AB=6∵四边形ABCD是平行四边形∴AO=CO=3在Rt△AOB中,BO2AO AB5∵S△ABO=12AB×BO=12BO×AE∴3×6=5AE∴AE=5 5(2)如图:延长AE到P,使AP=BF∵∠BAC=90°,AE⊥BE∴∠BAE+∠ABE=90°,∠BAE+∠CAE=90°∴∠ABE=∠CAE且AB=AC,BF=AP∴△ABF≌△APC∴AF=PC,∠AFB=∠APC∵AG⊥AF,AG=AF∴AG=PC∵∠GAH=∠GAF+∠FAE=90°+∠FAE,∠AFB=∠AEB+∠FAE=90°+∠FAE∴∠GAH=∠AFB∴∠AFB=∠GAH=∠APC,且AG=PC,∠GHA=∠CHP∴△AGH≌△CHP∴GH=HC【点睛】本题考查了平行四边形的性质,全等三角形的性质和判定,添加恰当辅助线构造全等三角形是解决问题的关键.22、(1)见解析;(2)8 833π-【分析】(1)连接OC,由圆周角定理得出∠ACB=90°,即∠ACO+∠BCO=90°,由等腰三角形的性质得出∠A=∠D=∠BCD,∠ACO=∠A,得出∠ACO=∠BCD,证出∠DCO=90°,则CD⊥OC,即可得出结论;(2)证明OB=OC=BC,得出∠BOC=60°,∠D=30°,由直角三角形的性质得出CD=3OC=43,图中阴影部分的面积=△OCD的面积-扇形OBC的面积,代入数据计算即可.【详解】证明:连接OC,如图所示:∵AB是⊙O的直径,∴∠ACB=90°,即∠ACO+∠BCO=90°,∵CA=CD ,BC=BD ,∴∠A=∠D=∠BCD ,又∵OA=OC ,∴∠ACO=∠A ,∴∠ACO=∠BCD ,∴∠BCD+∠BCO=∠ACO+∠BCO=90°,即∠DCO=90°,∴CD ⊥OC ,∵OC 是⊙O 的半径,∴CD 与⊙O 相切;(2)解:∵AB=8,∴OC=OB=4,由(1)得:∠A=∠D=∠BCD ,∴∠OBC=∠BCD+∠D=2∠D ,∵∠BOC=2∠A ,∴∠BOC=∠OBC ,∴OC=BC ,∵OB=OC ,∴OB=OC=BC ,∴∠BOC=60°,∵∠OCD=90°,∴∠D=90°-60°=30°,∴∴图中阴影部分的面积=△OCD 的面积-扇形OBC 的面积=12×4×2604360 π83π. 【点睛】本题考查了切线的判定、圆周角定理、等腰三角形的判定与性质、等边三角形的判定与性质、含30°角的直角三角形的性质、扇形面积公式、三角形面积公式等知识;熟练掌握切线的判定和圆周角定理是解题的关键.23、(1)直角三角形;(2).x 1=-1,x 2=0【解析】试题分析:(1)根据方程有两个相等的实数根得出△=0,即可得出a 2=b 2+c 2,根据勾股定理的逆定理判断即可;(2)根据等边进行得出a=b=c ,代入方程化简,即可求出方程的解.解:(1)△ABC是直角三角形,理由是:∵关于x的一元二次方程(a+c)x2﹣2bx+(a﹣c)=0有两个相等的实数根,∴△=0,即(﹣2b)2﹣4(a+c)(a﹣c)=0,∴a2=b2+c2,∴△ABC是直角三角形;(2)∵△ABC是等边三角形,∴a=b=c,∴方程(a+c)x2﹣2bx+(a﹣c)=0可整理为2ax2﹣2ax=0,∴x2﹣x=0,解得:x1=0,x2=1.考点:根的判别式;等边三角形的性质;勾股定理的逆定理.24、(1)见解析;(2)【解析】(1)连接OC.只要证明AE∥OC即可解决问题;(2)根据角平分线的性质定理可知CE=CF,利用面积法求出CF即可;【详解】(1)证明:连接O C.∵CD是⊙O的切线,∴∠OCD=90°,∵∠AEC=90°,∴∠OCD=∠AEC,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠OAC=∠OCA,∴∠EAC=∠OAC,∴AC平分∠DAE.(2)作CF⊥AB于F.在Rt△OCD中,∵OC=3,OD=5,∴CD=4,∵•OC •CD =•OD •CF ,∴CF =,∵AC 平分∠DAE ,CE ⊥AE ,CF ⊥AD ,∴CE =CF =.【点睛】本题主要考查平行线的判定、角平分线的性质,熟练掌握这些知识点是解答的关键.25、错误,见解析【分析】根据二次函数的性质和小明的做法,可以判断小明的做法是否正确,然后根据二次函数的性质即可解答本题.【详解】解:小明的做法是错误的,正确的做法如下:∵二次函数y =2x 2+4x+1=2(x+1)2+1,∴该函数图象开口向上,该函数的对称轴是直线x =﹣1,当x =﹣1时取得最小值,最小值是1,∵﹣2≤x≤﹣1,∴当x =﹣2时取得最大值,此时y =1,当x =﹣1时取得最小值,最小值是y =1,由上可得,当﹣2≤x≤﹣1时,函数y 的最小值是1,最大值是1.【点睛】本题考查二次函数的性质,关键在于熟记性质.26、(1)2354y x x =-+;(1)横彩条的宽度为3cm ,竖彩条的宽度为1cm . 【分析】(1)由横、竖彩条的宽度比为3:1知横彩条的宽度为32xcm ,根据“三条彩条面积=横彩条面积+1条竖彩条面积﹣横竖彩条重叠矩形的面积”,列出函数关系式化简即可;(1)根据“三条彩条所占面积是图案面积的25”,可列出关于x 的一元二次方程,整理后求解即可.【详解】(1)根据题意可知,横彩条的宽度为32 xcm,∴y=10×32x+1×11•x﹣1×32x•x=﹣3x1+54x,即y与x之间的函数关系式为y=﹣3x1+54x;(1)根据题意,得:﹣3x1+54x=25×10×11,整理,得:x1﹣18x+31=0,解得:x1=1,x1=16(舍),∴32x=3,答:横彩条的宽度为3cm,竖彩条的宽度为1cm.考点:根据实际问题列二次函数关系式;一元二次方程的应用.。
安徽省合肥市滨湖寿春中学2023-2024学年高二(下)期中数学试卷(含答案)

2023-2024学年安徽省合肥市滨湖寿春中学高二(下)期中数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.小明通过某次考试的概率是未通过的5倍,令随机变量X ={1,考试通过0,考试未通过,则P(X =0)=( )A. 13B. 56C. 16D. 232.设f′(x)是函数f(x)的导函数,y =f′(x)的图象如图所示,则y =f(x)的图象最有可能的是( )A. B.C. D.3.已知直线l 经过(−1,0),(0,1)两点,且与曲线y =f(x)切于点A(2,3),则lim △x→0f(2+△x)−f(2)△x的值为( )A. −2B. −1C. 1D. 24.若(ax−1x )6的展开式的常数项为60,则a 的值为( )A. 4B. 4或−4C. 2D. 2或−25.某高中期中考试需要考查九个学科(语文、数学、英语、生物、物理、化学、政治、历史、地理),已知语文考试必须安排在首场,且物理考试与英语考试不能相邻,则这九个学科不同的考试顺序共有( )A. A 88种B. A 22A 77种C. A 66A 27种D. A 66A 28种6.托马斯⋅贝叶斯(Tℎomas Bayes)在研究“逆向概率”的问题中得到了一个公式:P(A i |B)=P(A i )P(B|A i )∑n j =1P (A j )P(B|A j ),这个公式被称为贝叶斯公式(贝叶斯定理),其中∑n j =1P (A j )P(B|A j )称为B 的全概率.假设甲袋中有3个白球和3个红球,乙袋中有2个白球和2个红球.现从甲袋中任取2个球放入乙袋,再从乙袋中任取2个球.已知从乙袋中取出的是2个红球,则从甲袋中取出的也是2个红球的概率为( )A. 513B. 1675C. 38D. 357.若函数f(x)={x−e x +2,x ≤013x 3−4x +a,x >0,仅有一个零点,则实数a 的取值范围是( )A. (−∞,163)B. (163,+∞)C. (−∞,163]D. [163,+∞)8.已知函数f(x),g(x)的定义域均为R ,g′(x)为g(x)的导函数,且f(x)+g′(x)=2,f(x)−g′(4−x)=2,若g(x)为偶函数,则f(2022)+g′(2024)=( )A. 0B. 1C. 2D. 4二、多选题:本题共3小题,共18分。
滨湖寿春中学第七章《一元一次不等式与不等式组》单元测试卷

滨湖寿春中学第七章《一元一次不等式与不等式组》单元测试卷温馨提示:新学期,老师相信你们,你们更要自信,但细心、认真答题同样重要!1.下列不等式中,1x =不是它的解的是---------------------------------( )A .213x +≤-B .213x -≥-C .213x -+≥D .213x --≤ 2.图1是甲、乙、丙三人玩跷跷板的示意图(支点在中点处),则甲的体重的取值范围在数轴上表示正确的是C3.不等式组23x x <-⎧⎨->⎩的解集是-------------------------------------------( )A .3x <-B .2x <-C .2x -3<<-D .无解4.下列四个命题中,正确的个数有--------------------------------------( ) ①若a b >,则+1+1a b >;②若a b >,则11a b ->-;③若a b >,则a b >-2-2;④若a b >,则a b <22;A .1个B .2个C .3个D .4个5.若a 是实数,且x y >,则下列不等式中,正确的是---------------------( )A.ax ay >B. 22a x a y ≤ C. 22a x a y > D. 22a x a y ≥6.若11a a -=-,则 a 的取值范围为----------------------------------( )A .1a ≥B .1a ≤C .1a >D .1a <7.不等式组5x x <⎧⎨<1的解集在数轴上表示,正确的是-------------------------( ))D ()C ()B ()A (A . B. C . D . 8.若x a y a +<+ 且ax ay >,则------------------------------------------( )A .,0x y a <>B .,0x y a <<C .,0x y a >>D .,0x y a ><9.若a 0<<1,则21,,a a a的大小关系是----------------------------------( ) A .21a a a >>B .21a a a >>C .21a a a >>D .21a a a>> 10.若关于x 的不等式组6x x m<⎧⎨>⎩有解,则m 的取值范围是-------------------( )A .6m >B .6m ≥C .6m <D .6m ≤二.填空题:本大题共7小题,每小题3分,共21分。
合肥市寿春中学数学高一上期中阶段测试

一、选择题1.(0分)[ID :11826]设常数a ∈R ,集合A={x|(x ﹣1)(x ﹣a )≥0},B={x|x≥a ﹣1},若A ∪B=R ,则a 的取值范围为( ) A .(﹣∞,2)B .(﹣∞,2]C .(2,+∞)D .[2,+∞)2.(0分)[ID :11821]若集合{}|1,A x x x R =≤∈,{}2|,B y y x x R ==∈,则A B =A .{}|11x x -≤≤B .{}|0x x ≥C .{}|01x x ≤≤D .∅3.(0分)[ID :11818]已知函数f (x )=23,0{log ,0x x x x ≤>那么f 1(())8f 的值为( )A .27B .127C .-27D .-1274.(0分)[ID :11809]不等式()2log 231a x x -+≤-在x ∈R 上恒成立,则实数a 的取值范围是( ) A .[)2,+∞B .(]1,2C .1,12⎡⎫⎪⎢⎣⎭D .10,2⎛⎤ ⎥⎝⎦5.(0分)[ID :11807]如图,点O 为坐标原点,点(1,1)A ,若函数xy a =及log b y x =的图象与线段OA 分别交于点M ,N ,且M ,N 恰好是线段OA 的两个三等分点,则a ,b 满足.A .1a b <<B .1b a <<C .1b a >>D .1a b >>6.(0分)[ID :11798]在ABC ∆中,内角A 、B 、C 所对应的边分别为a 、b 、c ,则“cos cos a A b B =”是“ABC ∆是以A 、B 为底角的等腰三角形”的( ). A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分也非必要条件7.(0分)[ID :11780]设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞, 8.(0分)[ID :11757]设集合{1,2,3},{2,3,4}A B ==,则AB =A .{}123,4,, B .{}123,, C .{}234,, D .{}134,, 9.(0分)[ID :11796]设x ∈R ,若函数f (x )为单调递增函数,且对任意实数x ,都有f (f (x )-e x)=e +1(e 是自然对数的底数),则f (ln1.5)的值等于( ) A .5.5B .4.5C .3.5D .2.510.(0分)[ID :11785]定义在R 上的奇函数()f x 满足()()2f x f x +=-,且当[]0,1x ∈时,()2cos x f x x =-,则下列结论正确的是( )A .()20202019201832f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭B .()20202019201832f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭C .()20192020201823f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭D .()20192020201823f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭11.(0分)[ID :11771]函数2()ln(28)f x x x =--的单调递增区间是 A .(,2)-∞- B .(,1)-∞ C .(1,)+∞D .(4,)+∞12.(0分)[ID :11763]定义在R 上的奇函数()f x 满足()1(2)f x f x +=-,且在()0,1上()3x f x =,则()3log 54f =( )A .32B .23-C .23D .32-13.(0分)[ID :11746]若a >b >0,0<c <1,则 A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b14.(0分)[ID :11735]设a =2535⎛⎫ ⎪⎝⎭,b =3525⎛⎫ ⎪⎝⎭ ,c =2525⎛⎫ ⎪⎝⎭,则a ,b ,c 的大小关系是( ) A .a>c>b B .a>b>c C .c>a>bD .b>c>a15.(0分)[ID :11751]三个数20.420.4,log 0.4,2a b c ===之间的大小关系是( )A .a c b <<B .b a c <<C .a b c <<D .b c a <<二、填空题16.(0分)[ID :11917]下列各式:(1)122[(]--= (2)已知2log 13a〈 ,则23a 〉 . (3)函数2xy =的图象与函数2x y -=-的图象关于原点对称;(4)函数()f x 的定义域是R ,则m 的取值范围是04m <≤;(5)函数2ln()y x x =-+的递增区间为1,2⎛⎤-∞ ⎥⎝⎦.正确的...有________.(把你认为正确的序号全部写上) 17.(0分)[ID :11914]方程组2040x y x +=⎧⎨-=⎩的解组成的集合为_________.18.(0分)[ID :11900]若函数()6,23log ,2a x x f x x x -+≤⎧=⎨+>⎩(0a >且1a ≠)的值域是[)4,+∞,则实数a 的取值范围是__________.19.(0分)[ID :11887]已知函数()2()lg 2f x x ax =-+在区间(2,)+∞上单调递增,则实数a 的取值范围是______.20.(0分)[ID :11862]若幂函数()a f x x 的图象经过点1(3)9,,则2a -=__________.21.(0分)[ID :11844]有15人进家电超市,其中有9人买了电视,有7人买了电脑,两种均买了的有3人,则这两 种都没买的有 人.22.(0分)[ID :11841]某班有36名同学参加数学、物理、化学竞赛小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有__________人.23.(0分)[ID :11840]函数()221,0ln 2,0x x f x x x x x ⎧+-≤=⎨-+>⎩的零点的个数是______. 24.(0分)[ID :11829]若关于 x 的方程2420x x a ---= 在区间 (1, 4) 内有解,则实数 a 的取值范围是_____.25.(0分)[ID :11863]若函数()22xf x b =--有两个零点,则实数b 的取值范围是_____.三、解答题26.(0分)[ID :11981]已知函数()212ax f x x b +=+是奇函数,且()312f =.(1)求实数a ,b 的值;(2)判断函数()f x 在(],1-∞-上的单调性,并用定义加以证明. (3)若[]2,1x ∈--,求函数的值域27.(0分)[ID :11962]已知()42log ,[116]f x x x =+∈,,函数()()()22[]g x f x f x =+.(1)求函数()g x 的定义域;(2)求函数()g x 的最大值及此时x 的值.28.(0分)[ID :11946]已知函数()()2210g x ax ax b a =-++>在区间[]2,3上有最大值4和最小值1,设()()g x f x x=. (1)求,a b 的值; (2)若不等式()220xxf k -⋅≥在区间[]1,1-上恒成立,求实数k 的取值范围.29.(0分)[ID :11939]已知全集U ={1,2,3,4,5,6,7,8},A ={x |x 2-3x +2=0},B ={x |1≤x ≤5,x ∈Z},C ={x |2<x <9,x ∈Z}.求 (1)A ∪(B ∩C );(2)(∁U B )∪(∁U C ).30.(0分)[ID :11930]已知函数()3131-=+x x f x ,若不式()()2210+-<f kx f x 对任意x ∈R 恒成立,则实数k 的取值范围是________.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.B 2.C 3.B 4.C 5.A 6.B 7.D 8.A 9.D10.C11.D12.D13.B14.A15.B二、填空题16.(3)【解析】(1)所以错误;(2)当时恒成立;当时综上或所以错误;(3)函数上任取一点则点落在函数上所以两个函数关于原点对称正确;(4)定义域为当时成立;当时得综上所以错误;(5)定义域为由复合函17.【解析】【分析】解方程组求出结果即可得答案【详解】由解得或代入解得或所以方程组的解组成的集合为故答案为【点睛】该题考查的是有关方程组解集的问题需要注意的问题是解是二维的再者就是需要写成集合的形式属于18.【解析】试题分析:由于函数的值域是故当时满足当时由所以所以所以实数的取值范围考点:对数函数的性质及函数的值域【方法点晴】本题以分段为背景主要考查了对数的图象与性质及函数的值域问题解答时要牢记对数函数19.【解析】【分析】根据复合函数单调性同增异减以及二次函数对称轴列不等式组解不等式组求得实数的取值范围【详解】要使在上递增根据复合函数单调性需二次函数对称轴在的左边并且在时二次函数的函数值为非负数即解得20.【解析】由题意有:则:21.【解析】【分析】【详解】试题分析:两种都买的有人所以两种家电至少买一种有人所以两种都没买的有人或根据条件画出韦恩图:(人)考点:元素与集合的关系22.8【解析】【分析】画出表示参加数学物理化学竞赛小组集合的图结合图形进行分析求解即可【详解】由条件知每名同学至多参加两个小组故不可能出现一名同学同时参加数学物理化学竞赛小组设参加数学物理化学竞赛小组的23.4【解析】【分析】当时令即作和的图象判断交点个数即可当时令可解得零点从而得解【详解】方法一:当时令即作和的图象如图所示显然有两个交点当时令可得或综上函数的零点有4个方法二:当时令可得说明导函数有两个24.-6-2)【解析】【分析】转化成f(x)=与有交点再利用二次函数的图像求解【详解】由题得令f(x)=所以所以故答案为-6-2)【点睛】本题主要考查二次方程的有解问题考查二次函数的图像和性质意在考查学25.【解析】【分析】【详解】函数有两个零点和的图象有两个交点画出和的图象如图要有两个交点那么三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【解析】试题分析:当时,,此时成立,当时,,当时,,即,当时,,当时,恒成立,所以a的取值范围为,故选B.考点:集合的关系2.C解析:C【解析】求出集合B 后可得A B .【详解】因为集合{}|1,{|11}A x x x R x x =≤∈=-≤≤,{}2|,{|0}B y y x x R y y ==∈=≥则A B ={}|01x x ≤≤,选C【点睛】本题考查集合的交,注意集合意义的理解,如(){}|,x y f x x D =∈表示函数的定义域,而(){}|,y y f x x D =∈表示函数的值域,()(){},|,x y y f x x D =∈表示函数的图像.3.B解析:B 【解析】 【分析】利用分段函数先求f (1)8)的值,然后在求出f 1(())8f 的值. 【详解】 f=log 2=log 22-3=-3,f=f (-3)=3-3=.【点睛】本题主要考查分段函数求值以及指数函数、对数函数的基本运算,属基础题.4.C解析:C 【解析】 【分析】由()2223122-+=-+≥x x x 以及题中的条件,根据对数函数的单调性性,对a 讨论求解即可. 【详解】由()2log 231a x x -+≤-可得()21log 23log -+≤a ax x a, 当1a >时,由()2223122-+=-+≥x x x 可知2123-+≤x x a无实数解,故舍去; 当01a <<时,()2212312-+=-+≥x x x a在x ∈R 上恒成立,所以12a ≤,解得112a ≤<. 故选:C 【点睛】本题主要考查对数函数的单调性,涉及到复合函数问题,属于中档题.解析:A 【解析】 【分析】由,M N 恰好是线段OA 的两个三等分点,求得,M N 的坐标,分别代入指数函数和对数函数的解析式,求得,a b 的值,即可求解. 【详解】由题意知(1,1)A ,且,M N 恰好是线段OA 的两个三等分点,所以11,33M ⎛⎫ ⎪⎝⎭,22,33N ⎛⎫ ⎪⎝⎭, 把11,33M ⎛⎫ ⎪⎝⎭代入函数xy a =,即1313a =,解得127a =,把22,33N ⎛⎫ ⎪⎝⎭代入函数log b y x =,即22log 33b =,即得3223b ⎛⎫== ⎪⎝⎭,所以1a b <<. 故选A. 【点睛】本题主要考查了指数函数与对数函数的图象与性质的应用,其中解答熟练应用指数函数和对数函数的解析式求得,a b 的值是解答的关键,着重考查了推理与运算能力,属于基础题.6.B解析:B 【解析】 【分析】化简cos cos a A b B =得到A B =或2A B π+=,再判断充分必要性.【详解】cos cos a A b B =,根据正弦定理得到:sin cos sin cos sin 2sin 2A A B B A B =∴=故22A B A B =∴=或222A B A B ππ=-∴+=,ABC ∆为等腰或者直角三角形.所以“cos cos a A b B =”是“ABC ∆是以A 、B 为底角的等腰三角形”的必要非充分条件 故选B 【点睛】本题考查了必要非充分条件,化简得到A B =或2A B π+=是解题的关键,漏解是容易发生的错误. 7.D解析:D分析:首先根据题中所给的函数解析式,将函数图像画出来,从图中可以发现若有()()12f x f x +<成立,一定会有2021x x x <⎧⎨<+⎩,从而求得结果.详解:将函数()f x 的图像画出来,观察图像可知会有2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是()0-∞,,故选D .点睛:该题考查的是有关通过函数值的大小来推断自变量的大小关系,从而求得相关的参数的值的问题,在求解的过程中,需要利用函数解析式画出函数图像,从而得到要出现函数值的大小,绝对不是常函数,从而确定出自变量的所处的位置,结合函数值的大小,确定出自变量的大小,从而得到其等价的不等式组,从而求得结果.8.A解析:A 【解析】 由题意{1,2,3,4}AB =,故选A.点睛:集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图.9.D解析:D 【解析】 【分析】利用换元法 将函数转化为f (t )=e+1,根据函数的对应关系求出t 的值,即可求出函数f (x )的表达式,即可得到结论 【详解】 设t=f (x )-e x ,则f (x )=e x +t ,则条件等价为f (t )=e+1, 令x=t ,则f (t )=e t +t=e+1, ∵函数f (x )为单调递增函数, ∴t=1, ∴f (x )=e x +1,即f (ln5)=e ln1.5+1=1.5+1=2.5, 故选:D . 【点睛】本题主要考查函数值的计算,利用换元法求出函数的解析式是解决本题的关键.10.C解析:C 【解析】 【分析】根据f (x )是奇函数,以及f (x+2)=f (-x )即可得出f (x+4)=f (x ),即得出f (x )的周期为4,从而可得出f (2018)=f (0),2019122f f ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,20207312f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭然后可根据f (x )在[0,1]上的解析式可判断f (x )在[0,1]上单调递增,从而可得出结果. 【详解】∵f(x )是奇函数;∴f(x+2)=f (-x )=-f (x );∴f(x+4)=-f (x+2)=f (x ); ∴f(x )的周期为4;∴f(2018)=f (2+4×504)=f (2)=f (0),2019122f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,20207 312f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭∵x∈[0,1]时,f (x )=2x -cosx 单调递增;∴f(0)<12f ⎛⎫⎪⎝⎭ <712f ⎛⎫ ⎪⎝⎭ ∴()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,故选C. 【点睛】本题考查奇函数,周期函数的定义,指数函数和余弦函数的单调性,以及增函数的定义,属于中档题.11.D解析:D 【解析】由228x x -->0得:x ∈(−∞,−2)∪(4,+∞), 令t =228x x --,则y =ln t ,∵x ∈(−∞,−2)时,t =228x x --为减函数; x ∈(4,+∞)时,t =228x x --为增函数; y =ln t 为增函数,故函数f (x )=ln(228x x --)的单调递增区间是(4,+∞), 故选D.点睛:形如()()y f g x =的函数为()y g x =,() y f x =的复合函数,() y g x =为内层函数,()y f x =为外层函数. 当内层函数()y g x =单增,外层函数()y f x =单增时,函数()()y f g x =也单增; 当内层函数()y g x =单增,外层函数()y f x =单减时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单增时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单减时,函数()()y f g x =也单增.简称为“同增异减”.12.D解析:D 【解析】 【分析】由题意结合函数的性质整理计算即可求得最终结果. 【详解】由题意可得:()354f log =()3log 23f +, 则()354f log =()31log 21f -+,且()()331log 21log 21f f +=--, 由于()3log 211,0-∈-,故()()31log 2333log 211log 232f f --=--=-=-,据此可得:()()3312log 21log 213f f +=-=-,()354f log =32-.本题选择D 选项. 【点睛】本题主要考查函数的奇偶性,函数的周期性及其应用等知识,意在考查学生的转化能力和计算求解能力.13.B解析:B 【解析】试题分析:对于选项A ,a b 1gc 1gclog c ,log c lg a lg b==,01c <<,10gc ∴<,而0a b >>,所以lg lg a b >,但不能确定lg lg a b 、的正负,所以它们的大小不能确定;对于选项B ,c lg lg log ,log lg lg c a b a b c c ==,lg lg a b >,两边同乘以一个负数1lg c改变不等号方向,所以选项B 正确;对于选项C ,利用cy x =在第一象限内是增函数即可得到c c a b >,所以C 错误;对于选项D ,利用xy c =在R 上为减函数易得a b c c <,所以D 错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.14.A解析:A 【解析】试题分析:∵函数2()5xy =是减函数,∴c b >;又函数25y x =在(0,)+∞上是增函数,故a c >.从而选A考点:函数的单调性.15.B解析:B 【解析】20.4200.41,log 0.40,21<<,01,0,1,a b c b a c ∴<<∴<<,故选B.二、填空题16.(3)【解析】(1)所以错误;(2)当时恒成立;当时综上或所以错误;(3)函数上任取一点则点落在函数上所以两个函数关于原点对称正确;(4)定义域为当时成立;当时得综上所以错误;(5)定义域为由复合函 解析:(3) 【解析】(1)(1122212---⎛⎫⎡⎤== ⎪⎢⎥⎣⎦⎝⎭,所以错误;(2)2log 1log 3aa a <=,当1a >时,恒成立;当01a <<时,023a <<,综上,023a <<或1a >,所以错误; (3)函数2xy =上任取一点(),x y ,则点(),x y --落在函数2x y -=-上,所以两个函数关于原点对称,正确;(4)定义域为R ,当0m =时,成立;当0m >时,240m m ∆=-≤,得04m <≤,综上,04m ≤≤,所以错误;(5)定义域为()0,1,由复合函数的单调性性质可知,所求增区间为10,2⎛⎫ ⎪⎝⎭,所以错误; 所以正确的有(3)。
2017年安徽省合肥市蜀山区中考数学一模试卷(解析版)

2017年安徽省合肥市蜀山区中考数学一模试卷一、选择题(本大题共10小题,每小题4分,共40分)1.﹣的相反数是()A.B.﹣ C.D.﹣2.如图是由5个大小相同的小正方体拼成的几何体,下列说法中,正确的是()A.主视图是轴对称图形B.左视图是轴对称图形C.俯视图是轴对称图形D.三个视图都不是轴对称图形3.总投资约160亿元,线路全长约29.06km的合肥地铁一号线已于2016年12月31日正式运营,这标志着合肥从此进入了地铁时代,将160亿用科学记数法表示为()A.160×108B.16×109 C.1.6×1010D.1.6×10114.如图,直线a∥b,若∠1=50°,∠3=95°,则∠2的度数为()A.35°B.40°C.45°D.55°5.下列运算中,正确的是()A.3x3•2x2=6x6B.(﹣x2y)2=x4y C.(2x2)3=6x6D.x5÷x=2x46.蜀山区三月中旬每天平均空气质量指数(AQI)分别为:118,96,60,82,56,69,86,112,108,94,为了描述这十天空气质量的变化情况,最适合用的统计图是()A.折线统计图B.频数分布直方图C.条形统计图D.扇形统计图7.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为()A.B.C.D.8.随着电子商务的发展,越来越多的人选择网上购物,导致各地商铺出租价格持续走低,某商业街的商铺今年1月份的出租价格为a元/平方米,2月份比1月份下降了5%,若3,4月份的出租价格按相同的百分率x继续下降,则4月份该商业街商铺的出租价格为:()A.(1﹣5%)a(1﹣2x)元B.(1﹣5%)a(1﹣x)2元C.(a﹣5%)(a﹣2)x 元D.a(1﹣5%﹣2x)元9.如图,点E是矩形ABCD的边AD的中点,且BE⊥AC于点F,则下列结论中错误的是()A.AF=CFB.∠DCF=∠DFCC.图中与△AEF相似的三角形共有4个D.tan∠CAD=10.如图,在△ABC中,∠BAC=90°,AB=AC=3,点D在BC上且BD=2CD,E,F 分别在AB,AC上运动且始终保持∠EDF=45°,设BE=x,CF=y,则y与x之间的函数关系用图象表示为:()A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分)11.分解因式:2ab3﹣8ab=.12.在某校“我爱我班”班歌比赛中,有11个班级参加了决赛,各班决赛的最终成绩各不相同,参加了决赛的六班班长想知道自己班级能否获得一等奖(根据比赛规则:最终成绩前5名的班级为一等奖),他不仅要知道自己班级的成绩,还要知道参加决赛的11个班级最终成绩的(从“平均数、众数、中位数、方差”中选择答案)13.A,B两地相距120km.甲、乙两辆汽车同时从A地出发去B地,已知甲车的速度是乙车速度的1.2倍,结果甲车比乙车提前20分钟到达,则甲车的速度是km/h.14.如图,点E,F分别为正方形ABCD的边BC,CD上一点,AC,BD交于点O,且∠EAF=45°,AE,AF分别交对角线BD于点M,N,则有以下结论:①∠AEB=∠AEF=∠ANM;②EF=BE+DF;③△AOM∽△ADF;④S△AEF=2S△AMN以上结论中,正确的是(请把正确结论的序号都填上)三、解答题(本大题共2小题,每小题8分,共16分)15.计算:﹣2sin45°+||﹣()﹣2+()0.16.用配方法解一元二次方程:x2﹣6x+6=0.四、解答题(本大题共2小题,每小题8分,共16分)17.如图,△ABC的三个顶点的坐标分别是A(﹣2,﹣4),B(0,﹣4),C(1,﹣1).(1)在图中画出将△ABC先向右平移3个单位,再向上平移2个单位后得到的△A1B1C1;(2)在图中画出△ABC绕原点O顺时针旋转90°后得到的△A2B2C2;(3)在(2)的条件下,计算点A所经过的路径的长度.18.如图,在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A,如图所示依次作正方形A1B1C1O,正方形A2B2C2C1,…,正方形A n B n C n C n﹣1,使得点A1、A2、A3…A n在直线l上,点C1、C2、C3…C n在y轴正半轴上,请解决下列问题:(1)点A6的坐标是;点B6的坐标是;(2)点A n的坐标是;正方形A n B n C n C n﹣1的面积是.五、解答题(本大题共2小题,每小题10分,共20分)19.如图,某校数学兴趣小组为测量校园主教学楼AB 的高度,由于教学楼底部不能直接到达,故兴趣小组在平地上选择一点C ,用测角器测得主教学楼顶端A 的仰角为30°,再向主教学楼的方向前进24米,到达点E 处(C ,E ,B 三点在同一直线上),又测得主教学楼顶端A 的仰角为60°,已知测角器CD 的高度为1.6米,请计算主教学楼AB 的高度.(≈1.73,结果精确到0.1米)20.合肥市2017年中考的理化生实验操作考试已经顺利结束了,绝大部分同学都取得了满分成绩,某校对九年级20个班级的实验操作考试平均分x 进行了分组统计,结果如下表所示:(1)求a 的值;(2)若用扇形统计图来描述,求第三小组对应的扇形的圆心角度数; (3)把在第二小组内的两个班分别记为:A 1,A 2,在第五小组内的三个班分别记为:B 1,B 2,B 3,从第二小组和第五小组总共5个班级中随机抽取2个班级进行“你对中考实验操作考试的看法”的问卷调查,求第二小组至少有1个班级被选中的概率.六、解答题(满分12分)21.如图,已知一次函数y=ax+b(a,b为常数,a≠0)的图象与x轴,y轴分别交于点A,B,且与反比例函数y=(k为常数,k≠0)的图象在第二象限内交于点C,作CD⊥x轴于D,若OA=OD=OB=3.(1)求一次函数与反比例函数的解析式;(2)观察图象直接写出不等式0<ax+b≤的解集;(3)在y轴上是否存在点P,使得△PBC是以BC为一腰的等腰三角形?如果存在,请直接写出P点的坐标;如果不存在,请简要说明理由.七、解答题(满分12分)22.如图,点C是以AB为直径的⊙O上一点,CD是⊙O切线,D在AB的延长线上,作AE⊥CD于E.(1)求证:AC平分∠BAE;(2)若AC=2CE=6,求⊙O的半径;(3)请探索:线段AD,BD,CD之间有何数量关系?请证明你的结论.八、解答题23.在2016年巴西里约奥运会上,中国女排克服重重困难,凭借顽强的毅力和超强的实力先后战胜了实力同样超强的巴西队,荷兰队和塞尔维亚队,获得了奥运冠军,为祖国和人民争了光.如图,已知女排球场的长度OD为18米,位于球场中线处的球网AB的高度为2.24米,一队员站在点O处发球,排球从点O的正上方2米的C点向正前方飞去,排球的飞行路线是抛物线的一部分,当排球运行至离点O的水平距离OE为6米时,到达最高点F,以O为原点建立如图所示的平面直角坐标系.(1)当排球运行的最大高度为2.8米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)之间的函数关系式.(2)在(1)的条件下,这次所发的球能够过网吗?如果能够过网,是否会出界?请说明理由.(3)喜欢打排球的李明同学经研究后发现,发球要想过网,球运行的最大高度h(米)应满足h>2.32,但是他不知道如何确定h的取值范围,使排球不会出界(排球压线属于没出界),请你帮忙解决并指出使球既能过网又不会出界的h的取值范围.2017年安徽省合肥市蜀山区中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.﹣的相反数是()A.B.﹣ C.D.﹣【考点】相反数.【分析】根据相反数的定义,可以得知负数的相反数为负,绝对值没变,此题得解.【解答】解:﹣(﹣)=,故选A.2.如图是由5个大小相同的小正方体拼成的几何体,下列说法中,正确的是()A.主视图是轴对称图形B.左视图是轴对称图形C.俯视图是轴对称图形D.三个视图都不是轴对称图形【考点】简单组合体的三视图;轴对称图形.【分析】根据从正面看得到的图形是主视图,左边看得到的图形是左视图,从上边看得到的图形是俯视图,再根据轴对称图形的定义可得答案.【解答】解:如图所示:左视图是轴对称图形.故选:B.3.总投资约160亿元,线路全长约29.06km的合肥地铁一号线已于2016年12月31日正式运营,这标志着合肥从此进入了地铁时代,将160亿用科学记数法表示为()A.160×108B.16×109 C.1.6×1010D.1.6×1011【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将160亿用科学记数法表示为:1.6×1010.故选:C.4.如图,直线a∥b,若∠1=50°,∠3=95°,则∠2的度数为()A.35°B.40°C.45°D.55°【考点】平行线的性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,得到∠4的度数,再根据平行线的性质,即可得出∠2的度数.【解答】解:根据三角形外角性质,可得∠3=∠1+∠4,∴∠4=∠3﹣∠1=95°﹣50°=45°,∵a∥b,∴∠2=∠4=45°.故选:C.5.下列运算中,正确的是()A.3x3•2x2=6x6B.(﹣x2y)2=x4y C.(2x2)3=6x6D.x5÷x=2x4【考点】整式的除法;幂的乘方与积的乘方;单项式乘单项式.【分析】根据整式的除法,幂的乘方与积的乘方,以及单项式乘单项式的方法,逐项判定即可.【解答】解:A、3x3•2x2=6x5,故选项错误;B、(﹣x2y)2=x4y2,故选项错误;C、(2x2)3=8x6,故选项错误;D、x5÷x=2x4,故选项正确.故选:D.6.蜀山区三月中旬每天平均空气质量指数(AQI)分别为:118,96,60,82,56,69,86,112,108,94,为了描述这十天空气质量的变化情况,最适合用的统计图是()A.折线统计图B.频数分布直方图C.条形统计图D.扇形统计图【考点】统计图的选择.【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.【解答】解:这七天空气质量变化情况最适合用折线统计图,故选:A.7.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S △DOE :S △AOC 的值为( )A .B .C .D .【考点】相似三角形的判定与性质.【分析】证明BE :EC=1:3,进而证明BE :BC=1:4;证明△DOE ∽△AOC ,得到=,借助相似三角形的性质即可解决问题.【解答】解:∵S △BDE :S △CDE =1:3,∴BE :EC=1:3;∴BE :BC=1:4;∵DE ∥AC ,∴△DOE ∽△AOC ,∴=,∴S △DOE :S △AOC ==, 故选D .8.随着电子商务的发展,越来越多的人选择网上购物,导致各地商铺出租价格持续走低,某商业街的商铺今年1月份的出租价格为a 元/平方米,2月份比1月份下降了5%,若3,4月份的出租价格按相同的百分率x 继续下降,则4月份该商业街商铺的出租价格为:( )A .(1﹣5%)a (1﹣2x )元B .(1﹣5%)a (1﹣x )2元C .(a ﹣5%)(a ﹣2)x 元D .a (1﹣5%﹣2x )元【考点】列代数式.【分析】根据降价后的价格=降价前的价格(1﹣降价的百分率),二月份的价格为a (1﹣5%),3,4每次降价的百分率都为x ,后经过两次降价,则为(1﹣5%)a(1﹣x)2.【解答】解:由题意得,4月份该商业街商铺的出租价格为(1﹣5%)a(1﹣x)2元故选B.9.如图,点E是矩形ABCD的边AD的中点,且BE⊥AC于点F,则下列结论中错误的是()A.AF=CFB.∠DCF=∠DFCC.图中与△AEF相似的三角形共有4个D.tan∠CAD=【考点】相似三角形的判定;矩形的性质;解直角三角形.【分析】由AE=AD=BC,又AD∥BC,所以==,故A正确,不符合题意;过D作DM∥BE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故B正确,不符合题意;根据相似三角形的判定即可求解,故C正确,不符合题意;由△BAE∽△ADC,得到CD与AD的大小关系,根据正切函数可求tan∠CAD的值,故D错误,符合题意.【解答】解:A、∵AD∥BC,∴△AEF∽△CBF,∴=,∵AE=AD=BC,∴=,故A正确,不符合题意;B、过D作DM∥BE交AC于N,∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DF=DC,∴∠DCF=∠DFC,故B正确,不符合题意;C、图中与△AEF相似的三角形有△ACD,△BAF,△CBF,△CAB,共有4个,故C正确,不符合题意;D、设AD=a,AB=b由△BAE∽△ADC,有=.∵tan∠CAD===,故D错误,符合题意.故选D.10.如图,在△ABC中,∠BAC=90°,AB=AC=3,点D在BC上且BD=2CD,E,F 分别在AB,AC上运动且始终保持∠EDF=45°,设BE=x,CF=y,则y与x之间的函数关系用图象表示为:()A.B.C.D.【考点】动点问题的函数图象.【分析】根据等边对等角得出∠B=∠C,再证明∠BED=∠CDF=135°﹣∠BDE,那么△BED∽△CDF,根据相似三角形对应边成比例求出y与x的函数关系式,结合函数值的取值范围即可求解.【解答】解:∵∠BAC=90°,AB=AC=3,∴∠B=∠C=45°,BC=3.∴∠BDE+∠BED=180°﹣∠B=135°,∵∠EDF=45°,∴∠BDE+∠CDF=180°﹣∠EDF=135°,∴∠BED=∠CDF,∴△BED∽△CDF,∴=.∵BD=2CD,∴BD=BC=2,CD=BC=,∴=,∴y=,故B、C错误;∵E,F分别在AB,AC上运动,∴0<x≤3,0<y≤3,故A错误.故选D.二、填空题(本大题共4小题,每小题5分,共20分)11.分解因式:2ab3﹣8ab=2ab(b+2)(b﹣2).【考点】提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=2ab(b2﹣4)=2ab(b+2)(b﹣2),故答案为:2ab(b+2)(b﹣2)12.在某校“我爱我班”班歌比赛中,有11个班级参加了决赛,各班决赛的最终成绩各不相同,参加了决赛的六班班长想知道自己班级能否获得一等奖(根据比赛规则:最终成绩前5名的班级为一等奖),他不仅要知道自己班级的成绩,还要知道参加决赛的11个班级最终成绩的中位数(从“平均数、众数、中位数、方差”中选择答案)【考点】统计量的选择.【分析】根据题意和平均数、众数、中位数、方差的含义可以解答本题.【解答】解:由题意可得,11个班级中取前5名,故只要知道参加决赛的11个班级最终成绩的中位数即可,故答案为:中位数.13.A,B两地相距120km.甲、乙两辆汽车同时从A地出发去B地,已知甲车的速度是乙车速度的1.2倍,结果甲车比乙车提前20分钟到达,则甲车的速度是72km/h.【考点】分式方程的应用.【分析】根据题意可以列出相应的分式方程,从而可以解答本题,注意分式方程要检验.【解答】解:设乙车的速度为xkm/h,,解得,x=60,经检验x=60是原分式方程的根,∴1.2x=1.2×60=72,故答案为:72.14.如图,点E,F分别为正方形ABCD的边BC,CD上一点,AC,BD交于点O,且∠EAF=45°,AE,AF分别交对角线BD于点M,N,则有以下结论:①∠AEB==2S△AMN∠AEF=∠ANM;②EF=BE+DF;③△AOM∽△ADF;④S△AEF以上结论中,正确的是①②③④(请把正确结论的序号都填上)【考点】相似三角形的判定与性质;正方形的性质.【分析】如图,把△ADF绕点A顺时针旋转90°得到△ABH,由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF,由已知条件得到∠EAH=∠EAF=45°,根据全等三角形的性质得到EH=EF,∴∠AEB=∠AEF,求得BE+BH=BE+DF=EF,故②正确;根据三角形的外角的性质得到∠ANM=∠AEB,于是得到∠AEB=∠AEF=∠ANM;故①正确;根据相似三角形的判定定理得到△OAM∽△DAF,故③正确;由△AMN∽△BME,得到,推出△AMB∽△NME,根据相似三角形的性质得到∠AEN=∠ABD=45°,推出△AEN是等腰直角三角形,根据勾股定理得到AE=AN,=2S△AMN故④正确.根据相似三角形的性质得到EF=MN,于是得到S△AEF【解答】解:如图,把△ADF绕点A顺时针旋转90°得到△ABH,由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF,∵∠EAF=45°,∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=90°﹣∠EAF=45°,∴∠EAH=∠EAF=45°,在△AEF和△AEH中,,∴△AEF≌△AEH(SAS),∴EH=EF,∴∠AEB=∠AEF,∴BE+BH=BE+DF=EF,故②正确;∵∠ANM=∠ADB+∠DAN=45°+∠DAN,∠AEB=90°﹣∠BAE=90°﹣(∠HAE﹣∠BAH)=90°﹣(45°﹣∠BAH)=45°+∠BAH,∴∠ANM=∠AEB,∴∠AEB=∠AEF=∠ANM;故①正确;∵AC⊥BD,∴∠AOM=∠ADF=90°,∵∠MAO=45°﹣∠NAO,∠DAF=45°﹣∠NAO,∴△OAM∽△DAF,故③正确;连接NE,∵∠MAN=∠MBE=45°,∠AMN=∠BME,∴△AMN∽△BME,∴,∴,∵∠AMB=∠EMN,∴△AMB∽△NME,∴∠AEN=∠ABD=45°,∵∠EAN=45°,∴∠NAE=∠NEA=45°,∴△AEN是等腰直角三角形,∴AE=AN,∵△AMN∽△BME,△AFE∽△BME,∴△AMN∽△AFE,∴=,∴EF=MN,∵AB=AO,=S△AHE=HE•AB=EF•AB=MN AO=2×MN•AO=2S△AMN.故④正∴S△AEF确.故答案为:①②③④.三、解答题(本大题共2小题,每小题8分,共16分)15.计算:﹣2sin45°+||﹣()﹣2+()0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用二次根式性质,特殊角的三角函数值,绝对值的代数意义,以及零指数幂、负整数指数幂法则计算即可得到结果.【解答】解:原式=2﹣2×+2﹣﹣4+1=﹣1.16.用配方法解一元二次方程:x2﹣6x+6=0.【考点】解一元二次方程﹣配方法.【分析】移项后两边配上一次项系数一半的平方,写成完全平方式,再开方即可得.【解答】解:∵x2﹣6x=﹣6,∴x2﹣6x+9=﹣6+9,即(x﹣3)2=3,则x﹣3=±,∴x=3.四、解答题(本大题共2小题,每小题8分,共16分)17.如图,△ABC的三个顶点的坐标分别是A(﹣2,﹣4),B(0,﹣4),C(1,﹣1).(1)在图中画出将△ABC先向右平移3个单位,再向上平移2个单位后得到的△A1B1C1;(2)在图中画出△ABC绕原点O顺时针旋转90°后得到的△A2B2C2;(3)在(2)的条件下,计算点A所经过的路径的长度.【考点】作图﹣旋转变换;轨迹;作图﹣平移变换.【分析】(1)利用点平移的坐标规律写出点A1、B1、C1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出点A、B、C的对应点A2、B2、C2,从而得到△A2B2C2;(3)先计算出OA,然后利用弧长公式计算.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)OA==2,所以点A所经过的路径的长度==π.18.如图,在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A,如图所示依次作正方形A1B1C1O,正方形A2B2C2C1,…,正方形A n B n C n C n﹣1,使得点A1、A2、A3…A n在直线l上,点C1、C2、C3…C n在y轴正半轴上,请解决下列问题:(1)点A6的坐标是A6(32,31);点B6的坐标是(32,63);(2)点A n的坐标是(2n﹣1,2n﹣1);正方形A n B n C n C n﹣1的面积是22n﹣2.【考点】一次函数图象上点的坐标特征;正方形的性质.【分析】根据一次函数图象上点的坐标特征找出A1、A2、A3、A4的坐标,结合图形即可得知点B n是线段C n A n+1的中点,由此即可得出点B n的坐标,然后根据正方形的面积公式即可得到结论.【解答】解:(1)观察,发现:A1(1,0),A2(2,1),A3(4,3),A4(8,7),A5(16,15),A6(32,31),…,∴A n(2n﹣1,2n﹣1﹣1)(n为正整数).观察图形可知:点B n是线段C n A n+1的中点,∴点B n的坐标是(2n﹣1,2n﹣1),∴B6的坐标是(32,63);故答案为:(32,31),(32,63);(2)由(1)得A n(2n﹣1,2n﹣1﹣1)(n为正整数),∴正方形A n B n C n C n﹣1的面积是(2n﹣1)2=22n﹣2,故答案为:(2n﹣1,2n﹣1)(n为正整数).五、解答题(本大题共2小题,每小题10分,共20分)19.如图,某校数学兴趣小组为测量校园主教学楼AB的高度,由于教学楼底部不能直接到达,故兴趣小组在平地上选择一点C,用测角器测得主教学楼顶端A 的仰角为30°,再向主教学楼的方向前进24米,到达点E处(C,E,B三点在同一直线上),又测得主教学楼顶端A的仰角为60°,已知测角器CD的高度为1.6米,请计算主教学楼AB的高度.(≈1.73,结果精确到0.1米)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】利用60°的正切值可表示出FG 长,进而利用∠ACG 的正切函数求AG 长,加上1.6m 即为主教学楼的高度AB .【解答】解:在Rt △AFG 中,tan ∠AFG=, ∴FG==,在Rt △ACG 中,tan ∠ACG=, ∴CG==AG .又∵CG ﹣FG=24m ,即AG ﹣=24m ,∴AG=12m ,∴AB=12+1.6≈22.4m .20.合肥市2017年中考的理化生实验操作考试已经顺利结束了,绝大部分同学都取得了满分成绩,某校对九年级20个班级的实验操作考试平均分x 进行了分组统计,结果如下表所示:(1)求a的值;(2)若用扇形统计图来描述,求第三小组对应的扇形的圆心角度数;(3)把在第二小组内的两个班分别记为:A1,A2,在第五小组内的三个班分别记为:B1,B2,B3,从第二小组和第五小组总共5个班级中随机抽取2个班级进行“你对中考实验操作考试的看法”的问卷调查,求第二小组至少有1个班级被选中的概率.【考点】列表法与树状图法;频数(率)分布表;扇形统计图.【分析】(1)由总班数20﹣1﹣2﹣8﹣3即可求出a的值;(2)由(1)求出的a值,即可求出第三小组对应的扇形的圆心角度数;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与第二小组至少有1个班级被选中的情况,再利用概率公式即可求得答案.【解答】解:(1)a=20﹣1﹣2﹣8﹣3=6;(2)第三小组对应的扇形的圆心角度数=×360°=108°;(3)画树状图得:由树状图可知共有20种可能情况,其中第二小组至少有1个班级被选中的情况数有14种,所以第二小组至少有1个班级被选中的概率==.六、解答题(满分12分)21.如图,已知一次函数y=ax+b(a,b为常数,a≠0)的图象与x轴,y轴分别交于点A,B,且与反比例函数y=(k为常数,k≠0)的图象在第二象限内交于点C,作CD⊥x轴于D,若OA=OD=OB=3.(1)求一次函数与反比例函数的解析式;(2)观察图象直接写出不等式0<ax+b≤的解集;(3)在y轴上是否存在点P,使得△PBC是以BC为一腰的等腰三角形?如果存在,请直接写出P点的坐标;如果不存在,请简要说明理由.【考点】反比例函数综合题.【分析】(1)由平行线分线段成比例可求得CD的长,则可求得A、B、C、的坐标,再利用待定系数法可求得函数解析式;(2)由题意可知所求不等式的解集即为直线AC在x轴上方且在反比例函数图象下方的图象所对应的自变量的取值范围,结合函数图象可求得答案;(3)由B、C的坐标可求得BC的长,当BC=BP时,则可求得P点坐标,当BC=PC 时,可知点C在线段BP的垂直平分线上,则可求得BP的中点坐标,可求得P 点坐标.【解答】解:(1)∵CD⊥OA,∴DC∥OB,∴===,∴CD=2OB=8,∵OA=OD=OB=3,∴A(3,0),B(0,4),C(﹣3,8),把A、B两点的坐标分别代入y=ax+b可得,解得,∴一次函数解析式为y=﹣x+4,∵反比例函数y=的图象经过点C,∴k=﹣24,∴反比例函数的解析式为y=﹣;(2)由题意可知所求不等式的解集即为直线AC在x轴上方且在反比例函数图象下方的图象所对应的自变量的取值范围,即线段AC(包含A点,不包含C点)所对应的自变量x的取值范围,∵C(﹣3,8),∴0<﹣x+4≤﹣的解集为﹣3≤x<0;(3)∵B(0,4),C(﹣3,8),∴BC=5,∵△PBC是以BC为一腰的等腰三角形,∴有BC=BP或BC=PC两种情况,①当BC=BP时,即BP=5,∴OP=BP+OB=4+5=9,或OP=BP﹣PB=5﹣4=1,∴P点坐标为(0,9)或(0,﹣1);②当BC=PC时,则点C在线段BP的垂直平分线上,∴线段BP的中点坐标为(0,8),∴P点坐标为(0,12);综上可知存在满足条件的点P,其坐标为(0,﹣1)或(0,9)或(0,12).七、解答题(满分12分)22.如图,点C是以AB为直径的⊙O上一点,CD是⊙O切线,D在AB的延长线上,作AE⊥CD于E.(1)求证:AC 平分∠BAE ;(2)若AC=2CE=6,求⊙O 的半径;(3)请探索:线段AD ,BD ,CD 之间有何数量关系?请证明你的结论.【考点】切线的性质.【分析】(1)连接OC ,由CD 是⊙O 切线,得到OC ⊥CD ,根据平行线的性质得到∠EAC=∠ACO ,有等腰三角形的性质得到∠CAO=∠ACO ,于是得到结论;(2)连接BC ,由三角函数的定义得到sin ∠CAE==,得到∠CAE=30°,于是得到∠CAB=∠CAE=30°,由AB 是⊙O 的直径,得到∠ACB=90°,解直角三角形即可得到结论;(3)根据余角的性质得到∠DCB=∠ACO 根据相似三角形的性质得到结论.【解答】(1)证明:连接OC ,∵CD 是⊙O 切线,∴OC ⊥CD ,∵AE ⊥CD ,∴OC ∥AE ,∴∠EAC=∠ACO ,∵OA=OC ,∴∠CAO=∠ACO ,∴∠EAC=∠A=CAO ,即AC 平分∠BAE ;(2)解:连接BC ,∵AE ⊥CE ,AC=2CE=6,∴sin∠CAE==,∴∠CAE=30°,∴∠CAB=∠CAE=30°,∵AB是⊙O的直径,∴∠ACB=90°,∴cos∠CAB==,∴AB=4,∴⊙O的半径是2;(3)CD2=BD•AD,证明:∵∠DCB+∠BCO=90°,∠ACO+∠BCO=90°,∴∠DCB=∠ACO,∴∠DCB=∠ACO=∠CAD,∵∠D=∠D,∴△BCD∽△CAD,∴,即CD2=BD•AD.八、解答题23.在2016年巴西里约奥运会上,中国女排克服重重困难,凭借顽强的毅力和超强的实力先后战胜了实力同样超强的巴西队,荷兰队和塞尔维亚队,获得了奥运冠军,为祖国和人民争了光.如图,已知女排球场的长度OD为18米,位于球场中线处的球网AB的高度为2.24米,一队员站在点O处发球,排球从点O的正上方2米的C点向正前方飞去,排球的飞行路线是抛物线的一部分,当排球运行至离点O的水平距离OE为6米时,到达最高点F,以O为原点建立如图所示的平面直角坐标系.(1)当排球运行的最大高度为2.8米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)之间的函数关系式.(2)在(1)的条件下,这次所发的球能够过网吗?如果能够过网,是否会出界?请说明理由.(3)喜欢打排球的李明同学经研究后发现,发球要想过网,球运行的最大高度h(米)应满足h>2.32,但是他不知道如何确定h的取值范围,使排球不会出界(排球压线属于没出界),请你帮忙解决并指出使球既能过网又不会出界的h的取值范围.【考点】二次函数的应用.【分析】(1)利用抛物线的顶点F的坐标为(6,2.8),将点(0,2)代入解析式求出即可;(2)利用当x=9时,y=﹣(x﹣6)2+2.8=2.6,当y=0时,﹣(x﹣6)2+2.8=﹣0.4,分别得出即可;(3)设抛物线解析式为y=a(x﹣6)2+h,由点C(0,2)得解析式为y=(x ﹣6)2+h,再依据x=18时y≤0即可得h的范围.【解答】解:(1)由题意可得抛物线的顶点F的坐标为(6,2.8),设抛物线的解析式为y=a(x﹣6)2+2.8,将点C(0,2)代入,得:36a+2.8=2,解得:a=﹣,∴y=﹣(x﹣6)2+2.8;(2)当x=9时,y=﹣(9﹣6)2+2.8=2.6>2.24,当x=18时,y=﹣(18﹣6)2+2.8=﹣0.4<0,∴这次发球可以过网且不出边界;(3)设抛物线解析式为y=a(x﹣6)2+h,将点C(0,2)代入,得:36a+h=2,即a=,∴此时抛物线解析式为y=(x﹣6)2+h,根据题意,得: +h≤0,解得:h≥,又∵h>2.32,∴h≥答:球既能过网又不会出界的h的取值范围是h≥.2017年4月21日。
安徽省合肥市寿春中学2019-2020学年第二学期九年级一模数学试卷(无答案)

DCBA 合肥市寿春中学2019~2020学年九年级第二学期一模数学试卷本试卷共8大题,计23小题,满分150分,考试时间120分钟一、选择题:(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题意的,请在答题卷上将正确答案的字母代号涂黑) 1、2,0,-2,-3这四个数中最大的是( ) A. 2 B. 0 C. -2 D. -3 2、下列运算正确的是( ) A. a 6÷ a 3= a 2B. 5a 2 -3a 2 = 2aC. (a 3)3=a 9D. (a-b)2 = a 2-b 23、2020年初一场新冠肺炎病毒席卷华夏大地,疫情发生以来,安徽省财政厅迅速组织安排救援基金。
据悉,安徽省第一批财政安排疫情防控基金高达58. 6亿元,重点支持定点医院防控救治、 防控设备和物资保障、基层防疫能力提升。
其中58. 6亿用科学记数法表示为( ) A. 58.6×108B. 5.86×108C. 5.86×l09D. 5.86×10104、下列立体图形中,俯视图与主视图一定不同的是( ) 5、将多项式x 2y-4xy+4y因式分解正确的是( )A. y(x 2-4x + 4) B. y(x-2)2C. y(X +2)2D.xy(X -4) + 4Y6、为了建设“书香校园”,我校七年级的同学积极捐书,下表统计了七(1)班40名学生的捐书情况;关于以上“捐书(本)( )A.平均数为6 B.中位数为5 C.众数为7 D.方差为B0.7757、受疫情影响某旅游景区今年第一季度的游客数量比去年第四季度下降20%。
当地政府果断采取调控政策,若该旅游景区计划在今年第二、三季度游客人数持续增长,且计划第三季度游客人数比去年第四季度增长7.8%,设第二、三季度的平均增长率为x,下列方程正确的是()A.(1-20%)(1+ X)2 =1 + 7.8%B. (l-20%)(l + 2x) = l + 7.8%C. (1+ X)2=1-20%+ 7.8%D. l+2x = l-20% + 7.8%8.如图1,在平行四边形ABCD中,M、N是对角线BD上两点,BM=DN,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件可以是( )A.OM=1/2ACB.M为OB的中点C.AC⊥BDD.∠DA N=∠BCM9.如图2,点P在第三象限且位于反比例函数y =k/x上,连接0P,并作0P的中垂线交x轴、y轴分别于点M、N,连接NP。
合肥市寿春中学2017年九年级(上)开学考
参考答案Leabharlann 一、选择题12
3
4
5
6
7
8
9
10
A
C
D
D
D
B
D
B
A
D
10. 【解析】 ADE 25 ,得 AEG 67.5 ,又 EFG 45 , FGE 67.5 ,则 AE AG ,①正确. 由 AEG GEF 67.5 得 BEF EBF 45 ,则 BE 2EF 2 AE ,故②正确.由折叠性质可知,为 菱形,③正确.由③知, OG : OF 1: 2 ,又 EFB 90 ,则 EF : BE GF : BE 1: 2 ,故 OG : GE = 1: 2 ,④正确.故 D 项正确. 二、填空题
1
A. 1 个
B. 2 个
C. 3 个
D. 4 个
第 10 题图
二、填空题(每小题 5 分,共 4 题,共 20 分)
11. 若 x 5 不是二次根式,则 x 的取值范围是
.
12. 在 RtABC 中, C 90 , A 30 , A 的对边 a 1 ,则 RtABC 的面积是__________.
分别是 S1,S2 ,则 S1,S2 的大小关系是( )
A. S1 S2
B. S1 S2
C. S1 S2
D. 3S1 2S2
9. 如图:每个小正方形的边长均为 a ,连接小正方形的三个顶点得 ABC ,则 AB 边上的高是( )
A. 3 5 a 5
B. 3 5 a 10
C. 3 2 a 2
重复利用率为 84%
5
23. 【解析】 (1)三角形的一边与平行四边形的一边完全重合,并且三角形的这条边所对的角的顶点落在
安徽省合肥滨湖寿春中学2019-2020学年九年级上数学期中试卷
合肥滨湖寿春中学2019-2020九(上)期中数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.抛物线()21y 312x =--+的顶点坐标为( ) A.()3,1 B.()3,1- C.()1,3 D.()1,3-2.若反比例函数k y x=经过点()2,3-,则k 的值为( ) A.6 B.-6 C.32 D.32- 3. 将二次函数,先向上平移3个单位,再向右平移2个单位后得到新的抛物线的解析式为( )A.()2322y x =-++ B ()2322y x =--- C.()2324y x =--- D.()2324y x =-+- 4.下列四个函数中,y 随x 增大而减小的是( ) A.3x y = B.2y x= C.2y x = D.21y x =-- 5.2019年10月1日是中华人民共和国成立70周年的生日,党中央进行了盛大的阅兵表演。
据悉,为了体现美观,特制了天安门广场飘扬的国旗,长大约为5米,根据你所学习过的知识,则过期的宽大概为( )A.2.5米B.2.8米C.3.1米D.3.4米6.如图,小正方形的边长均为1,则下列图形中的三角形(阴影部分)与相似的是( ) ABCA. B.C.D. 7.使用家用燃气灶烧开同一壶水所需的燃气量y (单位:3m )与旋钮的旋转角度x (单位:度)()090x ︒<≤︒近似满足函数关系()20y ax bx c a =++≠.如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x 与燃气量y 的三组数据.根据上述函数模型和数据,颗推断出此燃气灶烧开一壶水最节省燃气的0旋钮角度约为( )A.18︒B.36︒C.41︒D.58︒8.如图,一次函数1y x =与二次函数22y ax bx c =++图象相交于P 、Q 两点,则下列说法正确的是( )A.()20,140abc b ac <-->B.()20,140abc b ac <--< C.()20,140abc b ac >--< D.()20,140abc b ac >--> 9.如图,在Rt ABC 中,90,3,4,C AC BC ∠=︒== ,点D 、E 分别在C A 、C B 的延长线上.,且DE AB ,F 为AB 中点,连接EF ,当EF 为DEC ∠的角平分线DE 长为( )10. 若x,y,z 为实数,且满足3x z y +=+和259x y z +=-,则代数式2223x y z +-的最小值为( )A. -36B.-35C.0D.111.如图,ADE 的定点E 在ABC 的边BC 上,且D B ∠=∠,要判断AEDACB ,需要添加一个条件,这个条件是________。
合肥市寿春中学 2017 -2018年八年级(下)期末数学试卷
数学试题第1页(共4页)数学试题第2页(共4页)合肥市寿春中学2017-2018年八年级(下)期末数学试卷(时间100min ;满分100分)一、选择题(每小题3分,共30分)1.下列二次根式中属于最简二次根式的是()A.14 B.1 C.18D.a42.已知一个多边形的内角和等于720°,那么它的边数为()A.8B.6C.5D.43.下列一元二次方程中,没有实数根的是()A.x 2=2x+1 B.x 2+x=0 C.x 2+3=x D.3x-x 2+5=14.估计132+的值位于那两个整数之间()A.4和5之间B.5和6之间C.6和7之间D.7和8之间5.下列各数中,以a,b,c 为边的三角形是直角三角形的是()A.a=3,b=5,c=6B.a=2,b=3,c=5C.a=12,b15,c=20D.a=1.5,b=2.5,c=3.56.已知四边形ABCD 是平行四边形,下列结论中不正确的是()A.当AB=BC 时,它是菱形 B.当AC⊥BD 时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD 时,它是正方形7.如图,□ABCD 中,AB=3,BC=5,AC 的垂直平分线交AD 于E,则△CDE 的周长的()A.6B.8C.9D.108.今年的6月18日是父亲节,八(1)班某活动小组10名同学将自己在周末陪伴父亲的时间整理如下表所示,关于“陪伴时间”的这组数据,以下说法错误的是()陪伴时间(小时)3456人数2341A.平均数是4.4B.众数是4C.中位数是4.5D.方差是0.849.在菱形ABCD 中,AB=4,∠BAD=120°,点E、F 分别在菱形的边BC、CD 上运动,且△AEF 为正三角形,则以下结论错误的为()A.BE=CFB.△AED 最小值是2C.S 菱形ABCD =316 D.保持不变四边形AECF S 10.如图,在Rt△ABC 中,∠BAC=90°,AB=8,AC=3,两顶点A、B 分别在平面直角坐标系的y 轴,x 轴的正半轴上滑动,点C 在第一象限内,连接OC ,则OC 的长的最大值为()A.8B.7C.9D.11二、填空题(每小题3分,共15分)11.要使二次根式1x +有意义,则x 的取值范围为;12.若x =-2是关于x 的一元二次方程x 2+mx+n=0的根,则4m -2n=;13.如图,在△ABC 中,点D,E 分别是AB,BC 边的中点,若△BDE 的周长是6,则△ABC 的周长是;14.如图,矩形ABCD 中,AD=3,将纸片折叠,使顶点A 与CD 边上的点E 重合,折痕FG 分别与AD,AB 交于点F,G ,若DE =3,则EF 的长为;15.如图,已知AE、BD 分别是锐角三角形ABC 的BC、AC 边上的高,F 是DE 的中点,G 是AB 的中点,连接GF ,若AB=a,DE=b ,有以下结论:①GF⊥DE ;②四边形BGFE 可能为平行四边形;③若a=10,b=6则GF=4;④若∠C=60°,则b3a =以上结论正确的有(填上所有只确定序号)三、解答题(共55分)16.(5分)27-3161+17.(5分)1x x 2x 2+=+………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○………………18.(7分)如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E.求证:DE=CD.19.(8分)为了提倡环保出行,低碳出行,2017年1月4日“ofo共享单车”宣布进驻合肥,今年3月份,合肥市投资5.5亿用于购置“小黄车”“小绿车”“小橙车”,一经推出得到了广大市民的高度认可,市政府为了更好地服务市民,连续两个月扩大投入,据悉,5月份政府再次投入了7.92亿购置单车,如今这些单车在市区随处可见,市民极大享受了出行的便捷,试求出4月份和5月份两个月投入资金的平均增长率。
安徽省合肥市寿春中学2022年中考一模数学试题(含答案与解析)
故选:D.
【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
4.下列几何体中主视图为三角形的是()
A. B. C. D.
【4题答案】
5.不等式 x+1>2的解集是()
A.x>1B.x>2C.x> D.x>-
【5题答案】
【答案】B
【解析】
【分析】按照解一元一次不等式的步骤,依次移项、合并同类项、系数化为1即可求解.
【详解】解:移项得: >2-1,
合并同类项得: >1,
系数化为1得:x>2,
故选:B.
【点睛】本题考查解一元一次不等式.熟记不等式 性质是解题关键.
18.将黑色圆点按如图所示的规律进行排列,图中黑色圆点的个数依次为:1、3、6、10.…….按照以上规律,解决下列问题:
(1)第⑤个图中有_____个黑色圆点;第⑩个图中有______个黑色圆点;
(2)第_______个图中有210个黑色圆点.
20.我国北斗导航装备的不断更新,极大方便了人们的出行,光明中学组织学生利用导航到“金牛山”进行研学活动,到达A地时,发现C地恰好在A地正北方向.导航显示路线应沿北偏东60°方向走到B地,再沿北偏西37°方向走一段距离才能到达C地,若B、C两地的距离为10千米,求A、C两地的直线距离.(精确到0.1千米).(参考数据sin53°≈0.80,cos53°≈0.60, ≈1.73)
10.在RtΔABC中,∠ACB=90°,∠A=30°,AB=12,点D为线段AB上一点,且BD=5AD,点E是线段AC上的动点,DE⊥DF交BC所在直线于点F,连接EF,则EF的最小值()
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 / 1 2017年安徽省合肥市滨湖区寿春中学中考数学一模试卷 一、选择题(每小题4分,共40分) 1.(4分)在0、﹣3、1、4这四个数中,最小的数是( ) A.0 B.﹣3 C.1 D.4 2.(4分)在2017﹣2019年三年建设计划,合肥市大建设涉及八大类工程,安排项目总计2399个,项目总投资4626亿元,用科学记数法表示“4626亿”是( ) A.4626×108 B.4626×109 C.4.626×1010 D.4.626×1011 3.(4分)下列计算正确的是( ) A.a3﹣a2 B.(ab3)2=a2b5 C.3a2•a﹣1=3a D.a6÷a2=a3 4.(4分)如图,已知a∥b,直角三角板的直角顶点在直线b上,若∠1=60°,则∠2等于( )
A.30° B.40° C.50° D.60° 5.(4分)如图所示的几何体的俯视图是( )
A. B. C. D. 6.(4分)不等式组的解集在数轴上表示正确的是( )
A. B. C. D. 7.(4分)2013年安庆市体育考试跳绳项目为学生选考项目,下表是某班模拟 1 / 1
考试时10名同学的测试成绩(单位:个/分钟),则关于这10名同学每分钟跳绳的测试成绩,下列说法错误的是( ) 成绩(个/分钟) 14 77 180
人数 1 1 1 2 3 2 A.众数是177 B.平均数是170 C.中位数是173.5 D.方差是135 8.(4分)如图,AB、AC是⊙O的两条弦,∠BAC=25°,过点C的切线与OB的延长线交于点D,则∠D的度数为( )
A.25° B.30° C.35° D.40° 9.(4分)在一张为10cm,宽为8cm的矩形纸片上,要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的顶点A重合,其余的两个顶点都在矩形边上),这个等腰三角形有几种剪法( )
A.1 B.2 C.3 D.4 10.(4分)如图(如图1所示)在△ABC中,∠ACB=90°,∠A=30°,BC=4,沿斜边AB的中线CD把这个三角形剪成△AC1D1和△BC2D2两个三角形(如图2所示).将△AC1D1沿直线D2B方向平移(点A,D1,D2,B始终在同一直线上),当点D1于点B重合时,平移停止.设平移距离D1D2为x,△AC1D1和△BC2D2的重叠部分面积为y,在y与x的函数图象大致是( ) 1 / 1
A. B. C. D. 二、填空题(每小题3分,共15分) 11.(3分)分解因式:2a2﹣8a+8= . 12.(3分)将直线y=4x+1向下平移3个单位长度,得到直线解析式为 . 13.(3分)如图,⊙O中,弦BC垂直平分半径OA,若BC=2,则弧AC的长度为 .
14.(3分)如图,在△ABC中,DE垂直平分BC,垂足为点D,交AB于点E,且AD=AC,EC交AD于点F,下列说法: ①△ABC∽△FDC;②点F是线段AD的中点;③S△AEF:S△AFC=1:4;④若CE平分∠ACD,则∠B=30°,其中正确的结论有 (填写所有正确结论的序 1 / 1
号). 三、解答题(共55分) 15.计算:(﹣1)2017++|﹣|﹣2sin45°. 16.先化简,再求值:(),x在1、2、﹣3中选取合适的数代入求值.
四、(每小题8分,共16分) 17.(8分)如图,△ABC的顶点坐标分别为A(1,3),B(4,2),C(2,1). (1)作出与△ABC关于x轴对称的△A1B1C1. (2)以原点O为位似中心,在原点的另一个侧画出△A2B2C2.使=,并
写出A2、B2、C2的坐标.
18.(8分)将一张正方形纸片剪成四个大小、形状一样的小正方形(如图所示),记为第一次操作,然后将其中的一片又按同样的方法剪成四小片,记为第二次操作,如此循环进行下去.请将下表中空缺的数据填写完整,并解答所提出的问题: 操作次数 1 2 3 4 … 1 / 1
正方形个数 4 7 … (1)如果剪100次,共能得到 个正方形; (2)如果剪n次共能得到bn个正方形,试用含有n、bn的等式表示它们之间的数量关系 ; (3)若原正方形的边长为1,设an表示第n次所剪的正方形的边长,试用含n的式子表示an ; (4)试猜想a1+a2+a3+a4+…+an﹣1+an与原正方形边长的数量关系,并用等式写出这个关系 .
五、(每小题10分,共20分) 19.(10分)随着近几年我市私家车日益增多,超速行驶成为引发交通事故的主要原因之一.某中学数学活动小组为开展“文明驾驶、关爱家人、关爱他人”的活动,设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点P,在笔直的车道m上确定点O,使PO和m垂直,测得PO的长等于21米,在m上的同侧取点A、B,使∠PAO=30°,∠PBO=60°. (1)求A、B之间的路程(保留根号); (2)已知本路段对校车限速为12米/秒若测得某校车从A到B用了2秒,这辆校车是否超速?请说明理由.
20.(10分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”,比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式为两人对抗赛,即把四种比赛项目写在4张完全相同的卡片上,比赛时,比赛的两人从中随机抽取1张卡片作为自己的比赛项目(不放回,且每人只能抽取一次)比赛时,小红和小明分到一组.(1)小明先抽取,那么小明抽到唐诗的概 1 / 1
率是多少? (2)小红擅长唐诗,小红想:“小明先抽取,我后抽取”抽到唐诗的概率是不同的,且小明抽到唐诗的概率更大,若小红后抽取,小红抽中唐诗的概率是多少?小红的想法对吗? 21.如图,在直角坐标系平面内,函数y=(x>0,m是常数)的图象经过A(1,4)、B(a,b),其中a>1,过点A作x轴的垂线,垂足为C,过点B作y轴的垂线,垂足为D,连接AD,AB,DC,CB. (1)求反比例函数解析式; (2)当△ABD的面积为S,试用a的代数式表示求S. (3)当△ABD的面积为2时,判断四边形ABCD的形状,并说明理由.
22.如图△ABC和△DEC都是等腰三角形,点C为它们的公共直角顶点,连AD、BE,F为线段AD的中点,连
CF. (1)如图1,当D点在BC上时,BE与CF的数量关系是 . (2)如图2,把△DEC绕C点顺时针旋转90°,其他条件不变,问(1)中的关系是否仍然成立?请说明理由. (3)如图3,把△DEC绕C点顺时针旋转一个钝角,其他条件不变,问(1) 1 / 1
中的关系是否仍然成立?如成立请证明,如果不成立,请写出相应的正确的结论并加以证明. 23.中国高铁迅猛发展,给我们的出行带来极大的便捷,如图1,是某种新设计动车车头的纵截面一部分,曲线OBA是一开口向左,对称轴正好是水平线OC的抛物线的一部分,点A、B是车头玻璃罩的最高点和最低点,AC、BD是两点到车厢底部的距离,OD=1.5米,BD=1.5米,AC=3米,请你利用所学的函数知识解决以下问题. (1)为了方便研究问题,需要把曲线OBA绕点O旋转转化为我们熟悉的函数,请你在所给的方框内,画出你旋转后函数图象的草图,在图中标出点O、A、B、C、D对应的位置,并求你所画的函数的解析式. (2)如图2,驾驶员座椅安装在水平线OC上一点P处,实验表明:当PA+PB最小时,驾驶员驾驶时视野最佳,为了达到最佳视野,求OP的长. (3)驾驶员头顶到玻璃罩的高度至少为0.3米才感到压抑,一个驾驶员坐下时头顶到椅面的距离为1米,在(2)的情况下,座椅最多条件到多少时他才感到舒适? 1 / 1
2017年安徽省合肥市滨湖区寿春中学中考数学一模试卷 参考答案与试题解析
一、选择题(每小题4分,共40分) 1.(4分)在0、﹣3、1、4这四个数中,最小的数是( ) A.0 B.﹣3 C.1 D.4 【分析】根据有理数大小比较的法则:①正数都大于0; ②负数都小于0; ③正数大于一切负数进行分析即可. 【解答】解:在0、﹣3、1、4这四个数中,最小的数是﹣3, 故选:B. 【点评】此题主要考查了有理数的比较大小,关键是掌握有理数的比较大小的法则.
2.(4分)在2017﹣2019年三年建设计划,合肥市大建设涉及八大类工程,安排项目总计2399个,项目总投资4626亿元,用科学记数法表示“4626亿”是( ) A.4626×108 B.4626×109 C.4.626×1010 D.4.626×1011 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 【解答】解:用科学记数法表示“4626亿”是4.626×1011, 故选:D. 【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3.(4分)下列计算正确的是( )