通信基站防雷接地方案及对策
通信基站防雷设计与接地方案分析

通信基站防雷设计与接地方案分析【摘要】本文围绕通信基站的防雷设计与接地方案展开研究,首先介绍了研究的背景、目的和意义。
接着对通信基站防雷设计进行了概述,包括选型和接地原理。
然后对通信基站的接地方案进行了分析,并比较了不同的防雷设计方案。
结论部分给出了建议选择通信基站防雷设计与接地方案,并指出未来研究的方向。
总结部分对全文进行了总结。
通过本文的研究,可以为通信基站的防雷设计与接地方案的选择提供参考,同时也为未来相关研究提供了借鉴。
【关键词】通信基站、防雷设计、接地方案、选型、原理、方案分析、比较、建议、未来研究、总结。
1. 引言1.1 研究背景通信基站作为现代通信系统的重要组成部分,其正常运行对于保障通信网络的稳定性和安全性具有至关重要的意义。
在雷电活动频繁的地区,通信基站常常面临雷击威胁,给通信设备和运营商带来不小的损失。
通信基站防雷设计成为了当前通信领域研究的热点之一。
随着通信技术的不断发展,通信基站防雷设计也在不断改进和优化。
传统的防雷设备已经不能满足通信基站的防雷需求,因此如何选取合适的防雷设备以及设计科学合理的接地方案成为了当前研究的重点之一。
通过对通信基站防雷设计的深入研究,可以有效提高通信基站的抗雷能力,保障通信网络的正常运行。
本文旨在对通信基站防雷设计与接地方案进行分析与探讨,为通信基站的雷击防护提供参考和指导。
通过深入研究通信基站防雷设计的相关理论和技术,为通信基站的防雷工作提供科学可靠的支持,促进通信网络的稳定发展。
1.2 研究目的通信基站防雷设计与接地方案分析的研究目的是为了提高通信基站的抗雷击能力,确保通信设备及用户的安全。
通过深入研究通信基站防雷设计概念和接地原理,选择合适的防雷设备和设计方案,以降低雷击损坏的风险,保障通信系统的正常运行。
研究通信基站防雷设计与接地方案也能够提高对雷电环境的认识,促进相关领域的发展,为未来通信网络的建设提供更可靠的支持。
通过本研究,可以为通信基站防雷设计及接地方案的选择提供有效的指导,为通信行业的发展贡献力量。
移动通信基站的防雷与接地

移动通信基站的防雷与接地在当今高度信息化的社会,移动通信已经成为人们生活中不可或缺的一部分。
无论是日常的沟通交流,还是获取各种信息,都离不开稳定的移动通信网络。
而移动通信基站作为保障通信信号覆盖和传输的关键设施,其稳定运行至关重要。
然而,雷电灾害对移动通信基站构成了严重的威胁。
因此,做好移动通信基站的防雷与接地工作,是确保通信网络安全可靠运行的重要保障。
雷电是一种自然现象,其瞬间释放的巨大能量可能会对移动通信基站的设备和线路造成严重的损坏。
雷电可能通过直击、感应雷、雷电波侵入等多种方式影响基站。
直击雷是指雷电直接击中基站的建筑物、天线等设施;感应雷则是由于雷电放电时产生的强大电磁场在附近的线路和设备上感应出高电压和大电流;雷电波侵入则是雷电沿着电力线路、通信线路等侵入基站内部。
为了有效地防御雷电灾害,移动通信基站需要采取一系列的防雷措施。
首先,在基站的选址和设计阶段,就应该充分考虑到雷电防护的问题。
基站应尽量选择在地势相对较低、避开雷电活动频繁区域的地方建设。
同时,基站的建筑物和天线塔等设施应具备一定的防雷能力,比如采用避雷针、避雷带等接闪装置。
在基站的外部防雷方面,合理安装避雷针是常见的做法。
避雷针的高度和位置需要经过精确计算,以确保能够有效地保护基站的建筑物和天线等设施。
避雷带则通常沿着建筑物的屋顶边缘敷设,形成一个闭合的防雷带,将雷电电流引导到接地装置。
此外,基站的外部金属构件,如铁塔、金属门窗等,也需要进行良好的电气连接,并接入接地系统,以防止雷电在这些部位产生高电位差。
而在基站的内部防雷方面,主要是防止雷电感应和雷电波侵入。
这需要对基站内部的电源系统、通信线路、信号设备等进行防护。
电源系统通常会安装避雷器,以限制雷电过电压的侵入。
通信线路则应采用屏蔽电缆,并在入户处安装信号避雷器。
对于基站内部的电子设备,应采取等电位连接措施,将设备的金属外壳、机柜、地线等连接在一起,以均衡电位,减少雷电造成的损害。
移动通信基站防雷与接地设计及维护解决方案

移动通信基站防雷与接地设计及维护解决方案编制:_________________________审核:_________________________审批:_________________________202x年xx月目录一、前言 (3)二、方案设计依据: (3)三、方案设计 (3)3.1、供电系统的防雷与接地 (3)3.2、铁塔的防雷与接地 (5)3.3、抱杆天线的防雷 (5)3.4、天线端位于铁塔上馈线接地 (6)3.5、信号线路的防雷与接地 (6)一、前言1.1移动通信基站的雷电过电压及电磁干扰防护,是保护通信线路、设备及人生安全的重要技术手段,是确保通信线路及设备运行不可缺少的技术环节,也是通信网建设及运行管理工作的重要组成部分。
1.2制定本方案的目的在于阐述移动系统移动基站的防雷措施,及运行和维护管理。
1.3本方案中的过电压保护器采用符合国际IEC 、德国VDE标准的德国OBO BETTERMANN 公司生产的OBO品牌之过电压保护器。
二、方案设计依据:2.1 、建筑物防雷设计规范(GB 50057-94)2.2、雷电电磁脉冲的防护(IEC 61632-1,2,3)2.3 、过电压放电保护器(VDE0675-6)2.4、过电压保护器的安装(VDE0100-534)2.5、移动通信基站的防雷设计规范(YD5068-98)三、方案设计3.1、供电系统的防雷与接地3.1.1 对于新建的移动通信基站的交流供电系统应采用三相五线(TN-S)制供电方式(如图,附录1,TN-S传输方式)3.1.2 对于采用租赁商品房的三相四线制的供电,宜采用TT供电方式,(见附录1之TT供电方式)3.1.3 移动通信基站宜设置专用电力变压器,电力线宜采用具有金属护套或绝缘套电缆穿钢管埋地移入基站机房,电力电缆金属护套或钢接地。
3.1.4 当电力变压器设在站内时,接地。
3.1.5 当电力变压器设在站内时,其高压电力线采用就近接地。
《通信基站防雷方案》课件

目录
• 通信基站防雷方案概述 • 雷电对通信基站的危害 • 通信基站防雷措施 • 防雷设备的选择与安装 • 防雷设备的维护与检测
01
通信基站防雷方案概述
通信基站防雷的必要性
通信基站的设备昂贵,一旦遭受 雷击,将造成重大经济损失。
通信基站承担着重要的通信任务 ,雷击可能导致通信中断,影响
接地电阻的检测
定期检测接地电阻,确保接地良好 ,将雷电引入大地。
接地线的维护
定期对接地线进行检查和维护,确 保其完好有效。
04
防雷设备的选择与安装
防雷设备的选择
01
02
03
04
避雷针
用于接闪雷电,将雷电引入地 下。
浪涌保护器
用于限制瞬态过电压和泄放浪 涌电流,保护设备免受瞬态过
电压的破坏。
接地电阻测试仪
社会正常运转。
防雷是保障通信基站正常运行的 重要措施,可以减少设备故障和
维修成本。
防雷方案的目标和原则
目标
提高通信基站的防雷能力,降低 雷击风险,保障设备的正常运行 。
原则
科学合理、经济实用、安全可靠 、技术先进。
防雷方案的主要内容
直击雷防护
安装避雷针、避雷带 等直击雷防护设施, 将雷电引入地下。
防雷设备的日常维护
防雷设备的日常检查
每天对防雷设备进行外观检查,确保设备无损坏、无锈蚀、无灰 尘等。
防雷设备的运行状态监测
通过防雷设备自带的监测功能或专用的监测设备,实时监测防雷设 备的运行状态,确保设备正常工作。
防雷设备的清洁与保养
定期对防雷设备进行清洁和保养,保持设备的良好工作状态。
防雷设备的定期检测
通信基站防雷接地方式及要求

通信基站防雷接地方式及要求众所周知,雷电对通信设备的危害很大,如果防雷措施不得当,就会导致设备遭受雷击,从而引发重大事故。
因此,对交换设备而言,防雷接地有着举足轻重的意义。
一、雷电基本知识l、雷电产生的条件雷电是一种自然现象,它是由雷云产生的,形成雷云必须具备以下3个条件:即空气中含有足够的水蒸气;大气中的空气形成温度差,以使潮湿的空气形成强大的上升气流;没有破坏或阻碍强烈而持久的上升气流形成的因素。
2、雷电过电压的形成对于通信设备而言,雷电过电压的来源主要有以下几种:(1)感应过电压。
感应过电压是指霄击建筑物或其近区时,瞬态空间电磁场造成设备的损坏。
感应过电压包括电磁感应和静电感应两个分量。
对于建筑物内的各种金属环路或电子设备而言,电磁感应分量大于静电感应分量。
(2)雷电侵入波。
雷电侵入波又称为线路来波,是指当雷云之间或雷云对地放电时,在附近的金属管线上产生的感应过电压。
该感应过电压也会以行波的方式窜入室内,造成电子设备的损坏。
(3)反击过电压。
雷电反击是指雷击建筑物或其近区时,造成其附近设备的接地点处地电位的升高,使设备外壳与设备的导电部分问产生高过电压(称为反击过电压),而导致设备损坏的现象。
通信设备防雷需要考虑预防的是:感应雷、雷电侵入波和反击过电压,其中需要重点关注的是雷电侵入波和反击过电压。
3、雷电防护的基本原则(1) 系统防护原则应将信息系统及其运行环境作为一个整体开展考虑,防护应该针对整体开展,而不应该只考虑局部情况。
通信设备的防雷包括外部防雷系统和内部防雷系统两个部分,它们是一个有机的整体。
外部防雷主要是防直击雷,它由接闪器、引下线和接地装置组成;而内部防雷则包括防雷电感应、防反击、防雷电波侵入以及保障人身安全,它是指除了外部防雷系统外的所有附加措施。
这些措施可能会减少雷电流在需要防雷的空间内所产生的电磁效应,防止雷电损坏机房内的电气设备或电子设备,这是外部防雷系统所无法保证的。
基站防雷接地工程施工方案

基站防雷接地工程施工方案1. 引言基站是无线通信系统的核心设备,为保证其正常运行,防止因雷击等原因造成设备损坏,必须进行良好的防雷接地工程施工。
本文将提供一种基站防雷接地工程施工方案,保障基站设备的稳定工作。
2. 施工准备在开始施工之前,需做好以下准备工作: - 根据基站周边环境和场地情况,进行现场勘察和测量; - 编制详细的施工方案和施工组织计划; - 准备好必要的施工设备和工具; - 确保施工人员具备相关技术和安全防护意识。
3. 施工步骤3.1 穿孔施工首先,在基站附近合适的位置决定接地电极的安装点。
然后,进行穿孔施工,具体步骤如下: 1. 使用打孔机等工具,根据设计要求,在合适的位置打出深度达到规定要求的穿孔孔径。
2. 清理穿孔孔径,确保孔径内壁清洁平整。
3.2 接地电极安装在穿孔孔径内安装接地电极,具体步骤如下: 1. 将预制好的接地电极按要求的深度插入穿孔孔径,确保接地电极与周围土壤紧密接触,提高接地效果。
2. 使用螺母和螺栓等连接件,将接地电极与基站设备连接,确保接地电极与基站设备的良好导电性。
3.3 连接导体铺设连接导体的铺设是保证接地系统导电性的重要环节,具体步骤如下: 1. 根据设计要求和接地电极的位置,确定连接导体的走向和长度。
2. 使用导体夹具和固定件等工具,将连接导体固定在基站设备与接地电极上,确保连接导体的稳固与导电性能。
3.4 接地体电阻测量接地体电阻是评估接地系统效果的重要参数,必须进行测量,具体步骤如下:1. 使用接地电阻测量仪器,对接地系统进行全面的电阻测量。
2. 记录测量结果,评估接地系统效果。
3. 如发现接地体电阻过大,需及时采取措施改善接地效果。
4. 施工质量控制为保证基站防雷接地工程施工质量,需要进行严格的质量控制。
具体包括以下措施: - 施工人员必须熟悉施工方案和工艺要求,按照规范操作; - 进行施工前、中、后的检查和验收; - 采用专业的仪器设备进行必要的测量和监测,确保施工质量; - 如有需要,进行必要的质量整改和返工。
通信基站防雷工程施工方案
一、项目背景随着通信技术的快速发展,通信基站已成为现代社会不可或缺的基础设施。
然而,由于我国地域辽阔,气候条件复杂,通信基站在运行过程中易受到雷击等自然灾害的影响,导致设备损坏、通信中断等问题。
为保障通信基站的安全稳定运行,降低雷击风险,特制定本防雷工程施工方案。
二、施工原则1. 遵循国家标准和行业标准,确保工程质量;2. 以预防为主,综合治理,降低雷击风险;3. 因地制宜,根据基站实际情况选择合适的防雷措施;4. 确保施工安全,遵守施工现场安全管理规定。
三、施工内容1. 避雷针安装(1)选择合适的避雷针类型,如滚球法、保护角法等;(2)根据基站周围环境,确定避雷针安装位置,确保其能够有效保护基站;(3)按照设计要求,安装避雷针,并进行接地处理。
2. 引下线安装(1)选择合适的引下线材料,如镀锌扁钢、圆钢等;(2)根据设计要求,确定引下线安装路径,确保其与避雷针、接地体连接;(3)按照规范要求,进行引下线安装,并进行接地处理。
3. 接地体施工(1)根据基站实际情况,选择合适的接地体材料,如接地棒、接地网等;(2)按照设计要求,确定接地体安装位置,确保其与引下线连接;(3)按照规范要求,进行接地体施工,并进行接地电阻测试。
4. 接地网施工(1)根据基站实际情况,设计接地网布局,确保其能够覆盖基站周边区域;(2)按照设计要求,选择合适的接地网材料,如接地网线、接地网棒等;(3)按照规范要求,进行接地网施工,并进行接地电阻测试。
5. 防雷设备安装(1)根据基站实际情况,选择合适的防雷设备,如浪涌保护器、电源防雷器等;(2)按照设计要求,确定防雷设备安装位置,确保其能够有效保护基站设备;(3)按照规范要求,进行防雷设备安装,并进行功能测试。
四、施工进度安排1. 施工前期准备:1周;2. 避雷针、引下线安装:2周;3. 接地体、接地网施工:3周;4. 防雷设备安装:1周;5. 系统调试及验收:1周。
五、施工质量控制1. 严格按照施工图纸和规范要求进行施工;2. 对施工材料进行严格检验,确保材料质量合格;3. 定期进行施工质量检查,发现问题及时整改;4. 施工完成后,进行系统调试和验收,确保工程质量符合要求。
通信基站防雷接地技术要求(1.0)
通信基站防雷接地技术要求(1.0)1. 引言随着信息化建设的迅速推进,通信基站在现代社会中发挥着至关重要的作用。
但是,基站的设备和建筑往往会成为遭受雷击的重要目标,一旦遭受雷击,将会给基站带来严重的损失。
因此,在基站的设计和建设中,防雷接地技术显得尤为重要。
2. 防雷原理为了保护基站,必须采取一系列措施来保障基站的设备和建筑不被雷击。
对此,最根本的解决方案就是通过防雷接地技术来进行基站的防雷保护。
对于基站的防雷接地技术,通常采取以下几种原理:•直接接地原理:将基站的所有设备和建筑直接接地,使雷电能够沿导体排放到土壤上,进而达到防雷的目的。
•防雷针原理:在基站的建筑物上,安装带有针状金属尖端的导体,这样能够发挥促进气体局部放电的作用,达到引导雷电电流进入地下的效果。
•接地网原理:在基站附近挖下大量地埋接地物,将这些接地物都连接起来,形成接地网,以便更有效地将雷电排放到地下去。
•屏蔽原理:在基站的设备周围设置金属屏蔽,将雷电电流引到地面,同时通过屏蔽,将基站内产生的静电干扰分离开来。
•防雷带原理:将金属防雷带从建筑物上向地面拉起,通过导体作用将雷电电流导入地下,达到避免雷击的目的。
3. 接地要求在进行基站地接的过程中,有一些接地的要求必须要严格遵循,以保障基站的安全。
通常来说,接地要求可以为以下几点:•地网布置:根据基站的实际情况,综合考虑土壤电阻和绝缘人孔的要求,合理布置地网,达到防雷效果。
•地网连接:采用大直径、低电阻耐腐蚀的材料来连接地网,以保证接地的质量。
•接地深度:一般情况下,接地的深度要求大于2m,具体深度还要根据基站的实际情况进行合理估算。
•接地材料:选择导电性好,腐蚀性小的材料进行接地,例如:裸铜线或镀铜材料。
•地下水域:在接地时切勿接触地下水域,以免对环境造成污染。
•接地电阻:接地电阻这一点尤其重要,根据相关规定,接地电阻一般不得大于10欧姆。
4.通讯基站的防雷接地技术是基站建设中至关重要的一环,合理且科学的防雷接地设计能够有效提高基站设备和建筑的抗雷电能力,起到预防雷击的作用,是基站安全的保障。
联通通信基站整体的防雷设计方案
汇报人: 日期:
contents
目录
• 引言 • 基站雷电防护方案 • 基站接地系统设计 • 基站防雷器选择与配置 • 雷电预警及应急响应方案 • 设计总结与展望
01
引言
背景介绍
联通通信基站在现代通信中扮演着重要角色,由于其分布广泛且多数位于室外环 境,因此容易受到雷电的影响。
06
设计总结与展望
设计总结
防雷方案设计
01
本设计采用了避雷针、接地网、浪涌保护器等防雷设备和措施
,有效地降低了基站遭受雷击的风险。
雷电防护等级确定
02
根据基站所在地的雷电活动情况和基站的重要性,确定了合理
的雷电防护等级。
雷电风险评估
03
对基站进行了全面的雷电风险评估,识别出了可能存在的雷电
安全隐患。
机房防雷
在机房入口处安装浪涌保 护器,防止感应雷进入机 房。
雷电电磁脉冲防护方案
浪涌保护器
在基站电源系统、信号线 路和机房入口处安装浪涌 保护器,防止雷电电磁脉 冲对设备的影响。
合理布线
对基站内的电缆、电线进 行合理布线,避免线路之 间的相互干扰。
接地处理
对基站内的设备进行接地 处理,确保电流能够迅速 导入大地,防止雷电电磁 脉冲对设备的影响。
接地电阻及电阻要求
确定接地电阻值
根据基站的防雷等级和当地地质 条件,确定合理的接地电阻值。
降低电阻措施
采取降低土壤电阻率的方法,如 使用降阻剂、更换土壤等,以确
保接地电阻符合要求。
接地电阻监测
定期监测接地电阻值,及时发现 并解决超标问题。
接地体的选择与施工
选择接地体类型
基站防雷措施
基站防雷措施引言基站是现代通信系统中的重要设施,负责无线信号的传输和接收。
然而,基站在遭受雷击时很容易受到损坏,给通信系统的正常运行带来严重影响。
为了保护基站设备免受雷击的威胁,需要采取一系列的防雷措施。
本文将介绍基站防雷的重要性,以及常用的防雷措施。
基站防雷的重要性基站是无线通信系统的核心组成部分,负责信号的传输和接收。
雷击不仅会导致基站设备的损坏,还会影响到信号的传输质量和覆盖范围,甚至引发供电系统的故障。
因此,保护基站设备免受雷击的威胁至关重要。
基站防雷措施1. 接地系统为了有效地防止雷击对基站设备产生损害,重要的一步是建立良好的接地系统。
接地系统可以将雷击电流迅速引入大地,从而保护基站设备。
接地系统应包括以下几个方面:•主接地系统:主接地系统是将所有与雷击电流有关的设备连接到一个共同的接地体上,通常是一个接地网或接地极。
通过保持一致的电位,主接地系统可以最大限度地减少雷击电流的损害。
•设备接地:每个设备都应该与主接地系统通过低阻抗的接地导线连接。
这样可以确保雷击电流能够快速地流入主接地系统,而不是通过设备本身的电源线路引入。
2. 避雷针避雷针是防雷系统的重要组成部分,可以起到引导雷击电流的作用,将其安全地引入大地。
避雷针通常安装在基站建筑物的顶部,并与接地系统相连接。
避雷针的形状和材质应根据当地的气候条件和外部环境来选择,以确保其稳定性和耐久性。
3. 避雷网避雷网是一种用于保护基站设备的金属网,可以将雷击电流从设备的外壳引入接地系统。
避雷网通常安装在基站建筑物的外墙上,并与接地系统相连接。
避雷网的网孔尺寸应根据当地的气候条件和环境来选择,以确保其能够有效地防止雷击。
4. 避雷器避雷器是一种用于保护基站设备的电气设备,可以将过电流引入接地系统,从而保护设备免受雷击损害。
避雷器通常安装在电源线路上,可以快速响应雷击电流,并将其引导到接地系统中。
根据不同的电力系统和设备要求,可以使用不同类型和规格的避雷器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通信基站综合防雷接地方案编制依据工程涉及的产品标准与标准;工程施工涉及的标准、标准及验收标准、标准等须完全满足所有中华人民共和国的标准、标准,包括〔但不限于此〕:"通信局〔站〕防雷与接地工程设计标准"YD5098-2005"通信局〔站〕防雷与接地工程设计标准"GB50689-2011"通信局〔站〕防雷与接地工程验收标准"YD/T5175-2009"建筑物防雷设计标准"〔GB50057-2010〕"建筑物电子信息系统防雷技术标准"〔GB50343-2012〕"交流电气装置的接地"〔DL/T621-1997〕"电气装置安装工程接地装置施工及验收标准"〔GB50169-2006〕"交流电气装置的过电压保护和绝缘配合"〔DL/T 620-1997〕1联合接地在整个防雷系统中接地系统是一个根本前提,只有具备了良好的接地系统,防雷设备才能真正发挥作用。
所以,接地系统的建立是所有防雷工作的根底。
1.1接地的目的1)接地是为了防止电磁干扰起屏蔽作用;2)接地是为了泄放过电压以保护设备和人身平安;3)接地是为了起着工作回路的作用;4)接地是为了给通信设备提供零电位参考点。
5)在受到雷击时以供大电流泄放入地,以保护设备和人身平安。
1.2地网的组成根据移动通信基站防雷与接地设计标准YD5068中规定:1〕移动通信基站应按均压、等电位的原理,将工作地、保护地和防雷地组成一个联合接地网。
站内各类接地线应从接地聚集线或接地网上分别引入。
2〕移动通信基站地网由机房地网、铁塔地网和变压器地网组成,地网的组成如图1所示。
基站地网应充分利用机房建筑物的根底〔含地桩〕、铁塔根底内的主钢筋和地下其他金属设施作为接地体的一局部。
当铁塔设在机房房顶,电力变压器设在机房楼内时,其地网可合用机房地网。
图1移动通信基站地网示意图3〕机房地网组成:机房地网应沿机房建筑物散水点外设环形接地装置,同时还应利用机房建筑物根底横竖梁内两根以上主钢筋共同组成机房地网。
当机房建筑物根底有地桩时,应将地桩内两根以上主钢筋与机房地网焊接连通。
当机房设有防静电地板时,应在地板下围绕机房敷设闭合环形接地线,作为地板金属支架的接地引线排,其材料为铜导线,截面积应不小于50mm2,并从接地聚集线上引出不少于二根截面积为50~75mm2的铜质接地线与引线排的南、北或东、西侧连通。
4〕对于利用商品房作机房的移动通信基站,应尽量找出建筑防雷接地网或其他专用地网,并就近再设一组地网,三者相互在地下焊接连通,有困难时也可在地面上可见局部焊接成一体作为机房地网。
找不到原有地网时,应因地制宜就近设一组地网作为机房工作地、保护地和铁塔防雷地。
工作地及防雷地在地网上的引接点相互距离不应小于5m,铁塔尚应与建筑物避雷带就近两处以上连通。
5〕铁塔地网的组成:当通信铁塔位于机房旁边时,铁塔地网应延伸到塔基四脚外远的范围,网格尺寸不应大于3m×6m,其周边为封闭式,同时还要利用塔基地桩内两根以上主钢筋作为铁塔地网的垂直接地体,铁塔地网与机房地网之间应每隔3~5m相互焊接连通一次,连接点不应少于两点。
当通信铁塔位于机房屋顶时,铁塔四脚应与楼顶避雷带就近不少于两处焊接连通,同时宜在机房地网四角设置辐射式接地体,以利雷电流散流。
6〕变压器地网的组成:当电力变压器设置在机房内时,其地网可合用机房及铁塔地网组成的联合地网;当电力变压器设置在机房外,且距机房地网边缘30m以内时,变压器地网与机房地网或铁塔地网之间,应每隔3~5m相互焊接连通一次〔至少有两处连通〕,以相互组成一个周边封闭的地网。
7〕当地网的接地电阻值达不到要求时,可扩大地网的面积,即在地网外围增设1圈或2圈环形接地装置。
环形接地装置由水平接地体和垂直接地体组成,水平接地体周边为封闭式,水平接地体与地网宜在同一水平面上,环形接地装置与地网之间以及环形接地装置之间应每隔3~5m相互焊接连通一次;也可在铁塔四角设置辐射式延伸接地体,延伸接地体的长度宜限制在10~30m以内。
1.3接地体水平接地体材料水平接地体一般采用纯铜线、镀铜线、热镀锌扁钢、锌包钢等。
3、接地材料有以下要求:a、采用热镀锌钢管时,钢管壁厚不小于3.5m;b、采用热镀锌角钢管,角钢不小于50mm*50mm*5mm;c、采用热镀锌扁钢时,扁钢不小于40mm*4mm;d、采用热镀锌圆钢时,圆钢直径不小于8m;e、非金属接地模块分为烧制型与压制型,常用规600mm*150mm*100mm,f、铜包钢接地棒,镀铜厚度;≤0.25mm,ф16*1500mm型号:YBD-01Bg、离子接地棒时,WJD-1000/54ф50*1500mmh、采用物理降阻剂时,电阻率R=0.45,降阻率在60-95%之间,石墨含量70%,型号:WJD-JZJ-25与WJD-JZJ-10。
图2 接地系统标准施工图1.4接地线与接地引下线1〕接地线宜短、直,截面积为35~95mm2,材料为多股铜线。
2〕接地引入线长度不宜超过30m,其材料为镀锌扁钢,截面积不宜小于40mm ×4mm或不小于95mm2的多股铜线。
接地引入线应作防腐、绝缘处理,并不得在暖气地沟内布放,埋设时应避开污水管道和水沟,裸露在地面以上局部,应有防止机械损伤的措施。
3〕接地引入线由地网中心部位就近引出与机房内接地聚集线连通,对于新建站不应小于两根。
1.5接地聚集线1〕接地聚集线一般设计成环形或排状,材料为铜材,截面积不应小于120 mm2,也可采用一样电阻值的镀锌扁钢。
2〕机房内的接地聚集线可安装在地槽内、墙面或走线架上,接地聚集线应与建筑钢筋保持绝缘。
1.6接地电阻根据基站建立的地理环境及YD50698-2011的相关规定,把基站分为两大类:〔1〕一类地区:土壤电阻率≤1000Ω.m,接地网接地电阻≤10Ω。
〔2〕二类地区:土壤电阻率>1000Ω.m,地网等效半径应大于10m,地网四角还应敷设10m~20m的热镀锌扁钢作辐射型接地体,且应增加各个端口的保护、加强等电位连接等措施予以补偿。
水平接地网可使用接地模块等材料。
接地电阻≤10Ω。
1.7接地体布置由于雷电流相当于高频电流,除接地体的电阻和电导外,接地体的电感和电容对冲击阻抗发生作用。
而在冲击电流的作用下,冲击等效半径要比接地网面积的等值半径小得多,即在冲击电流的情况下,仅仅利用接地网很小的一块面积。
在有限的冲击半径内如何有效地利用所埋设的接地体,使雷电流几乎同时地到达各个接地体,成为接地体布置的关键问题,以下给出几种布置接地体的方法以供参考。
(1)条形(2)弧形〔辐射状〕〔3〕网状〔4〕环形1.8移动基站接地网接地电阻值的测量接地电阻值测试的准确性,与地阻仪测量电极布置的位置有直接关系,按测量电极的不同布置方式,有如下几种测试方法:1〕直线布极法①首先要弄清被测地网的形状、大小和具体尺寸,确定被测地网的对角线长度D〔或圆形地网的直径D〕。
②在距接地网〔2~3〕D处,打下地阻仪的电流极棒,地阻仪的电压极棒应设在电流极棒到地网距离的0.618处〔优选法〕。
如图3所示。
图3测量电极布置图按上图布置测得的接地电阻误差应在1%以内。
在土壤电阻率较均匀的地区,电流极到地网的距离取2D,电压极到地网的距离可取D。
在土壤电阻率不均匀的地区,电流极到地网的距离应取3D,电压极到地网的距离应取1.7D。
③测量时在沿地网和电流极的连线上,使电压极到接地网的距离约为电流极到接地网距离的50%~60%范围内移动3次,每次移动的距离为电流极到地网距离的5%,使3次测得的电阻值接近即可。
2〕三角形布极法:如图4所示:图4三角形布极图°30°,此时测得的电阻误差接近零,Q越大误差也越大,Q=180°时误差最大。
如果测试场地窄小,不能满足d12 =d132D的条件时,也可取d12 =d13D。
3〕两侧布极法一般情况下,不宜把地阻仪的电流极棒和电压极棒分别打在地网的两侧,但由于测试场地限制,可按图5所示的方法布置测试电极进展测试。
图中:图5两侧布极图〔1〕电流极到地网的距离和电压极到地网的距离应相等,均5D,D为地网对角线的长度。
〔2〕电流极棒,电压极棒和地网中心应尽量在一条直线上。
1.9充分理解基站,因地制宜实施防雷接地工程由于各基站的环境和建立方式不同,所以对基站防雷接地不能一概而论,应根据具体情况采取防雷与接地措施,将基站接地系统按照均压等电位的原理进展设计和改造,即通信设备的工作地、保护地、防雷地、建筑地合用一组接地体的联合接地方式,将接地线和接地引入线按照"共地不共线,一点接地法〞的原则进展合理布线。
根据不同情况,具体分析如下:1.9.1铁塔建在建筑物顶部1〕楼顶建铁塔,机房所在建筑物女儿墙上有避雷带,市电引入机房由于移动基站租用商品房或民房情况较普遍,此种情况占到全部基站的60-70%。
首先在楼顶铁塔的基脚处南北或东西方向置180°两处与楼顶避雷带相连,连接材料为40×4mm镀锌扁钢,利用建筑主钢筋多处泄放雷电流,并在楼下适宜的位置建一地网,地网建成以后利用扁钢与建筑主钢筋两处焊接组成联合地网,从地网相距5m以上的位置抽两个头引出地面1.5m处做断接点,分别作为避雷针、机房工作保护接地引入线的接地点,机房内设置设备工作保护接地聚集线,其接地引入线接机房工作保护接地点;雷电流引下线下端接避雷针接地点,上端在楼顶与楼顶接地聚集线相连。
接地引入线采用40×4mm镀锌扁钢或95mm2多股铜芯线。
铁塔上避雷针接地线,基站同轴电缆馈线的金属外屏蔽层的上部、下部接地线均与楼顶接地聚集线相连,同轴电缆馈线的金属外屏蔽层的下部接地也可就近与铁塔中部相连。
外屏蔽在机房入口处的接地与机房工作保护接地点引出的接地线妥善连通,接地线材料可采用35mm2铜芯线。
同轴电缆线进入机房后与通信设备连接处安装馈线避雷器,馈线避雷器接地端子接到室外入口处馈线屏蔽接地线上,接地线为≥6mm2铜芯线。
机房内的交流配电箱处应三相五线或单相三线,其中的PE线接配电箱及电源避雷器。
机房内-24V直流避雷器的接地线接机房工作保护接地聚集线。
机房内设备的工作接地、保护接地及走线架共用一个室内接地聚集线。
如图6所示。
图62〕对于利用商品房作机房的移动通信基站。
此建筑有防雷接地网或其他专用地网〔如播送电视系统接地网或固定接入网的接地网〕,应就近再设一组地网,三者相互在地下焊接连通,有困难时也可在地网上可见局部焊接成一体作为机房地,其它方面与1〕一样,如图7所示。
如原专用地网与基站新建地网边缘相距>20米以上,并且连接有困难,可以不作连接处理。