中山大学606高等数学B(单考)2015年考研专业课真题试卷
2015【考研数一】真题及解析

2015年全国硕士研究生入学统一考试数学(一)试题一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设函数()f x 在(),-∞+∞内连续,其中二阶导数()''f x 的图形如图所示,则曲线()=y f x 的拐点的个数为 ( )(A) 0 (B) 1 (C) 2 (D) 3【答案】(C )【解析】拐点出现在二阶导数等于0,或二阶导数不存在的点,并且在这点的左右两侧二阶导函数异号。
因此,由()f x ''的图形可得,曲线()y f x =存在两个拐点.故选(C ). (2)设211()23=+-x x y e x e 是二阶常系数非齐次线性微分方程'''++=x y ay by ce 的一个特解,则 ( )(A) 3,2,1=-==-a b c (B) 3,2,1===-a b c (C) 3,2,1=-==a b c (D) 3,2,1===a b c【答案】(A )【分析】此题考查二阶常系数非齐次线性微分方程的反问题——已知解来确定微分方程的系数,此类题有两种解法,一种是将特解代入原方程,然后比较等式两边的系数可得待估系数值,另一种是根据二阶线性微分方程解的性质和结构来求解,也就是下面演示的解法.【解析】由题意可知,212x e 、13x e -为二阶常系数齐次微分方程0y ay by '''++=的解,所以2,1为特征方程20r ar b ++=的根,从而(12)3a =-+=-,122b =⨯=,从而原方程变为32x y y y ce '''-+=,再将特解x y xe =代入得1c =-.故选(A )(3) 若级数1∞=∑nn a条件收敛,则 =x 3=x 依次为幂级数1(1)∞=-∑n n n na x 的 ( )(A) 收敛点,收敛点 (B) 收敛点,发散点 (C) 发散点,收敛点 (D) 发散点,发散点 【答案】(B )【分析】此题考查幂级数收敛半径、收敛区间,幂级数的性质. 【解析】因为1nn a∞=∑条件收敛,即2x =为幂级数1(1)nn n a x ∞=-∑的条件收敛点,所以1(1)nn n a x ∞=-∑的收敛半径为1,收敛区间为(0,2).而幂级数逐项求导不改变收敛区间,故1(1)nnn na x ∞=-∑的收敛区间还是(0,2).因而x =3x =依次为幂级数1(1)n n n na x ∞=-∑的收敛点,发散点.故选(B ).(4) 设D 是第一象限由曲线21xy =,41xy =与直线y x =,y =围成的平面区域,函数(),f x y 在D 上连续,则(),Df x y dxdy =⎰⎰ ( )(A)()13sin 2142sin 2cos ,sin d f r r rdr πθπθθθθ⎰⎰(B)()34cos ,sin d f r r rdr ππθθθ⎰(C)()13sin 2142sin 2cos ,sin d f r r dr πθπθθθθ⎰⎰(D)()34cos ,sin d f r r dr ππθθθ⎰【答案】(B )【分析】此题考查将二重积分化成极坐标系下的累次积分 【解析】先画出D 的图形,所以(,)Df x y dxdy =⎰⎰34(cos ,sin )d f r r rdr ππθθθ⎰,故选(B )(5) 设矩阵21111214A a a ⎛⎫⎪= ⎪ ⎪⎝⎭,21b d d ⎛⎫ ⎪= ⎪ ⎪⎝⎭,若集合{}1,2Ω=,则线性方程组Ax b =有无穷多解的充分必要条件为 ( )(A) ,a d ∉Ω∉Ω (B) ,a d ∉Ω∈Ω (C) ,a d ∈Ω∉Ω (D) ,a d ∈Ω∈Ω 【答案】D【解析】2211111111(,)1201111400(1)(2)(1)(2)A b ad a d a d a a d d ⎛⎫⎛⎫⎪ ⎪=→-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭,由()(,)3r A r A b =<,故1a =或2a =,同时1d =或2d =。
考研数学一真题2015年

考研数学一真题2015年(总分:150.00,做题时间:90分钟)一、选择题(总题数:8,分数:32.00)1.设函数f(x)在(-∞,+∞)内连续,其二阶导函数f"(x)的图形如图所示,则曲线y=f(x)的拐点的个数为______。
(分数:4.00)A.0B.1C.2 √D.3解析:[考点] 拐点的判定。
[解析] 若曲线函数在拐点处有二阶导数,则在拐点处二阶导数异号(由正变负或由负变正)或不存在。
因此,由f"(x)由的图形可得,曲线y=f(x)存在两个拐点,故选C项。
2.______。
(分数:4.00)A.a=-3,b=2,c=-1 √B.a=3,b=2,c=-1C.a=-3,b=2,C=1D.a=3,b=2,C=1解析:[考点] 二阶常系数非齐次线性微分方程的反问题——由已知解来确定微分方程的系数。
[解析] 由题意可知,为二阶常系数齐次微分方程y"+ay"+by=0的解,所以由常系数齐次微分方程的解与其特征方程根的关系知2,1为特征方程r 2 +ar+b=0的根,从而a=-(1+2)=-3,b=1×2=2,从而原方程变为y"-3y"+2y=ce x,再将特解y=xe x代入得c=-1,故选A项。
3.若级数条件收敛,则和x=3______。
(分数:4.00)A.收敛点,收敛点B.收敛点,发散点√C.发散点,收敛点D.发散点,发散点解析:[考点] 幂级数的收敛半径、收敛区间,幂级数的性质。
[解析] 已知条件收敛,即x=2为幂级数的条件收敛点,所以的收敛半径为1,收敛区间为(0,2)。
因幂级数与其导数的收敛区间相同,故的收敛区间还是(0,2),则与x=3依次为幂级数的收敛点,发散点,故选B项。
4.设D是第一象限由曲线2xy=1,4xy=1与直线y=x,围成的平面区域,函数f(x,y)在D上连续,则=______。
A.B.C.D.(分数:4.00)A.B. √C.D.解析:[考点] 将二重积分化成极坐标系下的累次积分和极坐标变换。
2015真题及解析

2015年全国硕士研究生入学统一考试数学(三)试题解析一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中 ,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸..指定位置上.⑴设:■是数列,下列命题中不正确的是 ()(A) 若 lim x n: -a,则 lim X=lim X=n _i :n L :n _ac(B)若 lim x 2n二lim X 2n 1 二 a ,贝U lim X n二 an ;:n t: n _sc (C) 若 lim x n= 二a ,则lim X 3n =lim X 3nan ;:n L :n _sc1(D) 若 lim X 3n =limX3n 1=a ,则 lim x n= an _$ : n :【答案】(D)【解析】答案为D,本题考查数列极限与子列极限的关系•数列Xn —• a n 、:::= 对任意的子列:Xn k "匀有Xn k —• a k —• ■■' ;■,所以A 、B 、C 正确;D 错(D 选项缺少X 3n 2的敛散性),故选D(2)设函数f X 在-::,V 内连续,其2阶导函数「X 的图形如 右图所示则曲线y = f X 的拐点个数为()(A) 0(B) 1(C) 2(D) 3【答案】(C)【解析】根据拐点的必要条件,拐点可能是「(x)不存在的点或f (X ^Q 的点处产生.所以y = f (x)有三个点可能是拐点,根据拐点的定义,即凹凸性改变的点;二阶导函数 「(X)符号发生改变的点即为拐点•所以从图可知,拐点个数为2,故选 C.(3)设D・;[X , y x 2• y 2咗2x,x 2• y 2乞2yf ,函数f X,y 在D 上连续,则f x,y dxdy =()D2cos2sin •二(A)/dA 。
f r cos’r si" rdr 亠!2dj f r cos’r sin^ rdr42sin 2cos T 1(B) 04犷 0 f rcosdrsin^ rdr 亠 引二。
数学分析考研真题答案

数学分析考研真题答案【篇一:2015年暨南大学数学分析2015年考研专业课真题_研究生入学考试试题】>***************************************************************************** *************** 学科、专业名称:统计学、基础数学、计算数学、概率论与数理统计、应用数学、运筹学与控制论研究方向:各方向考试科目名称:709数学分析考试科目:709数学分析共 2 页,第 1 页【篇二:2014中山大学数学分析考研真题与答案】学分析考研复习精编》《复习精编》是博学中大精品考研专业课系列辅导材料中的核心产品。
本书严格依据学校官方最新指定参考书目,并结合考研的精华笔记、题库和内部考研资讯进行编写,是博学中大老师的倾力之作。
通过本书,考生可以更好地把握复习的深度广度,核心考点的联系区分,知识体系的重点难点,解题技巧的要点运用,从而高效复习、夺取高分。
考试分析——解析考题难度、考试题型、章节考点分布以及最新试题,做出考试展望等;复习之初即可对专业课有深度把握和宏观了解。
复习提示——揭示各章节复习要点、总结各章节常见考查题型、提示各章节复习重难点与方法。
知识框架图——构建章节主要考点框架、梳理全章主体内容与结构,可达到高屋建瓴和提纲挈领的作用。
核心考点解析——去繁取精、高度浓缩初试参考书目各章节核心考点要点并进行详细展开解析、以星级多寡标注知识点重次要程度便于高效复习。
历年真题与答案解析——反复研究近年真题,洞悉考试出题难度和题型;了解常考章节与重次要章节,有效指明复习方向。
《复习精编》具有以下特点:(1)立足教材,夯实基础。
以指定教材为依据,全面梳理知识,注意知识结构的重组与概括。
让考生对基本概念、基本定理等学科基础知识有全面、扎实、系统的理解、把握。
(2)注重联系,强化记忆。
复习指南分析各章节在考试中的地位和作用,并将各章节的知识体系框架化、网络化,帮助考生构建学科知识网络,串联零散的知识点,更好地实现对知识的存储,提取和应用。
(NEW)中山大学化学学院化学(B)历年考研真题汇编

目 录
2011年中山大学化学学院866化学(B)考研真题
2012年中山大学化学学院862化学(B)考研真题(部分真题,不完整)2013年中山大学化学学院861化学(B)考研真题
2014年中山大学化学学院864化学(B)考研真题
2015年中山大学化学学院866化学(B)考研真题
2016年中山大学化学学院857化学(B)考研真题
2017年中山大学化学学院855化学(B)考研真题
2018年中山大学化学学院854化学(B)考研真题
2019年中山大学化学学院857化学(B)考研真题
2011年中山大学化学学院866化学
(B)考研真题
2012年中山大学化学学院862化学(B)考研真题(部分真题,不完
整)
2013年中山大学化学学院861化学
(B)考研真题
2014年中山大学化学学院864化学
(B)考研真题。
2015年中山大学生理学考研真题,考研参考书,考研经验,考研笔记

1/10【育明教育】中国考研考博专业课辅导第一品牌官方网站: 12015年中山大学考研指导育明教育,创始于2006年,由北京大学、中国人民大学、中央财经大学、北京外国语大学的教授投资创办,并有北京大学、武汉大学、中国人民大学、北京师范大学复旦大学、中央财经大学、等知名高校的博士和硕士加盟,是一个最具权威的全国范围内的考研考博辅导机构。
更多详情可联系育明教育孙老师。
F3706综合自然地理学自然地理要素的相互关系以及彼此之间的本质联系和作用效应;自然地理环境的变化发展规律及其演替趋势;自然地理环境的空间分异规律和综合自然区划;自然综合体的特征及其开发利用以及自然灾害的防治;环境、资源、人口和发展的协调关系及可持续利用。
F3801专业综合考试请留意环境科学与工程学院网页通知F3802环境工程学请留意环境科学与工程学院网页通知F3803环境科学综合请留意环境科学与工程学院网页通知F3804计算方法请留意环境科学与工程学院网页通知F3805污染气象学请留意环境科学与工程学院网页通知F3806天气学请留意环境科学与工程学院网页通知F3901微机原理《微机原理与接口技术》,周明德主编,人民邮电出版社,2002年。
要求掌握8086/8088的基本原理,重点考查对三种接口芯片(8259、8253、8255)的运用,能用汇编语言或者C 语言来编写相应的芯片驱动代码。
F3902机械设计1)《机械设计基础》,杨可桢、程光蕴主编,高等教育出版社;2)《机械设计》,濮良贵,纪名钢主编,高等教育出版社。
F3903电路原理、数字电路与模拟电路综合不指定参考书目F3905综合考试工程项目管理学、工程经济学F3907高分子化学与物理《高分子化学》(第四版),潘祖仁,化学工业出版社;F3908生物物理学生物物理学赵南明周海梦F3909电路原理与数字逻辑电路电路原理与数字逻辑电路F3910细胞生物学细胞生物学刘凌云高等教育出版社F3911专业综合《工程力学》范钦珊主编,高等教育出版社,1998年2/10【育明教育】中国考研考博专业课辅导第一品牌官方网站: 2F3912高分子化学与高分子物理《高分子化学》(第四版),潘祖仁,化学工业出版社。
2015考研数学一真题及答案
2021 考研数学一真题及答案一、选择题:18小题,每题4分,共32分。
以下每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上。
(1)设函数()f x 在(),-∞+∞内连续,其中二阶导数()''f x 的图形如下图,那么曲线()=y f x 的拐点的个数为 ( )(A) 0 (B) 1 (C) 2 (D) 3【答案】〔C 〕【解析】拐点出现在二阶导数等于0,或二阶导数不存在的点,并且在这点的左右两侧二阶导函数异号。
因此,由()f x ''的图形可得,曲线()y f x =存在两个拐点.应选〔C 〕. (2) 设211()23=+-x x y e x e 是二阶常系数非齐次线性微分方程'''++=xy ay by ce 的一个特解,那么( )(A) 3,2,1=-==-a b c(B) 3,2,1===-a b c(C) 3,2,1=-==a b c(D) 3,2,1===a b c 【答案】〔A 〕【分析】此题考察二阶常系数非齐次线性微分方程的反问题——解来确定微分方程的系数,此类题有两种解法,一种是将特解代入原方程,然后比拟等式两边的系数可得待估系数值,另一种是根据二阶线性微分方程解的性质和构造来求解,也就是下面演示的解法. 【解析】由题意可知,212x e 、13x e -为二阶常系数齐次微分方程0y ay by '''++=的解,所以2,1为特征方程20r ar b ++=的根,从而(12)3a =-+=-,122b =⨯=,从而原方程变为32x y y y ce '''-+=,再将特解xy xe =代入得1c =-.应选〔A 〕(3) 假设级数1∞=∑nn a条件收敛,那么=x 3=x 依次为幂级数1(1)∞=-∑nnn na x 的 ( )(A) 收敛点,收敛点 (B) 收敛点,发散点 (C) 发散点,收敛点 (D) 发散点,发散点 【答案】〔B 〕【分析】此题考察幂级数收敛半径、收敛区间,幂级数的性质。
中山大学2015年《656岩石学》考研专业课真题试卷
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
2015年全国硕士研究生入学统一考试数学一试题及答案
2015年全国硕士研究生入学统一考试数学一试题及答案一、选择题:1〜8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合 题目要求的,请将所选项前的字母填在答题纸..指定位置上•1、 设函数f(X )在(-::,+ ::)连续,其2阶导函数f (x)的图形如下图所示,则曲线 y =f(x)的 拐点个数为() (A ) 0 ( B ) 1 (C ) 2 ( D ) 3【答案】(C) 【考点】拐点的定义 【难易度】★★【详解】拐点出现在二阶导数等于0,或二阶导数不存在的点上,并且在这点的左右两侧二阶导数异号,因此,由 「(X )的图形可知,曲线 y 二f (x)存在两个拐点,故选(C).1 f 1、”2、 设y = —e 2x 十I x -一 ©x 是二阶常系数非齐次线性微分方程y +ay" + by = ce x 的一个特解,2 I 3丿则()【答案】(A)【考点】常系数非齐次线性微分方程的解法 【难易度】★★—2 x — x ..2 【详解】 e , e 为齐次方程的解,所以 2、1为特征方程 '+^ b = 0的根,从而a - - 1 • 2 - -3,b =1 2=2,再将特解 y =xe x 代入方程 y :3y ,2y =ce x 得:c = -1.3、若级数送a n 条件收敛,则x = J 3与x = 3依次为幕级数送na n (x T 『的:n :—(A )收敛点,收敛点 (B )收敛点,发散点 (C )发散点,收敛点 (D )发散点,发散点【答案】(B)【考点】级数的敛散性a — -3,b = ——,c =-—(B ) a=3,b=2,c--1. (C ) a --3,b = 2, c = 1.(D ) a=3,b=2,c=1.n :—【难易度】★★★【详解】因为瓦a n 条件收敛,故x = 2为幕级数送a n (x -1 $的条件收敛点,进而得 n 4n 卫Q Q\」a n x -1 n 的收敛半径为1,收敛区间为 0,2,又由于幕级数逐项求导不改变收敛区间,故n 40C1、na nx -1 n的收敛区间仍为n a_ °°0,2,因而x = -、3与x=3依次为幕级数7 na nx_1的收敛n 4点、发散点4、设D 是第一象限中曲线 2xy =1,4xy =1与直线y 二x, y —、.3x 围成的平面区域,函数f (x, y) 在D 上连续,则11 f (x, y)dxdy 二D【难易度】★★★JI/【详解】由"X 得,"4 ; 由 y 「3x 得,"3 由 2xy =1 得,2r 2cos = sin ^-1,r2由 4xy =1 得,4r cos^sin )-1,r二 ?.所以 JJ f (x,y)dxdy = J ;d 日广晋日 f (rcos8,rsin 日)rdrq 1 1、「1 )5、设矩阵A=1 2 a ,b = d,若集合0 ={1,2},则线性方程组<14 2a丿<d2>Ax = b 有无穷多个解的充分必要条件为H1(A )2.dv sin i 2r f (r COST , rsin "rdr4 2sin2 71 H1(C )3出「in 严 f (rcosv,rsinRdr42sin 2 -71【答案】(D)【考点】二重积分的极坐标变换(B ) (D)_1 .即利祠严 f (r cos8,rsin8)rdr4:2si n2.^TL[第d&f (rcos^,r sin&)dr42sin2 =1 2sin 2^(A )1 1, d 1 1(B )1 1, d 1 1(C ) a",d(D , d -1【答案】(D)【考点】非齐次线性方程组的解法 【难易度】★★1 1 1【详解】lA,b 】=12 a 1 4 a 2Ax =b 有无穷多解二R(A)二R (代b) ::3 =a =1 或 a = 2 且 d = 1 或 d = 22 2 26、设二次型 仁为必压)在正交变换x =Py 下的标准形为2力• y 2 -y 3,其中PNet ,包),若Q=(e,-QG),则f(x 1,X 2,X 3)在正交变换x=Qy 下的标准形为222222(A )2y 1 - y 2 y 3( B ) 2% y ? -y ?222222(C )2y 1 -y 2 -y 3 ( D ) 2^ y ? y 3【答案】(A) 【考点】二次型 【难易度】★★2 0 0【详解】由 x = Py ,故 f =x T Ax = y T (P T AP)y =2y :+y ;-y :且:P T AP= 0 1■0 0 -1 _jT T T 2 2 2所以 f =x Ax =y (Q AA)y = 2y 1 f g ,故选(A)7、若A, B 为任意两个随机事件,则1 1 1 1 1a -1d —1 0 (a -1 丫 a -2 )(d -1 X d -2(A )P(AB)岂 P(A)P(B)(C )P(AB) ’恥貝2【答案】(C) 【考点】 【难易度】★★(B )P(AB) - P(A)P(B)(D )P(AB)-P(A) P(B)21 1d ——;0.2I丄d」V(C) a",d (D , d -1【详解】P(A) - P(AB), P(B) - P(AB)P(AB)乞 P (A )2P(B )故选(C )8、设随机变量 X, Y 不相关,且EX =2,EY=1,DX =3,则E X X ・丫一2二 (A ) -3 ( B ) 3(C ) -5( D ) 5【答案】(D) 【考点】 【难易度】★★★ 【详解】二、填空题:9〜14小题,每小题4分,共24分.请将答案写在答题纸 指定位置上•In cosx9、 lim2—二XX 2 1 【答案】-丄 2【考点】极限的计算【难易度】★★H 2【答案】 一4【考点】积分的计算【难易度】★★11、若函数 z=z(x,y)由方程 e z + xyz+x + cosx = 2 确定,则 dz (叩)= _______________【答案】【考点】隐函数求导 【难易度】★★【详解】lim^^T x 2=lim x —.0 ln(1 cosx -1)x 2cosx -12 x1 2-x =lim 22 x 10 x 210、和严-+ 1 cosx x )dx 二sin x 1 cosx Tt+|x)dx = 2『xdx = IT【详兀2【详解】令 F (x, y, z) = e z xyz x cosx -2,贝y F x = yz 1 -sin x , F y = xz , F z二 xy ,又当 x=0,y=1 时,z=0,所以—=_E =_1,竺C F/-h,"(0,1)F zCyy (0,1)12、设i ]是由平面x 亠y 亠z =1与二个坐标平面所围成的空间区域,贝U1【答案】-4【考点】三重积分的计算 【难易度】★★★【详解】由轮换对称性,得其中D z 为平面z = z 截空间区域 W 所得的截面,其面积为 -(1- z )2.所以2 -10 2 ■I ■1 III III Fi0 0 1i22rHI0 ■10 AIII q2 r2 13、n 阶行列式0 0 III -1 2【答案】2n1-2 【考点】行列式的计算 【难易度】★★★【详解】按第一行展开得14、设二维随机变量(X,Y)服从正态分布 N (1,0,1,1,0),贝U P(XY -Y ::: 0)=1【答案】12【考点】 【难易度】★★【详解】;(X,Y)~N(1,0,1,1,0), • X~N(1,1)Y~ N(0,1),且 X,Y 独立:、X -1~ N(0,1),卩仪丫-Y "} = p{(X -1)Y <01三、解答题:15〜23小题,共94分.请将解答写在答题纸.指定位置上.解答应写出文字说明、证 明过程或演算步骤. 15、(本题满分10分)设函数 f(x)=x al n(1 x) bx si nx , g(x) = kx 3,若 f (x)与 g(x)在 x —; 0 是等价无穷小, 求a , b , k 值。