单项式乘多项式试题精选附答案

合集下载

单项式乘多项式练习题及答案

单项式乘多项式练习题及答案

单项式乘多项式练习题一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.2.计算:(1)6x2•3xy (2)(4a﹣b2)(﹣2b)3.(3x2y﹣2x+1)(﹣2xy)4.计算:(1)(﹣12a2b2c)•(﹣abc2)2= _________ ;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)= _________ .5.计算:﹣6a•(﹣﹣a+2)6.﹣3x•(2x2﹣x+4)7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2 8.(﹣a2b)(b2﹣a+)9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?10.2ab(5ab+3a2b)11.计算:.12.计算:2x(x2﹣x+3)13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)= _________ .14.计算:xy2(3x2y﹣xy2+y)15.(﹣2ab)(3a2﹣2ab﹣4b2)16.计算:(﹣2a2b)3(3b2﹣4a+6)17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.多项式一、填空题1.计算:_____________)(32=+y x xy x .2.计算:)164(4)164(24242++-++a a a a a =________.3.若3k (2k-5)+2k (1-3k )=52,则k=____ ___.4.如果x+y=-4,x-y=8,那么代数式的值是 cm 。

单项式乘多项式练习题(含标准答案)

单项式乘多项式练习题(含标准答案)

单项式乘多项式练习题一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.2.计算:(1)6x2•3xy(2)(4a﹣b2)(﹣2b)3.(3x2y﹣2x+1)(﹣2xy)4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=_________;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=_________.5.计算:﹣6a•(﹣﹣a+2)6.﹣3x•(2x2﹣x+4)7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣28.(﹣a2b)(b2﹣a+)9.一条防洪堤坝,其横断面是梯形,上底宽aM,下底宽(a+2b)M,坝高M.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100M,那么这段防洪堤坝的体积是多少立方M?10.2ab(5ab+3a2b)11.计算:.12.计算:2x(x2﹣x+3)13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=_________.14.计算:xy2(3x2y﹣xy2+y)15.(﹣2ab)(3a2﹣2ab﹣4b2)16.计算:(﹣2a2b)3(3b2﹣4a+6)17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.参考答案与试卷解读一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.考点: 整式的加减—化简求值;整式的加减;单项式乘多项式.分析:先根据整式相乘的法则进行计算,然后合并同类项,最后将字母的值代入求出原代数式的值.解答:解:原式=2a2b+2ab2﹣2a2b+2﹣ab2﹣2=(2a2b﹣2a2b)+(2ab2﹣ab2)+(2﹣2)=0+ab2=ab2当a=﹣2,b=2时,原式=(﹣2)×22=﹣2×4=﹣8.点评:本题是一道整式的加减化简求值的题,考查了单项式乘以多项式的法则,合并同类项的法则和方法.2.计算:(1)6x2•3xy(2)(4a﹣b2)(﹣2b)考点:单项式乘单项式;单项式乘多项式.分析:(1)根据单项式乘单项式的法则计算;(2)根据单项式乘多项式的法则计算.解答:解:(1)6x2•3xy=18x3y;(2)(4a﹣b2)(﹣2b)=﹣8ab+2b3.点评:本题考查了单项式与单项式相乘、单项式与多项式相乘,熟练掌握运算法则是解题的关键.3.(3x2y﹣2x+1)(﹣2xy)考点:单项式乘多项式.分析:根据单项式乘多项式的法则,用单项式乘多项式的每一项,再把所得的积相加,计算即可.解答:解:(3x2y﹣2x+1)(﹣2xy)=﹣6x3y2+4x2y﹣2xy.点评:本题考查单项式乘多项式的法则,熟练掌握运算法则是解题的关键,本题一定要注意符号的运算.4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=﹣a4b4c5;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=﹣6a3b3+8a2b4+10a2b3+2ab2.考点:单项式乘多项式;单项式乘单项式.分析:(1)先根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;单项式乘单项式,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式的法则计算;(2)根据单项式乘多项式,先用单项式去乘多项式的每一项,再把所得的积相加的法则计算即可.解答:解:(1)(﹣12a2b2c)•(﹣abc2)2,=(﹣12a2b2c)•,=﹣;故答案为:﹣a4b4c5;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2),=3a2b•(﹣2ab2)﹣4ab2•(﹣2ab2)﹣5ab•(﹣2ab2)﹣1•(﹣2ab2),=﹣6a3b3+8a2b4+10a2b3+2ab2.故答案为:﹣6a3b3+8a2b4+10a2b3+2ab2.点评:本题考查了单项式与单项式相乘,单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号的处理.5.计算:﹣6a•(﹣﹣a+2)考点:单项式乘多项式.分析:根据单项式乘以多项式,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:﹣6a•(﹣﹣a+2)=3a3+2a2﹣12a.点评:本题主要考查单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号.6.﹣3x•(2x2﹣x+4)考点:单项式乘多项式.分析:根据单项式与多项式相乘,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:﹣3x•(2x2﹣x+4),=﹣3x•2x2﹣3x•(﹣x)﹣3x•4,=﹣6x3+3x2﹣12x.点评:本题主要考查单项式与多项式相乘的运算法则,熟练掌握运算法则是解题的关键,计算时要注意运算符号.7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2考点:单项式乘多项式.分析:首先根据单项式与多项式相乘的法则去掉括号,然后合并同类项,最后代入已知的数值计算即可.解答:解:3a(2a2﹣4a+3)﹣2a2(3a+4)=6a3﹣12a2+9a﹣6a3﹣8a2=﹣20a2+9a,当a=﹣2时,原式=﹣20×4﹣9×2=﹣98.点评:本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.8.计算:(﹣a2b)(b2﹣a+)考点:单项式乘多项式.专题:计算题.分析:此题直接利用单项式乘以多项式,先把单项式乘以多项式的每一项,再把所得的积相加,利用法则计算即可.解答:解:(﹣a2b)(b2﹣a+),=(﹣a2b)•b2+(﹣a2b)(﹣a)+(﹣a2b)•,=﹣a2b3+a3b﹣a2b.点评:本题考查单项式乘以多项式的运算,熟练掌握运算法则是解题的关键.9.一条防洪堤坝,其横断面是梯形,上底宽aM,下底宽(a+2b)M,坝高M.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100M,那么这段防洪堤坝的体积是多少立方M?考点: 单项式乘多项式.专题: 应用题.分析:(1)根据梯形的面积公式,然后利用单项式乘多项式的法则计算;(2)防洪堤坝的体积=梯形面积×坝长.解答:解:(1)防洪堤坝的横断面积S=[a+(a+2b)]× a=a(2a+2b)=a2+ab.故防洪堤坝的横断面积为(a2+ab)平方M;(2)堤坝的体积V=Sh=(a2+ab)×100=50a2+50ab.故这段防洪堤坝的体积是(50a2+50ab)立方M.点评:本题主要考查了梯形的面积公式及堤坝的体积=梯形面积×长度,熟练掌握单项式乘多项式的运算法则是解题的关键.10.2ab(5ab+3a2b)考点: 单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:2ab(5ab+3a2b)=10a2b2+6a3b2;故答案为:10a2b2+6a3b2.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.11.计算:.考点:单项式乘多项式.分析:先根据积的乘方的性质计算乘方,再根据单项式与多项式相乘的法则计算即可.解答:解:(﹣xy2)2(3xy﹣4xy2+1)=x2y4(3xy﹣4xy2+1)=x3y5﹣x3y6+x2y4.点评:本题考查了积的乘方的性质,单项式与多项式相乘的法则,熟练掌握运算法则是解题的关键,计算时要注意运算顺序及符号的处理.12.计算:2x(x2﹣x+3)考点: 单项式乘多项式.专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:2x(x2﹣x+3)=2x•x2﹣2x•x+2x•3=2x3﹣2x2+6x.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=16a5﹣48a4b+28a5b3.考点:单项式乘多项式.专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=16a5﹣48a4b+28a5b3.故答案为:16a5﹣48a4b+28a5b3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.14.计算:xy2(3x2y﹣xy2+y)考点: 单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:原式=xy2(3x2y)﹣xy2•xy2+xy2•y=3x3y3﹣x2y4+xy3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.15.(﹣2ab)(3a2﹣2ab﹣4b2)考点: 单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣2ab)(3a2﹣2ab﹣4b2)=(﹣2ab)•(3a2)﹣(﹣2ab)•(2ab)﹣(﹣2ab)•(4b2)=﹣6a3b+4a2b2+8ab3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.16.计算:(﹣2a2b)3(3b2﹣4a+6)考点: 单项式乘多项式.分析:首先利用积的乘方求得(﹣2a2b)3的值,然后根据单项式与多项式相乘的运算法则:先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣2a2b)3(3b2﹣4a+6)=﹣8a6b3•(3b2﹣4a+6)=﹣24a6b5+32a7b3﹣48a6b3.点评:本题考查了单项式与多项式相乘.此题比较简单,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?考点: 单项式乘多项式.专题:应用题.分析:用错误结果减去已知多项式,得出原式,再乘以﹣3x2得出正确结果.解答:解:这个多项式是(x2﹣4x+1)﹣(﹣3x2)=4x2﹣4x+1,(3分)正确的计算结果是:(4x2﹣4x+1)•(﹣3x2)=﹣12x4+12x3﹣3x2.(3分)点评:本题利用新颖的题目考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.考点: 单项式乘多项式.专题:新定义.分析:由x△d=x,得ax+bd+cdx=x,即(a+cd﹣1)x+bd=0,得①,由1△2=3,得a+2b+2c=3②,2△3=4,得2a+3b+6c=4③,解以上方程组成的方程组即可求得a、b、c、d的值.解答:解:∵x△d=x,∴ax+bd+cdx=x,∴(a+cd﹣1)x+bd=0,∵有一个不为零的数d使得对任意有理数x△d=x,则有①,∵1△2=3,∴a+2b+2c=3②,∵2△3=4,∴2a+3b+6c=4③,又∵d≠0,∴b=0,∴有方程组解得.故a的值为5、b的值为0、c的值为﹣1、d的值为4.点评:本题是新定义题,考查了定义新运算,解方程组.解题关键是由一个不为零的数d使得对任意有理数x△d=x,得出方程(a+cd﹣1)x+bd=0,得到方程组,求出b的值.。

北师大版七年级下册数学《单项式乘以多项式》典型例题 含答案

北师大版七年级下册数学《单项式乘以多项式》典型例题  含答案

《单项式乘以多项式》典型例题例1 计算:(1))123()4(2-+⋅xy x xy(2))478()21(3+-⋅-x x x (3))47(2)24(3)(22222b ab a b b a ab b ab a a +-+----例2 计算题:(1))1944)(3(22+--x x x ; (2)ab b a ab m m 32)1353(11⋅++--. 例3 求值:)43(3)129(1n n n n y y y y y ---++,其中2,3=-=n y .例4 化简(1))323(5132n n n n n n y y x y x y x +-⋅--++;(2)])2(3)2[(2222ab b ab b ab ab -+-.例5 设012=-+m m ,求2000223++m m 的值.例6 计算:(1))123()4(2-+⋅xy x xy(2))478()21(3+-⋅-x x x (3))47(2)24(3)(22222b ab a b b a ab b ab a a +-+----例7 计算题:(1))1944)(3(22+--x x x ; (2)ab b a ab m m 32)1353(11⋅++--。

例8 求值:)43(3)129(1n n n n y y y y y ---++,其中2,3=-=n y 。

例9 化简(1))323(5132n n n n n n y y x y x y x +-⋅--++;(2)])2(3)2[(2222ab b ab b ab ab -+-。

例10 设012=-+m m ,求2000223++m m 的值。

参考答案例1 解:(1)原式)1(424342-⋅+⋅+⋅=xy xy xy x xyxy y x y x 4812223-+=(2)原式4)21()7()21(8)21(3⋅-+-⋅-+⋅-=x x x x x x x x 227424-+-= (3)原式322222232814612222b ab b a ab b a ab b a a +-++---=323242b ab a +-=说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定.若是混合运算,运算顺序仍然是先乘方,再乘除,运算结果要检查,如有同类项要合并,结果要最简.例2 分析:(1)中单项式为23x -,多项式里含有24x ,x 94-,1,乘积结果为三项,特别是1这项不要漏乘.(2)中指数为字母,计算时要注意底数幂相乘底数不变指数相加.解:(1)原式1)3()94()3(432222⋅-+⋅-+⋅-=x x x x x 24433412x x x -+-= (2)ab ab b a ab m m 3232)1353(11+⋅++-- .322523232332532211ab b a b a ab ab b a ab ab m m m m ++=+⨯+⨯=-- 说明:单项式与多项式的第一项相乘时,要注意积的各项符号的确定;同号相乘得正,异号相乘得负.例3 解:原式n n n n n y y y y y 129129112+--+=++n y 2=当2,3=-=n y 时,81)3()3(4222=-=-=⨯n y说明:求值问题,应先化简,再代入求值.例4 分析:在计算单项式乘以多项式时,仍应按有理数的运算法则,先去小括号2)2(ab 和)(32b a ab b +,再去中括号.解:(1)原式)35()2)(5(3521232n n n n n n n n n n y y x y x y x y x y x --+--+⋅-=+-+++ 22122332151015++++-+-=n n n n n n y x y x y x(2)原式])3()3(4[22222ab b a b ab b b a ab --+-+=323322222222222282)4(22]4[2]334[2b a b a ab ab b a ab ab b a ab ab b a ab b a ab -=-+⋅=-=---=例5 分析:由已知条件,显然12=+m m ,再将所求代数式化为m m +2的形式,整体代入求解.解: 2000223++m m2000223+++=m m m20012000120002000)(200022222=+=++=+++=++⋅+⨯=m m m m m m m m m m m 说明:整体换元的数学方法,关键是识别转化整体换元的形式.例6 解:(1)原式)1(424342-⋅+⋅+⋅=xy xy xy x xyxy y x y x 4812223-+=(2)原式4)21()7()21(8)21(3⋅-+-⋅-+⋅-=x x x x x x x x 227424-+-= (3)原式322222232814612222b ab b a ab b a ab b a a +-++---=323242b ab a +-=说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定。

单项式乘多项式测试题与答案

单项式乘多项式测试题与答案

绝密★启用前单项式乘多项式测试时间:25分钟一、选择题1.计算(-3x)·(2x2-5x-1)的结果是( )A.-6x3-15x2-3xB.-6x3+15x2+3xC.-6x3+15x2D.-6x3+15x2-12.化简x(2x-1)-x2(2-x)的结果是( )A.-x3-xB.x3-xC.-x2-1D.x3-13.下列计算正确的是( )A.(-4x)·(2x2+3x-1)=-8x3-12x2-4xB.(6xy2-4x2y)·3xy=6xy2-12x3y2C.(-x)·(2x+x2-1)=-x3-2x2+1D.(-3x2y)·(-2xy+3yz+1)=6x3y2-9x2y2z-3x2y4.要使(y2-ky+2y)(-y)的展开式中不含y2项,则k的值为( )A.-2B.0C.2D.35.已知xy2=-2,则-xy(x2y5-xy3-y)的值为( )A.2B.6C.10D.14二、填空题6.计算:3x2(7x2-4x+2)-5x(2x-1)= .7.计算:a(a+1)= .8.计算:(-2a)·(14a3-1)= .9.计算:(12b2-4a2)·(-4ab)= .10.计算:12m2n3[-2mn2+(2m2n)2]= .11.已知一圆柱体的底面半径为x,高为2x+4,则它的体积为(结果保留π).12.一个长方体的长为2m,宽为3n,高为4mn-1,则这个长方体的体积是.13.若-2x2y(-x m y+3xy3)=2x5y2-6x3y n,则m= ,n= .三、解答题14.计算:(1)(-43ab)2(92a2b-12ab+34b2);(2)a2(a+1)-a(a2-2a-1).15.先化简,再求值:3a(2a2-4a+3)-2a2(3a+4),其中a=-2.16.解方程:x(3x-4)+2x(x+7)=5x(x-7)+90. 参考答案一、选择题1.答案 B (-3x)·(2x2-5x-1)=-3x·2x2+3x·5x+3x=-6x3+15x2+3x.故选B.2.答案 B 原式=2x2-x-2x2+x3=x3-x,故选B.3.答案D(-4x)·(2x2+3x-1)=-8x3-12x2+4x,A错误;(6xy2-4x2y)·3xy=18x2y3-12x3y2,B错误;(-x)·(2x+x2-1)=-x3-2x2+x,C错误;(-3x2y)·(-2xy+3yz+1)=6x3y2-9x2y2z-3x2y,D正确.故选D.4.答案 C (y2-ky+2y)(-y)=-y3+ky2-2y2,∵展开式中不含y2项,∴k-2=0,解得k=2.故选C.5.答案 C ∵xy2=-2,∴-xy(x2y5-xy3-y)=-x3y6+x2y4+xy2=-(xy2)3+(xy2)2+xy2=-(-2)3+(-2)2+(-2)=8+4-2=10,故选C.二、填空题6.答案21x4-12x3-4x2+5x解析3x2(7x2-4x+2)-5x(2x-1)=21x4-12x3+6x2-10x2+5x=21x4-12x3-4x2+5x.7.答案a2+a解析a(a+1)=a·a+a·1=a2+a.8.答案-12a4+2a解析(-2a)·(14a3-1)=(-2a)·14a3+(-2a)·(-1)=-12a4+2a.9.答案-2ab3+16a3b解析原式=-2ab3+16a3b.10.答案-m3n5+2m6n5解析12m2n3[-2mn2+(2m2n)2]=12m2n3(-2mn2+4m4n2)=-m3n5+2m6n5.11.答案2πx3+4πx2解析圆柱体的体积为πx2·(2x+4)=2πx3+4πx2.12.答案24m2n2-6mn解析∵长方体的长为2m,宽为3n,高为4mn-1,∴这个长方体的体积是2m·3n·(4mn-1)=6mn(4mn-1)=24m2n2-6mn.13.答案3;4解析∵-2x2y(-x m y+3xy3)=2x m+2y2-6x3y4=2x5y2-6x3y n,∴m+2=5,n=4,∴m=3,n=4.三、解答题14.解析(1)原式=169a2b2·92a2b+169a2b2·(-12ab)+169a2b2·34b2=8a4b3-643a3b3+43a2b4.(2)原式=a3+a2-a3+2a2+a=3a2+a.15.解析3a(2a2-4a+3)-2a2(3a+4)=6a3-12a2+9a-6a3-8a2=-20a2+9a,当a=-2时,原式=-20×(-2)2+9×(-2)=-98.16.解析x(3x-4)+2x(x+7)=5x(x-7)+90,3x2-4x+2x2+14x=5x2-35x+90,10x=-35x+90,45x=90,x=2.题答许不内以线横。

初二单项式乘多项式练习题含答案

初二单项式乘多项式练习题含答案

初二单项式乘多项式练习题一.解答题(共18 小题)1.先化简,再求值: 2222﹣2,其中 a=﹣ 2, b=2.2( a b+ab )﹣ 2( a b ﹣ 1)﹣ ab2.计算:( 1) 6x 2 2)(﹣ 2b )?3xy (2)( 4a ﹣ b 23.( 3x y ﹣2x+1 )(﹣ 2xy )4.计算:2 2 2 2_________ ;( 1)(﹣ 12a b c ) ?(﹣ abc ) =222) = _________ . ( 2)( 3a b ﹣4ab ﹣ 5ab ﹣1) ?(﹣ 2ab 5.计算:﹣ 6a?(﹣﹣ a+2)6.﹣ 3x?( 2x 2﹣ x+4)7.先化简,再求值 2 2 8.(﹣ 2 2)3a ( 2a ﹣ 4a+3)﹣ 2a ( 3a+4),其中 a=﹣ 2 a b )( b ﹣ a+9.一条防洪堤坝,其横断面是梯形,上底宽 a 米,下底宽( a+2b)米,坝高米.( 1)求防洪堤坝的横断面积;( 2)如果防洪堤坝长100 米,那么这段防洪堤坝的体积是多少立方米?210. 2ab( 5ab+3a b)11.计算:.23233212.计算: 2x( x ﹣ x+3)13.(﹣ 4a+12a b﹣ 7a b)(﹣ 4a ) = _________.2( 3x 222214.计算: xy y﹣ xy +y )15.(﹣ 2ab)( 3a ﹣ 2ab﹣ 4b)23216.计算:(﹣ 2a b)(3b ﹣ 4a+6)17.某同学在计算一个多项式乘以﹣3x 2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣ 4x+1 ,那么正确的计算结果是多少?18.对任意有理数x、 y 定义运算如下:x△ y=ax+by+cxy ,这里 a、 b、c 是给定的数,等式右边是通常数的加法及乘法运算,如当a=1, b=2,c=3 时, l △ 3=1×l+2 ×3+3×1×3=16 ,现已知所定义的新运算满足条件,1△2=3,2△3=4 ,并且有一个不为零的数 d 使得对任意有理数x△ d=x,求 a、b、 c、 d 的值.参考答案与试题解析一.解答题(共18 小题)1.先化简,再求值: 2222﹣2,其中 a=﹣ 2, b=2. 2( a b+ab )﹣ 2( a b ﹣ 1)﹣ ab 考点 : 整式的加减 —化简求值;整式的加减;单项式乘多项式.分析: 先根据整式相乘的法则进行计算,然后合并同类项,最后将字母的值代入求出原代数式的值. 解答: 解:原式 =2a 2 2 2 2﹣2b+2ab ﹣ 2a b+2 ﹣ ab 2 22 2=( 2a b ﹣ 2a b ) +( 2ab ﹣ ab ) +( 2﹣ 2)2=0+ab2 =ab当 a=﹣ 2,b=2 时,2原式 =(﹣ 2) ×2 =﹣2×4 =﹣ 8.点评: 本题是一道整式的加减化简求值的题,考查了单项式乘以多项式的法则,合并同类项的法则和方法.2.计算:( 1) 6x 2?3xy( 2)( 4a ﹣b 2)(﹣ 2b )考点 : 单项式乘单项式;单项式乘多项式.分析: ( 1)根据单项式乘单项式的法则计算;( 2)根据单项式乘多项式的法则计算.解答: 解:( 1) 6x 2?3xy=18x 3y ;( 2)( 4a ﹣b 2)(﹣ 2b ) =﹣ 8ab+2b 3.点评: 本题考查了单项式与单项式相乘、单项式与多项式相乘,熟练掌握运算法则是解题的关键.23.( 3x y ﹣2x+1 )(﹣ 2xy )考点 : 单项式乘多项式.分析: 根据单项式乘多项式的法则,用单项式乘多项式的每一项,再把所得的积相加,计算即可.23 2 2解答: 解:( 3x y ﹣ 2x+1 )(﹣ 2xy ) =﹣ 6x y +4x y ﹣ 2xy .点评: 本题考查单项式乘多项式的法则,熟练掌握运算法则是解题的关键,本题一定要注意符号的运算.4.计算:2 2 22﹣ 4 4 5;( 1)(﹣ 12a b c ) ?(﹣abc ) = a b c222) =332 42 32.( 2)( 3a b ﹣4ab ﹣ 5ab ﹣1) ?(﹣ 2ab ﹣6a b +8a b +10a b +2ab考点 : 单项式乘多项式;单项式乘单项式.分析: ( 1)先根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;单项式乘单项式,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式的法则计算;( 2)根据单项式乘多项式,先用单项式去乘多项式的每一项,再把所得的积相加的法则计算即可.解答:2 22 2,解:( 1)(﹣ 12a b c ) ?(﹣ abc )2 2 ,=(﹣ 12a b c ) ?=﹣;故答案为:﹣4 4 5a b c ;225ab ﹣1) ?(﹣ 2),( 2)( 3a b ﹣4ab ﹣ 2ab 222222),=3a b?(﹣ 2ab )﹣4ab ?(﹣ 2ab )﹣ 5ab?(﹣ 2ab )﹣ 1?(﹣ 2ab332 4232=﹣ 6a b +8a b +10a b +2ab.故答案为:﹣ 3 32 42 3 2.6a b +8a b +10a b +2ab点评: 本题考查了单项式与单项式相乘,单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号的处理.5.计算:﹣ 6a?(﹣﹣ a+2)考点 : 单项式乘多项式.分析: 根据单项式乘以多项式,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答: 解:﹣ 6a?(﹣ ﹣ a+2) =3a 3 2+2a ﹣12a .点评: 本题主要考查单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号.6.﹣ 3x?(2x 2﹣ x+4)考点 : 单项式乘多项式.分析: 根据单项式与多项式相乘,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答: 解:﹣ 3x?( 2x 2﹣ x+4),2=﹣ 3x?2x ﹣ 3x?(﹣ x )﹣ 3x?4,点评: 本题主要考查单项式与多项式相乘的运算法则,熟练掌握运算法则是解题的关键,计算时要注意运算符号.2 27.先化简,再求值3a ( 2a ﹣ 4a+3)﹣ 2a ( 3a+4),其中 a=﹣ 2考点 : 单项式乘多项式.分析: 首先根据单项式与多项式相乘的法则去掉括号,然后合并同类项,最后代入已知的数值计算即可.解答: 解: 3a ( 2a 2﹣ 4a+3)﹣ 2a 2( 3a+4)32322=6a ﹣ 12a +9a ﹣6a ﹣ 8a =﹣20a +9a ,当 a=﹣ 2 时,原式 =﹣20×4﹣9×2=﹣ 98.点评: 本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.228.计算:(﹣ a b )( b ﹣a+)考点 : 单项式乘多项式.专题 : 计算题.分析: 此题直接利用单项式乘以多项式,先把单项式乘以多项式的每一项,再把所得的积相加,利用法则计算即可.解答:解:(﹣22),a b)(b ﹣ a+=(﹣22+(﹣2a)+(﹣2,a b) ? b a b)(﹣ a b)? 2332=﹣ a b + a b﹣ a b.点评:本题考查单项式乘以多项式的运算,熟练掌握运算法则是解题的关键.9.一条防洪堤坝,其横断面是梯形,上底宽 a 米,下底宽( a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长 100 米,那么这段防洪堤坝的体积是多少立方米?考点:单项式乘多项式.专题:应用题.分析:(1)根据梯形的面积公式,然后利用单项式乘多项式的法则计算;( 2)防洪堤坝的体积=梯形面积×坝长.解答:解:( 1)防洪堤坝的横断面积=a( 2a+2b)2= a + ab.故防洪堤坝的横断面积为(S=[a+( a+2b)] × a 2a+ ab)平方米;( 2)堤坝的体积 V=Sh= (22a +ab)×100=50a +50ab.故这段防洪堤坝的体积是(250a+50ab)立方米.点评:本题主要考查了梯形的面积公式及堤坝的体积=梯形面积×长度,熟练掌握单项式乘多项式的运算法则是解题的关键.210. 2ab( 5ab+3a b)考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.22232解答:解: 2ab( 5ab+3a b)=10a b +6a b ;2232故答案为: 10a b +6a b .点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.11.计算:.考点:单项式乘多项式.分析:先根据积的乘方的性质计算乘方,再根据单项式与多项式相乘的法则计算即可.解答:解:(﹣xy2)2( 3xy﹣ 4xy 2+1)24( 3xy ﹣ 4xy 2)= x y+13 53 6 2 4.= x y ﹣ x y + x y点评: 本题考查了积的乘方的性质,单项式与多项式相乘的法则,熟练掌握运算法则是解题的关键,计算时要注意运算顺序及符号的处理.12.计算: 2x ( x 2﹣ x+3)考点 : 单项式乘多项式.专题 : 计算题.分析: 根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.2解答:解: 2x ( x ﹣ x+3 )2=2x ?x ﹣ 2x?x+2x ?332=2x ﹣2x +6x .点评: 本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.32 3 3 2 5 4 5 3.13.(﹣ 4a +12a b ﹣ 7a b )(﹣ 4a ) = 16a ﹣ 48a b+28a b考点 : 单项式乘多项式.专题 : 计算题.分析: 根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可. 解答: 3 2 3 32 54 5 3.解:(﹣ 4a +12a b ﹣ 7a b )(﹣ 4a ) =16a﹣ 48a b+28a b故答案为: 5 4 5 3 .16a ﹣ 48a b+28a b点评: 本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.22 214.计算: xy ( 3x y ﹣ xy +y )考点 : 单项式乘多项式.分析: 根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可. 解答: 解:原式 =xy 2 22 2 2( 3xy )﹣ xy ?xy +xy ?y3 32 4 3=3x y ﹣ x y +xy .点评: 本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.2 215.(﹣ 2ab )( 3a ﹣ 2ab ﹣ 4b )考点 : 单项式乘多项式.分析: 根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答: 解:(﹣ 2ab )( 3a 2﹣ 2ab ﹣ 4b 2)22)=(﹣ 2ab )?( 3a )﹣(﹣2ab )?( 2ab )﹣(﹣ 2ab ) ?( 4b32 23=﹣ 6a b+4a b +8ab .点评: 本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.232) 16.计算:(﹣ 2a b ) (3b ﹣ 4a+6考点 : 单项式乘多项式.2a 23的值,然后根据单项式与多项式相乘的运算法则:先用单项式乘多项式分析: 首先利用积的乘方求得(﹣ b ) 的每一项,再把所得的积相加计算即可.2b ) 32﹣4a+6) =﹣ 6 32657 363解答: 解:(﹣ 2a ( 3b 8a b ?( 3b ﹣4a+6) =﹣24a b +32a b ﹣48a b .点评: 本题考查了单项式与多项式相乘.此题比较简单,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.17.某同学在计算一个多项式乘以﹣ 3x2时,因抄错运算符号,算成了加上﹣3x 2,得到的结果是 x 2﹣ 4x+1 ,那么正确的计算结果是多少?考点 : 单项式乘多项式.专题 : 应用题.分析: 用错误结果减去已知多项式,得出原式,再乘以﹣3x 2得出正确结果.解答: 解:这个多项式是( x 2﹣ 4x+1)﹣(﹣ 3x 2) =4x 2﹣4x+1 ,( 3 分)正确的计算结果是: ( 4x 2243﹣3x 2.( 3 分)﹣ 4x+1) ?(﹣ 3x ) =﹣12x +12x点评: 本题利用新颖的题目考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.18.对任意有理数 x 、 y 定义运算如下: x △ y=ax+by+cxy ,这里 a 、 b 、c 是给定的数,等式右边是通常数的加法及乘法运算,如当 a=1, b=2,c=3 时, l △ 3=1×l+2 ×3+3×1×3=16 ,现已知所定义的新运算满足条件, 1△ 2=3,2△ 3=4 ,并且有一个不为零的数d 使得对任意有理数 x △ d=x ,求 a 、b 、 c 、 d 的值.考点 : 单项式乘多项式.专题 : 新定义.分析:由 x △ d=x ,得 ax+bd+cdx=x ,即( a+cd ﹣ 1)x+bd=0 ,得 ① ,由 1△ 2=3,得 a+2b+2c=3 ② ,2△ 3=4 ,得 2a+3b+6c=4 ③ ,解以上方程组成的方程组即可求得a 、b 、c 、d 的值.解答: 解:∵ x △ d=x ,∴ ax+bd+cdx=x ,∴( a+cd ﹣ 1) x+bd=0 ,∵有一个不为零的数 d 使得对任意有理数 x △ d=x ,则有① ,∵ 1△ 2=3 ,∴ a+2b+2c=3 ② ,∵ 2△ 3=4 ,∴ 2a+3b+6c=4 ③ ,又∵ d ≠0,∴ b=0 ,∴有方程组解得.故 a 的值为 5、 b 的值为 0、 c 的值为﹣ 1、d 的值为 4.点评: 本题是新定义题, 考查了定义新运算, 解方程组.解题关键是由一个不为零的数d 使得对任意有理数x △d=x ,得出方程( a+cd ﹣ 1)x+bd=0 ,得到方程组,求出 b 的值.。

单项式乘多项式练习题及答案

单项式乘多项式练习题及答案

单项式乘多项式练习题及答案第一套1.[单选题] *AB(正确答案)CD2.[单选题] *AB(正确答案)CD3.[单选题] * ABCD(正确答案) 4.[单选题] * A(正确答案) BD5.[单选题] * ABCD(正确答案) 6.[单选题] * A(正确答案) BC7.[单选题] * ABC(正确答案) D8.[单选题] * AB(正确答案) CD[单选题] * ABC(正确答案) D10.[单选题] * ABCD(正确答案)[单选题] * AB(正确答案) CD12.[单选题] * ABC(正确答案) D[单选题] * AB(正确答案) CD14.[单选题] * ABCD(正确答案)[单选题] * A(正确答案) BCD16.[单选题] * ABC(正确答案)17.[单选题] * ABC(正确答案) D18.[单选题] * ABD(正确答案) 19.[单选题] * ABCD(正确答案) 20.[单选题] * A(正确答案) BCD[单选题] * ABC(正确答案) D22.[单选题] * AB(正确答案) CD[单选题] * AB(正确答案) CD24.[单选题] * ABC(正确答案) D[单选题] *ABCD(正确答案)第二套时间:30分钟; 满分:100 1. a2·a4=( ) [单选题] * AB(正确答案)CD2. [单选题] *A(正确答案)BCD3.[单选题] *A(正确答案)BCD4. 已知23×83=8n,则n的值为( ) [单选题] *5124(正确答案)85. [单选题] * ABCD(正确答案)6.[单选题] *AB(正确答案)CD[单选题] * AB(正确答案) CD8.[单选题] * ABCD(正确答案)[单选题] * AB(正确答案) CD10.[单选题] * AB(正确答案) CD[单选题] * ABCD(正确答案) 12.[单选题] * ABC(正确答案) D第三套单项式乘多项式练习题及答案1、下列计算错误的是() [单选题] *A、B、C、(正确答案)D、2、计算的结果为() [单选题] *A、B、C、D、(正确答案)3下列计算正确的是() [单选题] *A、B、C、D、(正确答案)4、一个长方体的长、宽、高分别为3a-4,2a,a,它的体积等于() [单选题] *A、B、C、(正确答案)D、5、计算的结果是() [单选题] *A、B、(正确答案)C、D、6、下列运算正确的是() [单选题] *A、B、C、D、(正确答案)7、下列运算正确的是() [单选题] *A、B、C、(正确答案)D、8、计算的结果是() [单选题] *A、B、C、(正确答案)D、9、计算运算正确是() [单选题] *A、B、C、D、(正确答案)10、 [填空题] _________________________________(答案:-8)11、若,则x= [填空题]_________________________________(答案:-3)12、已知的值为 [填空题] _________________________________(答案:-3)13、计算 [填空题]_________________________________14、计算 [填空题]_________________________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单项式乘多项式试题精选一.选择题(共13小题)1.下列计算错误的是()A.(a2b3)2=a4b6B.(a5)2=a10C.4x2y•(﹣3x4y3)=﹣12x6y3D.2x•(3x2﹣x+5)=6x3﹣2x2+10x2.通过计算几何图形的面积可表示一些代数恒等式,如图可表示的代数恒等式是()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)2=a2+2ab+b2C.2a(a+b)=2a2+2ab D.(a+b)(a﹣b)=a2﹣b23.计算(﹣2a3+3a2﹣4a)(﹣5a5)等于()A.10a15﹣15a10+20a5B.﹣7a8﹣2a7﹣9a6C.10a8+15a7﹣20a6D.10a8﹣15a7+20a64.下列计算正确的是()A.(﹣2a)•(3ab﹣2a2b)=﹣6a2b﹣4a3b B.(2ab2)•(﹣a2+2b2﹣1)=﹣4a3b4 C.(abc)•(3a2b﹣2ab2)=3a3b2﹣2a2b3D.(ab)2•(3ab2﹣c)=3a3b4﹣a2b2c5.一个长方体的长、宽、高分别3a﹣4,2a,a,它的体积等于()A.3a3﹣4a2B.a2C.6a3﹣8a2D.6a3﹣8a6.适合2x(x﹣1)﹣x(2x﹣5)=12的x的值是()A.2B.1C.0D.47.计算a(1+a)﹣a(1﹣a)的结果为()A.2a B.2a2C.0D.﹣2a+2a8.(2008•毕节地区)下列运算正确的是()A.(2x2)3=2x6B.(﹣2x)3•x2=﹣8x6C.3x2﹣2x(1﹣x)=x2﹣2x D.x÷x﹣3÷x2=x29.(2009•眉山)下列运算正确的是()A.(x2)3=x5B.3x2+4x2=7x4C.(﹣x)9÷(﹣x)3=x6D.﹣x(x2﹣x+1)=﹣x3﹣x2﹣x10.(2014•湖州)计算2x(3x2+1),正确的结果是()A.5x3+2x B.6x3+1 C.6x3+2x D.6x2+2x11.(2013•本溪)下列运算正确的是()A.a3•a2=a6B.2a(3a﹣1)=6a3﹣1 C.(3a2)2=6a4D.2a+3a=5aA.a2•a3=a5B.a+a=a2C.(a2)3=a5D.a2(a+1)=a3+113.(2010•连云港)下列计算正确的是()A.a+a=a2B.a•a2=a3C.(a2)3=a5D.a2(a+1)=a3+1二.填空题(共10小题)14.通过计算几何图形的面积可以得到一些恒等式,根据如图的长方形面积写出的恒等式为_________.15.计算:2x2•(﹣3x3)=_________.16.当a=﹣2时,则代数式的值为_________.17.若2x(x﹣1)﹣x(2x+3)=15,则x=_________.18.若﹣2x2y(﹣x m y+3xy3)=2x5y2﹣6x3y n,则m=_________,n=_________.19.a n b2[3b n﹣1﹣2ab n+1+(﹣1)2003]=_________.20.(2014•盐城)已知x(x+3)=1,则代数式2x2+6x﹣5的值为_________.21.(2014•上海)计算:a(a+1)=_________.22.(1998•内江)计算:4x•(2x2﹣3x+1)=_________.23.(2009•贺州)计算:(﹣2a)•(a3﹣1)=_________.三.解答题(共7小题)24.计算:(﹣2x3y)•(3xy2﹣4xy+1).25.(2a2)•(3ab2﹣5ab3)26.长方形的长、宽、高分别是3x﹣4,2x和x,它们的表面积是多少?28.①xy•(x﹣y+1)②﹣3a(4a2﹣a+b)29.化简:(1)a(3+a)﹣3(a+2);(2)2a2b(﹣3ab2);(3)(x﹣)•(﹣12y).30.阅读下列文字,并解决问题.已知x2y=3,求2xy(x5y2﹣3x3y﹣4x)的值.分析:考虑到满足x2y=3的x、y的可能值较多,不可以逐一代入求解,故考虑整体思想,将x2y=3整体代入.解:2xy(x5y2﹣3x3y﹣4x)=2x6y3﹣6x4y2﹣8x2y=2(x2y)3﹣6(x2y)2﹣8x2y=2×33﹣6×32﹣8×3=﹣24.请你用上述方法解决问题:已知ab=3,求(2a3b2﹣3a2b+4a)•(﹣2b)的值.单项式乘多项式试题精选参考答案与试题解析一.选择题(共13小题)1.下列计算错误的是()A.(a2b3)2=a4b6B.(a5)2=a10C.4x2y•(﹣3x4y3)=﹣12x6y3D.2x•(3x2﹣x+5)=6x3﹣2x2+10x考点:单项式乘单项式;幂的乘方与积的乘方;单项式乘多项式.分析:根据单项式乘单项式,单项式乘多项式以及幂的乘方与积的乘方的知识求解即可求得答案.解答:解:A、(a2b3)2=a4b6,故A选项正确,不符合题意;B、(a5)2=a10,故B选项正确,不符合题意;C、4x2y•(﹣3x4y3)=﹣12x6y4,故C选项错误,符合题意;D、2x•(3x2﹣x+5)=6x3﹣2x2+10x,故D选项正确,不符合题意.故选:C.点评:此题考查了单项式乘单项式,单项式乘多项式以及幂的乘方与积的乘方等知识,解题的关键是熟记法则.2.通过计算几何图形的面积可表示一些代数恒等式,如图可表示的代数恒等式是()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)2=a2+2ab+b2C.2a(a+b)=2a2+2ab D.(a+b)(a﹣b)=a2﹣b2考点:单项式乘多项式.专题:几何图形问题.分析:由题意知,长方形的面积等于长2a乘以宽(a+b),面积也等于四个小图形的面积之和,从而建立两种算法的等量关系.解答:解:长方形的面积等于:2a(a+b),也等于四个小图形的面积之和:a2+a2+ab+ab=2a2+2ab,即2a(a+b)=2a2+2ab.故选:C.点评:本题考查了单项式乘多项式的几何解释,列出面积的两种不同表示方法是解题的关键.3.计算(﹣2a3+3a2﹣4a)(﹣5a5)等于()A.10a15﹣15a10+20a5B.﹣7a8﹣2a7﹣9a6C.10a8+15a7﹣20a6D.10a8﹣15a7+20a6考点:单项式乘多项式.分析:根据单项式乘以多项式的法则,单项式去乘多项式的每一项,再把所得的积相加,单项式乘以单项式的法则,系数与系数相乘,相同字母与相同字母相乘,对于只在一个单项式里出现的字母,则连同它的指数作故选:D.点评:本题主要考查单项式乘以多项式的法则,以及单项式的乘法法则,需要熟练掌握.4.下列计算正确的是()A.(﹣2a)•(3ab﹣2a2b)=﹣6a2b﹣4a3b B.(2ab2)•(﹣a2+2b2﹣1)=﹣4a3b4 C.(abc)•(3a2b﹣2ab2)=3a3b2﹣2a2b3D.(ab)2•(3ab2﹣c)=3a3b4﹣a2b2c考点:单项式乘多项式.分析:根据单项式乘以多项式法则,对各选项计算后利用排除法求解.解答:解:A、应为(﹣2a)•(3ab﹣2a2b)=﹣6a2b+4a3b,故本选项错误;B、应为(2ab2)•(﹣a2+2b2﹣1)=﹣2a3b2+4ab4﹣2ab2,故本选项错误;C、应为(abc)•(3a2b﹣2ab2)=3a3b2c﹣2a2b3c,故本选项错误;D、(ab)2•(3ab2﹣c)=3a3b4﹣a2b2c,正确.故选D.点评:本题考查了单项式乘以多项式法则.单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.要熟记单项式与多项式的每一项都相乘,不能漏乘.5.一个长方体的长、宽、高分别3a﹣4,2a,a,它的体积等于()A.3a3﹣4a2B.a2C.6a3﹣8a2D.6a3﹣8a考点:单项式乘多项式;单项式乘单项式.分析:根据长方体的体积=长×宽×高,列出算式,再根据单项式乘多项式的运算法则计算即可.解答:解:由题意知,V=(3a﹣4)•2a•a=6a3﹣8a2.长方体故选C.点评:本题考查了多项式乘单项式的运算法则,要熟练掌握长方体的体积公式.6.适合2x(x﹣1)﹣x(2x﹣5)=12的x的值是()A.2B.1C.0D.4考点:单项式乘多项式;解一元一次方程.分析:先去括号,然后移项、合并化系数为1可得出答案.解答:解:去括号得:2x2﹣2x﹣2x2+5x=12,合并同类项得:3x=12,系数化为1得:x=4.故选D.点评:本题主要考查了单项式乘多项式的运算法则以及解一元一次方程.比较简单,去括号时,注意不要漏乘括号里的每一项.7.计算a(1+a)﹣a(1﹣a)的结果为()A.2a B.2a2C.0D.﹣2a+2a考点:单项式乘多项式.分析:按照单项式乘以多项式的法则展开后合并同类项即可.解答:解:原式=a+a2﹣a+a2=2a2,故选B.8.(2008•毕节地区)下列运算正确的是()A.(2x2)3=2x6B.(﹣2x)3•x2=﹣8x6C.3x2﹣2x(1﹣x)=x2﹣2x D.x÷x﹣3÷x2=x2考点:单项式乘多项式;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法;单项式乘单项式.分析:根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;单项式的乘法法则,单项式乘多项式的法则,同底数幂的除法,对各选项分析判断后利用排除法求解.解答:解:A、应为(2x2)3=23•(x2)3=8x6,故本选项错误;B、应为(﹣2x)3•x2=﹣8x3•x2=﹣8x5,故本选项错误;C、应为3x2﹣2x(1﹣x)=3x2﹣2x+2x2=5x2﹣2x,故本选项错误;D、x÷x﹣3÷x2=x1﹣(﹣3)﹣2=x2,正确.故选D.点评:本题考查积的乘方,同底数幂的除法法则,单项式乘单项式,单项式乘多项式,熟练掌握运算法则是解题的关键.9.(2009•眉山)下列运算正确的是()A.(x2)3=x5B.3x2+4x2=7x4C.(﹣x)9÷(﹣x)3=x6D.﹣x(x2﹣x+1)=﹣x3﹣x2﹣x考点:单项式乘多项式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.专题:压轴题.分析:根据幂的乘方,底数不变指数相乘;合并同类项的法则;同底数幂相除,底数不变指数相减;单项式乘多项式的法则,对各选项分析判断后利用排除法求解.解答:解:A、应为(x2)3=x6,故本选项错误;B、应为3x2+4x2=7x2,故本选项错误;D、应为﹣x(x2﹣x+1)=﹣x3+x2﹣x,故本选项错误;C、(﹣x)9÷(﹣x)3=x6正确.故选C.点评:本题考查幂的乘方,合并同类项,同底数幂的除法,单项式乘多项式,熟练掌握运算性质和法则是解题的关键.10.(2014•湖州)计算2x(3x2+1),正确的结果是()A.5x3+2x B.6x3+1 C.6x3+2x D.6x2+2x考点:单项式乘多项式.专题:计算题.分析:原式利用单项式乘以多项式法则计算即可得到结果.解答:解:原式=6x3+2x,故选:C.点评:此题考查了单项式乘多项式,熟练掌握运算法则是解本题的关键.11.(2013•本溪)下列运算正确的是()A.a3•a2=a6B.2a(3a﹣1)=6a3﹣1 C.(3a2)2=6a4D.2a+3a=5a考点:单项式乘多项式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:A、原式利用同底数幂的乘法法则计算得到结果,即可作出判断;D、原式合并同类项得到结果,即可作出判断.解答:解:A、a3•a2=a5,本选项错误;B、2a(3a﹣1)=6a2﹣2a,本选项错误;C、(3a2)2=9a4,本选项错误;D、2a+3a=5a,本选项正确,故选D点评:此题考查了单项式乘多项式,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.12.(2011•湛江)下列计算正确的是()A.a2•a3=a5B.a+a=a2C.(a2)3=a5D.a2(a+1)=a3+1考点:单项式乘多项式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的乘法法则:底数不变,指数相加,以及合并同类项:只把系数相加,字母及其指数完全不变,幂的乘方法则:底数不变,指数相乘,单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加分别求出即可.解答:解:A.a2•a3=a5,故此选项正确;B.a+a=2a,故此选项错误;C.(a2)3=a6,故此选项错误;D.a2(a+1)=a3+a2,故此选项错误;故选:A.点评:此题主要考查了整式的混合运算,根据题意正确的掌握运算法则是解决问题的关键.13.(2010•连云港)下列计算正确的是()A.a+a=a2B.a•a2=a3C.(a2)3=a5D.a2(a+1)=a3+1考点:单项式乘多项式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的乘法、幂的乘方和单项式乘以多项式的运算法则计算后利用排除法求解.解答:解:A、a+a=a2,很明显错误,应该为a+a=2a,故本选项错误;B、a•a2=a3,利用同底数幂的乘法,故本选项正确;C、应为(a2)3=a6,故本选项错误;D、a2(a+1)=a3+a2,故本选项错误.故选B.点评:本题主要考查幂的运算性质,单项式乘以多项式的法则,需要熟练掌握.二.填空题(共10小题)14.通过计算几何图形的面积可以得到一些恒等式,根据如图的长方形面积写出的恒等式为2a(a+b)=2a2+2ab.考点:单项式乘多项式.分析:由题意知,长方形的面积等于长2a乘以宽(a+b),面积也等于四个小图形的面积之和,从而建立两种算法的等量关系.即2a(a+b)=2a2+2ab.故答案为:2a(a+b)=2a2+2ab.点评:本题考查了单项式乘多项式的几何解释,列出面积的两种不同表示方法是解题的关键.15.计算:2x2•(﹣3x3)=﹣6x5.考点:单项式乘多项式.专题:计算题.分析:根据单项式乘单项式的法则:系数的积作为积的系数,同底数的幂分别相乘也作为积的一个因式,进行计算即可.解答:解:2x2•(﹣3x3)=(﹣2×3)x2•x3=﹣6x5.故答案为:﹣6x5.点评:本题考查了单项式乘单项式法则的应用,通过做此题培养了学生的理解能力和计算能力,题目比较好,难度不大.16.当a=﹣2时,则代数式的值为﹣8.考点:代数式求值;单项式乘多项式.专题:计算题.分析:根据单项式乘多项式法则展开,再合并同类项,把﹣2代入求出即可.解答:解:a=﹣2,a﹣2(1﹣a)=a﹣2+ a=3a﹣2=3×(﹣2)﹣2=﹣8.故答案为:﹣8.点评:本题考查了单项式乘多项式法则和求代数式的值等知识点的应用,主要看学生展开时是否漏乘和能否正确合并同类项.17.若2x(x﹣1)﹣x(2x+3)=15,则x=﹣3.考点:单项式乘多项式.分析:根据单项式乘多项式的法则,先去括号,再移项、合并同类项,系数化1,可求出x的值.解答:解:2x(x﹣1)﹣x(2x+3)=15,去括号,得2x2﹣2x﹣2x2﹣3x=15,合并同类项,得﹣5x=15,系数化为1,得x=﹣3.18.若﹣2x2y(﹣x m y+3xy3)=2x5y2﹣6x3y n,则m=3,n=4.考点:单项式乘多项式.分析:按照多项式乘以单项式的法则展开后即可求得m、n的值.解答:解:原式=2x m+2y2﹣6x3y4=2x5y2﹣6x3y n,∴m+2=5,n=4,∴m=3,n=4,故答案为:3,4.点评:本题考查了单项式乘以多项式,单项式乘以多项式就是用单项式乘以多项式中的每一项,然后相加.19.a n b2[3b n﹣1﹣2ab n+1+(﹣1)2003]=3a n b n+1﹣2a n+1b n+3﹣a n b2.考点:单项式乘多项式.分析:根据单项式成多项式,用单项式乘多向数的每一项,把所得的积相加,可得答案.解答:解:原式=a n b2(3b n﹣1﹣2ab n+1﹣1)=3a n b n+1﹣2a n+1b n+3﹣a n b2,故答案为:3a n b n+1﹣2a n+1b n+3﹣a n b2.点评:本题考查了单项式成多项式,用单项式乘多向数的每一项,把所得的积相加.20.(2014•盐城)已知x(x+3)=1,则代数式2x2+6x﹣5的值为﹣3.考点:代数式求值;单项式乘多项式.专题:整体思想.分析:把所求代数式整理出已知条件的形式,然后代入数据进行计算即可得解.解答:解:∵x(x+3)=1,∴2x2+6x﹣5=2x(x+3)﹣5=2×1﹣5=2﹣5=﹣3.故答案为:﹣3.点评:本题考查了代数式求值,整体思想的利用是解题的关键.21.(2014•上海)计算:a(a+1)=a2+a.考点:单项式乘多项式.专题:计算题.分析:原式利用单项式乘以多项式法则计算即可得到结果.解答:解:原式=a2+a.故答案为:a2+a点评:此题考查了单项式乘以多项式,熟练掌握运算法则是解本题的关键.22.(1998•内江)计算:4x•(2x2﹣3x+1)=8x3﹣12x2+4x.考点:单项式乘多项式.分析:根据单项式与多项式相乘,应用单项式与多项式的每一项都分别相乘,再把所得的积相加,计算即可.解答:解:4x•(2x2﹣3x+1),=4x•2x2﹣4x•3x+4x•1,=8x3﹣12x2+4x.23.(2009•贺州)计算:(﹣2a)•(a3﹣1)=﹣a4+2a.考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣2a)•(a3﹣1),=(﹣2a)•(a3)+(﹣1)•(﹣2a),=﹣a4+2a.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.三.解答题(共7小题)24.计算:(﹣2x3y)•(3xy2﹣4xy+1).考点:单项式乘多项式.专题:计算题.分析:利用单项式乘以多项式中的每一项后把所得的积相加即可得到结果.解答:解:(﹣2x3y)•(3xy2﹣4xy+1)=﹣2x3y•3xy2+(﹣2x3y)•4xy+(﹣2x3y)=﹣6x4y3+8x4y2﹣2x3y.点评:本题考查了单项式乘以多项式的知识,属于基础题,比较简单.25.(2a2)•(3ab2﹣5ab3)考点:单项式乘多项式.分析:单项式乘以多项式时用单项式和多项式中的每一项相乘,然后再相加即可.解答:解:(2a2)•(3ab2﹣5ab3)=(2a2)•3ab2﹣(2a2)•5ab3=6a3b2﹣10a3b3.点评:本题考查了单项式乘以多项式的知识,解题的关键是牢记法则并熟记有关幂的性质.26.长方形的长、宽、高分别是3x﹣4,2x和x,它们的表面积是多少?考点:单项式乘多项式.分析:根据“长方体的表面积=(长×宽+长×高+宽×高)×2”进行解答即可;解答:解:长方体的表面积=2×[(3x﹣4)×2x+(3x﹣4)•x+2x×x]=22x2﹣24x.点评:本题考查了单项式乘以多项式,解题的关键是牢记法则.27.已知ab2=﹣1,求(﹣ab)(a2b5﹣ab3﹣b)的值.考点:单项式乘多项式.分析:原式利用单项式乘以多项式法则计算,变形后将已知等式代入计算即可求出值.解答:解:∵ab2=﹣1,∴原式=﹣a3b6+a2b4+ab2=1.点评:此题考查了因式分解的应用,利用了整体代入的思想,是一道基本题型.28.①xy•(x﹣y+1)②﹣3a(4a2﹣a+b)考点:单项式乘多项式.分析:利用单项式乘以多项式的运算法则进行运算即可.解答:解:①原式=xy•x﹣vy•y+xy=x2y﹣xy2+xy﹣12;②原式=②﹣3a•4a2+3a×a﹣3a× b=﹣12a3+5a2﹣2ab.点评:本题考查了单项式乘以多项式,解题的关键是牢记法则.29.化简:(1)a(3+a)﹣3(a+2);(2)2a2b(﹣3ab2);(3)(x﹣)•(﹣12y).考点:单项式乘多项式.分析:(1)根据单项式成多项式用单项式乘多向数的每一项,把所得的积相加,再根据合并同类项,可得答案;(2)根据单项式成多项式用单项式乘多向数的每一项,把所得的积相加,可得答案;(3)根据单项式成多项式用单项式乘多向数的每一项,把所得的积相加,可得答案;解答:解(1)原式=3a+a2﹣3a﹣6=a2﹣6;(2)原式=a3b2﹣6a3b3;(3)原式=﹣4xy+9xy2.点评:本题考查了单项式成多项式,单项式成多项式用单项式乘多向数的每一项,把所得的积相加.30.阅读下列文字,并解决问题.已知x2y=3,求2xy(x5y2﹣3x3y﹣4x)的值.分析:考虑到满足x2y=3的x、y的可能值较多,不可以逐一代入求解,故考虑整体思想,将x2y=3整体代入.解:2xy(x5y2﹣3x3y﹣4x)=2x6y3﹣6x4y2﹣8x2y=2(x2y)3﹣6(x2y)2﹣8x2y=2×33﹣6×32﹣8×3=﹣24.请你用上述方法解决问题:已知ab=3,求(2a3b2﹣3a2b+4a)•(﹣2b)的值.考点:单项式乘多项式.分析:根据单项式乘多项式,可得一个多项式,根据把已知代入,可得答案.解答:解:(2a3b2﹣3a2b+4a)•(﹣2b),=﹣4a3b3+6a2b2﹣8ab,=﹣4×(ab)3+6(ab)2﹣8ab,=﹣4×33+6×32﹣8×3,=﹣108+54﹣24,=﹣78.点评:本题考查了单项式乘多项式,整体代入是解题关键.。

相关文档
最新文档