背光驱动电路

合集下载

大屏幕液晶显示屏背光灯及高压驱动电路原理与维修(一

大屏幕液晶显示屏背光灯及高压驱动电路原理与维修(一

大屏幕液晶显示屏背光灯及高压驱动电路原理及电路分析(一)(目前液晶电视的销量和社会保有量非常大,液晶电视的维修资料奇缺,而液晶电视的背光灯高压驱动电路又是液晶电视中极易发生故障的部位,它类似于CRT电视的行扫描电路,是高压大电流电路,其故障率不低于CRT电视的行扫描电路。

目前对于该部分的原理电路分析维修的资料很少,该文对于背光灯管及驱动电路的特性、构造、组成、要求、电路原理分析比较详尽,以帮助维修人员更加深刻的理解液晶电视背光灯驱动电路,为下一步维修打好基础)液晶电视的显示屏是属于被动发光型的显示器件,液晶屏自身不发光,它需要借助背光灯来实现屏的发光,即背光灯管发出光线通过液晶屏透射出来,利用液晶的分子在电场作用下控制通过的光线(对光进行调制)以形成图像,所以一块液晶屏工作成像必须配上背光源才能成为一个完整的显示屏,要显示色彩丰富的优质图像,要求背光灯的光谱范围要宽,接近日光色以便最大限度的展现自然界的各种色彩。

目前的液晶屏背光灯,一般采用的是光谱范围较好的冷阴极荧光灯(cold cathode fluorescent lamp;CCFL)作为背光光源。

大屏幕的液晶电视要保证有足够的亮度、对比度和整个屏幕亮度的均匀性,均采用多灯管系统,32寸屏一般采用16只灯管,47寸屏一般采用24只灯管。

耗电量每只灯管约为为8W计算,一台32寸屏的液晶电视背光灯耗电量达到130W,一台47寸的液晶电视背光灯的耗电量达到近200W(加上其它电路耗电,一台32寸屏的液晶电视耗电量在200W左右) 冷阴极荧光灯的构造和工作原理冷阴极荧光灯CCFL是气体放电发光器件,其构造类似常用的日光灯,不同的是采用镍﹑钽和锆等金属做成的无需加热即可发射电子的电极——冷阴极来代替钨丝等热阴极,灯管内充有低气压汞气,在强电场的作用下,冷阴极发射电子使灯管内汞原子激发和电离,产生灯管电流并辐射出253.7nm紫外线,紫外线再激发管壁上的荧光粉涂层而发光,图1。

康佳液晶电视35017517型四合一驱动板开关电源、背光电路分析与故障检修(中)

康佳液晶电视35017517型四合一驱动板开关电源、背光电路分析与故障检修(中)

丨道:D A O康佳液晶电视35017517型四含_驱动极ff 关电源、背光电路分析与故障裣修(中)(上接3期)H! L E D 背k 驱动电路分析L E D 背光驱动电路由三部分电路组成,一是由OCP 8121(N 701)为核心组成的升压和恒流驱 动控制电路;二是由储能电感L 705、升压开关管V 701、升压二极管VD 753、滤波电容C 753组成的升压电路;三是由开关管V 752为核心构成的L ED 背光灯恒流控制电路。

L ED 背光驱动电路如图4所示。

1.0CP 8121 简介OCI>8121是灿瑞半导体有限公司开发生产的专用于液晶电视的LED 背光驱动1C ,内部集成P W M 升压变换控制和L E D 灯串恒流驱动两种功能电路。

O C P 8121引脚功能与实测电压见表2。

2. L E D 驱动芯片启动电路二次开机后,开关电源输出的VBL _100V (实 测为24V )为升压输出电路供电,同时经R 709、R 701与R 702分压取样后为N 701①脚提供3V以上高电平检测电压;VCC _12V 经R 703限流为N 701②脚供电;主芯片送来的BKLT _E N 点灯电压,经R 704送到N 701③脚(E N A )后驱动控制芯 片启动工作。

3. L E D 升压电路O C P 8121启动后,从其⑮脚(D R V )输出升压驱动脉冲,经R 721送到升压开关管V 701的G 极,使V 701工作于开关状态。

当D R V 升压驱动 脉冲为高电平时,V 701导通,电感L 705储能;当 驱动脉冲为低电平时,V 701截止,L 705产生反向 的电感电压与输入的24V 电压叠加,通过二极管□贺学金VD 753续流和电容C 753滤波后得到约45V 的直流电压,送给屏内L E D 灯条。

该机屏内有两根灯 条,两根灯条串联。

4.恒流控制、调光电路开机后,主芯片送来的调光控制脉冲信号 (BKLT_ADJ )经 R 705 送到 OCP 8121 ⑥脚 P W M 调光信号输入端。

lp3320 背光电路工作

lp3320 背光电路工作

lp3320 背光电路工作摘要:一、引言二、lp3320 背光电路工作原理1.lp3320 芯片介绍2.背光电路工作原理三、lp3320 背光电路应用领域1.显示器2.电视3.手机4.其他四、lp3320 背光电路的优缺点1.优点2.缺点五、结论正文:【引言】随着科技的快速发展,各种电子设备屏幕显示技术日新月异。

lp3320 是一款高性能的背光驱动芯片,被广泛应用于各种电子设备的背光电路中。

本文将对lp3320 背光电路的工作原理、应用领域、优缺点进行详细分析。

【lp3320 背光电路工作原理】lp3320 是一款具有高度集成、高性能、低功耗特性的背光驱动芯片。

它主要由控制器、MOSFET、电荷泵、高压启动器等组成。

其工作原理如下:1.lp3320 芯片介绍:lp3320 是一款具有高度集成、高性能、低功耗特性的背光驱动芯片。

它主要由控制器、MOSFET、电荷泵、高压启动器等组成。

2.背光电路工作原理:当lp3320 接收到来自主控芯片的信号时,控制器会根据信号控制MOSFET 的导通与截止,从而实现对背光电路中LED 的驱动。

电荷泵则负责为MOSFET 提供驱动电流,高压启动器则在电路启动时产生高压以驱动LED。

【lp3320 背光电路应用领域】lp3320 背光电路广泛应用于各种电子设备的背光驱动,如显示器、电视、手机等。

1.显示器:lp3320 背光电路被广泛应用于各种显示器中,如液晶显示器、触摸屏显示器等。

2.电视:lp3320 背光电路在电视中也有广泛应用,如液晶电视、等离子电视等。

3.手机:手机屏幕的背光驱动也是lp3320 背光电路的重要应用领域,包括智能手机、平板手机等。

4.其他:除了上述领域,lp3320 背光电路还广泛应用于其他电子设备,如平板电脑、电子阅读器等。

【lp3320 背光电路的优缺点】1.优点:lp3320 背光电路具有高度集成、性能稳定、低功耗、高效率等优点。

此外,lp3320 还具有丰富的功能,如亮度调节、动态背光等,能够满足不同设备的需求。

液晶显示屏背光驱动集成电路工作原理

液晶显示屏背光驱动集成电路工作原理

液晶显示屏背光驱动集成电路工作原理液晶显示屏已经成为现今个人电子设备的主要显示技术之一。

在许多种液晶显示屏中,背光驱动器集成电路(IC)是控制屏幕亮度和对比度的关键组件。

本文将介绍背光驱动器集成电路的工作原理和其对液晶显示屏的影响。

1.液晶显示屏的类型在谈论液晶显示屏背光驱动集成电路之前,我们需要先了解液晶显示屏的种类。

液晶显示器可以分为直接驱动型和间接驱动型两种。

直接驱动显示器中每个像素都被控制,而在间接驱动显示器中,一个像素由若干个液晶单元(LCU)组成。

LDC 需要通过背光来显示亮度和对比度,因而需要背光驱动集成电路来控制背光的亮度和色调。

2.背光驱动器集成电路基础背光驱动器集成电路是一种控制和供电背光的芯片。

基本上,这个芯片将电能转化为光能,控制屏幕亮度,并在使用时保存能源。

集成电路包括控制器和转换器,其中控制器处理来自计算机或其他设备的信号以控制背光亮度,而转换器将光转换为背光的适当电压和电流。

背光驱动器集成电路包括一些主要结构块:控制器、逆变器、放大器、电容和电感。

控制器和电源面板可以与显示器电路板上其他元件交换数据来控制背光。

逆变器可将直流电能转换为交流电,供给灯管的点灯。

放大器被用于发出液晶屏幕所需的强烈信号,以获得最好的效果。

在电容和电感方面,它们被用来维持逆变器的稳定工作并减少噪声。

一些背光驱动器集成电路可以自动调节背光的亮度,这有助于减少屏幕耗电量并更好地适应不同环境下的需求。

此外,这些芯片还可以实现颜色调整,以改善图像的质量,并击败背景光线的影响。

3.背光驱动器集成电路的使用领域背光驱动器集成电路常应用于数字相框、平板电视、笔记本电脑、便携式媒体播放器等具有液晶显示屏的设备。

它们被广泛用于任何需要高分辨率和力量控制的设备中。

4.背光驱动器集成电路的工作原理在显示器被打开时,大约80V到100V的直流电压被导入背光驱动集成电路。

该电路将电压转换为高频交流电,以控制高压直流电的输入,并在有需要时调整背光的亮度。

液晶显示屏背光驱动集成电路工作原理

液晶显示屏背光驱动集成电路工作原理

对“剖析液晶屏逻辑板TFT偏压电路”一文的一点看法(此文为技术探讨)在国内某知名刊物2010年12月份期刊看到一篇关于介绍液晶屏逻辑板TFT偏压电路的文章,文章的标题是:“剖析液晶屏逻辑板TFT偏压电路”这是一篇选题极好的文章、目前液晶电视出现的极大部分屏幕故障例如:图像花屏、彩色失真、灰度失真、对比度不良、亮度暗淡、图像灰暗等等故障都与此电路有关,维修人员在维修此类故障时往往的面对液晶屏图像束手无策,而介绍此电路、无疑对类似故障的分析提供了极大的帮助,目前在一般的期刊书籍介绍分析此电路的文章极少。

什么是TFT屏偏压电路?现代的液晶电视都是采用TFT屏作为图像终端显示屏,由于我们现在的电视信号(包括各种视频信号)是专门为CRT显示而设计的,液晶屏和CRT的显示成像方式完全不同,液晶屏要显示专门为CRT而设计的电视信号,就必须对信号的结构、像素排列顺序、时间关系进行转换,以便液晶屏能正确显示。

图像信号的转换,这是一个极其复杂、精确的过程;先对信号进行存储,然后根据信号的标准及液晶屏的各项参数进行分析计算,根据计算的结果在按规定从存储器中读取预存的像素信号,并按照计算的要求重新组合排列读取的像素信号,成为液晶屏显示适应的信号。

这个过程把信号的时间过程、排列顺序都进行了重新的编排,并且要产生控制各个电路工作的辅助信号。

重新编排的像素信号在辅助信号的协调下,施加于液晶屏正确的重现图像。

每一个液晶屏都必须有一个这样的转换电路,这个电路就是我们常说的“时序控制电路”或“T-CON(提康)电路”,也有称为“逻辑板电路”的。

这个电路包括液晶屏周边的“行、列驱动电路”构成了一个液晶屏的驱动系统。

也是一个独立的整体。

这个独立的整体是由时序电路、存储电路、移位寄存器、锁存电路、D/A变换电路、译码电路、伽马(Gamma)电路(灰阶电压)等组成,这些电路的正常工作也需要各种不同的工作电压,并且还要有一定的上电时序关系,不同的屏,不同的供电电压。

背光驱动电路的选择策略和应用

背光驱动电路的选择策略和应用

背光驱动电路的选择策略和应用Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】背光驱动电路的选择策略和应用越来越多的便携式消费电子产品配备了彩色显示屏,例如手机、数码相机、PDA、MP3、PMP播放器等,其中手机又占据了这个市场的绝大部分份额,从而导致了这两年来中小尺寸显示屏产业链的飞速发展。

根据应用的不同,显示屏会有不同的种类,例如TFT-LCD、CSTN-LCD以及OLED显示屏,从市场的应用看,OLED显示屏只是在折叠式手机的副屏以及MP3的市场上占有一定的份额,而市场的主流依然是TFT和CSTN,这两种类型的LCD屏占据了现有的中小尺寸显示屏出货量的绝大部分。

本文重点就中小尺寸的LCD显示屏的背光驱动解决方案作一个分析介绍。

背光驱动的技术分析LCD显示屏自身并不发光,为了可以清楚的看到LCD显示屏的内容,需要一定的白光背光源。

在中小尺寸LCD显示屏中,一般采用白光LED作为显示屏的背光源。

白色LED背光电源由数个白光LED组成,如手机、数码相机一般仅需要2到3个白光LED,而PDA和PMP则根据其显示屏的面积,可能需要3到6个LED。

对背光驱动电路的要求是:满足背光的亮度要求整个显示屏亮度均匀(不允许有某一部分较亮、另一部较暗的情况)亮度可以方便地调节驱动电路占PCB空间要小工作效率高综合成本低对系统其他模块干扰小根据应用场合不同,系统设计者关注的重点可能会有所差别,例如对于低成本的产品方案中,可能会把整个驱动电路的成本放在第一位,对于手机的应用中,白光驱动电路对其他模块是否会产生EMI干扰则是要重点考虑的因素,而在MP3应用中,又有可能对EMI干扰不太关心。

白光LED驱动器基本上有两种驱动方式:一种是采用电感升压式DC/DC 升压变换的原理来驱动,所有的LED串联接在一起,一般也叫做串联型驱动方式;另一种是采用升压式电荷泵驱动电路,所产生的电压一般在5V/或者是根据LED的正向导通电压而自适应确定的一个电压,所有的LED并联在一起,一般也叫做并联型驱动方式。

lcd背光控制方法及电路接法

lcd背光控制方法及电路接法

lcd背光控制方法及电路接法
LCD背光控制方法:
1. 直接驱动:使用一个开关控制电源的通断,控制背光亮灭。

这种方法简单,但无法调节背光亮度。

2. PWM调光:使用脉冲宽度调制(PWM)信号,通过改变信号的高电平时间,来控制背光的亮度。

通过改变信号占空比的大小,可以实现背光的调光效果。

3. 串口控制:通过串口通信,发送控制命令给背光控制芯片,从而控制背光的亮度。

这种方法可以实现远程控制和灵活的背光调节。

LCD背光电路接法:
1. 直接驱动接法:将背光的正极接到电源的正极上,负极接到电源的负极上。

然后通过一个开关控制电源的通断。

2. PWM调光接法:将背光的正极接到电源的正极上,负极接到PWM调光信号的输出端。

PWM调光信号的输入端则连接到控制器或者PWM发生器上。

3. 串口控制接法:将背光的正极接到电源的正极上,负极连接到背光控制芯片的输出端。

串口控制芯片的输入端连接到控制器或者电脑上。

需要注意的是,不同LCD显示器的背光控制方法和电路接法可能有所不同,具体还需根据LCD产品的规格和说明进行接法。

背光驱动原理

背光驱动原理

背光驱动原理背光驱动技术是指在液晶显示器中,利用背光源来照亮液晶屏幕,从而实现图像显示的一种技术。

背光驱动原理是液晶显示器技术中的重要组成部分,下面将对背光驱动原理进行详细介绍。

首先,我们需要了解液晶显示器的结构。

液晶显示器主要由液晶屏和背光源组成。

液晶屏是由一层薄膜晶体组成的,通过控制电场来改变液晶分子的排列状态,从而实现图像的显示。

而背光源则是为了照亮液晶屏幕,使图像能够被观察到。

背光驱动原理的核心在于如何控制背光源的亮度和色彩,以达到最佳的显示效果。

目前常用的背光源包括冷阴极管(CCFL)和LED。

在液晶显示器中,背光源通常是位于液晶屏幕的背面,因此被称为背光源。

背光驱动原理的基本工作原理是利用电路控制背光源的亮度和色彩。

在液晶显示器中,背光源的亮度和色彩会影响到图像的显示效果,因此需要精确的控制。

一般来说,背光源的亮度是通过调节电流来实现的,而色彩则是通过控制不同颜色的LED来实现的。

在液晶显示器中,背光源的控制电路通常由PWM调光控制器和电源管理单元组成。

PWM调光控制器可以通过调节脉冲宽度来控制LED的亮度,从而实现背光源的亮度调节。

而电源管理单元则负责为背光源提供稳定的电源,并监测背光源的工作状态,以保证其正常工作。

除了亮度和色彩的控制,背光驱动原理还涉及到背光源的均匀性和稳定性。

在液晶显示器中,背光源的均匀性和稳定性对图像的质量有着重要的影响。

因此,背光驱动原理还需要考虑如何实现背光源的均匀照明和稳定工作。

总的来说,背光驱动原理是液晶显示器技术中的重要组成部分,它通过精确的控制背光源的亮度、色彩、均匀性和稳定性,实现了液晶显示器的高质量图像显示。

随着技术的不断进步,背光驱动原理也在不断演进,为液晶显示器的发展提供了强大的支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电路主要由DC/DC直流转换IC(升压IC)U6、储能电感L2、续流二极管D4等组成,其主要作用是通过调整升压,输出12V直流电压,供显示照明电路使用;当4脚得到主控IC送来的启动信号GPIO C2时,启动U6开始工作,通过内部的电路动作,电感L2的储能,二极管D4的续流作用,U6的5#经电阻R22输出12V电压;可通过调整分压电阻R23的阻值,控制U63#的电位来决定5#的输出电压 电路中R15、L2、D4、U6、R22任何一个损坏都会引起无12V电压故障。

描述: a03400场管 背光电路.jpg

大小: 556×343 - 24K

上传时间: 2009.04.24 10:57 描述: rt9271背光电路.jpg

大小: 682×304 - 27K

上传时间: 2009.04.24 10:57

描述: a8430背光电路.jpg

大小: 733×228 - 26K

上传时间: 2009.04.24 10:57 描述: rt9271背光电路2.jpg

大小: 450×181 - 21K

上传时间: 2009.04.24 10:57

描述: xc636bb103mr背光电路2.jpg

大小: 630×304 - 26K

上传时间: 2009.04.24 10:59

描述: xc636bb103mr背光电路.jpg

大小: 617×305 - 28K

上传时间: 2009.04.24 10:59 描述: tsp6104evm-001背光电路.jpg

大小: 636×272 - 24K

上传时间: 2009.04.24 10:59

第7章 海信LCD-4233D系列液晶电视 IP整合板 为了简化液晶电视机的内部结构、降低生产成本,有些生产厂家把液晶电视机的开关电源和高压背光板组合在一起,既向液晶电视整机提供电源(各种电路的VCC及CPU供电),又向背光管提供高压,一般称为IP整合板。I即INVERTER,逆变器的意思;P即POWER,功率、电源的意思。 7.1 电路组成 海信LCD-4233D系列液晶电视IP整合板的原理图如图7.1所示,由3部分组成(图中虚线框所示;分别显示出各部分的功能): PFC部分(图中1部分):由集成电路N811(NCP1653APG)及MOS管V811、V812电感L811及二极管VD812组成一个并联型开关电源;电路的特点是这个开关电源的供电+B是不经滤波的220V整流供电,主要作用是进行功率因数校正并向背光供电部分及小信号供电部分提供稳定的+380V电源。 待机电源部分(图中2部分):由集成电路N831(NCP1207APG)及MOS管V832开关变压器T831组成一个PWM稳压型的开关电源,采用PFC电路送来的+380V工作,输出整机主板供电的各种电源(5V_S、5V-M、12V、14V)。 背光供电部分(图中3部分):由激励控制集成电路N901(OZ9925GN)和N902(FAN7382)、MOS管V907和V908及N904(LM358)及升压变压器T903组成了采用了PFC部分+380V供电的N+N型MOS管半桥LLC功率放大电路,输出功率强大,可以向16~24只背光灯管供电,高压升压变压器只有1只,如采用CCFL背光灯管并联应用背光灯管必须采取电感平衡措施。

图7.1 本文是以介绍背光供电电路为主,关于PFC部分和小信号供电部分另外撰文介绍。 背光供电部分的原理图及实物照片如图7.2所示。T903是升压变压器,与L905、C917组成LLC谐振输出电路;两只N沟道MOS管V907、V908组成半桥功率放大电路,采用PFC电路直接输出的+380V供电;N902(FAN7382)是V907、V908的激励集成电路,由于V907、V908都是N沟道的MOS管,故N902输出两个反相的激励信号;N901是振荡、控制、激励集成电路。 7.2 电路特点 (1)采用两只N沟道MOS管组成高压(+380V)供电的半桥功率输出电路,功率管工作电流较低压供电小很多。由于采用了谐振型(LLC)输出,电路对功率管的要求更低,输出的正弦波形更好:当负载变化引起输出电压变化时,LLC谐振型功率输出电路具有自稳压特性。 (2)采用了平衡型背光灯管断路取样电路;简化的一般的CCFL灯管断路取样。 (3)由功率放大部分采用了两只相同的N沟道MOS管,两只功率管的激励信号必须反相且有相应―高‖、―低‖不同的直流分量。该电路采用了一块性能优秀的FAN7382高压半桥功率放大电路驱动集成电路,并采用了自举升压的方式解决了高电位激励信号的直流分量浮动问题。

正面 背面

图7.2 7.3 电路分析 IP整合板背光部分的等效电路如图7.3所示。N901在ON/OFF信号及亮度信号的控制下,由3脚、5脚输出反相对称的激励信号,经过激励变压器T901加到射极跟随器激励电路V906、V901、V903、V904,经放大后进入功率放大输出级激励集成电路N902的2脚、3脚。N902对2脚、3脚输入的激励信号进行分相处理,由6脚、7脚输出幅度相同、相位相反的两路信号,分别加到半桥功率输出管V908、V907的栅极,由V908、V907进行功率放大,V908、V907功率放大电路的负载是升压变压器T903和C917、L905组成串连谐振电路,把半桥功率放大电路输出的信号转换为正弦波并经T903升压输出去液晶屏的背光灯管,点亮背光灯管。

图7.3 7.3.1 LLC谐振输出电路 半桥功率放大输出管V907、V908的负载有升压变压器T903、L905和C917,和一般半桥功率放大输出电路不同的是多了一个串联在输出电路中的L905,T903虽然是升压变压器,但也等效于一个电感;再加上串联于电路中的电容器C917,这3个元件实际上组成了一个串联谐振电路。由于具有2个电感和1个电容,所以称为LLC谐振型输出电路。 这个电路有两大特点。 (1)如果谐振电路的谐振频率正好是前级振荡器的振荡频率,那么电路将处于谐振状态,电流最大、电流波形是完全正弦波,这样可以使输出功率最大化;并且两只功率开关管工作在软开关状态,即功率管由导通到截止或者由截止到导通的转换都在正弦波的过零点进行,功率管不存在开关损耗(只有导通损耗)。由于没有自感高压电势,还可以采用低耐压的开关管,电路的效率非常高并且非常安全,工作几乎没有热量产生,也不会对外产生干扰。 (2)T903既是一个升压变压器,又是一个电感。这个电感内部流过的电流要随负载的 变化而变化,故其电感量(L)并不是一个定数,而是随负载电流的变化在变动。这样,当负载发生变化时, LLC输出电路的谐振频率亦发生变化。 只要输出电路的谐振频率设定得和振荡频率略有偏差,即可达到根据负载的变化自动稳定输出电压的效果。 7.3.2 功率放大电路的激励 将两只N沟道MOS管作为高压半桥功率输出时,要求有两个相位相反、直流分量差异较大的激励信号:一个直流分量很高,数百伏特;一个只有几伏特。而振荡激励集成电路OZ9925的3脚、5脚只输出相位相反、直流分量相等的一对激励信号DRV1、DRV2,怎样把这对信号转化为高压半桥功率输出电路MOS管所需的栅极激励信号呢? 该背光部分的电路采用了一块美国仙童公司(飞兆)的FAN7382,即N902,如图7.4所示。 FAN7382是专门为高压半桥功率放大电路设计的驱动集成电路,其驱动的半桥功率放大电路可以采用近+600V的高电压作为+B供电,常用作高压半桥功率放大电路的MOS管栅极驱动。它采用先进的设计减小了高压IC工艺中寄生的源漏电容,从而使驱动具有足够的稳定性,上MOS功率管V907驱动部分的VCC供电巧妙采用了自举升压的方式,电路简洁合理,图7.5是其内部框图。

图7.4 从图7.5所示框图中可以看出,FAN7382有两个通道的激励信号输出:高边信号激励通道(HIGH-SIDE DRIVER ;V907的栅极激励)和低边信号激励通道(LOW-SIDE DRIVER ;V908的栅极激励),主要引脚功能介绍如下。 4脚、5脚、1脚是低边信号激励通道输出脚,内部是两只互补的灌流激励管。其中, 4脚(COM)是灌流电路的电源负端,可以接地;5脚(LO)是低边激励信号输出端,经过限流电阻和放电二极管接半桥功率放大MOS管V908的栅极;1脚(VCC)脚是灌流电路的VCC供电端。3脚(LIN)是低边信号通道的输入端。

图7.5 6脚、7脚、8脚是高边信号激励通道输出脚,内部也是两只互补的灌流激励管。其中,6脚(VS)是灌流电路电源负端,但在应用中直接外接V907、V908半桥功率放大电路的信号输出端,其电压随输出电压的振幅而变化(此端电压是浮动的);7脚(HO)是高边激励信号输出端,经限流电阻和放电二极管接半桥功率放大MOS管V907的栅极;8脚(VB)是高边灌流电路的VCC供电端。该VCC端的意义是:相对于6脚始终保持一个VCC电压的幅度。而6脚的电压是随半桥功率放大电路输出电压而浮动的,所以8脚电压也是在VCC的基础上随半桥功率放大电路输出电压而浮动。亦即,8脚电压=VCC+VOUT。2脚(HIN)是高边信号通道的输入端,其输入信号和低边通道输入端3脚(LIN)的输入信号是反相关系。 现在的问题是如何解决8脚高边通道输出灌流电路的VCC供电问题。这个电压相对于6脚是一个VCC的电压幅度关系,而对地则是VCC的电压幅度加上功率放大电路输出电压(VCC+VOUT)的关系。 和CRT电视中场扫描自举升压电路的方式类似,8脚VCC供电由电路上增加的升压电容器C904和升压二极管VD915自举升压得到,其工作原理如图7.6所示。 当V908导通、V907截止时,如图7.6(a)所示。输出端为低电平,等效于接地,电容器C904的下端也等于接地,VCC通过VD915对C904充电,C904两端电压被充至VCC电压幅度。 当V908截止、V907导通时,如图7.6(b)所示。输出端为高电平,等效于接+B,电容器C904的下端也等效于接+B。那么,在V907导通的时间,FAN7382的8脚电压等于VCC+(+B)。 这样,不管输出是什么电平,高边信号激励通道灌流电路的供电的6脚和8脚之间始终维持在VCC电压的幅度,保证了电路的正常工作。 (详细电路分析参见此文末7.5节 N+N沟道功率放大电路自举升压电路详细分析)

(a) (b) 图7.6 7.4 振荡控制集成电路OZ9925 OZ9925是微科(MICRO)公司专门为背光电路设计的背光驱动集成电路,具有振荡控制、激励、保护等功能。有两路反相的激励信号输出。OZ9925具备比较完善的输出电压、灯管电流检测功能及输出过压保护、VCC欠压保护功能;经过不同的电路变通组合,其保护控制输入端还可用作灯管断路保护控制等其他功能。 7.4.1 功 能 OZ9925是宽电源(VCC)供电背光激励控制集成电路,具有以下功能。 (1)VCC欠压保护。 (2)直流亮度控制输入。 (3)保护延迟时间设定。 (4)软启动时间设定。 7.4.1 引脚功能 OZ9925的引脚排列如图7.7所示,引脚功能见表7.1,内部框图如图7.8所示。

相关文档
最新文档