聚丙烯纳米复合材料的研究及应用

聚丙烯纳米复合材料的研究及应用
聚丙烯纳米复合材料的研究及应用

聚丙烯纳米复合材料的研究及应用

李跃文陈枝晴

(湖南科技职业学院高分子工程与技术系,长沙,410118)

摘要:综述了聚丙烯基层状填料纳米复合材料、纤维状填料纳米复合材料、粉状填料纳米复合材料、POSS纳米复合材料制备方法、结构与性能方面的最新研究进展,介绍了聚丙烯/粘土纳米复合材料的一些实际应用,对今后的研究和开发方向也提出了自己的看法。

关键词:聚丙烯,纳米复合材料,纳米填料,研究进展,应用

聚丙烯(PP)是目前产量最大、发展最快的合成树脂之一,它具有良好的综合力学性能、耐热性、耐腐蚀性能和成型加工性能,应用范围十分广泛。但PP低温脆性大,耐老化性能不好,容易燃烧,绝对强度和金属材料相比尚有一定差距,这些使其应用受到一定程度的制约。共聚、共混、加助剂等传统的改性方法均有一定的局限性,近年发展起来的纳米技术给PP提供了一种新的改性途径,大量的研究表明,将PP与纳米组份复合,具有广泛而显著的改性效果。与传统方法相比,通过形成纳

米复合材料对PP进行改性具有如下优点:(1)纳米组份含量很少时即有显著的改性效果;(2)在改善某些性能的同时,几乎不损害其它性能,特别是成型加工性能;(3)改性范围广泛。

1、PP/层状填料纳米复合材料

1.1 PP/层状粘土纳米复合材料

自然界有些粘土矿物具有层状结构,如蒙脱土、累托土、斑脱土等。在适当的条件下,聚合物分子链能插入到粘土片层之间,使片层层间距扩大,甚至剥离,从而形成纳米复合材料。由于粘土片层的纳米效应和层状结构,PP/层状粘土纳米复合材料的力学强度、热稳定性、阻隔性、阻燃性均有明显改善。

PP/蒙脱土纳米复合材料是研究和开发较早的PP纳米复合材料。目前的研究主要集中在熔融共混法制备纳米复合材料及其结构与性能上。王平华[1]等用钠基蒙脱土(Na-MMT)和经十六烷基三甲基溴化铵处理过的有机蒙脱土(Org-MMT)分别与PP制成了纳米复合材料,实验结果表明,Na-MMT和Org-MMT对PP均有良好的增强增韧效果,但两者填充形态不一样,Na-MMT 以纳米粒子形态填充,Org-MMT以插层形态填充;另外,Na-MMT还能诱导聚丙烯结晶晶型发生转变,产生有利于提高聚丙烯冲击强度的β晶型。丁超[2]等采用聚丙烯与甲基丙烯酸甲酯、马来酸酐、丙烯酸丁酯三单体的固相接枝共聚物(TMPP)作为增容剂,通过熔融共混法制备了PP/蒙脱土纳米复合材料,实验结果表明,TMPP可以在添加量较少时达到明显的增容效果,从而大幅度提高复合材料的力学强度,同时材料的热性能和阻燃性能也得到改善;蒙脱土在PP基体中主要以插层形式存在,同时存在少量的剥离结构。王传洋[3]等对PP/蒙脱土纳米复合材料的流变性能进行了研究,结果表明,复合材料的熔体主要表现为剪切变稀性流体,但熔体温度较高、剪切速率较低时,呈现出类牛顿性流体行为。M. Modesti[4]等研究了成型条件和增容剂马来酸酐接枝聚丙烯(MA-PP)对经双螺杆挤出机熔融共混制得的PP纳米复合材料结构和性能的影

响,结果显示,较低的成型温度和增容剂的加入有利于蒙脱土的剥离和复合材料的增强。F. Perrin-Sarazin[5]等也研究了MA-PP对复合材料结构的影响,结果也表明MA-PP有助于蒙脱土的分散,但不同分子量的MA-PP对蒙脱土的分散有不同的影响,较低分子量的MA-PP导致产生均一的插层结构,但没有进一步的剥离,而较高分子量的MA-PP导致产生不同种类的插层结构,但有部分剥离。

插层聚合法制备PP/蒙脱土纳米复合材料也有报导。马继盛[6]、赵海超[7]等先后通过插层聚合法制成了PP/蒙脱土纳米复合材料,他们首先制备MMT/MgCl2/TiCl4插层催化剂,再通过原位插层聚合制得复合材料,研究结果显示,蒙脱土在PP基体中被剥离并成纳米级分散,复合材料的储能模量和玻璃化温度均高于纯PP。Aihua He[8]等也通过类似的方法制得了PP/烷基三苯基膦改性蒙脱土纳米复合材料。

累托土也是一类具有层状结构的粘土矿物。马晓燕[9]等采用熔融共混法制备了有机改性累托土/聚丙烯纳米复合材料, 与纯PP相比, 复合材料的拉伸强度、冲击强度、断裂伸长率及热分解温度均有明显提高。斑脱土是另一类层状粘土,Florêncio G. Ramos Filho[10]等将有机改性斑脱土与PP经熔融共混制成了纳米复合材料。

1.2 PP/石墨纳米复合材料

石墨具有高的电导率、磁化率、导热系数、优良的化学稳定性和自润滑性能,聚合物/石墨复合材料作为电或热导体、电磁干扰屏蔽材料、自润滑材料等有着许多重要的用途。全成子[11]等用聚合物溶液插层法制得了MA-PP/膨胀石墨(EG)纳米复合材料,后又用溶液插层及其与熔体混合相结合的母料熔体混合方法制得了PP/ MA-PP/ EG导电纳米复合材料,这些材料都具有远比聚合物/ EG直接熔体混合制得的复合材料低的导电逾渗阀值。

2、PP/纤维状填料纳米复合材料

纤维状填料对聚合物一般有很好的增强作用, 如常用的玻璃纤维、碳纤维等,可以预期,若能将纳米尺度的纤维状填料均匀分散于聚合物中,将得到具有优异力学性能的复合材料。

凹凸棒土(AT)是一种具有独特纤维状或棒状晶体形态的含水富镁铝的硅酸盐矿物,AT单根棒晶的直径在20nm左右,长达1μm,是一种天然的一维纳米材料。AT如以棒晶形态分散在聚合物内,可得到1-3型聚合物基纳米复合材料。王平华[12]等利用超声波分散方法使AT以棒晶形式分散,接着用硅烷偶联剂对棒晶进行表面处理,然后将经偶联剂处理的AT与PP熔融复合,制成了纳米复合材料。研究结果表明,通过超声波分散,可以破坏AT棒晶间较微弱的物理吸附力,从而将AT棒晶以纳米尺度均匀分散;AT的加入提高了PP的拉伸强度和冲击强度,并在一定程度上改善了复合材料的加工性能。王丽华[13]等对熔融共混法制备的PP/AT纳米复合材料的结晶行为进行了研究,发现AT的加入起到了成核剂的作用, 使复合材料的结晶温度提高, 结晶速率增大, 结晶度增加,晶粒尺寸减小。

多水高岭土是一类具有纳米管状结构的天然矿物,Mingliang Du[14]等通过熔融共混法制备了PP/多水高岭土纳米管(HNTs)复合材料,由于HNTs对传质和传热的屏蔽作用,复合材料的热稳定性和阻燃性能均有明显改善。

碳纳米管是一类已经产业化的具有导电性的优良增强填料,Takashi Kashiwang[15]等研究了PP/多壁碳纳米管纳米复合材料的热稳定性和阻燃性,发现在热分解过程中,复合材料表面形成

了一层具有均匀网状结构的絮状层,该絮状层能将热量反射回周围的气体中,显著地降低了复合材料的峰热释放速度和燃烧速度。

3、PP/粉状填料纳米复合材料

微米级的粉状填料只有在含量较高时才对聚合物有明显的改性效果,而且在改善某一方面性能的同时,往往会损害另一方面的性能,纳米粉状填料则改变了这种状况。

任显诚[16]等将经表面处理的纳米CaCO3、相容剂和PP通过熔融共混法制成了纳米复合材料,与纯PP相比,复合材料的冲击强度得到了显著提高。DSC曲线表明,CaCO3能诱导PPβ型晶体的生成,这有助于增加复合材料的韧性。另外,与将纳米CaCO3、相容剂和PP直接熔融共混相比,先将纳米CaCO3、相容剂和少量PP熔融共混制成母料,再与PP熔融共混所制得的复合材料中纳米CaCO3分散更好,改性效果更显著。邬润德[17]、王平化[18]等先将有机单体通过原位聚合制备聚合物包覆的纳米CaCO3颗粒,再与PP熔融共混制得了纳米复合材料,与原树脂相比,复合材料的冲击强度得到了明显的提高。苏新清[19]等先将纳米CaCO3与丁苯橡胶乳胶均匀混合制得表面包覆有丁苯橡胶的纳米CaCO3颗粒,再与PP树脂熔融共混制得纳米复合材料,与纯PP相比,复合材料的拉伸强度、弯曲强度、弯曲模量和热变形温度等都有所提高;加入成核剂苯甲酸钠后,复合材料的性能得到进一步改善;苯甲酸钠和纳米CaCO3对PP均有成核作用,可以加快PP的结晶速率,完善结晶结构,提高结晶度。Kun Yang[20]等研究了PP本体韧性对复合材料性能的影响,发现本体韧性适中的PP所制得的纳米复合材料冲击强度增加最显著。

纳米TiO2吸收紫外线的能力远强于普通TiO2粉未,曹建军[21]、周键[22]等发现纳米TiO2与PP复合除了能改善PP的力学性能外,还能显著改善耐老化性能。谭邦会[23]等将纳米丁苯弹性体、纳米TiO2与PP经熔融共混制得PP纳米复合材料,复合材料冲击强度和灭菌性能均有明显增加。

吴春蕾[24]等通过辐照接枝聚合制得聚苯乙烯改性纳米SiO2,再经熔融共混制得低填充SiO2/PP纳米复合材料,与纯PP相比,复合材料的韧性显著提高,同时拉伸强度、模量也有所增加。复合材料的拉伸断裂形态表明,复合材料韧性的提高,是由于基体大面积剪切屈服所致。郭刚[25]等采用熔融共混法制备了PP/纳米SiO2/聚烯烃弹性体纳米复合材料,在纳米SiO2与聚烯烃弹性体的协同作用下,PP的结晶速率加快,结晶温度升高,球晶均匀、细化,材料的韧性和强度得到了较大幅度的提高。Dimitrios N[26]等研究了增容剂MA-PP对经熔融共混制得的PP/ SiO2纳米复合材料性能的影响,结果显示,增容剂的加入减少了SiO2纳米颗粒的凝聚,从而促进了复合材料性能的改善。

季光明[27]等利用熔融共混法制备了PP/ZnO纳米复合材料,试验表明,经钛酸酯偶联剂处理后,ZnO纳米颗粒在PP基体中的分散状况得到改善。Hongxia Zhao[28]等的研究表明,ZnO纳米颗粒减缓了PP/ZnO纳米复合材料的光降解。张敬武[29]等利用原位乳液聚合法,在纳米Sb2O3的表面包覆聚丙烯酸酯类聚合物,然后与PP复合,一方面解决了纳米粒子的团聚问题,有利于Sb2O3在聚合物基体中的分散,另一方面提高了Sb2O3与PP基体的相容性,达到对PP增强增韧的目的。陈德良[30]等提出了利用无机组合粒子的协同效应增强增韧PP的新思路,他们将硅灰石、滑石、重晶石、碳酸钙、石英与纳米氧化铝等无机粒子经组合、超

细并表面处理制得无机组合粒子,再与PP熔融共混制得复合材料,该材料的性能明显高于相应单一粒子填充的PP材料;纳米氧化铝的添加降低了熔体粘度,改善了填充体系的流变性能,实现了聚丙烯塑料的同时增强增韧。

4、PP/POSS纳米复合材料

多面齐聚硅倍半氧烷(POSS)是表面可以官能化的笼状纳米硅氧烷颗粒,分子式为(RSiO1.5)n, 其硅氧骨架尺寸约在1.5nm,被认为是能够存在的最细微的氧化硅形式。由于其特殊的组成和结构,POSS与聚合物复合后可以显著改善聚合物的耐热性、阻燃性和冲击韧性。Alberto Fina [31]等用带不同链长烃基的POSS与PP复合分别制成纳米复合材料,发现复合材料的热稳定性均有改善;带有较长链长烃基的POSS更易在PP基体中均匀分散。A. Fina[32]等研究了PP/带有机金属基团的POSS纳米复合材料的热稳定性,实验结果显示,在氧化降解过程中,POSS在复合材料表面形成了一层稳定的陶瓷相,显著地改善了复合材料的热稳定性。

5、PP纳米复合材料的应用

目前,PP/粘土纳米复合材料已经得到较为广泛的应用。通用汽车公司已经在其2004款的Chevrolet Impala汽车车体两侧使用了聚丙烯/粘土纳米复合材料[33]。这种材料是由密执根州Warren市的通用汽车公司研发中心与Basell北美公司、南方粘土产品公司联合开发的。最近,在其2005款的GM Hummer H2汽车上又采用了Basell公司研发的热塑性聚烯烃/纳米粘土复合材料,主要用于车底的中心大梁、方向盘和车尾的保险杠。

Noble Polymers公司的Forte牌PP纳米复合材料已用于本田Acura TL 2004汽车。Forte 取代了玻璃纤维增强PP,因为玻纤增强PP成型困难、不透明、易弯曲。Forte的密度只有

0.928g/cm3,机械性能优异,外观得到了改善,且可多次回收利用。Forte还将用于2006款轻型卡车的中央控制台,其它的应用还包括办公家具和设备零部件。

PolyOne公司最近推出了Maxxam LST系列的PP/粘土纳米复合材料,据说已通过其专利工艺克服了纳米粘土剥离和分散不完全的问题。PolyOne公司声称这种材料质轻、美观、易于成型、成本低,具有高硬度和高冲击强度。PolyOne公司还提供粘土含量达40%的聚烯烃纳米粘土母料,能用于制备阻隔材料和汽车零部件。

6、结语

PP纳米复合材料由于其各方面的优异性能,已经引起了人们的广泛关注。在其制备、结构和性能研究方面已经取得了大量成果,在工程材料、阻隔材料等领域已经得到了实际应用。但在改善纳米填料在复合材料中的分散状况方面还有大量工作要做。László Százdi[34]等利用理论模型对多种聚合物/粘土纳米复合材料中粘土剥离情况进行了定量估算,发现所有复合材料中粘土剥离率都很低,最好的情况也只有8%。另外,国内有关PP纳米复合材料的研究报导虽多,但其产业化方面的报导却很少,如何尽快将相关科研成果产业化,应引起学术界和产业界的重视。参考文献:

[1] 王平华, 徐国永, 宋功品. 聚丙烯/蒙脱土纳米复合材料的制备及结构[J]. 高分子材料科学与工程, 2004, 20(4): 191~194.

[2] 丁超, 何慧, 洪浩群等. PP/蒙脱土纳米复合材料的制备、结构与性能[J]. 塑料工业, 2004, 32(9): 8~10.

[3] 王传洋, 黄汉雄, 章永化. PP/蒙脱土纳米复合材料的制备及剪切粘度[J]. 高分子材料科学与工程, 2004, 20(2): 118~121.

[4] M. Modesti, A. Lorenzetti, D. Bon, et al. Effect of processing conditions on morphology and mechanical properties of compatibilized polypropylene nanocomposites[J]. Polymer, 2005, 46(23): 10237~10245.

[5] F. Perrin-Sarazin, M.-T. ton-That, M.N. Bureau, et al. Micro-and nano-structure in polypropylene/clay nanocomposites[J]. Polymer, 2005, 46(25): 11624~11634. [6] 马继盛, 漆宗能, 张树范等. 插层聚合制备聚丙烯/蒙脱土纳米复合材料及其结构性能表征[J]. 高等学校化学学报, 2001, 22(10): 1767~1770.

[7] 赵海超, 杨凤, 张学全等. 原位聚合制备聚丙烯/蒙脱土纳米复合材料及其结构性能表征[J]. 高分子材料科学与工程, 2004, 20(2): 185~187.

[8] Aihua He, Limei Wang, Junxing Li, et al. Preparation of exfoliated isotactic polypropylene/alkyl-triphenylphosphonium-modified montmorillonite nanocomposites via in situ intercalative polymerization[J]. Polymer, 2006, 47(6): 1767~1771.

[9] 马晓燕, 鹿海军, 梁国正等. 累托石/聚丙烯插层纳米复合材料的制备与性能[J]. 高分子学报, 2004, (1): 88~92.

[10] Florêncio G. Ramos Filho, Tomás Jeferson A. Mélo, Marcelo S. Rabello, et al. Thermal stability of nanocomposites based on polypropylene and bentonite[J]. Polymer Degradation and Stability, 2005, 89(3): 383~392.

[11] 全成子, 沈经纬, 陈晓梅. 聚丙烯/石墨导电纳米复合材料的制备与性能[J]. 高分子学报, 2003, (6): 831~836.

[12] 王平华, 徐国永. 聚丙烯/凹凸棒土纳米复合材料力学性能的研究[J]. 塑料工业, 2003,

31(6): 13~14.

[13] 王丽华, 段丽斌, 盛京. 聚丙烯/凹凸棒土纳米复合材料结晶形态和形貌研究[J]. 高分子学报, 2004, (3): 424~428.

[14] Mingliang Du, Baochun Guo, Demin Jin. Thermal stability and flame retardant effects of halloysite nanotubes on poly(propylene) [J]. European Polymer Journal, 2006, 42(6): 1362~1369.

[15] Takashi Kashiwang, Eric Grulke, Jenny Hilding, et al. Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites[J]. Polymer, 2004, 45(12): 4227~4239.

[16] 任显诚, 白兰英, 王贵恒. 纳米级CaCO3粒子增韧增强聚丙烯的研究[J]. 中国塑料, 2000, 14(1): 22~26.

[17] 邬润德, 童筱莉, 周治国. 聚合物原位复合纳米碳酸钙增韧PP研究[J]. 中国塑料, 2003, 17(10): 24~26.

[18] 王平华, 崔杰, 宋功品. 纳米碳酸钙母料研制及对聚丙烯力学性能的影响[J]. 塑料科技,

2004, (3): 21~23.

[19] 苏新清, 乔金梁, 华幼卿等. 具有包藏结构的三元聚丙烯纳米复合材料结构与性能关系的研究[J]. 高分子学报, 2005, (1): 142~148.

[20] Kun Yang, Qi Yang, Guangxin Li, et al. Morphology and mechanical properties of polypropylene/calcium carbonate nanocomposites[J]. Materials Letters, 60(6):

805~809.

[21] 曹建军, 郭刚, 汪斌华等. PP/TiO2纳米复合材料的研制及其抗老化机理分析[J]. 工程塑料应用, 2004, 32(7): 43~46.

[22] 周健, 俞进见. PP/TiO2纳米复合材料耐老化性能的研究[J]. 工程塑料应用, 2004,

32(5): 50~53.

[23] 谭邦会, 张晓红, 刘轶群等. 弹性纳米粒子/纳米TiO2/聚丙烯复合材料的研究[J]. 合成树脂及塑料, 2003, 20(4): 56~58.

[24] 吴春蕾, 章明秋, 容敏智. 低填充SiO2/聚丙烯纳米复合材料的拉伸特性[J]. 材料工程, 2001, (5): 30~33.

[25] 郭刚, 于杰, 罗筑等. SiO2纳米粒子与聚烯烃弹性体协同改性聚丙烯的研究[J]. 现代化工, 2004, 24(7): 40~43.

[26] Dimitrios N. Bikiaris, Alexandos Vassiliou, Eleni Pavlidou, et al. Compatibilisation effect of PP-g-MA copolymer on iPP/ SiO2 nanocomposites prepared by melt

mixing[J]. European Polymer Journal, 2005, 41(9): 1965~1978.

[27] 季光明, 陶杰. 偶联剂对纳米ZnO粒子在聚丙烯中的分散性影响[J]. 南京航空航天大学学报, 2004, 36(2): 262~266.

[28] Hongxia Zhao, Robert K. Y. Li. A study on the photo-degradation of zinc

oxide(ZnO) filled polypropylene nanocomposites[J]. Polymer, 2006, 47(9):

3207~3217.

[29] 张敬武, 谭菁, 周兴华等. 聚丙烯/丙烯酸酯原位聚合改性纳米Sb2O3复合材料的微结构[J]. 湖北化工, 2003, (3): 13~15.

[30] 陈德良, 杨华明, 高濂. 无机组合粒子/聚丙烯复合材料的制备与协同效应[J]. 高分子材料科学与工程, 2003, 19(6): 220~223.

[31] Alberto Fina, Daniela Tabuani, Alberto Frache, et al. Polypropylene-polyhedral oligomeric silsesquioxanes(POSS) nanocomposites[J]. Polymer, 2005, 46(19): 7855~7866.

[32] A. Fina, H.C.L.Abbenhuis, D. Tabuani, et al. Polypropylene metal functionalised POSS nanocomposites: A study by thermogravimetric analysis[J]. Polymer Degradation and Stability, 2006, 91(5): 1064~1070.

[33] Lilli Manolis Sherman. Chasing nanocomposites[J]. Chemical week, 2004, (10): 6~11.

[34] László Százdi, Béla Pukánszky, Jr, et al. Quantitative estimation of the

reinforeing effect of layered sillicates in PP nanocomposites[J]. Polymer, 2006, 47(13): 4638~4648.

PP成核结晶机理

PP成核结晶机理介绍 聚丙烯问世以来,以出色的热性能和机械性能在很多领域,如注塑、薄膜、纤维生产中得到广泛的应用,这种通用性和经济性使聚丙烯超过了聚氯乙烯、聚苯乙烯,成为仅次于聚乙烯的第二大合成树脂。尤其是随着各种晶型聚丙烯实现了商业化的推广应用,使聚丙烯在工程塑料和功能材料上有非常广阔的前景。 从聚丙烯的结构特点上可以得知,由于聚丙烯主链上含有不对称碳原子,因此聚丙烯存在着不同的一级结构,聚合物结晶时,只能部分结晶,很难得到类似无机的高纯度晶体。但是随着结晶条件的变化,可以引起分子链构象的变化或者堆积方式的改变,形成几种不同的晶型,这就是所谓的晶体中的同质多晶现象。 聚丙烯的结晶过程包括成核和晶核生长两个阶段。在成核阶段,高分子链段规则排列生成一个足够大的、热力学上稳定的晶核,随后晶核生长形成球晶,结晶过程进入了晶核生长阶段。成核的方式根据结晶过程是否存在异相晶核而分为均相成核和异相成核。均相成核是指处于无形态的聚丙烯熔体由于温度的变化自发形成晶核的过程。这种成核方式往往获得的晶核数量少,结晶速度慢,球晶尺寸大,结晶率低,制品的加工和应用性能较差;相反,异相成核是指聚丙烯熔体中存在固相"杂质"(如成核剂)或未被破坏的聚丙烯晶核,通过在其表面吸附聚丙烯分子形成晶核的过程。显而易见,异相成核能够提供更多的晶核,在球晶生长速度不变的情况下加快结晶速度,降低球晶尺寸,提高制品的结晶度和结晶温度。这些结晶参数的改变将赋予聚丙烯材料许多新的性能,因此,异相成核实际上是聚丙烯结晶改性的理论基础。 等规聚丙烯有多种晶型,即α、β、γ、δ和拟六方态5种结晶形态。其中γ晶态只存在于低相对分子质量的PP中,δ晶态存在于无规或间同立构PP中,全同立构PP晶态以α、β和拟六方态为主。其中以α晶型最为常见,α晶型是单斜晶方式形成的最普通和最稳定的形式,熔点为167℃,β晶型只在特定结晶条件下或在β晶型成核剂的诱发下才能获得,且稳定性不如α晶型。α晶型与β晶型PP性能上的差异源于α、β两种晶态的结构差异(见表1)。 α晶型成核剂的研究始于20世纪80年代中期,由于汽车、家电等行业对高耐热、高强度聚丙烯需求量的不断增长促进了这一研究领域的活跃。国外一些知名公司,如日本窒素公司、德山曹达公司、三井油化公司等开发的高结晶聚丙烯树脂已经成功地应用于家电、汽车、薄膜及防腐材料领域,产量已达万吨。国内山西省化工研究所、扬子石化研究院、齐鲁石化树脂所也有研究工作报道和部分产品。α晶型成核剂提高聚烯烃性能的幅度同α晶型成核剂的种类、用量有关。从应用角度出发,α晶型成核剂可以分为通用型、透明型和增刚型3种。通用型成核剂通常是价格低廉的成核剂,诸如滑石粉、SiO2、苯甲酸皂盐等,其成核率低、制品透明性差。透明型成核剂俗称增透剂,这类成核剂能有效地降低聚合物的雾度、增加透光率,并能较显著地改善聚合物的理化性能,代表性的物质有二苄叉山梨醇及其衍生物、芳香磷酸酯盐类和脱氢松香酸皂类产物。其中以第三代产品二苄叉山梨醇类(DMDBS)成核剂最为优秀,不仅有优异的增透性而且无味。增刚型成核剂俗称增刚剂,在显著提高聚合物透明性的同时也能明显改善其耐热性和刚度。这类磷酸酯盐类成核剂是日本旭电公司首先开发出来

聚丙烯酰胺

聚丙烯酰胺 1、定义 丙烯酰胺聚合物是丙烯酰胺的均聚物及其共聚物的统称。工业上凡是含有50%以上的丙烯酰胺(AM)单体结构单元的聚合物,都泛称聚丙烯酰胺。其他单体结构单元含量不足5%的通常都视为聚丙烯酰胺的均聚物。 聚丙烯酰胺,polyacrylamide(PAM),CAS RN:[9003-05-8],结构式为: n是聚合度。n的范围很宽,数量级为102~105,相应的相对分子质量由几千到上千万。 分子量是PAM的最重要参数。按其值得大小有低分子量(<100×104)、中等分子量(100×104~1000×104)、高分子量(1000×104~1500×104)和超高分子量(>1700×104)四种。不同分子量范围的PAM有不同的使用性质和用途。 2、分类 聚丙烯酰胺按在水溶液中的电离性可分为非离子型、阴离子型、阳离子型、两性型。 非离子型聚丙烯酰胺(NPAM)的分子链上不带可电离基团,在水中不电离;阴离子型聚丙烯酰胺(APAM)的分子链上带有可电离的负电荷基团,在水中可电离成聚阴离子和小的阳离子;阳离子型聚丙烯酰胺(CPAM)的分子链上带有可电离的正电荷基团,在水中可电离成聚阳离子和小的阴离子;两性的聚丙烯酰胺(AmPAM或ZPAM)的分子链上则同时带有可电离的负电荷基团和正电荷基团,在水中能电离成聚阴离子和聚阳离子,ZPAM的电性依溶液体系的PH值和何种类型的电荷基团多寡而定。 PAM的电性称谓和所带的电荷基团解离后的电性称谓相同。 按照聚合物分子链的几何形状可把PAM分为线型、支化型和交联型。PAM分子链的形状一般是线型结构。但是在丙烯酰胺自由基聚合反应的过程中会发生链转移反应。

塑料材料-聚丙烯(PP)的基本物理化学特性及典型应用介绍

聚丙烯(PP)的介绍 聚丙烯概述 聚丙烯采用齐格勒-纳塔催化剂使丙烯催化聚合而得,它是分子链节排列得很规整的结晶形等规聚合物。聚丙烯的英文名称为Polypropylene,简称PP,俗称百折胶。聚丙烯按其结晶度可以分为等规聚丙烯和无规聚丙烯,等规聚丙烯为高度结晶的热塑性树脂,结晶度高达95%以上,分子量在8~15万之间,以下介绍的聚丙烯主要为等规聚丙烯。而无规聚丙烯在室温下是一种非结晶的、微带粘性的白色蜡状物,分子量低(3000~10000),结构不规整缺乏内聚力,应用较少。 聚丙烯(PP)作为热塑塑料聚合物在塑料领域内有十分广泛的应用,因所用催化剂和聚合工艺不同,所得聚合物性能,用途也不同。PP有很多有用的性能,但还缺乏固有的韧性,特别是在低于其玻璃化温度的条件下。然而,通过添加冲击改性剂,可以提高其抗冲击性能。 一、聚丙烯的特性 (1)物理性能:聚丙烯为无毒、无臭、无味的乳白色高结晶的聚合物,密度只有0.90~.091g/cm3,是目前所有塑料中最轻的品种之一。它对水特别稳定,在水中24h的吸水率仅为0.01%,分子量约8~15万之间。成型性好,但因收缩率大,厚壁制品易凹陷。制品表面光泽好,易于着色。(2)力学性能:聚丙烯的结晶度高,结构规整,因而具有优良的力学性能,其强度和硬度、弹性都比HDPE高,但在室温和低温下,由于本身的分子结构规整度高,所以冲击强度较差,分子量增加的时候,冲击强度也增大,但成型加工性能变差。PP最突出的性能就是抗弯曲疲劳性,如用PP注塑一体活动铰链,能承受7×107次开闭的折迭弯曲而无损坏痕迹,干摩擦系数与尼龙

相似,但在油润滑下,不如尼龙。 (3)热性能:PP具有良好的耐热性,熔点在164~170℃,制品能在100℃以上温度进行消毒灭菌,在不受外力的,150℃也不变形。脆化温度为-35℃,在低于-35℃会发生脆化,耐寒性不如聚乙烯。 (4)化学稳定性:聚丙烯的化学稳定性很好,除能被浓硫酸、浓硝酸侵蚀外,对其它各种化学试剂都比较稳定,但低分子量的脂肪烃、芳香烃和氯化烃等能使PP软化和溶胀,同时它的化学稳定性随结晶度的增加还有所提高,所以聚丙烯适合制作各种化工管道和配件,防腐蚀效果良好。(5)电性能:聚丙烯的高频绝缘性能优良,由于它几乎不吸水,故绝缘性能不受湿度的影响。它有较高的介电系数,且随温度的上升,可以用来制作受热的电气绝缘制品,它的击穿电压也很高,适合用作电气配件等。抗电压、耐电弧性好,但静电度高,与铜接触易老化。 (6)耐候性:聚丙烯对紫外线很敏感,加入氧化锌、硫代丙酸二月桂酯、碳黑或类似的乳白填料等可以改善其耐老化性能。 二、聚丙烯的用途 (1)薄膜制品:聚丙烯薄膜制品透明而有光泽,对水蒸汽和空气的渗透性小,它分为吹膜薄膜、流延薄膜(CPP)、双向拉伸薄膜(BOPP)等。 (2)注塑制品:可用于汽车、电气、机械、仪表、无线电、纺织、国防等工程配件,日用品,周转箱,医疗卫生器材,建筑材料。 (3)挤塑制品:可做管材、型材、单丝、渔用绳索。打包带、捆扎绳、编织袋,纤维,复合涂层,片材,板材等。吹塑中空成型制品各种小型容器等。 (4)其它:低发泡、钙塑板,合成木材,层压板,合成纸,高发泡可作结构泡沫体。 三、聚丙烯的成型加工 聚丙烯的成型加工性好,成型的方法很多,如注塑、吹塑、真空热成型、涂覆、旋转成型、熔接、机加工、电镀和发泡等,并可在金属表面喷涂。其中注塑成型的比例大,注塑温度在180~200 之间,注塑压力在68.6~137.2MPa,模具温度为40~60℃。预干燥温度在80℃左右。应避免PP 长时间与金属壁接触。 聚丙烯的二次加工性很好,其印刷性比聚乙烯好,照相凸版,胶版、平凹板等印刷方法均可使用,要获得良好的良好的耐热、耐油、耐水等要求的印刷性能,须经电晕放电处理等再行印刷。 四、聚丙烯的改性 聚丙烯可通过填充、增强、共混、共聚、交联来改性。如添加碳酸钙、滑石粉、无机矿物质等填料,可提高刚性、硬度、耐热性和尺寸稳定性;添加玻璃纤维、石棉纤维、云母、玻璃微珠等可提高拉伸强度,并可改善抗蠕变性、低温抗冲击性;添加弹性体和橡胶等可提高冲击性能、透明性等等。 均聚PP和共聚PP的介绍 1. PP均聚物 聚丙烯(PP)作为热塑塑料聚合物于1957年开始商品化生产,是有规立构聚合物中的第一个。其历史意义更体现在,它一直是增长最快的主要热塑性塑料,2004年它的全国总产量达到300万吨。它在热塑性塑料领域内有十分广泛的应用,特别是在纤维和长丝、薄膜挤压、注塑加工等方面。 1.1 化学和性质

高结晶聚丙烯_HCPP_的研发和产业化进展2014

高结晶聚丙烯(HCPP)的研发和产业化进展 王 雄1,张宇婷2,马艳萍1,徐人威1,朱博超1,姚培洪1 (1 中国石油天然气股份有限公司石油化工研究院兰州化工研究中心,兰州 730060; 2 兰州交通大学化学与生物工程学院,兰州 730070) 摘要:高结晶聚丙烯一般采用高等规度聚丙烯加入成核剂制备。本文较全面地综述了制备高结晶度聚丙烯的催化剂体系及其制备技术。高等规度聚丙烯可以通过传统Zieg ler Natta聚丙烯催化剂与合适的外给电子体搭配制备,也可以通过选取具有合适结构的茂金属化合物制备。目前,聚丙烯工艺主要使用传统Zieg ler N atta催化剂。本文介绍了生产高结晶度聚丙烯的主要生产厂家、牌号和生产工艺,如Spher ipol环管/气相工艺、U nipo l气相工艺、N ovo len气相工艺、Innov ene气相工艺、H ypol釜式本体工艺等,展望了高结晶度聚丙烯的应用前景,认为高结晶聚丙烯是PP新产品开发及高性能化的重要途径之一,具有非常广阔的市场前景,对于我国高结晶度聚丙烯牌号的开发具有较大的意义。 关键词:高结晶聚丙烯;Z N催化剂;茂金属催化剂;聚合工艺 引言 聚丙烯是典型的部分结晶性热塑性树脂,其良好的性能价格比决定了它具有很宽的应用范围。近年来,随着汽车工业、高速列车、建筑业、电子电讯业的迅速发展以及聚丙烯产品的高性能化,聚丙烯的产量及需求量大幅提高,成为近十年来增长最快的通用塑料,年需求增长高达8%。聚丙烯的高结晶化是PP 新产品开发及高性能化的重要途径之一,其价格约比普通聚丙烯高10%~15%。 高结晶聚丙烯(H CPP)具有较高的结晶度、结晶速度、结晶温度、热变形温度、表面耐磨性及光泽度,大大拓展了产品应用范围,使PP朝着工程塑料化方向发展。H CPP均聚物和普通均聚物比较,相同流动性的H CPP的耐热性、刚性、韧性和光泽均明显高于普通PP。H CPP主要应用于汽车、耐用消费品、薄膜、动力工具和电子电气设施[1~3],也可用于家用电器中的空调、炊具、吸尘器等制品[4]。亚洲作为世界汽车、家电等产品的制造中心,预计对H CPP的需求量还会有较高幅度的增长,今后会越来越多地使用H CPP。 高结晶聚丙烯可以通过改进聚丙烯催化剂和聚合技术,提高聚丙烯的等规度和分子量分布的方法来制备,也可以通过加入成核剂的方法来制备。通过聚合方法得到的高结晶聚丙烯的结晶度可以达到70%,理论上可提高到75%,而通过加入成核剂的方法制备的高结晶聚丙烯可以更高,且结晶细化,材料的透明度也同时提高。本文对制备高结晶度聚丙烯的催化剂体系及其制备方法的研究进展进行综述。 1 制备高结晶度聚丙烯的催化剂体系和聚合技术 目前制备高结晶度聚丙烯的催化剂体系主要是传统Z N催化剂和茂金属催化剂两种体系。 1 1 传统Zeigler Natta催化剂体系 传统的Z N聚合催化剂体系由一过渡金属卤化物衍生物所构成的复合物组成,如钛、钒、铬等过渡金属形成的卤代物以及卤代烯烃化合物。通常将卤化钛化合物支载在与铝复合的镁化物上来制备催化剂 收稿:2011 11 04;修回:2011 12 01; 基金项目:中国石油天然气股份有限公司科技管理部开发项目(合同号:2011B 2703 0103); 作者简介:王雄(1980-),男,在读博士研究生,工程师,主要从事烯烃聚合催化剂及聚合工艺方面的研究,通讯作者。 E mail:w ang x iong1@petro china.co https://www.360docs.net/doc/c111329063.html,

两性聚丙烯酰胺性能及应用综述

两性聚丙烯酰胺(EPAM) 两性聚丙烯酰胺(EPAM)是由乙烯酰胺是和乙烯基阳离子单体丙烯酰胺单体,水解共聚而成。经红外线光谱分析,该产品链结上不但有丙烯酰胺水解后的“羧基阴电荷,而且还有乙烯基阳电荷。因此,构成了分子链上既有阳电荷,又有阴电荷的两性离子不规则聚合物。两性离子型绝非阴离子型、阳离子型的混合。郑州益源天泽环境科技有限公司成功研制的高效絮凝剂,絮凝剂可固体投加,使用方便,絮凝时间短,出水水质好,是废水处理的首选产品。 两性聚丙烯酰胺(EPAM)产品特性及应用领域: 1) 两性聚丙烯酰胺(EPAM)用于污泥脱水根据污泥性质可选用本产品的相应型号,可有效在污泥进入压滤之前进行污泥脱水,脱水时,产生絮团大,不粘滤布,压滤时不散,流泥饼较厚,脱水效率高,泥饼含水率在80%以下。 2) 两性聚丙烯酰胺(EPAM)用于生活污水和有机废水的处理,本产品在配性或碱性介质中均呈现阳电性,这样对污水中悬浮颗粒带阴电荷的污水进行絮凝沉淀,澄清很有效。如生产粮食酒精废水,造纸废水,城市污水处理厂的废水,啤酒废水,味精厂废水,制糖废水,有机含量高废水、饲料废水,纺织印染废水等,用阳离子聚丙烯酰胺要比用阴离子、非离子聚丙烯酰胺或无机盐类效果要高数倍或数十倍,因为这类废水普遍带阴电荷。郑州益源天泽环境科技有限公司成功研制的高效絮凝剂,絮凝剂可固体投加,使用方便,絮凝时间短,出水水质好,是废水处理的首选产品。 3) 两性聚丙烯酰胺(EPAM)用于以江河水作水源的自来水的处理絮凝剂,用量少,效果好,成本低,特别是和无机絮凝剂复合使用效果更好,它将成为治长江、黄河及其它流域的自来水厂的高效絮凝剂。 4) 两性聚丙烯酰胺(EPAM)造纸用增强剂及其它助剂。提高填料、颜料等存留率、纸张的强度。 5) 两性聚丙烯酰胺(EPAM)用于油田助剂,如粘土防膨剂,油田酸化用稠化剂。 6) 两性聚丙烯酰胺(EPAM)用于纺织上浆剂、浆液性能稳定、落浆少、织物断头率低、布面光洁。

聚丙烯成核剂的分类与应用

聚丙烯新型成核剂的开发及应用 目录 摘要 (1) 1、聚丙烯结晶 (1) 1.1、聚丙烯的立构规整性......................................................................................... .. (1) 1.2、聚丙烯晶型 (2) 1.3、聚丙烯结晶过程 (2) 2、聚丙烯成核剂 (2) 2.1成核剂种类 (2) 2.1.1、标准型成核剂 (2) 2.1.2、透明性 (2) 2.1.3、增强型(有机磷酸盐) (3) 2.2、成核剂作用 (4) 2.2.1、改进PP 机械性能 (4) 2.2.2、缩短PP 成型周期 (5) 2.2.3、增加PP的透明性 (5) 2.2.4、对热性能的影响 (5) 总结 (5) 摘要 本论文首先简单的介绍了聚丙烯结晶中的聚丙烯立构规整性,将聚丙烯分成了等规、间规和无规三种;聚丙烯晶型的不同晶型的性能及聚丙烯结晶过程。主要叙述了聚丙烯成核剂的三种分类及它们的应用。主要考察了几种类型的成核剂对聚丙烯的机械性能、成型周期和制品的透明性的影响。 关键词:聚丙烯,结晶,成核剂, 前言 聚丙烯作为结晶聚合物树脂,它的结晶行为、结晶形态以及球晶尺寸都将直接影响制品的最终性能。成核剂具有改变树脂的结晶行为、结晶形态和球晶尺寸,进而达到提高制品的加工性能和应用性能之功效。而目前PP异相成核理论还不成熟,至今还不十分清楚何种结构因素引起成核作用,成核剂对PP结晶、以及物理性能的影响等研究也不十分透彻,因此,国内外对PP成核剂的开发和成核PP的研究与应用都十分的活跃[1]。 1、聚丙烯结晶 1.1、聚丙烯的立构规整性 聚丙烯(pp)是以丙烯为单体聚合而成的聚合物,其结构式

聚丙烯

聚丙烯-PP-Polypropylene原料介绍 发布日期:2013-05-18 20:02 点击次数:662次 聚丙烯-PP-Polypropylene原料介绍 聚丙烯,英文名称:Polypropylene(PP),日文名称:ポリプロピレン,分子式:(C3H6)n。CAS 登录号:9003-07-0,是由丙烯聚合而制得的一种热塑性树脂。按甲基排列位置分为等规聚丙烯(isotaetic polyprolene)、无规聚丙烯(atactic polypropylene)和间规聚丙烯 (syndiotatic polypropylene)三种。 介绍 甲基排列在分子主链的同一侧称等规聚丙烯, 聚丙烯树脂若甲基无秩序的排列在分子主链的两侧称无规聚丙烯,当甲基交替排列在分子主链的两侧称间规聚丙烯。一般工业生产的聚丙烯树脂中,等规结构含量约为95%,其余为无规或间规聚丙烯。工业产品以等规物为主要成分。聚丙烯也包括丙烯与少量乙烯的共聚物在内。通常为半透明无色固体,无臭无毒。由于结构规整而高度结晶化,故熔点可高达167℃。耐热、耐腐蚀,制品可用蒸汽消毒是其突出优点。密度小,是最轻的通用塑料。缺点是耐低温冲击性差,较易老化,但可分别通过改性予以克服。 共聚物型的PP材料有较低的热变形温度(100℃)、低透明度、低光泽度、低刚性,但是有更强的抗冲击强度,PP的冲击强度随着乙烯含量的增加而增大。PP的维卡软化温度为150℃。由于结晶度较高,这种材料的表面刚度和抗划痕特性很好。PP不存在环境应力开裂问题。 PP的熔体质量流动速率(MFR)通常在1~100。低MFR的PP材料抗冲击特性较好但延展强度较低。对于相同MFR的材料,共聚型的抗冲强度比均聚型的要高。由于结晶,PP的收缩率相当高,一般为1.6~2.0%。 性质描述 中文名:聚丙烯[1] 聚丙烯结构图3D模型 中文别名:丙纶;聚丙烯纤维;丙纶短纤维;聚丙烯短纤维;丙纶短纤;丙纶fdy;丙纶长丝fdy;烟用聚丙烯过滤丝束油剂[2] 英文名: Polypropylene 缩写:PP

PAM物理性质及使用特性

聚丙烯酰胺(cpolyacrylamids)简称PAM,是一种线型高分子聚合物,是水溶性高分子化合物中应用最为广泛的品种之一,聚丙烯酰胺和它的衍生物可以用作有效的絮凝剂,增稠剂,纸张增强剂,以及液体的减阻剂等,广泛应用于水处理、造纸、石油、煤矿、矿冶、地质、轻纺,建筑等工业部门。 一、产品规格及主要技术指标 技术指标名称 PAM 阴离子PAM 非离子PAM 阳离子PAM 复合离子 外观白色或微黄色粉末 粒径,mm < 2 固含量(%) ≥ 88 溶速(mim) ≤ 1.5 不溶物(%) ≤ 2 分子量(万) 500-2400 300-600 300-800 800-1500 水解度(%) 13-30 5-15 离子度5-50 10-20 注:根据用户要求,分子量控制在表格所定指标的范围内根据市场价格面议 二、PAM物理性质及使用特性 1、物理性质:分子式(CH2CHCONH2)r 结构式(CH2-CH0)n PAM是一种线型高分子聚合物,它易溶于水,几乎不溶于苯、乙醚、酯类、丙酮等一般有机溶剂,其水溶液几近透明的粘稠液体,属非危险品,无毒,无腐蚀性,固体PAM有吸湿性,吸温性随离子度的增加而增加,PAM热稳定性好,加热到100oC稳定性良好,但在150oC以上时易分解产生氮气,在分子间发生亚胺化作用而不溶于水,密度(克)毫升23oC1.302。玻璃化温度在153oC,PAM在应力作用下表现出非牛顿流动性。 2、使用特性 1)絮凝性:PAM能使悬浮物质通过电中和,架桥吸附作用,起絮凝作用。 2)粘合性:通通过机械的,物理的、化学的作用,起粘合作用。 3)降阻性:PAM能有效地降低流体的磨擦阻力,水中加入微量PAM就能降阻50-80% 4)增稠性:PAM在中性和酸性条件下均有增稠作用,当PH值在10oC以上PAM易水解。呈半网状结构时增稠将更明显。 3、PAM的作用原理简介 1)PAM用于絮凝时,与被絮凝物种类表面性质,特别是动电位,粘度、浊度及悬浮液的PH值有关,颗粒表面的动电位,是颗粒阻聚的原因加入表面电荷相反的PAM,能速动电位降低而凝聚。 2)吸附架桥: PAM分子链固定在不同的颗粒表面上,各颗粒之间形成聚合物的桥,使颗粒形成聚集体而沉降。

聚丙烯基础知识

第一章 聚丙烯的结构和性质 第一节 聚丙烯的结构 一、分子结构 由丙烯聚合的高分子化合物,聚合反应中链增长的方式,即下一个单体连接到分子链上的形式决定了分子链的形状和甲基的空间排列,决定其立构规整度,进而决定其结晶结构、结晶度、密度及相关的物理机械性能。 1.等规聚丙烯(iPP )、间规聚丙烯(sPP )和无规聚丙烯(aPP ) 聚丙烯立构中心的空间构型有D 型和L 型两种: 如果此立构中心D 型或L 型单独相连,就构成iPP : 如果立构中心D 型和L 型交替连接,就构成sPP : 如果立构中心D 型和L 型无规则地连接,甲基无规则地分布在主链平面两侧,就构成了aPP : 或

等规聚丙烯是高结晶的高立体定向性的热塑性树脂,结晶度60%~70%,等规度>90%,吸水率0.01%~0.03%,有高强度、高刚度、高耐磨性、高介电性,其缺点是不耐低温冲击,不耐气候,静电高。 间规聚丙烯结晶点较低(与等规聚丙烯相比),为20%~30%,密度低(0.7~0.8g/cm3),熔点低(125~148℃),分子量分布较窄(M w/M v=1.7~2.6),弯曲模量低,冲击强度高,最为优异的是透明性、热密封性和耐辐射性,但加工性较差(以茂金属催化剂聚合可得间规度大于80%的间规聚丙烯)。 无规聚丙烯分子量小,一般为3000至几万,结构不规整,缺乏内聚力,在室温下是非结晶、微带粒性的蜡状固体。 2.无规共聚物、抗冲共聚物和多元共聚物 丙烯-乙烯无规共聚物:使丙烯和乙烯的混合物聚合,所得聚合物的主链上无规则地分布着丙烯和乙烯链段,乙烯含量一般为1%~4%(质量分数),乙烯抑制丙烯结晶,使无规共聚物结晶度下降,熔点、玻璃化温度、脆化点降低,结晶速度变慢,材料变软,透明度提高,韧性、耐寒性、冲击强度均较均聚物提高,主要用于高抗冲击性和韧性制品。 丙烯-乙烯嵌段共聚物:在单一的丙烯聚合后除去未反应的丙烯,再与乙烯聚合所得产物,通常嵌段共聚体中乙烯含量为5%~20%(质量分数)。丙烯-乙烯嵌段共聚物实际是聚乙烯、聚丙烯和末端嵌段共聚物的混合物,这种混合物既保持了一定程度的刚性,又提高了冲击强度,但透明性和光泽性有所下降。 无规EP: 抗冲共聚物:—PP—PE—EP— 多元共聚物是由三种以上原料聚合而成的高分子化合物,如丙烯、乙烯、丁烯等共聚物。 对于含少量乙烯的无规共聚物,由于乙烯单体存在扰乱了丙烯链的规整性,从而降低结晶性和熔点,改进PP的缺点而具有较好的低温特性和透明性。在相同乙烯含量下,乙烯在聚合物中较均匀分布的产品性能较好。

PAM物理性质及使用特性

PAM物理性质及使用特性资料来源:网络 PAM物理性质及使用特性 1、物理性质:分子式(CH2CHCONH2)r 结构式(CH2—CHO)n PAM是一种线型高分子聚合物,它易溶于水,几乎不溶于苯,乙醚、酯类、丙酮等一般有机溶剂,其水溶液几近透明的粘稠液体,属非危险品,无毒、无腐蚀性,固体PAM有吸湿性,吸湿性随离子度的增加而增加,PAM热稳定性好;加热到100℃稳定性良好,但在150℃以上时易分解产中氮气,在分子间发生亚胺化作用而不溶于水,密度(克)毫升23℃1.302。玻璃化湿度153℃,PAM在应力作用下表现出非牛顿流动性。 2、使用特性 1)絮凝性:PAM能使悬浮物质通过电中和,架桥吸附作用,起絮凝作用。 2)粘合性:能通过机械的、物理的、化学的作用,起粘合作用。 3)降阻性:PAM能有效地降低流体的磨擦阻力,水中加入微量PAM就能降阻50—80%。 4)增稠性:PAM在中性和酸条件下均有增稠作用,当PH值在10℃以上PAM易水解。呈半网状结构时,增稠将更明显。 3、PAM的作用原理简介 1)絮凝作用原理:PAM用于絮凝时,与被絮凝物种类表面性质,特别是动电位,粘度、浊度及悬浮液的PH值有关,颗粒表面的动电位,是颗粒阻聚的原因加入表面电荷相反的PAM,能速动电位降低而凝聚。 2)吸附架桥:PAM分子链固定在不同的颗粒表面上,各颗粒之间形成聚合物的桥,使颗粒形成聚集体而沉降。 3)表面吸附:PAM分子上的极性基团颗粒的各种吸附。 4)增强作用:PAM分子链与分散相通过种种机械、物理、化学等作用,将分散相

牵连在一起,形成网状,从而起增强作用。 三、PAM的合成及工艺 PAM:由丙烯腈与水在骨架铜催化剂作用下直接反应生成聚丙烯酰胺再经离子交换聚合干燥、磨粉等工序即得成品,工艺简介如下: 1、催化水合CH2=CHCN H2OCH2=CHCONH2 2、聚合nCH2=CHCONH2→引发剂→(CH2CHCONH2) 聚内烯酰胺的应用领域配比浓度及用量应用领域用途聚合物类型、规格用量及配比浓度。 熔炉炼铝、硫酸铝循环水、生产过程中去杂质阴离子1000万千分之五配每吨用3—5克 盐水澄清去除钙与镁阴离子800—1200万千分之一配每吨用1—2克 膨润土生产增加膨润的粘度阴离子1500—1800万千分之三配每吨用2—3克 混凝土减水剂阴离子500—800万1.2%配每吨用 1.2kg 洗煤煤泥沉降、层渣沉降阴离子800—1200万千分之三配每吨用4克 氰化工艺采金阴离子1000—1500万千分之三配每吨用3—4克 温法生产磷酸生产工艺提纯阴离子800—1200万千分之四配每吨用5克 电镀重金属、氢氧化物处理非离子600—800万千分之一配比每吨用1—2克 浮选助剂浮选前改进颗粒大小阴离子1000万千分之三配比每吨用3—4克 钢厂循环水处理、污泥脱水阴离子1200万,千分之五配比每吨用5—7克 肉类加工污水处理阴离子1500万,千分之三配每吨用3—4克 汽车工业污水处理阴离子1200—1500万千分之四配每吨用4—5克 桥梁钻孔调浆阴离子1200—1500万千分之五配每吨用 1.2kg 制药生产工艺发酵阳离子千分之二配每吨用2—3克 味精厂、啤酒厂层渣、废水处理阴离子、阳离子千分之二配每吨用2—3克 造纸纸浆助留、助滤、中断废水回收、废浆污泥脱水阴离子、阳离子千分之三配每吨用3—5克 制糖糖水提纯阴离子1500万千分之二配每吨用2—3克 制革废水处理阴离子1200万千分之四配每吨用2—4克 钛白粉工艺提纯阳离子、非离子千分之二配每吨用2—3克 石油开采钻井调浆、三次采油阴离子300—2000万涂料增稠剂阴离子、非离子千分之

聚丙烯改性

专业:08高分子1班学号:08206020135 姓名:金从伟 聚丙烯改性 引言:聚丙烯因其具有良好的加工性能和物理、力学、化学性能而获得广泛应 用。是目前增长速度最快的通用型热塑性塑料。聚丙烯的主要应用领域为学向拉丝制品,膜片制品及包装容器制品。但近年来将普通聚丙烯经过填充、增强、共混改性再作为原料制作汽车,电器.仪表等工业配套零部件也已成为其主要的应用领域。 关键词:聚丙烯;改性 1.物理改性 物理改性由于工艺过程简单,生产周期短。所制得材料性能优良。近年来已成为高分子材料一个新的研究热点。常用的改性方法主要有共混改性、填充改性、增强改性等。 1.1 共混改性 共混改性是将聚丙烯与橡胶或其它热塑性树脂的弹性体共混制备共混物。最古老和最简单的方法是机械掺合法。共混改性可明显改进低温脆性、冲击强度和耐寒性等。如聚丙烯与乙丙橡胶顺丁橡胶、聚异丁烯等共混,可提高冲击强度3~7倍,提高耐寒性8~ l0倍。聚丙烯除了二元共混体外,还采用了三元共混体系。如玻璃纤维增强聚丙烯和橡胶共混,不但改善了冲击韧性和耐寒性,同时刚性和抗蟠变性能也得到保证,其制品的力学性能可与ABs相媲美。 1.2填充改性 为了开拓聚丙烯在工程塑料应用领域中的用途,需要提高聚丙烯的刚性和耐热性,可以添加填充材料,如滑石粉、碳酸钙硫酸钡、云母、石膏、石棉、术粉、炭黑、硅藻粉和高岭土等。填充性主要是提高聚丙烯的刚性、耐热性和尺寸稳定性,并可降低成本 1.3增强改性 用玻璃纤维和碳纤维作为增强材料,其最大特点是基体树脂聚丙烯的化学稳定性强,可提高抗张、抗弯曲和冲击强度,降低成型收缩率。经增强后的聚丙烯,其性能与尼龙、聚甲醛、聚碳酸脂等工程塑料相当。玻璃纤维增强聚丙烯既保持了聚丙烯成本低的特点,且在玻璃纤维增强热塑性塑料 中,其比重最小,困而在重量和秽_格上占有优势,且具有流动性大、成型条件幅脚宽、耐水性和耐化学侵蚀性好的特点。所以,聚丙烯中添加玻璃纤维后,其耐热刚性、尺寸稳定性、耐蠕变性和机械强度等都有很大的提高,可作为工程塑料而广泛应用。同时,其要食品卫生方面无害,尤其是电性质良好 1.4添加助剂改性 为使聚丙烯性能适合各方面的需要,添加抗氧剂和紫外线吸收剂可提高聚丙烯的耐气展性}添加阻燃剂可降低聚丙烯的易燃性;添加成核剂可增强聚丙烯的透明性和光泽性。并可缔短成型周期等}添加其它助剂如抗氧剂、润滑剂、热稳定剂、发泡剂、着色剂等,可以改善聚丙烯的耐老化性、加工稳定性,抗静电性能等。 2. 化学改性

高结晶聚丙烯_HCPP_的研发和产业化进展_王雄

收稿:2011-11-04;修回:2011-12-01; 基金项目:中国石油天然气股份有限公司科技管理部开发项目(合同号:2011B -2703-0103); 作者简介:王雄(1980-),男,在读博士研究生,工程师,主要从事烯烃聚合催化剂及聚合工艺方面的研究,通讯作者。E -mail :w ang xiong1@petro china .co m .cn 高结晶聚丙烯(HCPP )的研发和产业化进展 王 雄1,张宇婷2,马艳萍1,徐人威1,朱博超1,姚培洪 1(1.中国石油天然气股份有限公司石油化工研究院兰州化工研究中心,兰州 730060; 2.兰州交通大学化学与生物工程学院,兰州 730070) 摘要:高结晶聚丙烯一般采用高等规度聚丙烯加入成核剂制备。本文较全面地综述了制备高结晶度聚丙 烯的催化剂体系及其制备技术。高等规度聚丙烯可以通过传统Z ieg ler -Na tta 聚丙烯催化剂与合适的外给电子 体搭配制备,也可以通过选取具有合适结构的茂金属化合物制备。目前,聚丙烯工艺主要使用传统Zieg le r - N atta 催化剂。本文介绍了生产高结晶度聚丙烯的主要生产厂家、牌号和生产工艺,如Sphe ripol 环管/气相工 艺、U nipo l 气相工艺、N ovo len 气相工艺、Innov ene 气相工艺、H ypol 釜式本体工艺等,展望了高结晶度聚丙烯的 应用前景,认为高结晶聚丙烯是PP 新产品开发及高性能化的重要途径之一,具有非常广阔的市场前景,对于我 国高结晶度聚丙烯牌号的开发具有较大的意义。 关键词:高结晶聚丙烯;Z -N 催化剂;茂金属催化剂;聚合工艺引言 聚丙烯是典型的部分结晶性热塑性树脂,其良好的性能价格比决定了它具有很宽的应用范围。近年来,随着汽车工业、高速列车、建筑业、电子电讯业的迅速发展以及聚丙烯产品的高性能化,聚丙烯的产量及需求量大幅提高,成为近十年来增长最快的通用塑料,年需求增长高达8%。聚丙烯的高结晶化是PP 新产品开发及高性能化的重要途径之一,其价格约比普通聚丙烯高10%~15%。 高结晶聚丙烯(H CPP )具有较高的结晶度、结晶速度、结晶温度、热变形温度、表面耐磨性及光泽度,大大拓展了产品应用范围,使PP 朝着工程塑料化方向发展。H CPP 均聚物和普通均聚物比较,相同流动性的H CPP 的耐热性、刚性、韧性和光泽均明显高于普通PP 。H CPP 主要应用于汽车、耐用消费品、薄膜、动力工具和电子电气设施[1~3],也可用于家用电器中的空调、炊具、吸尘器等制品[4]。亚洲作为世界汽车、家电等产品的制造中心,预计对H CPP 的需求量还会有较高幅度的增长,今后会越来越多地使用H CPP 。 高结晶聚丙烯可以通过改进聚丙烯催化剂和聚合技术,提高聚丙烯的等规度和分子量分布的方法来制备,也可以通过加入成核剂的方法来制备。通过聚合方法得到的高结晶聚丙烯的结晶度可以达到70%,理论上可提高到75%,而通过加入成核剂的方法制备的高结晶聚丙烯可以更高,且结晶细化,材料的透明度也同时提高。本文对制备高结晶度聚丙烯的催化剂体系及其制备方法的研究进展进行综述。1 制备高结晶度聚丙烯的催化剂体系和聚合技术 目前制备高结晶度聚丙烯的催化剂体系主要是传统Z -N 催化剂和茂金属催化剂两种体系。 1.1 传统Zeigler -Natta 催化剂体系 传统的Z -N 聚合催化剂体系由一过渡金属卤化物衍生物所构成的复合物组成,如钛、钒、铬等过渡金属形成的卤代物以及卤代烯烃化合物。通常将卤化钛化合物支载在与铝复合的镁化物上来制备催化剂· 83· 第4期 高 分 子 通 报DOI :10.14028/j .cn ki .1003-3726.2012.04.012

聚丙烯知识大全

其实它是根据不同的聚合方法而分类的!考虑分子量的分布宽窄和大小分类,拉丝级要求最高,其次是薄膜级,中空级和注塑级! 聚丙烯是所有塑料范围中个别用量最大宗的一类别,也是应用范围最广的一类,可以基材不同做分类,在分类内仍可以不同的熔融流率定规格,甚至可依个别商品需要添加额外添加剂再区定出用途规范,例如:单聚合物中,MFR:12 左右可用于一般射出成品,也可生产复丝纤维,更可特意制造宽广分子量分布去改善纤维织布的后段加工性;同时也可添加滑剂及抗相黏剂以增加开口性方便塑料袋成品的要求。因此便延伸出众多规格,但大体物性差不多,在非特意主用途之外是彼此有替代性。这里尝试以基材之不同做分类供参考,并逐一解说。 1.一般级(HOMOPOLYMER) 单聚合物,大陆称为均聚,系纯丙烯聚合而成的原料。 2.耐冲击级(IMPACT COPOLYMER) 系单聚合物添加乙烯丙烯橡胶,冲击强度高低主要看橡胶含量高低,耐寒程度好坏主要看乙烯含量高低。各原料厂商制程不同,最高乙烯含量也不同。 3.透明级(RANDOM COPOLYMER) 随机共聚合物,系丙烯添加乙烯共聚合,乙烯不规则散布在聚合物中,主要减少聚合物的结晶度进而改善透明性。 4.高结晶级(HIGH ISOTACTICITY or HIGH CRYSTALLINITY) 减少PP聚合物中错位结构的含量,相对就提高规则性结构含量,也就提高结晶度。主要改善原料的刚性、热变性温度、表面硬度、抗刮性及光泽性。当然再添加增核剂也会有助于上述物性的增进 5.热封级(TERPOLYMER) 是随机共聚合物的延伸,一般丙烯含乙烯(非EPR)含量最高在3.5%,但也有制程可添加至5%,乙烯含量越高产品越柔软,热变型温度、软化点、热封温度越低,有时为了要增加乙烯含量要藉助丁二烯或其它第三成份成为三共聚合物以达上述物性要求。 6.合金级(ALLOY) 不同的塑料原料高比例的混合皆可谓合金级,例如PP添加LDPE 可改善柔软性及冲击强度,在加工上也可减少颈缩及增加平整性,在成型也可减低坠料现象。PP加EPR加HDPE可维系刚性,减少高EPR含量造成的白化现象,改善冲击强度。 7.复合材料(COMPOUNDING) 不同材料混合谓之复合材料,譬如添加玻璃纤维、各类无机物矿粉、有机物木粉、纸屑或谷物微片,在PP材料内以改善各种物性。矿粉又包括:滑石粉、碳酸钙、硫酸钡、云母、碳黑、碳纤维及溴化物等。 8.橡胶(RUBBER) 橡胶,TPR(热可塑性橡胶)与TPE(热可塑性弹性体),有时很难界分,而各种界定说法都有,大部份的橡胶都可与PP相混合,除EPR系列外,也很难界定混合是定位在合金或复合材料项内。一般常与PP混合的橡胶有EPR及EPDM,适合与PP直接混料的产牌有CATALLOY、PLASTOMER、ENGAGE、TAFMER、KRATON及SANTOPLENE等。 9.特殊规格(SPECIALS) 未含盖在前项类的都可归入此类,例如:高熔融强度原料(HMS、High Melt Strength)可用在发泡材内改善表面气密性提高发泡效果,也可减少板材成型的坠料现 典型应用范围: 汽车工业(主要使用含金属添加剂的PP:挡泥板、通风管、风扇等),器械(洗碗机门衬垫、干燥机通风管、洗衣机框架及机盖、冰箱门衬垫等),日用消费品(草坪和园艺设备如剪草机和喷水器等)。

聚丙烯酰胺PAM

PAM申华原料规格: 申华化学工业有限公司 原料规格表M40-RAD-01 RAW MATERIAL SPECIFICATION 1、原料名称(Material) 原料编号(Code No.)M-4030 版别:1.0 原料名称(Material)聚丙烯酰胺(部分水解)〖Polyacrylamide (PAM)〗 2、规格项目(Specifications) 规格项目(Specifications)指标(Limits)测试方法(Test Method) Appearance White Grain Total Solid / % ≥90 Solubilization Speed / hr ≤1.5 Anion Content / % 20-30 即水解度 Free Monomer / % ≤0.05 3、分子式(Formula) ?[?CH2?CH?]m?[?CH2?CH?]n? ∣∣ C=O C=O ∣∣ NH2O Na 4、分子量(Molecular Weight):3000,000-13000,000 聚丙烯酰胺(cpolyacrylamids)简称PAM,是一种线型高分子聚合物,是水溶性高分子化合物中应用最为广泛的品种之一,聚丙烯酰胺和它的衍生物可以用作有效的絮凝剂,增稠剂,纸张增强剂,以及液体的减阻剂等,广泛应用于水处理、造纸、石油、煤矿、矿冶、地质、轻纺,建筑等工业部门。 一、市售产品规格及主要技术指标 技术指标名称PAM 阴离子PAM 非离子PAM 阳离子PAM 复合离子 外观白色或微黄色粉末 粒径,mm < 2 固含量(%) ≥ 88 溶速(mim) ≤ 1.5 不溶物(%) ≤ 2 分子量(万) 500-2400 300-600 300-800 800-1500 水解度(%) 13-30 5-15 离子度5-50 10-20 注:根据用户要求,分子量控制在表格所定指标的范围内根据市场价格面议 加强混凝作用 ⑴聚合氯化铝(PAC)聚合氯化铝又名碱式氯化铝或羟基氯化铝。它是以铝灰或含铝矿物作为原料,采用酸溶或碱溶法加工制成。其分子式为[Al2(OH)nCl6-n]m ,其中m为聚合度,单体为铝的羟基配合物Al2(OH)nCl6-n ,通常n=1~5,m≤10。聚合氯化铝溶于水后,即

聚丙烯及其改性材料简介

目录 一聚丙烯........................................... 错误!未定义书签。 聚丙烯的性能................................... 错误!未定义书签。 (1)优点.................................... 错误!未定义书签。 (2)缺点.................................... 错误!未定义书签。 聚丙烯链的立体结构............................. 错误!未定义书签。 聚丙烯的晶体结构............................... 错误!未定义书签。二聚丙烯改性....................................... 错误!未定义书签。三聚丙烯填充与增强改性新材料....................... 错误!未定义书签。 聚丙烯填充改性性能特点及发展趋势............... 错误!未定义书签。 常用填充材料................................... 错误!未定义书签。 1、碳酸钙.................................... 错误!未定义书签。 2、滑石粉.................................... 错误!未定义书签。 3、高岭土.................................... 错误!未定义书签。 聚丙烯的增强改性............................... 错误!未定义书签。 聚丙烯填充与增强改性新材料..................... 错误!未定义书签。 1、碳酸钙与滑石粉填充改性聚丙烯.............. 错误!未定义书签。 2、玻璃微珠改性聚丙烯新材料.................. 错误!未定义书签。 3、云母填充改性PP ........................... 错误!未定义书签。 4、玻璃纤维增强聚丙烯新材料.................. 错误!未定义书签。

阳离子聚丙烯酰胺性能指标

阳离子聚丙烯酰胺性能指标 阳离子聚丙烯酰胺性能指标: 1、外观白色颗粒 2、分子量(万)300-1200 3、水不溶物(可调)≤0.2% ≥88% 4、固含量1.0mm 的≤5% 5、离子化度(可调)10-60% 6、粒度0.2mm 的≤5% 7、溶解时间≤2小时 8、残余单体≤0.1% 主要用途: a、造纸助剂:在造纸行业中,可直接与无机盐离子、纤维以及其它有机高分子发生静电桥梁作用以达到增强纸张的物理强度,减少纤维或阳离子PAM纸张增强剂,是一种含氨基甲酰基的水溶性阳离子聚合物具有等功能,可有效地提高纸的强度。减少纤维或填料的流失,加快滤水,起到增强、助留、助滤的作用。其次还可以用于白水处理,在脱墨过程中亦能起到明显的絮凝效果。

b、用于以江河作水源的自来水厂的水处理絮凝剂:用量少,效果好,成本低。特别是和无机絮凝剂复配使用效果更好。它将成为沿长江、黄河、淮河及其他河流流域的水厂的高效絮凝剂。 c、污水和有机废水的处理:本产品在酸性或碱性介质中均呈现阳电性,这样对污水中悬浮颗粒带阴电荷的污水进行絮凝沉淀,澄清是极为有效的。如酒精厂废水,啤酒厂废水,味精厂废水,制糖厂废水,肉制品厂废水,饮料厂废水,纺织印染厂的废水等。用阳离子聚丙烯酰胺要比用阴离子聚丙烯酰胺,非离子聚丙烯酰胺或无机盐效果要高数倍或数十倍。因为这类废水普遍带有阴电荷。 d、污泥脱水剂:城市与工业污水常用活化污泥法处理,生化污泥常常是亲水性很强的胶体,有机含量高,极难脱水。用阳离子聚丙烯酰胺处理,用量少,脱水效率高,易于分离。 e、油田化学剂:如粘土防膨剂,油田酸化用稠化剂等。如有阳离子絮凝剂的需求请直接联系本公司。

相关文档
最新文档