基因表达调控-基本概念与原理

合集下载

第六章 原核生物表达调控

第六章 原核生物表达调控

第一节概述围绕基因表达过程中发生的各种各样的调节方式都通称为基因表达调控(gene regulation或gene control)。

几个基本概念1、顺式作用元件和反式作用因子:基因活性的调控主要通过反式作用因子(通常是蛋白质)与顺式作用元件(通常在DNA 上)相互作用而实现。

顺式作用元件是指对基因表达有调节活性的DNA序列,其活性只影响与其自身同处在一个DNA分子上的基因;同时,这种DNA序列通常不编码蛋白质,多位于基因旁侧或内含子中,如启动子和终止子,都是典型的顺式作用元件。

反式作用因子是能调节与它们接触的基因的表达的各种扩散分子(通常是蛋白质),如RNA聚合酶、转录因子。

2、结构基因和调节基因:结构基因(structural gene)是编码蛋白质或RNA的基因。

细菌的结构基因一般成簇排列,多个结构基因受单一启动子共同控制,使整套基因或都表达或都不表达。

调节基因(regulator gene)是编码合成那些参与其他基因表达调控的RNA或蛋白质的特异DNA 序列。

调节基因编码的调节物质通过与DNA上的特定位点结合控制转录是调控的关键。

比如:它能使结构基因在需要某种酶时就合成某种酶,不需要时,则停止合成,它对不同染色体上的结构基因有调节作用。

调节物与DNA特定位点的相互作用能以正调控的方式(启动或增强基因表达活性)调节靶基因,也能以负调控的方式(关闭或降低基因表达活性)调节靶基因。

DNA位点通常位于受调节基因的上游,但也有例外.3、操纵基因和阻遏蛋白操纵基因(operator)是操纵子中的控制基因,在操纵子上一般与启动子相邻,通常处于开放状态,使RNA聚合酶能够通过并作用于启动子启动转录。

但当它与调节基因所编码的阻遏蛋白结合时,就从开放状态逐渐转变为关闭状态,使转录过程不能发生。

阻遏蛋白(aporepressor)是负调控系统中由调节基因编码的调节蛋白,它本身或与辅阻遏物(corepressor)一起结合于操纵基因,阻遏操纵子结构基因的转录。

核酸的生物学功能

核酸的生物学功能

4.基因表达调节的基本原理
(1)特异DNA序列作用
对基因转录激活的调节,如增强子(enhancer)、 沉默子(silencer)。
(2)调节蛋白的作用
有特异因子( specific factor, 如转录启始因 子 ) 、 阻 遏 蛋 白 ( reoressor ) 和 激 活 蛋 白 ( activator )对转录起始的调节、影响 RNA 聚合酶 活性等。
反式作用因子的DNA结合域模式主要有: 锌指和螺旋-转角-螺旋 。
锌指(zinc finger)是在保守的半胱氨酸和组氨酸残基形成的 四面体结构中镶着一个锌原子。约23个氨基酸组成。通常成串重复 排列。锌指间7-8氨基酸,不同蛋白质的锌指数目不同。含有锌指 的调控蛋白在与DNA结合时,是锌指的尖端进入到DNA的大沟或小沟, 以识别它特异结合的DNA序列并与之结合。迄今仅在真核生物中发 现有锌指蛋白,在原核中尚未发现。
当蛋白质-蛋白质相互作用时两个α -螺旋的亮氨酸
残基是肩并肩地排列起来犹如拉链,因而称为亮氨
酸拉链(leucine zipper, P298 )。亮氨酸拉链
广泛地存在于真核生物调节蛋白中,原核生物中也 有发现。
2.色氨酸操纵子的调节机制
色氨酸操纵子(Trp operon)的阻遏物是由距
色氨酸操纵子较远的调节基因合成的一个58Ku的蛋
白质,色氨酸为辅阻遏物(corepressor)。 当机体色氨酸不足时,阻遏物游离存在,不能 与操纵基因结合,5个结构基因得以转录和表达,编 码的3种酶催化生成色氨酸。
当机体生成的色氨酸过量时,色氨酸与阻遏物形
组蛋白的许多侧链可以被乙酰化、甲基化、磷
酸化修饰 ,改变组蛋白的电荷性质,改变染色体
的基因结构,进而影响DNA的复制和转录的机会。

第十章原核生物基因表达的调控

第十章原核生物基因表达的调控
1. 在E.coli,不同类型的启动子需要不同类型的σ 因子
表 16-4 E.coliσ 因子识别不同保守序列的启动子 基因 分子量 70KD 32KD 24KD 54KD 28KD 功能 普遍 热休克 热休克 氮饥饿 产生鞭毛 -35 序列 TTGACA CCCTTGAA ? CTGGNA CTAAA 间隔(bp) 16~18 13~15 ? 6 15 -10 序列 TATAAT CCCGATNT ? TTGCA GCCGATAA

基本概念
1.操纵子(operon)
很多功能上相关的结构基因在染色体上串连排列,由 一个共同的控制区来操纵这些基因的转录。包含这些结构 基因和控制区的整个核苷酸序列就称为操纵子(operon)。
一个完整的操纵子主要包括启动子、操纵基因、结构 基因和终止子。
2. 阻遏物和激活物(reperssor and activator)
2. 基因表达的极性效应
•在正常情况下原核基因表达时,其转录出来的mRNA随 即进行翻译,这时整个mRNA都覆盖着核糖体, ρ因子 无法接近mRNA,而RNA聚合酶早已越过前面的基因的 依赖ρ因子的终止子,所以转录实际上并不停止,而是继 续转录后续基因。如果在某一基因的依赖于ρ的终止子之 前发生无义突变,核糖体便从无义密码子上解离下来,翻 译停止,于是ρ就可以自由进入RNA并移动,直到赶上停 留在终止子上的RNA聚合酶,结果使RNA聚合酶释放, 不能再转录下游基因。
第十章 原核生物基因 表达的调控

生物的遗传信息是以基因的形式储藏在细 胞内的DNA(或RNA)分子中的。随着个体 的发育,DNA有序地将遗传信息,通过转 录和翻译的过程转变成蛋白质,执行各种 生理生化功能,完成生命的全过程。从 DNA到蛋白质的过程,叫做基因表达 (gene expression),对这个过程的调节 就称为基因表达调控(gene regulation或 gene control)。

基因表达的调控与机制

基因表达的调控与机制

基因表达的调控与机制基因是生物体内控制生命活动的基本单位,而基因表达则是基因产生生物学效应的过程。

在生物体内,不同细胞的基因表达模式不同,这种差异称为基因表达调控。

基因表达调控是细胞分化、发育、生长、免疫应答和病变等过程中的关键因素。

基因表达调控的机制是深入研究的热点领域,对此我们有必要进行深入探讨。

1.基因表达的调控基因表达调控是生物学的关键过程,其目的是控制基因的转录和翻译,从而使生物能够适应内外环境的不同需要。

基因表达的调控有两种方式:一是属于遗传学范畴的突变和基因重组,二是属于分子生物学范畴的转录后调控和信号转导。

其中转录后调控和信号转导是生物体内基因表达调控的主要手段。

2. 转录后调控转录后调控是指基因转录后,需要进行各种后续加工和调整,才能产生成熟的mRNA和蛋白质。

转录后调控包括RNA加工、RNA剪接和RNA稳定化等。

在RNA加工方面,mRNA的5'端和3'端需要经历不同的修饰,才能够被稳定地存储和表达。

RNA剪接是指在基因转录之后,需要对mRNA进行选择性剪接,以产生不同的转录本。

这些转录本可以在翻译过程中产生不同的蛋白质。

RNA稳定化是指在mRNA合成之后,其稳定性需要得到精细的调控,以保证其能够长时间地存在。

3. 信号转导信号转导是生物体内基因表达调控的另一种方式,它是通过反应分子之间的交互作用来实现的。

信号转导包括细胞表面受体和细胞内信号转导通路两个方面。

细胞表面受体是指细胞表面上的受体分子,它们与外界的信号分子结合,通过改变受体的构象来转导信号。

细胞内信号转导通路是指信号转导的下游分子,它们接收来自上游的信号,从而调节基因表达。

4.基因表达调控的机制基因表达调控的机制是指影响基因表达的各类分子机制。

这些机制中,蛋白质-蛋白质相互作用及其调控、DNA甲基化、组蛋白修饰、RNA干扰等是较为常见的。

在蛋白质-蛋白质相互作用及其调控方面,蛋白质相互作用是一种广为应用的基因表达调控机制,如转录因子结合DNA,促进或抑制基因转录。

生物化学》ppt课件14.第十四章-基因表达调控

生物化学》ppt课件14.第十四章-基因表达调控
操纵子(operon)是原核生物中几个功能相关的 结构基因成簇串联排列组成的一个基因表达的协 同单位。操纵子的本质是DNA序列。
1.操纵子的结构与功能
一个操纵子=调节序列+启动序列+操纵序列+编码序列
⑴调节序列(inhibitor,I):编码一种阻遏蛋白(repressor) 。 ⑵启动序列(promoter,P):结合RNA聚合酶,启动转录。 ⑶操纵序列(operator,O):阻遏蛋白的结合位点。 ⑷编码序列(coding sequence):编码功能性蛋白,2~6个。
第一节 基因表达调控的 概念和原理
(Concept and principle: Regulation of Gene Expression)
一、基因表达调控的概念
(一)基因表达(gene expression) 是指基因经过
转录、翻译,产生具有特异生物学功能的蛋白 质分子的过程。
(二)基因表达的时间性及空间性
转录激活域
谷氨酰胺富含域 脯氨酸富含域
蛋白质-蛋白质结合域 (二聚化结构域)
1.同源结构域
2.锌指
3.碱C
H
C
Cys
H
His
其他氨基酸
(四)真核生物基因表达调控模式
1.真核生物基因表达调控较复杂,除转录起始阶段 受到调节外,在转录后水平、翻译水平及翻译后水平 等均受调控。
2.真核RNA聚合酶Ⅱ在转录因子帮助下,形成的 转录起始复合物。
白 因 子 , 决 定 三 种 RNA(mRNA 、 tRNA 及 rRNA)转录的类别。
2.特异转录因子(special transcription factors) 为个别基因转录所必需,决定该基因的时

基因表达与调控知识点总结

基因表达与调控知识点总结

基因表达与调控知识点总结基因表达和调控是生物学中非常重要的概念,关乎着生物个体的生长发育、适应环境以及疾病的产生。

本文将对基因表达和调控的相关知识点进行总结,以帮助读者更好地理解这一领域。

一、基因表达的概念与过程基因表达是指通过DNA转录成RNA,再通过RNA翻译成蛋白质的过程。

这个过程可分为三个主要步骤:转录、剪接和翻译。

1. 转录:转录是指DNA模板上的信息被RNA聚合酶酶依据碱基互补配对的原则合成成为一条mRNA链的过程。

转录分为起始、延伸和终止三个阶段,其中起始阶段涉及到转录起始因子和启动子的结合,延伸阶段则是RNA链的合成过程,终止阶段是转录终止信号的识别和RNA链的释放。

2. 剪接:在转录后,mRNA经历了剪接这一过程。

剪接是指将mRNA上含有内含子(introns)的序列剪除,只保留外显子(exons)的过程。

这是因为在真核生物中,基因上的非编码区域和编码区域是交错存在的,剪接的目的是产生功能蛋白质所需的成熟mRNA。

3. 翻译:翻译是指mRNA上的信息被核糖体翻译成蛋白质链的过程。

翻译过程中,mRNA的密码子与tRNA上的氨基酸互相匹配,从而合成出特定顺序的氨基酸链。

翻译完成后,蛋白质会进一步经历折叠和修饰过程,最终形成功能蛋白质。

二、基因调控的方式及相关机制基因表达的调控是指细胞根据环境和内部信号对基因表达的调整和控制。

基因调控主要包括转录水平的调控和转录后的调控。

1. 转录水平的调控(1)启动子和转录因子:启动子是位于基因的上游区域,能够招募转录因子结合并促进或抑制基因转录。

转录因子是一类能够识别和结合到启动子上的蛋白质。

不同基因的启动子和转录因子组合形成了复杂的转录调控网络,大大影响基因的表达水平。

(2)组蛋白修饰:组蛋白修饰是指对染色质上的组蛋白进行化学修饰,从而影响染色质的结构和染色质的开放程度。

这些化学修饰包括甲基化、磷酸化、乙酰化等,能够影响基因的可及性和转录因子的结合。

分子生物学第5章

分子生物学第5章
序列3、4不能形成衰减子结构,下游的结构基因可以被有效转 录
(2)当色氨酸充足时,色氨酰tRNA供给充足,核糖体迅速翻译序列1
合成前导肽,并对序列2形成约束,使序列2、3不能形成茎环结 构,转而序列3、4形成转录终止子结构衰减子,使下游正在转 录结构基因的RNA聚合酶脱落,终止转录
转录衰减机制:
新生肽链 核糖体
5’ 1 2
衰减子结构 (attenuator)
3
4
mRNA
UUUU 3’
DNA
trp 密码子当色氨酸来自度高时核糖体5’
1
2
3 4
当色氨酸浓度低时
高Trp时: Trp-tRNATrp 存在
核糖体通过片段1(2个Trp密码子) 封闭片段2
片段3,4形成发夹结构 类似于不依赖ρ因子的转录终止序列 RNA聚合酶停止转录,产生衰减子转录产物 转录、翻译偶联,产生前导肽
前导序列:在trp mRNA5'端trpE基因的起始密码前一 个长162nt的mRNA片段。
第10和第11位上有相 邻的两个色氨酸密码子
转录与翻译的偶联是衰减调控的基础 色氨酰tRNA浓度的变化是衰减调控的信号
(1)当色氨酸缺乏时,色氨酰tRNA供给不足,合成前导肽的核糖体
停滞于序列1的色氨酸密码子位点,序列2、3形成茎环结构,使
结合乳糖、G存在与否及与操纵子正、负控因素、 基因开放与关闭情况如下:
葡萄糖(G) 乳糖 基因开放 基因关闭 机理简述(学生填充)

×
× √ √

× × √

√ √ √
CAP正控、乳糖去阻遏、基因开放、转录进行 不能诱导去阻遏,CAP即使结合,基因未开放 细菌优先用G,无CAP结合,无诱导去阻遏 CAMP-CAP复合物无,CAP位点空,去阻遏 也无RNA pol结合

基因表达的调控机制

基因表达的调控机制

基因表达的调控机制基因表达是指基因通过转录和翻译过程将DNA信息转化为蛋白质的过程。

在细胞内,基因表达的调控机制起着至关重要的作用,决定了细胞的功能和特性。

本文将介绍基因表达的调控机制,包括转录调控、转录后调控和翻译调控。

一、转录调控转录调控是指通过调控基因的转录过程来控制基因表达水平。

转录调控主要包括启动子区域的结构和转录因子的结合。

1. 启动子区域的结构启动子是位于基因上游的DNA序列,包含转录起始位点和调控元件。

调控元件包括增强子和抑制子,它们可以与转录因子结合,促进或抑制转录的发生。

启动子区域的结构可以通过DNA甲基化、组蛋白修饰和染色质重塑等方式进行调控。

2. 转录因子的结合转录因子是一类能够结合到DNA上的蛋白质,它们通过与启动子区域的调控元件结合来调控基因的转录。

转录因子可以分为激活子和抑制子,激活子能够促进转录的发生,而抑制子则能够抑制转录的发生。

转录因子的结合与DNA序列的亲和性有关,不同的转录因子结合到不同的DNA序列上,从而实现对基因的调控。

二、转录后调控转录后调控是指在转录完成后,通过调控RNA的加工、修饰和稳定性来控制基因表达水平。

转录后调控主要包括RNA剪接、RNA修饰和RNA降解。

1. RNA剪接RNA剪接是指在转录过程中,将前体mRNA中的内含子剪接掉,将外显子连接起来形成成熟的mRNA。

通过剪接的方式,可以产生不同的mRNA亚型,从而调控基因的表达。

RNA剪接的调控主要依赖于剪接因子的结合和剪接位点的选择。

2. RNA修饰RNA修饰是指在转录后,通过添加化学修饰基团来改变RNA的结构和功能。

常见的RNA修饰包括甲基化、腺苷酸转换和伪尿苷酸转换等。

RNA修饰可以影响RNA的稳定性、转运和翻译效率,从而调控基因的表达。

3. RNA降解RNA降解是指通过核酸酶将RNA分解为小片段,从而降低基因的表达水平。

RNA降解的速度受到RNA的稳定性和降解酶的活性的影响。

不同的RNA分子具有不同的稳定性,一些RNA分子具有较长的半衰期,而另一些RNA分子则具有较短的半衰期。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档