电磁场与电磁波:练习题参考答案

合集下载

电磁场与电磁波试题答案

电磁场与电磁波试题答案

《电磁场与电磁波》试题1一、填空题(每小题1分,共10分)1.在均匀各向同性线性媒质中,设媒质的导磁率为μ,则磁感应强度B和磁场H满足的方程为: 。

2.设线性各向同性的均匀媒质中,02=∇φ称为 方程。

3.时变电磁场中,数学表达式H E S⨯=称为 。

4.在理想导体的表面, 的切向分量等于零。

5.矢量场)(r A穿过闭合曲面S 的通量的表达式为: 。

6.电磁波从一种媒质入射到理想 表面时,电磁波将发生全反射。

7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于 。

8.如果两个不等于零的矢量的 等于零,则此两个矢量必然相互垂直。

9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合 关系。

10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用 函数的旋度来表示。

二、简述题 (每小题5分,共20分)11.已知麦克斯韦第二方程为t B E ∂∂-=⨯∇ ,试说明其物理意义,并写出方程的积分形式。

12.试简述唯一性定理,并说明其意义。

13.什么是群速?试写出群速与相速之间的关系式。

14.写出位移电流的表达式,它的提出有何意义?三、计算题 (每小题10分,共30分)15.按要求完成下列题目(1)判断矢量函数y x e xz ey B ˆˆ2+-=是否是某区域的磁通量密度?(2)如果是,求相应的电流分布。

16.矢量z y x e e eA ˆ3ˆˆ2-+=,z y x e e eB ˆˆ3ˆ5--=,求(1)B A+ (2)B A ⋅17.在无源的自由空间中,电场强度复矢量的表达式为()jkz y x e E e E eE --=004ˆ3ˆ(1) 试写出其时间表达式; (2) 说明电磁波的传播方向;四、应用题 (每小题10分,共30分)18.均匀带电导体球,半径为a ,带电量为Q 。

试求 (1) 球内任一点的电场强度 (2) 球外任一点的电位移矢量。

19.设无限长直导线与矩形回路共面,(如图1所示), (1)判断通过矩形回路中的磁感应强度的方向(在图中标出); (2)设矩形回路的法向为穿出纸面,求通过矩形回路中的磁通量。

电磁场与电磁波习题及答案

电磁场与电磁波习题及答案

11 麦克斯韦I 方程组.的微分形式 是:J . H =J JD,\ E = _。

「|_B =0,七出=:2静电场的基本方程积分形式为:性£虏=03理想导体(设为媒质 2)与空气(设为媒质 1)分界 面上,电磁场的边界条件为:4线性且各向同性媒质的 本构关系方程是:5电流连续性方程的微分形式为:。

6电位满足的泊松方程为;在两种完纯介质分界面上 电位满足的边界 。

7应用镜像法和其它间接方法解静 态场边值问题的理论依据是。

8.电场强度E Aj 单位是,电位移D t 勺单位是。

9.静电场的两个基本方程的微分 形式为“黑E =0 Q D = P ; 10.—个直流电流回路除 受到另一个直流电流回路的库仑力作用外还将受到安 培力作用1 .在分析恒定磁场时,引入矢量磁位A,并令冒=%,的依据是(c.V 值=0)2 . “某处的电位 中=0,则该处的电场强度 E=0的说法是(错误的)。

3 .自由空间中的平行双线传输线,导线半径为a ,线间距为D ,则传输线单位长度的电容为4 .点电荷产生的电场强度随距离变化的规律为( 1/r2)。

5 . N 个导体组成的系统的能量 W =1£ q * ,其中e i 2 t i i 是(除i 个导体外的其他导体)产生的电位。

6 .为了描述电荷分布在空间流动的状态, 定义体积电流密度J,其国际单位为(a/m2 )7 .应用高斯定理求解静电场要求电场具有(对称性)分布。

8 .如果某一点的电场强度为零,则该点电位的(不一 定为零 )。

9 .真空中一个电流元在某点产生的磁感应强度dB 随该点到电流元距离变化的规律为( 1/r2 )。

10.半径为a 的球形电荷分布产生的电场的能量储存于(整个空间)。

三、海水的电导率为 4S/m,相对介电常数为 81,求频 率为1MHz 时,位幅与导幅比值?三、解:设电场随时间作正弦变化,表示为:E = e x E m cos t则位移电流密度为:J d =— = -ex :-. ■ 0 r E m Sin t;t其振幅彳1为:J dm = 网 5E m = 4.5X10- E m 传导电 流的振幅值为: J cm -二- E m = 4E m 因此:Jm =1.125/0J -cm四、自由空间中,有一半径为a 、带电荷量q 的导体球。

电磁场与电磁波第七章习题及参考答案

电磁场与电磁波第七章习题及参考答案
解设一段长为 、特性阻抗为 的无损耗传输线,左端接信号源,右端接负载 ,如图所示。信号源产生沿 方向传输的电压波和电流波为
(1)
(2)
图无损耗传输线
入射电压电流波传输到负载后,一部分被负载吸收,一部分被反射。反射电压电流波可写为
(3)
(4)
传输线上的总电压电流波可写为
(5)
(6)
在终端 ,
(7)
(8)
解:
图7.2-2
(7.2-5)
(7.2-6)
串联支路上的电压为
(1)
并联支路上的电流为
(2)
由(1)和(2)式得
(3)
(4)
两边同除 得
(5)
(6)
(5)、(6)式就是(7.2-5)和(7.2-6)式对应的传输线方程的时域形式。
7-3、由(7.2-10)、(7.2-3)、(7.2-4)和(7.2-9)式推导(7.2-11)和 (7.2-12)式。
习题
7-1、如果 已知,由无源区的麦克斯韦方程,求圆柱坐标系中 与 的关系。
解:设 ;
则 ;
在圆柱坐标系中展开无源区的麦克斯韦方程


由以上几式得
式中
7-2证明(7.2-6)式为(7.2-4)式的解。
证明:
由(7.2-6)式
可得:
因此 即(7.2-4)式
7-2、从图7.2-2的等效电路,求(7.2-5)和(7.2-6)式对应的传输线方程的时域形式。
解: 将
代入 并等式两边平方得
令等式两边实部和虚部分别相等,得
解以上两方程,得
(7.2-11)
(7.2-12)
7-4、证明(7.2-13)式为(7.2-7)式的解。

电磁场与电磁波典型习题及答案(恒定磁场)

电磁场与电磁波典型习题及答案(恒定磁场)

E
=
ez
π
a12γ 1

I (a22

a12 )γ 2
J1
=
γ1E
=
ez
5 ×10 7 12π
A/m2

J2
=
γ2E
=
ez
5 ×10 7 3π
A/m2
(2) 当 r < a1 时,有 2π rB = π r 2 µ0 J1 ⇒ B = 0.833r
当 a1
<
r
<
a2
时,有
2π rB
=
µ0[π a12 J1
解:(1) 由安培环路定律,可得
H
= eφ
I 2π r
所以得到
B1
= µ0H
= eφ
µ0I 2π r
B2
= µH
= eφ
µI 2π r
(2) 磁介质的磁化强度为
则磁化电流体密度为
M
=
1 µ0
B2

H
= eφ
(µ − µ0 )I 2πµ0 r
JM
=∇× M
= eZ
1 r
d dr
(rM
φ
)
=
eZ
(µ − µ0 )I 2πµ0
习题四
4-1 分别求附图中各种形状的线电流在真空中的 P 点产生的磁感应强度。
I
I
I
P
P
P
a
R R
a)
b)
c)
题 4-1 图
解:a) 略
b) 如图 b)所示,由通电 I 的细圆环在轴线上的磁场
B = ez
µ0 Ia 2 2(a 2 + z 2 )3 2

电磁场与电磁波课后习题及答案七章习题解答

电磁场与电磁波课后习题及答案七章习题解答

《电磁场与电磁波》习题解答 第七章 正弦电磁波7.1 求证在无界理想介质内沿任意方向e n (e n 为单位矢量)传播的平面波可写成j()e n r t m βω⋅-=e E E 。

解 E m 为常矢量。

在直角坐标中cos cos cos n x y z x y z x y zαβγ=++=++e e e e r e e e故(cos cos cos )()cos cos cos n x y z x y z x y z x y z αβγαβγ⋅=++⋅++=++e r e e e e e e则j()[(cos cos cos )]22222[(cos cos cos )]2e ()()n r t j x y z t m m x x y y z zj x y z t m e j e j βωβαβγωβαβγωββ⋅-++-++-==∇=∇+∇+∇==e E E E E e E e E e E E E而22j[(cos cos cos )]222{e }x y z t m t t βαβγωω++-∂∂==-∂∂E E E故222222()(0j j t μεβμεωμεω∂∇-=+=+=∂EE E E E E 可见,已知的()n j e r t m e βω⋅-=E E 满足波动方程2220t με∂∇-=∂EE故E 表示沿e n 方向传播的平面波。

7.2 试证明:任何椭圆极化波均可分解为两个旋向相反的圆极化波。

解 表征沿+z 方向传播的椭圆极化波的电场可表示为12()j z x x y y E jE e β-=+=+E e e E E式中取121[()()]21[()()]2j zx x y y x y j zx x y y x y E E j E E e E E j E E e ββ--=+++=---E e e E e e显然,E 1和E 2分别表示沿+z 方向传播的左旋圆极化波和右旋圆极化波。

电磁场与电磁波复习题(含答案)

电磁场与电磁波复习题(含答案)

电磁场与电磁波复习题(含答案)电磁场与电磁波复习题⼀、填空题1、⽮量的通量物理含义是⽮量穿过曲⾯的⽮量线总数,散度的物理意义⽮量场中任意⼀点处通量对体积的变化率。

散度与通量的关系是⽮量场中任意⼀点处通量对体积的变化率。

2、散度在直⾓坐标系的表达式 z A y A x A z yxA A ??++=??=ρρdiv ;散度在圆柱坐标系下的表达;3、⽮量函数的环量定义⽮量A 沿空间有向闭合曲线C 的线积分,旋度的定义过点P 作⼀微⼩曲⾯S,它的边界曲线记为L,⾯的法线⽅与曲线绕向成右⼿螺旋法则。

当S 点P 时,存在极限环量密度。

⼆者的关系 ndS dC e A ρρ?=rot ;旋度的物理意义点P 的旋度的⼤⼩是该点环量密度的最⼤值;点P 的旋度的⽅向是该点最⼤环量密度的⽅向。

4.⽮量的旋度在直⾓坐标系下的表达式。

5、梯度的物理意义标量场的梯度是⼀个⽮量,是空间坐标点的函数。

梯度的⼤⼩为该点标量函数?的最⼤变化率,即该点最⼤⽅向导数;梯度的⽅向为该点最⼤⽅向导数的⽅向,即与等值线(⾯)相垂直的⽅向,它指向函数的增加⽅向等值⾯、⽅向导数与梯度的关系是梯度的⼤⼩为该点标量函数的最⼤变化率,即该点最⼤⽅向导数;梯度的⽅向为该点最⼤⽅向导数的⽅向,即与等值线(⾯)相垂直的⽅向,它指向函数的增加⽅向.; 6、⽤⽅向余弦cos ,cos ,cos αβγ写出直⾓坐标系中单位⽮量l e r 的表达式;7、直⾓坐标系下⽅向导数u的数学表达式是,梯度的表达式8、亥姆霍兹定理的表述在有限区域内,⽮量场由它的散度、旋度及边界条件唯⼀地确定,说明的问题是⽮量场的散度应满⾜的关系及旋度应满⾜的关系决定了⽮量场的基本性质。

9、麦克斯韦⽅程组的积分形式分别为 0()s l s s l sD dS Q BE dl dS t B dS D H dl J dS t ?=??=-??=?=+r r r r r r r r g r r r r r g ????其物理描述分别为10、麦克斯韦⽅程组的微分形式分别为 020E /E /t B 0B //t B c J E ρεε??=??=-=??=+??r r r r r r r其物理意义分别为11、时谐场是激励源按照单⼀频率随时间作正弦变化时所激发的也随时间按照正弦变化的场,⼀般采⽤时谐场来分析时变电磁场的⼀般规律,是因为任何时变周期函数都可以⽤正弦函数表⽰的傅⾥叶级数来表⽰;在线性条件下,可以使⽤叠加原理。

电磁场与电磁波第二版课后练习题含答案

电磁场与电磁波第二版课后练习题含答案一、选择题1. 一物体悬挂静止于匀强磁场所在平面内的位置,则这个磁场方向?A. 垂直于所在平面B. 并行于所在平面C. 倾斜于所在平面D. 无法确定答案:B2. 在运动着的带电粒子所在区域内,由于其存在着磁场,因此在该粒子所处位置引入一个另外的磁场,引入后,运动着的电荷将会加速么?A. 会加速B. 不会加速C. 无法确定答案:B3. 一台电视有线播出系统, 将信号源之中所传输的压缩图像和声音还原出来,要利用的是下列过程中哪一个?A. 光速传输B. 超声波传输C. 磁场作用D. 空气振动答案:C4. 一根充足长的长直电导体内有恒定电流I通过,则令曼培尔定律最适宜描述下列哪一项观察?A. 两个直平面电流之间的相互作用B. 当一个直平面电流遇到一个平行于它的磁场时, 会发生什么C. 当两个平行电流直线之间的相互作用D. 当电磁波穿过磁场时会发生什么答案:C5. 电磁波的一个特点是什么?A. 电磁波是一种无质量的相互作用的粒子B. 电磁波的速度跟频率成反比C. 不同波长的电磁波拥有的能量不同D. 电磁波不会穿透物质答案:C二、填空题1. 一个悬挂静止的电子放在一个以5000 G磁场中,它会受到的磁力是____________N. 假设电子的电荷是 -1.6×10^-19 C.答案:-8.0×10^-142. 在一个无磁场的区域内,放置一个全等的圆形和正方形输电线, 则这两个输电线产生的射界是_____________.答案:相同的3. 一个点电荷1.0×10^-6 C均匀带电一个闪电球,当位于该点电荷5.0 cm处时, 该牛顿计的弦向上斜,该牛顿计的尺度读数是4.0N. 该电荷所处场强的大小约为_____________弧度.答案:1.1×10^4三、简答题1. 解释什么是麦克斯韦方程式?麦克斯韦方程式是一组描述经典电磁场的4个偏微分方程式,包括关于电场的高斯定律、关于磁场的高斯定律、安培环路定理和法拉第电磁感应定律。

电磁场与电磁波习题参考答案

《电磁场与电磁波》知识点及参考答案第1章 矢量分析1、如果矢量场F 的散度处处为0,即0F∇⋅≡,则矢量场是无散场,由旋涡源所产生,通过任何闭合曲面S 的通量等于0。

2、如果矢量场F 的旋度处处为0,即0F ∇⨯≡,则矢量场是无旋场,由散度源所产生,沿任何闭合路径C 的环流等于0。

3、矢量分析中的两个重要定理分别是散度定理(高斯定理)和斯托克斯定理, 它们的表达式分别是:散度(高斯)定理:SVFdV F dS ∇⋅=⋅⎰⎰和斯托克斯定理:sCF dS F dl∇⨯⋅=⋅⎰⎰。

4、在有限空间V 中,矢量场的性质由其散度、旋度和V 边界上所满足的条件唯一的确定。

( √ )5、描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。

( √ )6、标量场的梯度运算和矢量场的旋度运算都是矢量。

( √ )7、梯度的方向是等值面的切线方向。

( × )8、标量场梯度的旋度恒等于0。

( √ )9、习题, 。

第2章 电磁场的基本规律(电场部分)1、静止电荷所产生的电场,称之为静电场;电场强度的方向与正电荷在电场中受力的方向相同。

2、在国际单位制中,电场强度的单位是V/m(伏特/米)。

3、静电系统在真空中的基本方程的积分形式是:V V sD dS dV Q ρ⋅==⎰⎰和0lE dl ⋅=⎰。

4、静电系统在真空中的基本方程的微分形式是:V D ρ∇⋅=和0E∇⨯=。

5、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。

6、在两种媒质分界面的两侧,电场→E 的切向分量E 1t -E 2t =0;而磁场→B 的法向分量B 1n -B 2n =0。

7、在介电常数为的均匀各向同性介质中,电位函数为 2211522x y z ϕ=+-,则电场强度E=5x y zxe ye e --+。

8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体表面为等位面;在导体表面只有电场的法向分量。

电磁场与电磁波习题及答案

1麦克斯韦方程组的微分形式是:.D H J t∂∇⨯=+∂u v u u v u v ,BE t ∂∇⨯=-∂u v u v ,0B ∇=u v g ,D ρ∇=u v g2静电场的基本方程积分形式为:CE dl =⎰u v u u v g Ñ S D ds ρ=⎰u v u u vg Ñ3理想导体(设为媒质2)与空气(设为媒质1)分界面上,电磁场的边界条件为:3.00n S n n n Se e e e J ρ⎧⋅=⎪⋅=⎪⎨⨯=⎪⎪⨯=⎩D B E H rr r r r r r r r 4线性且各向同性媒质的本构关系方程是:4.D E ε=u v u v ,B H μ=u v u u v ,J E σ=uv u v5电流连续性方程的微分形式为:5.J t ρ∂∇=-∂r g6电位满足的泊松方程为2ρϕε∇=-; 在两种完纯介质分界面上电位满足的边界 。

12ϕϕ= 1212n n εεεε∂∂=∂∂ 7应用镜像法和其它间接方法解静态场边值问题的理论依据是: 唯一性定理。

8.电场强度E ϖ的单位是V/m ,电位移D ϖ的单位是C/m2 。

9.静电场的两个基本方程的微分形式为 0E ∇⨯=ρ∇=g D ;10.一个直流电流回路除受到另一个直流电流回路的库仑力作用外还将受到安培力作用1.在分析恒定磁场时,引入矢量磁位A u v,并令B A =∇⨯u v u v 的依据是( 0B ∇=u vg )2. “某处的电位0=ϕ,则该处的电场强度0=E ϖ”的说法是(错误的 )。

3. 自由空间中的平行双线传输线,导线半径为a , 线间距为D ,则传输线单位长度的电容为( )ln(1aaD C -=πε )。

4. 点电荷产生的电场强度随距离变化的规律为(1/r2 )。

5. N 个导体组成的系统的能量∑==Ni ii q W 121φ,其中iφ是(除i 个导体外的其他导体)产生的电位。

6.为了描述电荷分布在空间流动的状态,定义体积电流密度J ,其国际单位为(a/m2 )7. 应用高斯定理求解静电场要求电场具有(对称性)分布。

电磁场与电磁波课后习题及答案七章习题解答 (2)

《电磁场与电磁波》习题解答 第七章 正弦电磁波求证在无界理想介质内沿任意方向e n (e n 为单位矢量)传播的平面波可写成j()e n r t m βω⋅-=e E E 。

解 E m 为常矢量。

在直角坐标中故 则 而 故可见,已知的()n j e r t m e βω⋅-=E E 满足波动方程 故E 表示沿e n 方向传播的平面波。

试证明:任何椭圆极化波均可分解为两个旋向相反的圆极化波。

:解 表征沿+z 方向传播的椭圆极化波的电场可表示为式中取显然,E 1和E 2分别表示沿+z 方向传播的左旋圆极化波和右旋圆极化波。

在自由空间中,已知电场3(,)10sin()V/my z t t z ωβ=-E e ,试求磁场强度(,)z t H 。

解 以余弦为基准,重新写出已知的电场表示式这是一个沿+z 方向传播的均匀平面波的电场,其初相角为90︒-。

与之相伴的磁场为 均匀平面波的磁场强度H 的振幅为1A/m 3π,以相位常数30rad/m 在空气中沿z -e 方向传播。

当t=0和z=0时,若H 的取向为y -e,试写出E 和H 的表示式,并求出波的频率和波长。

解 以余弦为基准,按题意先写出磁场表示式 与之相伴的电场为由rad/m β=30得波长λ和频率f 分别为 '则磁场和电场分别为一个在空气中沿ye +方向传播的均匀平面波,其磁场强度的瞬时值表示式为(1)求β和在3ms t =时,z H =的位置;(2)写出E 的瞬时表示式。

解(1)781π10πrad /m rad /m 0.105rad /m 31030β==⨯==⨯在t =3ms 时,欲使H z =0,则要求 若取n =0,解得y =。

考虑到波长260mπλβ==,故因此,t =3ms 时,H z =0的位置为(2)电场的瞬时表示式为在自由空间中,某一电磁波的波长为0.2m 。

当该电磁波进入某理想介质后,波长变为0.09m 。

设1r μ=,试求理想介质的相对介电常数r ε以及在该介质中的波速。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空题 1、电荷守恒定律的微分形式是[tJ],其物理意义是[任何一点电流密度矢量的散度等于该点电荷体密度随时间的减少率];

2、麦克斯韦第一方程H[DJt],它的物理意义是[电流与时变电场产生磁场];对于静态场,H[J],它表明静态磁场是[有旋场];

3、麦克斯韦第二方程E=[Bt],它表明[时变磁场产生电场]; 对于静态场,E=[0],它表明静态场是[无旋场]; 4、坡印廷矢量S是描述时变电磁场中电磁功率传输的一个重要的物理量,S=[EH],它表示[通过垂直于功率传输方向单位面积]的电磁功率; 5、在两种不同物质的分界面上,[电场强度,(或E)]矢量的切向分量总是连续的, [磁感应强度,(或B)]矢量的法向分量总是连续的; 6、平面波在非导电媒质中传播时,相速度仅与[媒质参数,(或、)]有关,但在导电媒质中传播时,相速度还与[频率,(或f,或)],这种现象称为色散; 7、两个同频率,同方向传播,极化方向互相垂直的线极化波合成为圆极化波时,它们的振幅[相等],相位差为[2,(或-2,或90)]; 8.均匀平面波在良导体中传播时,电场振幅从表面值E0下降到E0/e时 所传播的距离称为[趋肤深度],它的值与[频率以及媒质参数]有关。 二、选择题 1、能激发时变电磁场的源是[c] a.随时间变化的电荷与电流 b随时间变化的电场与磁场 c.同时选a和b 2、在介电常数为的均匀媒质中,电荷体密度为的电荷产生的电场为),,(zyxEE,若ED成立,下面的表达式中正确的是[a] a. D b. 0/E c. 0D 3、已知矢量)()23(3mzyezyexeBzyx,要用矢量B描述磁感应强度,式中 必须取[c(0B)]

a. 2 b. 4 c. 6 4、导电媒质中,位移电流密度dJ的相位与传导电流密度J的相位[a] a.相差2 b.相同或相反 c.相差4 5、某均匀平面波在空气中传播时,波长m30,当它进入介电常数为04的介质中传播时,波长[b] a.仍为3m b.缩短为1.5m c. 增长为6m 6、空气的本征阻抗1200,则相对介电常数4r,相对磁导率1r,电导率0的媒质的本征阻抗为[c]. a.仍为)(120 b. )(30 c. )(60

7、zjyzjxejeeeE2242,表示的平面波是 [b] a.圆极化波 b.椭圆极化波 c.直线极化波 8、区域1(参数为0,,10101)和区域2(参数为0,20,520202)的分界面为0z的平面。已知区域1中的电场)]5cos(20)5cos(60[ztzteExV/m,若区域2中的 电场)50cos(ztAeEx V/m,则式中的A 值必须取[b] a.60 b.80 c.20 9、无源的非导电媒质(参数为、)中, 亥姆霍兹方程为022EkE,式中的波数k应为[b] a.  b.  c. 2

10、 已知02260zaveS,则穿过0z平面上一个半径R=2m的圆面积的平均功率为[c(2rSav )]

a.180W b.90W c.60W 三、计算题 1、相对介电常数18r的均匀电介质中, )102cos(109xteEy

V/m,已知电场强度,试计算该电介质的位移电流密度。

解:9010sin(210)dryDEJetxtt 2Am 2、两种不同媒质分界面上存在面电流密度mAeJxS/2,若已知分界面上媒质1一侧的磁场强度mAeeeHzyx/321,试求分界面上媒质2一侧的磁场强2H。 解:根据边界条件,在分界面0y处,应有

12()SyeHHJ,得

222[(23)()]yxyzxxyyzzeeeeeHeHeH2xe

即 22(3)(1)2xzzxxeHeHe 则 232zH, 210xH 故 21xH,21zH 又由 12()0yeBB,有

12222[(23)()]0yxyzxxyyzzeeeeeHeHeH则 12220yH,

故得 1222yH

所以 1222xyzHeee Am 3、已知在空气中传播的均匀平面波的磁场强度为 )2106cos(410)(8zteeHyx,试求:

(1)平面波的频率f、相速pv、波长、相位常数k以及波的传播方向; (2)与),(tzH相伴的电场强度),(tzE; (3)平面波的极化状态; (4)瞬时坡印廷矢量S和平均坡印廷矢量avS

。

解:(1) 83102fHz,2k radm,8310pvkms, 21k m ,传播方向为z方向;

(2)80(,)(,)()300cos(6102)zxyEztHzteeetz Vm (3)直线极化波; (4)281500(,)(,)cos(6102)zSEztHztetz 2Wm

01750dTavzSSteT 2Wm

4、已知某导电媒质在频率zMHf30时的衰减常数mNP/9.82、相位常数mrad/9.82本征阻抗的模2c。在此导电媒质中, zMHf30的正弦均匀平面波沿x方向传播,电场沿y轴取向,电场强度振幅mVEm/30。试写出电场强度和磁场强度的表示式。 解:由82.9可知,该导电媒质在频率30MHzf时为良导体,故 82.97(,)30cos(61082.9)xyExteetx Vm

82.9730(,)cos(61082.9)4xxycHxteeetx

82.9730cos(61082.9)24xzeetx Am

一、 填空 1.静电场的两个基本方程的微分形式为0E、 D ;在完纯介质与理想导体的分界面上电场的两个基本物理量满足的边界条件为 0nE 、 Dn 。 2、电位满足的泊松方程为 2/ ;在两种完纯介质分界面上电位满足的边界条件为 12 、

2121nn

3、恒定电场的两个基本方程的积分形式为 0sSdJ 、 CldE0。相应的边界条件为 0)(21JJn

、 210nEE 。

4、应用镜像法和其它间接方法解静态场边值问题的理论依据是 惟一性定理 。 5、电流连续性方程的微分形式为 0tJ 。 6、一个直流电流回路除受到另一个直流电流回路的库仑力作用外还将受到安培力的作用。 二、选择 1、为了描述电荷分布在空间流动的状态,定义体积电流密度J,其国际单位为(b) 3A/ma、 2A/mb、 A/mc、

2、均匀密度的无限长直线电荷的电场随距离变化的规律为(a)。 1ra、 21rb、 1lnrc、

3、应用高斯定理求解静电场要求电场具有(b)分布。 a、 线性 b、 对称性 c、 任意 4、如果某一点的电位为零,则该点的电场强度(b)。 a、 一定为零 b、 不一定为零 c、 为无穷大 5、如果某一点的电场强度为零,则该点电位的(b)。 a、 一定为零 b、 不一定为零 c、 为无穷大 6、已知两种完纯介质的介电常数分别为12、,其中的电场强度分别为12、EE则在其平面分界面上的极化电荷面密度为(c)。 21201nEEa、 21102nEEb、

202101nEEc、

7、真空中一个电流元在某点产生的磁感应强度dB随该点到电流元距离变化的规律为(b)。 1Ra、 21Rb、 1lnRc、

8、N个导体组成的系统的能量NiiiqW121,其中i是(a)产生的电位。 a.所有导体 b.除i个导体外的其他导体 c.第i个导体。 三、计算题 1、一个长度为l的圆柱形电容器,由半径为a和b(a度为d(d导体间的E和D及储存的静电场能量。

0ln(/)r

V

arbrbaEEe解:

00DEDE

2202d2d2ln/2ln/bbaaVVWrdrrldrrbarba







2

0

ln/dldVba





2、半径分别为a和b的无限长同轴线内外导体单位长度所带电荷量分别为ll、,如图所示。圆柱面电极间在图示1角部分充满介电常数为的介质,其余部分为空气,求介质和空气中的电场强度和单位长度上的电容量。 解:由高斯定理 1012lDrDr

由边界条件 0EE00DD即 解得

0001001022llDDrr 则 00102lDEEr 两圆柱导体面间的电位差 0

010010

ddln22bbllaabVErrar



单位长度的电容量为

0100

2ln()lCVba

3、两块无限大接地导体板分别置于x=0和x=a处,其间在x=x0处有一面密度为2C/m的均匀电荷分布,如图所示。求两导体板间的电场和电位。(20分)

解: 2102d00;dxxx

a b o

0

1l

l

 l d ε 0

V

相关文档
最新文档